51
|
Gao Y, Päivinen P, Tripathi S, Domènech-Moreno E, Wong IPL, Vaahtomeri K, Nagaraj AS, Talwelkar SS, Foretz M, Verschuren EW, Viollet B, Yan Y, Mäkelä TP. Inactivation of AMPK Leads to Attenuation of Antigen Presentation and Immune Evasion in Lung Adenocarcinoma. Clin Cancer Res 2021; 28:227-237. [PMID: 34667030 DOI: 10.1158/1078-0432.ccr-21-2049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/21/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Mutations in STK11 (LKB1) occur in 17% of lung adenocarcinoma (LUAD) and drive a suppressive (cold) tumor immune microenvironment (TIME) and resistance to immunotherapy. The mechanisms underpinning the establishment and maintenance of a cold TIME in LKB1-mutant LUAD remain poorly understood. In this study, we investigated the role of the LKB1 substrate AMPK in immune evasion in human non-small cell lung cancer (NSCLC) and mouse models and explored the mechanisms involved. EXPERIMENTAL DESIGN We addressed the role of AMPK in immune evasion in NSCLC by correlating AMPK phosphorylation and immune-suppressive signatures and by deleting AMPKα1 (Prkaa1) and AMPKα2 (Prkaa2) in a KrasG12D -driven LUAD. Furthermore, we dissected the molecular mechanisms involved in immune evasion by comparing gene-expression signatures, AMPK activity, and immune infiltration in mouse and human LUAD and gain or loss-of-function experiments with LKB1- or AMPK-deficient cell lines. RESULTS Inactivation of both AMPKα1 and AMPKα2 together with Kras activation accelerated tumorigenesis and led to tumors with reduced infiltration of CD8+/CD4+ T cells and gene signatures associated with a suppressive TIME. These signatures recapitulate those in Lkb1-deleted murine LUAD and in LKB1-deficient human NSCLC. Interestingly, a similar signature is noted in human NSCLC with low AMPK activity. In mechanistic studies, we find that compromised LKB1 and AMPK activity leads to attenuated antigen presentation in both LUAD mouse models and human NSCLC. CONCLUSIONS The results provide evidence that the immune evasion noted in LKB1-inactivated lung cancer is due to subsequent inactivation of AMPK and attenuation of antigen presentation.
Collapse
Affiliation(s)
- Yajing Gao
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.,HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pekka Päivinen
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.,HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sushil Tripathi
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.,HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eva Domènech-Moreno
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Iris P L Wong
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.,HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kari Vaahtomeri
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki and Wihuri Research Institute, Helsinki, Finland
| | - Ashwini S Nagaraj
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sarang S Talwelkar
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Emmy W Verschuren
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Yan Yan
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland. .,HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tomi P Mäkelä
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.,HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
52
|
Mazzaschi G, Leonetti A, Minari R, Gnetti L, Quaini F, Tiseo M, Facchinetti F. Modulating Tumor Microenvironment: A Review on STK11 Immune Properties and Predictive vs Prognostic Role for Non-small-cell Lung Cancer Immunotherapy. Curr Treat Options Oncol 2021; 22:96. [PMID: 34524570 DOI: 10.1007/s11864-021-00891-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 01/07/2023]
Abstract
The quest for immunotherapy (IT) biomarkers is an element of highest clinical interest in both solid and hematologic tumors. In non-small-cell lung cancer (NSCLC) patients, besides PD-L1 expression evaluation with its intrinsic limitations, tissue and circulating parameters, likely portraying the tumor and its stromal/immune counterparts, have been proposed as potential predictors of IT responsiveness. STK11 mutations have been globally labeled as markers of IT resistance. After a thorough literature review, STK11 mutations condition the prognosis of NSCLC patients receiving ICI-containing regimens, implying a relevant biological and clinical significance. On the other hand, waiting for prospective and solid data, the putative negative predictive value of STK11 inactivation towards IT is sustained by less evidence. The physiologic regulation of multiple cellular pathways performed by STK11 likely explains the multifaceted modifications in tumor cells, stroma, and tumor immune microenvironment (TIME) observed in STK11 mutant lung cancer, particularly explored in the molecular subgroup of KRAS co-mutation. IT approaches available thus far in NSCLC, mainly represented by anti-PD-1/PD-L1 inhibitors, are not promising in the case of STK11 inactivation. Perceptive strategies aimed at modulating the TIME, regardless of STK11 status or specifically addressed to STK11-mutated cases, will hopefully provide valid therapeutic options to be adopted in the clinical practice.
Collapse
Affiliation(s)
- Giulia Mazzaschi
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Alessandro Leonetti
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Letizia Gnetti
- Pathology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Federico Quaini
- Department of Medicine & Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy
- Department of Medicine & Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Francesco Facchinetti
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, 114 Rue Edouard Vaillant, 94800, Villejuif, France.
| |
Collapse
|
53
|
La Montagna M, Shi L, Magee P, Sahoo S, Fassan M, Garofalo M. AMPKα loss promotes KRAS-mediated lung tumorigenesis. Cell Death Differ 2021; 28:2673-2689. [PMID: 34040167 PMCID: PMC8408205 DOI: 10.1038/s41418-021-00777-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/04/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a critical sensor of energy status that coordinates cell growth with energy balance. In non-small cell lung cancer (NSCLC) the role of AMPKα is controversial and its contribution to lung carcinogenesis is not well-defined. Furthermore, it remains largely unknown whether long non-coding RNAs (lncRNAs) are involved in the regulation of AMPK-mediated pathways. Here, we found that loss of AMPKα in combination with activation of mutant KRASG12D increased lung tumour burden and reduced survival in KrasLSLG12D/+/AMPKαfl/fl mice. In agreement, functional in vitro studies revealed that AMPKα silencing increased growth and migration of NSCLC cells. In addition, we identified an AMPKα-modulated lncRNA, KIMAT1 (ENSG00000228709), which in turn regulates AMPKα activation by stabilizing the lactate dehydrogenase B (LDHB). Collectively, our study indicates that AMPKα loss promotes KRAS-mediated lung tumorigenesis and proposes a novel KRAS/KIMAT1/LDHB/AMPKα axis that could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Manuela La Montagna
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Lei Shi
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Peter Magee
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Sudhakar Sahoo
- Computational Biology Support, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.
| | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK.
| |
Collapse
|
54
|
Pierce SE, Granja JM, Corces MR, Brady JJ, Tsai MK, Pierce AB, Tang R, Chu P, Feldser DM, Chang HY, Bassik MC, Greenleaf WJ, Winslow MM. LKB1 inactivation modulates chromatin accessibility to drive metastatic progression. Nat Cell Biol 2021; 23:915-924. [PMID: 34341533 PMCID: PMC8355205 DOI: 10.1038/s41556-021-00728-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
Metastasis is the leading cause of cancer-related deaths and enables cancer cells to compromise organ function by expanding in secondary sites. Since primary tumours and metastases often share the same constellation of driver mutations, the mechanisms that drive their distinct phenotypes are unclear. Here we show that inactivation of the frequently mutated tumour suppressor gene LKB1 (encoding liver kinase B1) has evolving effects throughout the progression of lung cancer, which leads to the differential epigenetic re-programming of early-stage primary tumours compared with late-stage metastases. By integrating genome-scale CRISPR-Cas9 screening with bulk and single-cell multi-omic analyses, we unexpectedly identify LKB1 as a master regulator of chromatin accessibility in lung adenocarcinoma primary tumours. Using an in vivo model of metastatic progression, we further show that loss of LKB1 activates the early endoderm transcription factor SOX17 in metastases and a metastatic-like sub-population of cancer cells within primary tumours. The expression of SOX17 is necessary and sufficient to drive a second wave of epigenetic changes in LKB1-deficient cells that enhances metastatic ability. Overall, our study demonstrates how the downstream effects of an individual driver mutation can change throughout cancer development, with implications for stage-specific therapeutic resistance mechanisms and the gene regulatory underpinnings of metastatic evolution.
Collapse
Affiliation(s)
- Sarah E Pierce
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jeffrey M Granja
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal and Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ryan Corces
- Center for Personal and Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer J Brady
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Min K Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aubrey B Pierce
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rui Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Pauline Chu
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David M Feldser
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Howard Y Chang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal and Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- HHMI, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Personal and Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
55
|
Kerk SA, Papagiannakopoulos T, Shah YM, Lyssiotis CA. Metabolic networks in mutant KRAS-driven tumours: tissue specificities and the microenvironment. Nat Rev Cancer 2021; 21:510-525. [PMID: 34244683 DOI: 10.1038/s41568-021-00375-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Oncogenic mutations in KRAS drive common metabolic programmes that facilitate tumour survival, growth and immune evasion in colorectal carcinoma, non-small-cell lung cancer and pancreatic ductal adenocarcinoma. However, the impacts of mutant KRAS signalling on malignant cell programmes and tumour properties are also dictated by tumour suppressor losses and physiological features specific to the cell and tissue of origin. Here we review convergent and disparate metabolic networks regulated by oncogenic mutant KRAS in colon, lung and pancreas tumours, with an emphasis on co-occurring mutations and the role of the tumour microenvironment. Furthermore, we explore how these networks can be exploited for therapeutic gain.
Collapse
Affiliation(s)
- Samuel A Kerk
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
56
|
Li C, Lin WY, Rizvi H, Cai H, McFarland CD, Rogers ZN, Yousefi M, Winters IP, Rudin CM, Petrov DA, Winslow MM. Quantitative In Vivo Analyses Reveal a Complex Pharmacogenomic Landscape in Lung Adenocarcinoma. Cancer Res 2021; 81:4570-4580. [PMID: 34215621 PMCID: PMC8416777 DOI: 10.1158/0008-5472.can-21-0716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/04/2021] [Accepted: 07/01/2021] [Indexed: 01/02/2023]
Abstract
The lack of knowledge about the relationship between tumor genotypes and therapeutic responses remains one of the most critical gaps in enabling the effective use of cancer therapies. Here, we couple a multiplexed and quantitative experimental platform with robust statistical methods to enable pharmacogenomic mapping of lung cancer treatment responses in vivo. The complex map of genotype-specific treatment responses uncovered that over 20% of possible interactions show significant resistance or sensitivity. Known and novel interactions were identified, and one of these interactions, the resistance of KEAP1-mutant lung tumors to platinum therapy, was validated using a large patient response data set. These results highlight the broad impact of tumor suppressor genotype on treatment responses and define a strategy to identify the determinants of precision therapies. SIGNIFICANCE: An experimental and analytical framework to generate in vivo pharmacogenomic maps that relate tumor genotypes to therapeutic responses reveals a surprisingly complex map of genotype-specific resistance and sensitivity.
Collapse
Affiliation(s)
- Chuan Li
- Department of Biology, Stanford University, Stanford, California
| | - Wen-Yang Lin
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Hira Rizvi
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hongchen Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | | | - Zoe N Rogers
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Maryam Yousefi
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Ian P Winters
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, California. .,Cancer Biology Program, Stanford University School of Medicine, Stanford, California
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California. .,Cancer Biology Program, Stanford University School of Medicine, Stanford, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
57
|
Mung KL, Eccleshall WB, Santio NM, Rivero-Müller A, Koskinen PJ. PIM kinases inhibit AMPK activation and promote tumorigenicity by phosphorylating LKB1. Cell Commun Signal 2021; 19:68. [PMID: 34193159 PMCID: PMC8247201 DOI: 10.1186/s12964-021-00749-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The oncogenic PIM kinases and the tumor-suppressive LKB1 kinase have both been implicated in the regulation of cell growth and metabolism, albeit in opposite directions. Here we investigated whether these kinases interact with each other to influence AMPK activation and tumorigenic growth of prostate and breast cancer cells. METHODS We first determined how PIM and LKB1 kinases affect AMPK phosphorylation levels. We then used in vitro kinase assays to demonstrate that LKB1 is phosphorylated by PIM kinases, and site-directed mutagenesis to identify the PIM target sites in LKB1. The cellular functions of PIM and LKB1 kinases were evaluated using either pan-PIM inhibitors or CRISPR/Cas9 genomic editing, with which all three PIM family members and/or LKB1 were knocked out from PC3 prostate and MCF7 breast cancer cell lines. In addition to cell proliferation assays, we examined the effects of PIM and/or LKB1 loss on tumor growth using the chick embryo chorioallantoic membrane (CAM) xenograft model. RESULTS We provide both genetic and pharmacological evidence to demonstrate that inhibition of PIM expression or activity increases phosphorylation of AMPK at Thr172 in both PC3 and MCF7 cells, but not in their derivatives lacking LKB1. This is explained by our observation that all three PIM family kinases can phosphorylate LKB1 at Ser334. Wild-type LKB1, but not its phosphodeficient derivative, can restore PIM inhibitor-induced AMPK phosphorylation in LKB1 knock-out cells. In the CAM model, loss of LKB1 enhances tumorigenicity of PC3 xenografts, while cells lacking both LKB1 and PIMs exhibit slower proliferation rates and form smaller tumors. CONCLUSION PIM kinases are novel negative regulators of LKB1 that affect AMPK activity in an LKB1-dependent fashion. The impairment of cell proliferation and tumor growth in cells lacking both LKB1 and PIMs indicates that these kinases possess a shared signaling role in the context of cancer. These data also suggest that PIM inhibitors may be a rational therapeutic option for LKB1-deficient tumors. Video Abstract.
Collapse
Affiliation(s)
- Kwan Long Mung
- Department of Biology, University of Turku, Vesilinnantie 5, 20500, Turku, Finland
| | - William B Eccleshall
- Department of Biology, University of Turku, Vesilinnantie 5, 20500, Turku, Finland.,Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland
| | - Niina M Santio
- Department of Biology, University of Turku, Vesilinnantie 5, 20500, Turku, Finland
| | - Adolfo Rivero-Müller
- Department of Biology, University of Turku, Vesilinnantie 5, 20500, Turku, Finland.,Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Päivi J Koskinen
- Department of Biology, University of Turku, Vesilinnantie 5, 20500, Turku, Finland.
| |
Collapse
|
58
|
Zhou X, Li JW, Chen Z, Ni W, Li X, Yang R, Shen H, Liu J, DeMayo FJ, Lu J, Kaye FJ, Wu L. Dependency of human and murine LKB1-inactivated lung cancer on aberrant CRTC-CREB activation. eLife 2021; 10:66095. [PMID: 34142658 PMCID: PMC8238510 DOI: 10.7554/elife.66095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer with loss-of-function of the LKB1 tumor suppressor is a common aggressive subgroup with no effective therapies. LKB1-deficiency induces constitutive activation of cAMP/CREB-mediated transcription by a family of three CREB-regulated transcription coactivators (CRTC1-3). However, the significance and mechanism of CRTC activation in promoting the aggressive phenotype of LKB1-null cancer remain poorly characterized. Here, we observed overlapping CRTC expression patterns and mild growth phenotypes of individual CRTC-knockouts in lung cancer, suggesting functional redundancy of CRTC1-3. We consequently designed a dominant-negative mutant (dnCRTC) to block all three CRTCs to bind and co-activate CREB. Expression of dnCRTC efficiently inhibited the aberrantly activated cAMP/CREB-mediated oncogenic transcriptional program induced by LKB1-deficiency, and specifically blocked the growth of human and murine LKB1-inactivated lung cancer. Collectively, this study provides direct proof for an essential role of the CRTC-CREB activation in promoting the malignant phenotypes of LKB1-null lung cancer and proposes the CRTC-CREB interaction interface as a novel therapeutic target.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, United States.,UF Health Cancer Center, Gainesville, United States
| | - Jennifer W Li
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, United States
| | - Zirong Chen
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, United States.,UF Health Cancer Center, Gainesville, United States
| | - Wei Ni
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, United States.,UF Health Cancer Center, Gainesville, United States.,UF Genetics Institute, Gainesville, United States
| | - Xuehui Li
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, United States.,UF Health Cancer Center, Gainesville, United States
| | - Rongqiang Yang
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, United States.,UF Health Cancer Center, Gainesville, United States
| | - Huangxuan Shen
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, United States.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China.,Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, United States
| | - Francesco J DeMayo
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, United States
| | - Jianrong Lu
- UF Health Cancer Center, Gainesville, United States.,Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, United States.,UF Genetics Institute, Gainesville, United States
| | - Frederic J Kaye
- UF Health Cancer Center, Gainesville, United States.,Department of Medicine, University of Florida College of Medicine, Gainesville, United States
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, United States.,UF Health Cancer Center, Gainesville, United States.,UF Genetics Institute, Gainesville, United States
| |
Collapse
|
59
|
Shi M, Zhao M, Wang L, Liu K, Li P, Liu J, Cai X, Chen L, Xu D. Exploring the stability of inhibitor binding to SIK2 using molecular dynamics simulation and binding free energy calculation. Phys Chem Chem Phys 2021; 23:13216-13227. [PMID: 34086021 DOI: 10.1039/d1cp00717c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Salt inducible kinase 2 (SIK2) is a calcium/calmodulin-dependent protein kinase-like kinase that is implicated in a variety of biological phenomena, including cellular metabolism, growth, and apoptosis. SIK2 is the key target for various cancers, including ovarian, breast, prostate, and lung cancers. Although potent inhibitors of SIK2 are being developed, their binding stability and functional role are not presently known. In this work, we studied the detailed interactions between SIK2 and four of its inhibitors, HG-9-91-01, KIN112, MRT67307, and MRT199665, using molecular docking, molecular dynamics simulation, binding free energy calculation, and interaction fingerprint analysis. Intermolecular interactions revealed that HG-9-91-01 and KIN112 have stronger interactions with SIK2 than those of MRT199665 and MRT67307. The key residues involved in binding with SIK2 are conserved among all four inhibitors. Our results explain the detailed interaction of SIK2 with its inhibitors at the molecular level, thus paving the way for the development of targeted efficient anti-cancer drugs.
Collapse
Affiliation(s)
- Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Min Zhao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Lun Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Kongjun Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Penghui Li
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Jiang Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaoying Cai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, China. and Research Center for Material Genome Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
60
|
Nuts and bolts of the salt-inducible kinases (SIKs). Biochem J 2021; 478:1377-1397. [PMID: 33861845 PMCID: PMC8057676 DOI: 10.1042/bcj20200502] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022]
Abstract
The salt-inducible kinases, SIK1, SIK2 and SIK3, most closely resemble the AMP-activated protein kinase (AMPK) and other AMPK-related kinases, and like these family members they require phosphorylation by LKB1 to be catalytically active. However, unlike other AMPK-related kinases they are phosphorylated by cyclic AMP-dependent protein kinase (PKA), which promotes their binding to 14-3-3 proteins and inactivation. The most well-established substrates of the SIKs are the CREB-regulated transcriptional co-activators (CRTCs), and the Class 2a histone deacetylases (HDAC4/5/7/9). Phosphorylation by SIKs promotes the translocation of CRTCs and Class 2a HDACs to the cytoplasm and their binding to 14-3-3s, preventing them from regulating their nuclear binding partners, the transcription factors CREB and MEF2. This process is reversed by PKA-dependent inactivation of the SIKs leading to dephosphorylation of CRTCs and Class 2a HDACs and their re-entry into the nucleus. Through the reversible regulation of these substrates and others that have not yet been identified, the SIKs regulate many physiological processes ranging from innate immunity, circadian rhythms and bone formation, to skin pigmentation and metabolism. This review summarises current knowledge of the SIKs and the evidence underpinning these findings, and discusses the therapeutic potential of SIK inhibitors for the treatment of disease.
Collapse
|
61
|
Hermanova I, Zúñiga-García P, Caro-Maldonado A, Fernandez-Ruiz S, Salvador F, Martín-Martín N, Zabala-Letona A, Nuñez-Olle M, Torrano V, Camacho L, Lizcano JM, Talamillo A, Carreira S, Gurel B, Cortazar AR, Guiu M, López JI, Martinez-Romero A, Astobiza I, Valcarcel-Jimenez L, Lorente M, Arruabarrena-Aristorena A, Velasco G, Gomez-Muñoz A, Suárez-Cabrera C, Lodewijk I, Flores JM, Sutherland JD, Barrio R, de Bono JS, Paramio JM, Trka J, Graupera M, Gomis RR, Carracedo A. Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer. J Exp Med 2021; 217:151590. [PMID: 32219437 PMCID: PMC7971141 DOI: 10.1084/jem.20191787] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/16/2019] [Accepted: 02/06/2020] [Indexed: 12/31/2022] Open
Abstract
Gene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkb1 alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer. Despite the low frequency of LKB1 deletion in patients, this event was significantly enriched in lung metastasis. Modeling the role of LKB1 in cellular systems revealed that the residual activity retained in a reported kinase-dead form, LKB1K78I, was sufficient to hamper tumor aggressiveness and metastatic dissemination. Our data suggest that prostate cells can function normally with low activity of LKB1, whereas its complete absence influences prostate cancer pathogenesis and dissemination.
Collapse
Affiliation(s)
- Ivana Hermanova
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Patricia Zúñiga-García
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Alfredo Caro-Maldonado
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sonia Fernandez-Ruiz
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Fernando Salvador
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Cancer Science Program, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Amaia Zabala-Letona
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Marc Nuñez-Olle
- Cancer Science Program, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Verónica Torrano
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | - Laura Camacho
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | - Jose M Lizcano
- Protein Kinases and Signal Transduction Laboratory, Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Ana Talamillo
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | - Ana R Cortazar
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Marc Guiu
- Cancer Science Program, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose I López
- Department of Pathology, Cruces University Hospital, Biocruces Institute, University of the Basque Country, Barakaldo, Spain
| | - Anabel Martinez-Romero
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Vascular Signalling Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Ianire Astobiza
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Lorea Valcarcel-Jimenez
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Mar Lorente
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
| | | | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.,Instituto de Investigaciones Sanitarias San Carlos, Madrid, Spain
| | - Antonio Gomez-Muñoz
- Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | - Cristian Suárez-Cabrera
- Grupo de Oncología Celular y Molecular, Hospital Universitario 12 de Octubre, Madrid, Spain.,Unidad de Oncología Molecular, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Iris Lodewijk
- Grupo de Oncología Celular y Molecular, Hospital Universitario 12 de Octubre, Madrid, Spain.,Unidad de Oncología Molecular, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Juana M Flores
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - James D Sutherland
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Johann S de Bono
- The Institute of Cancer Research, London, UK.,The Royal Marsden National Health Service Foundation Trust, London, UK
| | - Jesús M Paramio
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Grupo de Oncología Celular y Molecular, Hospital Universitario 12 de Octubre, Madrid, Spain.,Unidad de Oncología Molecular, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Jan Trka
- Childhood Leukaemia Investigation, Prague, Czech Republic.,Department of Paediatric Haematology/Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Mariona Graupera
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Vascular Signalling Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Roger R Gomis
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Cancer Science Program, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
62
|
Mograbi B, Heeke S, Hofman P. The Importance of STK11/ LKB1 Assessment in Non-Small Cell Lung Carcinomas. Diagnostics (Basel) 2021; 11:196. [PMID: 33572782 PMCID: PMC7912095 DOI: 10.3390/diagnostics11020196] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the recent implementation of immunotherapy as a single treatment or in combination with chemotherapy for first-line treatment of advanced non-small cell lung cancer (NSCLC), many patients do not benefit from this regimen due to primary treatment resistance or toxicity. Consequently, there is an urgent need to develop efficient biomarkers that can select patients who will benefit from immunotherapy thereby providing the appropriate treatment and avoiding toxicity. One of the biomarkers recently described for the stratification of NSCLC patients undergoing immunotherapy are mutations in STK11/LKB1, which are often associated with a lack of response to immunotherapy in some patients. Therefore, the purpose of this review is to describe the different cellular mechanisms associated with STK11/LKB1 mutations, which may explain the lack of response to immunotherapy. Moreover the review addresses the co-occurrence of additional mutations that may influence the response to immunotherapy and the current clinical studies that have further explored STK11/LKB1 as a predictive biomarker. Additionally this work includes the opportunities and limitations to look for the STK11/LKB1 status in the therapeutic strategy for NSCLC patients.
Collapse
Affiliation(s)
- Baharia Mograbi
- Centre Antoine Lacassagne, CNRS, FHU OncoAge, Team 4, INSERM, IRCAN, Université Côte d’Azur, 06000 Nice, France;
| | - Simon Heeke
- Department of Thoracic Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Paul Hofman
- Centre Antoine Lacassagne, CNRS, FHU OncoAge, Team 4, INSERM, IRCAN, Université Côte d’Azur, 06000 Nice, France;
- CHU Nice, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- CHU Nice, FHU OncoAge, Hospital-Integrated Biobank BB-0033-00025, Université Côte d’Azur, 06000 Nice, France
| |
Collapse
|
63
|
Dey P, Kimmelman AC, DePinho RA. Metabolic Codependencies in the Tumor Microenvironment. Cancer Discov 2021; 11:1067-1081. [PMID: 33504580 DOI: 10.1158/2159-8290.cd-20-1211] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Metabolic reprogramming enables cancer cell growth, proliferation, and survival. This reprogramming is driven by the combined actions of oncogenic alterations in cancer cells and host cell factors acting on cancer cells in the tumor microenvironment. Cancer cell-intrinsic mechanisms activate signal transduction components that either directly enhance metabolic enzyme activity or upregulate transcription factors that in turn increase expression of metabolic regulators. Extrinsic signaling mechanisms involve host-derived factors that further promote and amplify metabolic reprogramming in cancer cells. This review describes intrinsic and extrinsic mechanisms driving cancer metabolism in the tumor microenvironment and how such mechanisms may be targeted therapeutically. SIGNIFICANCE: Cancer cell metabolic reprogramming is a consequence of the converging signals originating from both intrinsic and extrinsic factors. Intrinsic signaling maintains the baseline metabolic state, whereas extrinsic signals fine-tune the metabolic processes based on the availability of metabolites and the requirements of the cells. Therefore, successful targeting of metabolic pathways will require a nuanced approach based on the cancer's genotype, tumor microenvironment composition, and tissue location.
Collapse
Affiliation(s)
- Prasenjit Dey
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York. .,Tumor Immunology and Immunotherapy Program, State University of New York (SUNY) at Buffalo, Buffalo, New York
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
64
|
Dowling CM, Zhang H, Chonghaile TN, Wong KK. Shining a light on metabolic vulnerabilities in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188462. [PMID: 33130228 PMCID: PMC7836022 DOI: 10.1016/j.bbcan.2020.188462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer which contributes to essential processes required for cell survival, growth, and proliferation. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and its genomic classification has given rise to the design of therapies targeting tumors harboring specific gene alterations that cause aberrant signaling. Lung tumors are characterized with having high glucose and lactate use, and high heterogeneity in their metabolic pathways. Here we review how NSCLC cells with distinct mutations reprogram their metabolic pathways and highlight the potential metabolic vulnerabilities that might lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Catríona M Dowling
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA; School of Medicine, University of Limerick, Limerick, Ireland
| | - Hua Zhang
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
| | - Tríona Ní Chonghaile
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kwok-Kin Wong
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
65
|
Zhang Y, Meng Q, Sun Q, Xu ZX, Zhou H, Wang Y. LKB1 deficiency-induced metabolic reprogramming in tumorigenesis and non-neoplastic diseases. Mol Metab 2020; 44:101131. [PMID: 33278637 PMCID: PMC7753952 DOI: 10.1016/j.molmet.2020.101131] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background Live kinase B1 (LKB1) is a tumor suppressor that is mutated in Peutz-Jeghers syndrome (PJS) and a variety of cancers. Lkb1 encodes serine-threonine kinase (STK) 11 that activates AMP-activated protein kinase (AMPK) and its 13 superfamily members, regulating multiple biological processes, such as cell polarity, cell cycle arrest, embryo development, apoptosis, and bioenergetics metabolism. Increasing evidence has highlighted that deficiency of LKB1 in cancer cells induces extensive metabolic alterations that promote tumorigenesis and development. LKB1 also participates in the maintenance of phenotypes and functions of normal cells through metabolic regulation. Scope of review Given the important role of LKB1 in metabolic regulation, we provide an overview of the association of metabolic alterations in glycolysis, aerobic oxidation, the pentose phosphate pathway (PPP), gluconeogenesis, glutamine, lipid, and serine induced by aberrant LKB1 signals in tumor progression, non-neoplastic diseases, and functions of immune cells. Major conclusions In this review, we summarize layers of evidence demonstrating that disordered metabolisms in glucose, glutamine, lipid, and serine caused by LKB1 deficiency promote carcinogenesis and non-neoplastic diseases. The metabolic reprogramming resulting from the loss of LKB1 confers cancer cells with growth or survival advantages. Nevertheless, it also causes a metabolic frangibility for LKB1-deficient cancer cells. The metabolic regulation of LKB1 also plays a vital role in maintaining cellular phenotype in the progression of non-neoplastic diseases. In addition, lipid metabolic regulation of LKB1 plays an important role in controlling the function, activity, proliferation, and differentiation of several types of immune cells. We conclude that in-depth knowledge of metabolic pathways regulated by LKB1 is conducive to identifying therapeutic targets and developing drug combinations to treat cancers and metabolic diseases and achieve immunoregulation.
Collapse
Affiliation(s)
- Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qianhui Sun
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China; School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Honglan Zhou
- Department of Urology, First Hospital of Jilin University, Changchun, 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
66
|
Wohlhieter CA, Richards AL, Uddin F, Hulton CH, Quintanal-Villalonga À, Martin A, de Stanchina E, Bhanot U, Asher M, Shah NS, Hayatt O, Buonocore DJ, Rekhtman N, Shen R, Arbour KC, Donoghue M, Poirier JT, Sen T, Rudin CM. Concurrent Mutations in STK11 and KEAP1 Promote Ferroptosis Protection and SCD1 Dependence in Lung Cancer. Cell Rep 2020; 33:108444. [PMID: 33264619 PMCID: PMC7722473 DOI: 10.1016/j.celrep.2020.108444] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/28/2020] [Accepted: 11/06/2020] [Indexed: 01/18/2023] Open
Abstract
Concurrent loss-of-function mutations in STK11 and KEAP1 in lung adenocarcinoma (LUAD) are associated with aggressive tumor growth, resistance to available therapies, and early death. We investigated the effects of coordinate STK11 and KEAP1 loss by comparing co-mutant with single mutant and wild-type isogenic counterparts in multiple LUAD models. STK11/KEAP1 co-mutation results in significantly elevated expression of ferroptosis-protective genes, including SCD and AKR1C1/2/3, and resistance to pharmacologically induced ferroptosis. CRISPR screening further nominates SCD (SCD1) as selectively essential in STK11/KEAP1 co-mutant LUAD. Genetic and pharmacological inhibition of SCD1 confirms the essentiality of this gene and augments the effects of ferroptosis induction by erastin and RSL3. Together these data identify SCD1 as a selective vulnerability and a promising candidate for targeted drug development in STK11/KEAP1 co-mutant LUAD.
Collapse
Affiliation(s)
- Corrin A Wohlhieter
- Graduate Program in Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Allison L Richards
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fathema Uddin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher H Hulton
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Axel Martin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Umeshkumar Bhanot
- Precision Pathology Biobanking Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina Asher
- Precision Pathology Biobanking Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nisargbhai S Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Omar Hayatt
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Darren J Buonocore
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kathryn C Arbour
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Triparna Sen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Charles M Rudin
- Graduate Program in Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
67
|
Beyond LKB1 Mutations in Non-Small Cell Lung Cancer: Defining LKB1less Phenotype to Optimize Patient Selection and Treatment. Pharmaceuticals (Basel) 2020; 13:ph13110385. [PMID: 33202760 PMCID: PMC7697441 DOI: 10.3390/ph13110385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023] Open
Abstract
LKB1 is frequently mutated in non-small cell lung cancer (NSCLC). LKB1-mutated NSCLCs often have a dismal prognosis and receive lower benefit from the currently available therapies. LKB1 acts as a cell emergency brake in low-energy conditions, by modulating the activity of crucial anabolic enzymes. Thus, loss of LKB1 activity leads to the enhancement of tumor cell proliferation also under conditions of energy shortage. This unrestrained growth may be exploited as an Achilles heel in NSCLC, i.e., by inhibiting mitochondrial respiration. Recently, clinical trials have started to investigate the efficacy of metabolism-based treatments in NSCLCs. To date, enrollment of patients within these trials is based on LKB1 loss of function status, defined by mutation in the gene or by complete absence of immunohistochemical staining. However, LKB1 impairment could be the consequence of epigenetic regulations that partially or completely abrogate protein expression. These epigenetic regulations result in LKB1 wild-type tumors with aggressiveness and vulnerabilities similar to those of LKB1-mutated ones. In this review, we introduced the definition of the “LKB1less phenotype”, and we summarized all currently known features linked to this status, in order to optimize selection and treatment of NSCLC patients with impaired LKB1 function.
Collapse
|
68
|
Li HP, Liu JT, Chen YX, Wang WB, Han Y, Yao QP, Qi YX. Suppressed nuclear envelope proteins activate autophagy of vascular smooth muscle cells during cyclic stretch application. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118855. [PMID: 32926941 DOI: 10.1016/j.bbamcr.2020.118855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
Dysfunctions of vascular smooth muscle cells (VSMCs) play crucial roles in vascular remodeling in hypertension, which correlates with pathologically elevated cyclic stretch due to increased arterial pressure. Recent researches reported that autophagy, a life-sustaining process, was increased in hypertension. However, the mechanobiological mechanism of VSMC autophagy and its potential roles in vascular remodeling are still unclear. Using renal hypertensive rats in vivo and FX5000 stretch application Unit in vitro, the autophagy of VSMCs was detected. The results showed that LC3II remarkably enhanced in hypertensive rats and 15% cyclic stretch (mimic the pathologically increased mechanical stretch in hypertension), and the activity of mammalian target of rapamycin (mTOR) was suppressed in 15% cyclic stretch. Administration of autophagy inhibitors, bafilomycin A1 and chloroquine, repressed VSMC proliferation efficiently, but did not affect the degradation of two important nuclear envelope (NE) proteins, lamin A/C and emerin. Using RNA interference to decline the expression of lamin A/C and emerin, respectively, we discovered that autophagy was upregulated under both static and 5% cyclic stretch conditions, accompanying with the decreased mTOR activity. During 15% cyclic stretch application, mTOR inhibition was responsible for autophagy elevation. Chloroquine administration in vivo inhibited the expression of PCNA (marker of proliferation) of abdominal aorta in hypertensive rats. Altogether, these results demonstrated that pathological cyclic stretch suppresses the expression of lamin A/C and emerin which subsequently represses mTOR pathway so as to induce autophagy activation. Blocking autophagic flux may be a practicable way to relieve the pathological vascular remodeling in hypertensive.
Collapse
Affiliation(s)
- Hai-Peng Li
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji-Ting Liu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan-Xiu Chen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Bin Wang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
69
|
Macaya I, Entrialgo-Cadierno R, Valencia K, Vicent S. Liver Kinase B1 (LKB1) Loss Has its p-ERKs: ERK Inactivation as a Vulnerability in NSCLC With LKB1 Mutations. J Thorac Oncol 2020; 15:311-313. [PMID: 32093851 DOI: 10.1016/j.jtho.2019.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Irati Macaya
- Program in Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Rodrigo Entrialgo-Cadierno
- Program in Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Karmele Valencia
- Program in Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Silvestre Vicent
- Program in Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain; Navarra Institute for Health Research, University of Navarra, Pamplona, Spain; Department of Pathology, Anatomy, and Physiology, Pamplona, Spain.
| |
Collapse
|
70
|
Sun Z, Jiang Q, Li J, Guo J. The potent roles of salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis. Signal Transduct Target Ther 2020; 5:150. [PMID: 32788639 PMCID: PMC7423983 DOI: 10.1038/s41392-020-00265-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023] Open
Abstract
Salt-inducible kinases (SIKs) belong to AMP-activated protein kinase (AMPK) family, and functions mainly involve in regulating energy response-related physiological processes, such as gluconeogenesis and lipid metabolism. However, compared with another well-established energy-response kinase AMPK, SIK roles in human diseases, especially in diabetes and tumorigenesis, are rarely investigated. Recently, the pilot roles of SIKs in tumorigenesis have begun to attract more attention due to the finding that the tumor suppressor role of LKB1 in non-small-cell lung cancers (NSCLCs) is unexpectedly mediated by the SIK but not AMPK kinases. Thus, here we tend to comprehensively summarize the emerging upstream regulators, downstream substrates, mouse models, clinical relevance, and candidate inhibitors for SIKs, and shed light on SIKs as the potential therapeutic targets for cancer therapies.
Collapse
Affiliation(s)
- Zicheng Sun
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.,Department of Breast and Thyroid Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Qiwei Jiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| |
Collapse
|
71
|
Wu Z, Li W, Li J, Zhang Y, Zhang X, Xu Y, Hu Y, Li Q, Sun Q, Ma Z. Higher expression of miR-150-5p promotes tumorigenesis by suppressing LKB1 in non-small cell lung cancer. Pathol Res Pract 2020; 216:153145. [PMID: 32827803 DOI: 10.1016/j.prp.2020.153145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is one of the most malignant tumors that can form in the human. MicroRNAs (MiRNAs) play significant role in tumor progression. Human lung cancer tissues and cell lines were used to determine miR-150-5p respectively, and Liver Kinase B1 (LKB1) expression using quantitative real-time PCR (qRT-PCR). The data analysis website Kaplan-Meier Plotter (database obtained from The Cancer Genome Atlas) was used to perform a survival analysis with LKB1 levels. Using the appropriate assays, the function of miR-150-5p was also detected in cellular proliferation, migration and cell apoptosis as well as cell cycle. Results revealed that miR-150-5p was upregulated in non-small cell lung cancer (NSCLC) tissue and cell lines. In NSCLC, miR-150-5p promoted cellular proliferation and migration, but decreased cellular apoptosis. Conversely, miR-150-5p inhibition suppressed cellular growth. These results further revealed a network of cellular signaling for miR-150-5p to target LKB1. Ectopic expression of LKB1 can mitigate the tumor-promoting function of miR-150-5p. Collectively, these results indicated that miR-150-5p may promote lung cancer by inhibiting the suppressor gene LKB1 in NSCLC.
Collapse
Affiliation(s)
- Zong Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wanqiu Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiadong Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xinju Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yikun Xu
- QianWeiChang College, Shanghai University, Shanghai 200444, China
| | - Yanping Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Qian Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Qiangling Sun
- Shanghai Chest Hospital, 241 West Huaihai Road, Shanghai, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
72
|
Santarpia M, Aguilar A, Chaib I, Cardona AF, Fancelli S, Laguia F, Bracht JWP, Cao P, Molina-Vila MA, Karachaliou N, Rosell R. Non-Small-Cell Lung Cancer Signaling Pathways, Metabolism, and PD-1/PD-L1 Antibodies. Cancers (Basel) 2020; 12:E1475. [PMID: 32516941 PMCID: PMC7352732 DOI: 10.3390/cancers12061475] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
Treatment of advanced (metastatic) non-small-cell lung cancer (NSCLC) is currently mainly based on immunotherapy with antibodies against PD-1 or PD-L1, alone, or in combination with chemotherapy. In locally advanced NSCLC and in early resected stages, immunotherapy is also employed. Tumor PD-L1 expression by immunohistochemistry is considered the standard practice. Response rate is low, with median progression free survival very short in the vast majority of studies reported. Herein, numerous biological facets of NSCLC are described involving driver genetic lesions, mutations ad fusions, PD-L1 glycosylation, ferroptosis and metabolic rewiring in NSCLC and lung adenocarcinoma (LUAD). Novel concepts, such as immune-transmitters and the effect of neurotransmitters in immune evasion and tumor growth, the nascent relevance of necroptosis and pyroptosis, possible new biomarkers, such as gasdermin D and gasdermin E, the conundrum of K-Ras mutations in LUADs, with the growing recognition of liver kinase B1 (LKB1) and metabolic pathways, including others, are also commented. The review serves to charter diverse treatment solutions, depending on the main altered signaling pathways, in order to have effectual immunotherapy. Tumor PDCD1 gene (encoding PD-1) has been recently described, in equilibrium with tumor PD-L1 (encoded by PDCD1LG1). Such description explains tumor hyper-progression, which has been reported in several studies, and poises the fundamental criterion that IHC PD-L1 expression as a biomarker should be revisited.
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- Department of Human Pathology “G. Barresi”, Medical Oncology Unit, University of Messina, 98122 Messina, Italy;
| | - Andrés Aguilar
- Instituto Oncológico Dr Rosell, Hospital Universitario Quirón-Dexeus, 08028 Barcelona, Spain;
| | - Imane Chaib
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (I.C.); (S.F.); (F.L.)
| | - Andrés Felipe Cardona
- Foundation for Clinical and Applied Cancer Research-FICMAC Translational Oncology, Bogotá 100110, Colombia;
| | - Sara Fancelli
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (I.C.); (S.F.); (F.L.)
| | - Fernando Laguia
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (I.C.); (S.F.); (F.L.)
| | | | - Peng Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Miguel Angel Molina-Vila
- Pangaea Oncology, Hospital Universitario Quirón-Dexeus, 08028 Barcelona, Spain; (J.W.P.B.); (M.A.M.-V.)
| | | | - Rafael Rosell
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (I.C.); (S.F.); (F.L.)
| |
Collapse
|
73
|
Salt-inducible kinase inhibition suppresses acute myeloid leukemia progression in vivo. Blood 2020; 135:56-70. [PMID: 31697837 DOI: 10.1182/blood.2019001576] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Lineage-defining transcription factors (TFs) are compelling targets for leukemia therapy, yet they are among the most challenging proteins to modulate directly with small molecules. We previously used CRISPR screening to identify a salt-inducible kinase 3 (SIK3) requirement for the growth of acute myeloid leukemia (AML) cell lines that overexpress the lineage TF myocyte enhancer factor (MEF2C). In this context, SIK3 maintains MEF2C function by directly phosphorylating histone deacetylase 4 (HDAC4), a repressive cofactor of MEF2C. In this study, we evaluated whether inhibition of SIK3 with the tool compound YKL-05-099 can suppress MEF2C function and attenuate disease progression in animal models of AML. Genetic targeting of SIK3 or MEF2C selectively suppressed the growth of transformed hematopoietic cells under in vitro and in vivo conditions. Similar phenotypes were obtained when cells were exposed to YKL-05-099, which caused cell-cycle arrest and apoptosis in MEF2C-expressing AML cell lines. An epigenomic analysis revealed that YKL-05-099 rapidly suppressed MEF2C function by altering the phosphorylation state and nuclear localization of HDAC4. Using a gatekeeper allele of SIK3, we found that the antiproliferative effects of YKL-05-099 occurred through on-target inhibition of SIK3 kinase activity. Based on these findings, we treated 2 different mouse models of MLL-AF9 AML with YKL-05-099, which attenuated disease progression in vivo and extended animal survival at well-tolerated doses. These findings validate SIK3 as a therapeutic target in MEF2C-addicted AML and provide a rationale for developing druglike inhibitors of SIK3 for definitive preclinical investigation and for studies in human patients.
Collapse
|
74
|
Hollstein PE, Eichner LJ, Brun SN, Kamireddy A, Svensson RU, Vera LI, Ross DS, Rymoff TJ, Hutchins A, Galvez HM, Williams AE, Shokhirev MN, Screaton RA, Berdeaux R, Shaw RJ. The AMPK-Related Kinases SIK1 and SIK3 Mediate Key Tumor-Suppressive Effects of LKB1 in NSCLC. Cancer Discov 2019; 9:1606-1627. [PMID: 31350328 DOI: 10.1158/2159-8290.cd-18-1261] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/29/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
Mutations in the LKB1 (also known as STK11) tumor suppressor are the third most frequent genetic alteration in non-small cell lung cancer (NSCLC). LKB1 encodes a serine/threonine kinase that directly phosphorylates and activates 14 AMPK family kinases ("AMPKRs"). The function of many of the AMPKRs remains obscure, and which are most critical to the tumor-suppressive function of LKB1 remains unknown. Here, we combine CRISPR and genetic analysis of the AMPKR family in NSCLC cell lines and mouse models, revealing a surprising critical role for the SIK subfamily. Conditional genetic loss of Sik1 revealed increased tumor growth in mouse models of Kras-dependent lung cancer, which was further enhanced by loss of the related kinase Sik3. As most known substrates of the SIKs control transcription, gene-expression analysis was performed, revealing upregulation of AP1 and IL6 signaling in common between LKB1- and SIK1/3-deficient tumors. The SIK substrate CRTC2 was required for this effect, as well as for proliferation benefits from SIK loss. SIGNIFICANCE: The tumor suppressor LKB1/STK11 encodes a serine/threonine kinase frequently inactivated in NSCLC. LKB1 activates 14 downstream kinases in the AMPK family controlling growth and metabolism, although which kinases are critical for LKB1 tumor-suppressor function has remained an enigma. Here we unexpectedly found that two understudied kinases, SIK1 and SIK3, are critical targets in lung cancer.This article is highlighted in the In This Issue feature, p. 1469.
Collapse
Affiliation(s)
- Pablo E Hollstein
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Lillian J Eichner
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Sonja N Brun
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Anwesh Kamireddy
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Robert U Svensson
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Liliana I Vera
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Debbie S Ross
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - T J Rymoff
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Amanda Hutchins
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Hector M Galvez
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - April E Williams
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California
| | - Robert A Screaton
- Sunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California.
| |
Collapse
|