51
|
Pandey S, Gupta VK, Lavania SP. Role of epigenetics in pancreatic ductal adenocarcinoma. Epigenomics 2023; 15:89-110. [PMID: 36647796 DOI: 10.2217/epi-2022-0177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, associated with poor survival outcomes. Lack of early diagnosis, resistance to conventional therapeutic treatments (including immunotherapy) and recurrence are some of the major hurdles in PDAC and contribute to its poor survival rate. While the risk of genetic predisposition to cancers is widely acknowledged and understood, recent advances in whole-genome and next-generation sequencing techniques have led to the acknowledgment of the role played by epigenetics, especially in PDAC. Epigenetic changes are heritable genetic modifications that influence gene expression without altering the DNA sequence. Epigenetic mechanisms (e.g., DNA methylation, post-translational modification of histone complexes and ncRNA) that result in reversible changes in gene expression are increasingly understood to be responsible for tumor initiation, development and even escape from immune surveillance. Our review seeks to highlight the various components of the epigenetic machinery that are known to be implicated in PDAC initiation and development and the feasibility of targeting these components to identify novel pharmacological strategies that could potentially lead to breakthroughs in PDAC treatment.
Collapse
Affiliation(s)
- Somnath Pandey
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Vineet K Gupta
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Shweta P Lavania
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
52
|
Yang Y, Zhang H, Huang S, Chu Q. KRAS Mutations in Solid Tumors: Characteristics, Current Therapeutic Strategy, and Potential Treatment Exploration. J Clin Med 2023; 12:jcm12020709. [PMID: 36675641 PMCID: PMC9861148 DOI: 10.3390/jcm12020709] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Kristen rat sarcoma (KRAS) gene is one of the most common mutated oncogenes in solid tumors. Yet, KRAS inhibitors did not follow suit with the development of targeted therapy, for the structure of KRAS has been considered as being implausible to target for decades. Chemotherapy was the initial recommended therapy for KRAS-mutant cancer patients, which was then replaced by or combined with immunotherapy. KRAS G12C inhibitors became the most recent breakthrough in targeted therapy, with Sotorasib being approved by the Food and Drug Administration (FDA) based on its significant efficacy in multiple clinical studies. However, the subtypes of the KRAS mutations are complex, and the development of inhibitors targeting non-G12C subtypes is still at a relatively early stage. In addition, the monotherapy of KRAS inhibitors has accumulated possible resistance, acquiring the exploration of combination therapies or next-generation KRAS inhibitors. Thus, other non-target, conventional therapies have also been considered as being promising. Here in this review, we went through the characteristics of KRAS mutations in cancer patients, and the prognostic effect that it poses on different therapies and advanced therapeutic strategy, as well as cutting-edge research on the mechanisms of drug resistance, tumor development, and the immune microenvironment.
Collapse
|
53
|
Yu Z, Ouyang L. Identification Of key prognostic genes in ovarian cancer using WGCNA and LASSO analysis. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2087107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Zhong Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, People’s Republic of China
| | - Ling Ouyang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, People’s Republic of China
| |
Collapse
|
54
|
Drosten M, Barbacid M. KRAS inhibitors: going noncovalent. Mol Oncol 2022; 16:3911-3915. [PMID: 36383067 PMCID: PMC9718111 DOI: 10.1002/1878-0261.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022] Open
Abstract
KRASG12D is the most frequent KRAS mutation in human cancer with particularly high frequencies in pancreatic and colorectal cancer. Informed by the structure of the KRASG12C inhibitor adagrasib, Hallin et al. have now, through multiple rounds of structure-based drug design, identified and validated a potent, selective, and noncovalent KRASG12D inhibitor, MRTX1133. This study demonstrated that MRTX1133 inhibited both the inactive and active state of KRASG12D and showed potent antitumor activity in several preclinical models of pancreatic and colorectal cancer, especially when combined with cetuximab, a monoclonal antibody against the EGFR, or BYL-719, a potent PI3Kα inhibitor.
Collapse
Affiliation(s)
- Matthias Drosten
- Molecular Mechanisms of Cancer ProgramCentro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC‐USALSalamancaSpain
| | - Mariano Barbacid
- Molecular Oncology ProgramCentro Nacional de Investigaciones Oncológicas (CNIO)MadridSpain
| |
Collapse
|
55
|
Parker AL, Bowman E, Zingone A, Ryan BM, Cooper WA, Kohonen-Corish M, Harris CC, Cox TR. Extracellular matrix profiles determine risk and prognosis of the squamous cell carcinoma subtype of non-small cell lung carcinoma. Genome Med 2022; 14:126. [PMID: 36404344 PMCID: PMC9677915 DOI: 10.1186/s13073-022-01127-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma (SqCC) is a subtype of non-small cell lung cancer for which patient prognosis remains poor. The extracellular matrix (ECM) is critical in regulating cell behavior; however, its importance in tumor aggressiveness remains to be comprehensively characterized. METHODS Multi-omics data of SqCC human tumor specimens was combined to characterize ECM features associated with initiation and recurrence. Penalized logistic regression was used to define a matrix risk signature for SqCC tumors and its performance across a panel of tumor types and in SqCC premalignant lesions was evaluated. Consensus clustering was used to define prognostic matreotypes for SqCC tumors. Matreotype-specific tumor biology was defined by integration of bulk RNAseq with scRNAseq data, cell type deconvolution, analysis of ligand-receptor interactions and enriched biological pathways, and through cross comparison of matreotype expression profiles with aging and idiopathic pulmonary fibrosis lung profiles. RESULTS This analysis revealed subtype-specific ECM signatures associated with tumor initiation that were predictive of premalignant progression. We identified an ECM-enriched tumor subtype associated with the poorest prognosis. In silico analysis indicates that matrix remodeling programs differentially activate intracellular signaling in tumor and stromal cells to reinforce matrix remodeling associated with resistance and progression. The matrix subtype with the poorest prognosis resembles ECM remodeling in idiopathic pulmonary fibrosis and may represent a field of cancerization associated with elevated cancer risk. CONCLUSIONS Collectively, this analysis defines matrix-driven features of poor prognosis to inform precision medicine prevention and treatment strategies towards improving SqCC patient outcome.
Collapse
Affiliation(s)
- Amelia L. Parker
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| | - Elise Bowman
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Adriana Zingone
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Brid M. Ryan
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA ,Present address: MiNA Therapeutics, London, UK
| | - Wendy A. Cooper
- grid.413249.90000 0004 0385 0051Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia ,grid.1013.30000 0004 1936 834XSydney Medical School, University of Sydney, Sydney, NSW 2050 Australia ,grid.1029.a0000 0000 9939 5719Discipline of Pathology, School of Medicine, Western Sydney University, Liverpool, NSW 2170 Australia
| | - Maija Kohonen-Corish
- grid.417229.b0000 0000 8945 8472Woolcock Institute of Medical Research, Sydney, NSW 2037 Australia ,grid.1005.40000 0004 4902 0432Microbiome Research Centre, School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia ,grid.415306.50000 0000 9983 6924Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Curtis C. Harris
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Thomas R. Cox
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| |
Collapse
|
56
|
Cao C, Zhao W, Chen X, Shen B, Wang T, Wu C, Rong X. Deciphering the action mechanism of paeoniflorin in suppressing pancreatic cancer: A network pharmacology study and experimental validation. Front Pharmacol 2022; 13:1032282. [PMID: 36339551 PMCID: PMC9630940 DOI: 10.3389/fphar.2022.1032282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Paeoniflorin (PF) is the main active component of Chinese herbaceous peony that has been shown to have an anti-tumor effect. However, there are few studies on the prevention and treatment of pancreatic cancer with PF. Methods: We gathered Microarray data pertaining to paeoniflorin intervention in pancreatic cancer by utilizing the GEO database (GSE97124). Then, the DEGs were filtered by the 33R program. RNA-seq data of pancreatic cancer and normal tissue samples were taken from the TCGA and GTEx databases, respectively, and the WGCNA technique was utilized to examine the pancreatic cancer-specific genes. Paeoniflorin target genes for the treatment of pancreatic cancer were determined based on the overlap between DEGs and WGCNA. GO and KEGG enrichment analyses were then performed on paeoniflorin target genes to discover which biological processes were impacted. Using the 3 hierarchical methods included in the Cytohubba plugin, we re-screened the hub genes in the target genes to find the genes most relevant to paeoniflorin treatment. The overall survival effects of hub genes were confirmed using the TCGA database. Finally, the paeoniflorin targets identified by the network pharmacology analysis were validated using PANC-1 and Capan-2 cells. Results: We identified 148 main potential PF targets, and gene enrichment analysis suggested that the aforementioned targets play a crucial role in the regulation of MAPK, PI3K-AKT, and other pathways. The further screening of the prospective targets resulted in the identification of 39 hub genes. Using the TCGA database, it was determined that around 33.33% of the hub gene’s high expression was linked with a bad prognosis. Finally, we demonstrated that PF inhibits IL-6 and IL-10 expression and p38 phosphorylation in pancreatic cancer cells, thereby reducing inflammation. Conclusion: PF may regulate inflammatory factors mainly through the p38 MAPK signal pathway. These findings provide theoretical and experimental evidence suggesting the PF as a promising natural source of anti-tumor compounds for pancreatic cancer.
Collapse
Affiliation(s)
- Chunhao Cao
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliate Hospital of Chongqing Medical University, Chongqing, China
| | - Wenting Zhao
- Hubei University of Chinese Medicine, Wuhan, China
| | | | - Bin Shen
- Chongqing Medical University, Chongqing, China
| | - Teng Wang
- Chongqing Medical University, Chongqing, China
| | - Chaoxu Wu
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliate Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaofeng Rong, ; Chaoxu Wu,
| | - Xiaofeng Rong
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliate Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaofeng Rong, ; Chaoxu Wu,
| |
Collapse
|
57
|
Deng D, Patel R, Chiang CY, Hou P. Role of the Tumor Microenvironment in Regulating Pancreatic Cancer Therapy Resistance. Cells 2022; 11:2952. [PMID: 36230914 PMCID: PMC9563251 DOI: 10.3390/cells11192952] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022] Open
Abstract
Pancreatic cancer has a notoriously poor prognosis, exhibits persistent drug resistance, and lacks a cure. Unique features of the pancreatic tumor microenvironment exacerbate tumorigenesis, metastasis, and therapy resistance. Recent studies emphasize the importance of exploiting cells in the tumor microenvironment to thwart cancers. In this review, we summarize the hallmarks of the multifaceted pancreatic tumor microenvironment, notably pancreatic stellate cells, tumor-associated fibroblasts, macrophages, and neutrophils, in the regulation of chemo-, radio-, immuno-, and targeted therapy resistance in pancreatic cancer. The molecular insight will facilitate the development of novel therapeutics against pancreatic cancer.
Collapse
Affiliation(s)
- Daiyong Deng
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Riya Patel
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Cheng-Yao Chiang
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Pingping Hou
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
58
|
Yang H, Zhang W, Ding J, Hu J, Sun Y, Peng W, Chu Y, Xie L, Mei Z, Shao Z, Xiao Y. A novel genomic instability-derived lncRNA signature to predict prognosis and immune characteristics of pancreatic ductal adenocarcinoma. Front Immunol 2022; 13:970588. [PMID: 36148233 PMCID: PMC9486402 DOI: 10.3389/fimmu.2022.970588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignant tumor of the digestive system. Its grim prognosis is mainly attributed to the lack of means for early diagnosis and poor response to treatments. Genomic instability is shown to be an important cancer feature and prognostic factor, and its pattern and extent may be associated with poor treatment outcomes in PDAC. Recently, it has been reported that long non-coding RNAs (lncRNAs) play a key role in maintaining genomic instability. However, the identification and clinical significance of genomic instability-related lncRNAs in PDAC have not been fully elucidated. METHODS Genomic instability-derived lncRNA signature (GILncSig) was constructed based on the results of multiple regression analysis combined with genomic instability-associated lncRNAs and its predictive power was verified by the Kaplan-Meier method. And real-time quantitative polymerase chain reaction (qRT-PCR) was used for simple validation in human cancers and their adjacent non-cancerous tissues. In addition, the correlation between GILncSig and tumor microenvironment (TME) and epithelial-mesenchymal transition (EMT) was investigated by Pearson correlation analysis. RESULTS The computational framework identified 206 lncRNAs associated with genomic instability in PDAC and was subsequently used to construct a genome instability-derived five lncRNA-based gene signature. Afterwards, we successfully validated its prognostic capacity in The Cancer Genome Atlas (TCGA) cohort. In addition, via careful examination of the transcriptome expression profile of PDAC patients, we discovered that GILncSig is associated with EMT and an adaptive immunity deficient immune profile within TME. CONCLUSIONS Our study established a genomic instability-associated lncRNAs-derived model (GILncSig) for prognosis prediction in patients with PDAC, and revealed the potential functional regulatory role of GILncSig.
Collapse
Affiliation(s)
- Huijie Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiwen Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin Ding
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Sun
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Chu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingxiang Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Anorectal Disease Institute of Shuguang Hospital, Shanghai, China
| | - Zhuo Shao
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
59
|
Liu X, Xu X, Wu Z, Shan Q, Wang Z, Wu Z, Ding X, Huang W, Wang Z. Integrated single-cell RNA-seq analysis identifies immune heterogeneity associated with KRAS/TP53 mutation status and tumor-sideness in colorectal cancers. Front Immunol 2022; 13:961350. [PMID: 36172359 PMCID: PMC9510840 DOI: 10.3389/fimmu.2022.961350] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe main objective of this study was to analyze the effects of KRAS/TP53 mutation status and tumor sideness on the immune microenvironment of colorectal cancer using integrated scRNA-seq data.MethodsA total of 78 scRNA-seq datasets, comprising 42 treatment-naive colorectal tumors, 13 tumor adjacent tissues and 23 normal mucosa tissues were included. Standardized Seurat procedures were applied to identify cellular components with canonical cell marks. The batch-effect was assessed and corrected using harmony algorithm. The scMetabolism algorithm was used for single-cell metabolic analysis. The results and clinical significance were further validated using immunofluorescent-staining and TCGA-COAD datasets. Immune-infiltration scores of bulk-RNA-seq data were estimated using ssGSEA. The presto-wilcoxauc algorithm was used to identify differentially enriched genes or pathways across different subgroups. Two-sided p-value less than 0.05 was considered statistically significant.ResultsWe refined the landscape of functional immune cell subtypes, especially T cells and myeloid cells, across normal mucosa, tumor adjacent and tumor tissue. The existence and function of two states of exhausted CD8+ T (Tex) subtypes in colorectal cancer, and FOLR2+ LYVE1+ macrophages indicating unfavorable prognosis in colorectal cancer were identified and validated. The diverse tumor mutation status reshaped the immune cell function and immune checkpoint ligands/receptors (ICLs/ICRs) expression pattern. Importantly, the KRAS/TP53 dual mutations significantly reduced the major energy metabolic functions in immune cells, and promoted the cell-to-cell communications towards immunosuppression in colorectal cancers. The results revealed LAG3, CD24-SIGLEC10 and HBEGF-CD9 pathways as potential therapeutic targets for dual mutant colorectal cancers.ConclusionsWe revealed that the immune microenvironment underwent a gradual remodeling with an enrichment of immunosuppressive myeloid cells from normal mucosa to tumor regions in colorectal cancers. Moreover, we revealed the metabolic heterogeneity of tumor-infiltrating immune cells and suggested that the KRAS/TP53 dual mutation may impair antitumor immunity by reducing T and myeloid cell energy metabolism and reshaping cellular interactions toward immunosuppression.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuozhuo Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qungang Shan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyin Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyuan Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyi Ding
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Huang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhongmin Wang, ; Wei Huang,
| | - Zhongmin Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhongmin Wang, ; Wei Huang,
| |
Collapse
|
60
|
Yu Z, Ouyang L. Identification of prognosis-related hub genes of ovarian cancer through bioinformatics analyses and experimental verification. Medicine (Baltimore) 2022; 101:e30374. [PMID: 36086731 PMCID: PMC10980417 DOI: 10.1097/md.0000000000030374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer (OC) is a lethal and highly prevalent disease in women worldwide. The disease is often diagnosed in late stages, which leads to its rapid progression and low survival rate. This study aims to identify new prognostic genes for OC. Based on 2 datasets from the National Center for Biotechnology Information Gene Expression Omnibus public database, we constructed 2 Weighted Gene Co-expression Network Analysis networks. Then, we selected and intersected 2 key modules to screen key genes. Enrichment analyses were performed, and a protein-protein interaction network was constructed. The cytoHubba plugin of Cytoscape and survival analysis were used to screen hub genes related to prognosis. The expression of hub genes was analyzed by GEPIA and verified by quantitative Real-Time PCR. Gene alteration frequency analysis, gene set variation analysis, immune infiltration analysis, drug sensitivity analysis, tumor mutation burden, and neoantigen analyses were conducted to determine the prognostic value and molecular mechanisms of the hub genes. In total, 214 key genes were selected from 2 Weighted Gene Co-expression Network Analysis networks, and 3 hub genes, namely ALDH1A2, CLDN4, and GPR37, were identified as prognostic candidates through cytoHubba and survival analysis. Three hub genes were significantly associated with overall survival of OC patients. GEPIA and quantitative Real-Time PCR indicated that ALDH1A2 expression was significantly downregulated, while expression of CLDN4 and GPR37 was upregulated in OC samples compared with normal samples. CIBERSORT showed that 3 hub genes were closely associated with the infiltrating immune cells. GDSC showed that hub genes expression influenced IC50 values of chemotherapeutic drugs. OC patients with high expression of ALDH1A2 and CLDN4 had lower TMB and low ALDH1A2 expression could produce a larger number of neoantigens. In conclusion, the 3 hub genes (ALDH1A2, CLDN4 and GPR37) identified through bioinformatics analyses in the present study may serve as OC prognosis biomarkers. The study findings offer valuable insights into OC progression and mechanisms.
Collapse
Affiliation(s)
- Zhong Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ling Ouyang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
61
|
PIM3-AMPK-HDAC4/5 axis restricts MuERVL-marked 2-cell-like state in embryonic stem cells. Stem Cell Reports 2022; 17:2256-2271. [PMID: 36150380 PMCID: PMC9561635 DOI: 10.1016/j.stemcr.2022.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
A minority of embryonic stem cells (ESCs) marked by endogenous retrovirus MuERVL are totipotent 2-cell-like cells. However, the majority of ESCs repress MuERVL. Currently, it is still unclear regarding the signaling pathway(s) repressing the MuERVL-associated 2-cell-like state of ESCs. Here, we identify the PIM3-downstream signaling axis as a key route to repress MuERVL and 2-cell-like state. Downregulation, deletion, or inhibition of PIM3 activated MuERVL, 2-cell genes, and trophectodermal genes in ESCs. By screening PIM3-regulated pathways, we discovered AMPK as its key target. The loss of Pim3 caused an increase in AMPK phosphorylation, which phosphorylated HDAC4/5 and triggered their transfer out of the nucleus in Pim3−/− ESCs. The reduction of nuclear HDAC4/5 caused increased H3K9ac and reduced H3K9me1/2 enrichment on MuERVL, thus activating MuERVL and 2-cell-like state. In summary, our study uncovers a novel axis by which PIM3 suppresses 2-cell marker MuERVL and totipotent state in ESCs. PIM3 signaling pathway represses MuERVL and 2-cell-like state Pim3 loss promotes AMPK phosphorylation, which activates MuERVL Phosphorylated AMPK mediates HDAC4/5 export from the nucleus HDAC4/5 repress MuERVL through modulating H3K9ac and H3K9me1/2
Collapse
|
62
|
A positive feedback loop of ARF6 activates ERK1/2 signaling pathway via DUSP6 silencing to promote pancreatic cancer progression. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1431-1440. [PMID: 36017891 PMCID: PMC9827993 DOI: 10.3724/abbs.2022111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
ERK1/2 are essential proteins mediating mitogen-activated protein kinase signaling downstream of RAS in pancreatic adenocarcinoma (PDAC). Our previous study reveals that ARF6 plays a positive regulatory role in ERK1/2 pathway in a feedback loop manner. A significant part of the literature on ARF6 has emphasized its oncogenic effect as an essential downstream molecule of ERK1/2, and no research has been done on the regulation mechanisms of the feedback loop between ARF6 and the ERK1/2 signaling pathway. In the present study, we explore the gene network downstream of ARF6 and find that DUSP6 may be the critical signal molecule in the positive feedback loop between ARF6 and ERK1/2. Specifically, to elucidate the negative correlations between ARF6 and DUSP6 in pancreatic cancer, we examine their expressions in pancreatic cancer tissues by immunohistochemical staining. Then the impact of DUSP6 on the proliferation and apoptosis of PDAC cells are investigated by gain-of-function and loss-of-function approaches. Mechanism explorations uncover that ARF6 suppresses the expression of DUSP6, which is responsible for the dephosphorylation of ERK1/2. Altogether, these results indicate that DUSP6 plays a tumor-suppressive role and acts as an intermediate molecule between ARF6 and ERK1/2 in PDAC cells, thereby forming a positive feedback loop.
Collapse
|
63
|
Zhu C, Guan X, Zhang X, Luan X, Song Z, Cheng X, Zhang W, Qin JJ. Targeting KRAS mutant cancers: from druggable therapy to drug resistance. Mol Cancer 2022; 21:159. [PMID: 35922812 PMCID: PMC9351107 DOI: 10.1186/s12943-022-01629-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) is the most frequently mutated oncogene, occurring in a variety of tumor types. Targeting KRAS mutations with drugs is challenging because KRAS is considered undruggable due to the lack of classic drug binding sites. Over the past 40 years, great efforts have been made to explore routes for indirect targeting of KRAS mutant cancers, including KRAS expression, processing, upstream regulators, or downstream effectors. With the advent of KRAS (G12C) inhibitors, KRAS mutations are now druggable. Despite such inhibitors showing remarkable clinical responses, resistance to monotherapy of KRAS inhibitors is eventually developed. Significant progress has been made in understanding the mechanisms of drug resistance to KRAS-mutant inhibitors. Here we review the most recent advances in therapeutic approaches and resistance mechanisms targeting KRAS mutations and discuss opportunities for combination therapy.
Collapse
Affiliation(s)
- Chunxiao Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.,School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Xiaoqing Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.,Key Laboratory of Prevention, Diagnosis, and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Xinuo Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhengbo Song
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xiangdong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China. .,Key Laboratory of Prevention, Diagnosis, and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China.
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China. .,School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China. .,Key Laboratory of Prevention, Diagnosis, and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China.
| |
Collapse
|
64
|
Xu ZH, Wang WQ, Liu L, Lou WH. A special subtype: Revealing the potential intervention and great value of KRAS wildtype pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188751. [PMID: 35732240 DOI: 10.1016/j.bbcan.2022.188751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the predominant form of pancreatic cancer and has devastating consequences on affected families and society. Its dismal prognosis is attributed to poor specificity of symptoms during early stages. It is widely believed that PDAC patients with the wildtype (WT) KRAS gene benefit more from currently available treatments than those with KRAS mutations. The oncogenic genetic changes alternations generally found in KRAS wildtype PDAC are related to either the KRAS pathway or microsatellite instability/mismatch repair deficiency (MSI/dMMR), which enable the application of tailored treatments based on each patient's genetic characteristics. This review focuses on targeted therapies against alternative tumour mechanisms in KRAS WT PDAC.
Collapse
Affiliation(s)
- Zhi-Hang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wen-Hui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
65
|
Liu Y, Deguchi Y, Wei D, Liu F, Moussalli MJ, Deguchi E, Li D, Wang H, Valentin LA, Colby JK, Wang J, Zheng X, Ying H, Gagea M, Ji B, Shi J, Yao JC, Zuo X, Shureiqi I. Rapid acceleration of KRAS-mutant pancreatic carcinogenesis via remodeling of tumor immune microenvironment by PPARδ. Nat Commun 2022; 13:2665. [PMID: 35562376 PMCID: PMC9106716 DOI: 10.1038/s41467-022-30392-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic intraepithelial neoplasia (PanIN) is a precursor of pancreatic ductal adenocarcinoma (PDAC), which commonly occurs in the general populations with aging. Although most PanIN lesions (PanINs) harbor oncogenic KRAS mutations that initiate pancreatic tumorigenesis; PanINs rarely progress to PDAC. Critical factors that promote this progression, especially targetable ones, remain poorly defined. We show that peroxisome proliferator-activated receptor-delta (PPARδ), a lipid nuclear receptor, is upregulated in PanINs in humans and mice. Furthermore, PPARδ ligand activation by a high-fat diet or GW501516 (a highly selective, synthetic PPARδ ligand) in mutant KRASG12D (KRASmu) pancreatic epithelial cells strongly accelerates PanIN progression to PDAC. This PPARδ activation induces KRASmu pancreatic epithelial cells to secrete CCL2, which recruits immunosuppressive macrophages and myeloid-derived suppressor cells into pancreas via the CCL2/CCR2 axis to orchestrate an immunosuppressive tumor microenvironment and subsequently drive PanIN progression to PDAC. Our data identify PPARδ signaling as a potential molecular target to prevent PDAC development in subjects harboring PanINs.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yasunori Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fuyao Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Micheline J Moussalli
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Rogel Cancer Center and Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eriko Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lovie Ann Valentin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jennifer K Colby
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James C Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Imad Shureiqi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Rogel Cancer Center and Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
66
|
Adhikari S, Bhattacharya A, Adhikary S, Singh V, Gadad S, Roy S, Das C. The paradigm of drug resistance in cancer: an epigenetic perspective. Biosci Rep 2022; 42:BSR20211812. [PMID: 35438143 PMCID: PMC9069444 DOI: 10.1042/bsr20211812] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Innate and acquired resistance towards the conventional therapeutic regimen imposes a significant challenge for the successful management of cancer for decades. In patients with advanced carcinomas, acquisition of drug resistance often leads to tumor recurrence and poor prognosis after the first therapeutic cycle. In this context, cancer stem cells (CSCs) are considered as the prime drivers of therapy resistance in cancer due to their 'non-targetable' nature. Drug resistance in cancer is immensely influenced by different properties of CSCs such as epithelial-to-mesenchymal transition (EMT), a profound expression of drug efflux pump genes, detoxification genes, quiescence, and evasion of apoptosis, has been highlighted in this review article. The crucial epigenetic alterations that are intricately associated with regulating different mechanisms of drug resistance, have been discussed thoroughly. Additionally, special attention is drawn towards the epigenetic mechanisms behind the interaction between the cancer cells and their microenvironment which assists in tumor progression and therapy resistance. Finally, we have provided a cumulative overview of the alternative treatment strategies and epigenome-modifying therapies that show the potential of sensitizing the resistant cells towards the conventional treatment strategies. Thus, this review summarizes the epigenetic and molecular background behind therapy resistance, the prime hindrance of present day anti-cancer therapies, and provides an account of the novel complementary epi-drug-based therapeutic strategies to combat drug resistance.
Collapse
Affiliation(s)
- Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Shrikanth S. Gadad
- Department of Molecular and Translational Medicine, Center of Emphasis in Cancer, Texas Tech University Health Sciences Center El Paso, El Paso, TX, U.S.A
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, U.S.A
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| |
Collapse
|
67
|
HDACs and the epigenetic plasticity of cancer cells: Target the complexity. Pharmacol Ther 2022; 238:108190. [PMID: 35430294 DOI: 10.1016/j.pharmthera.2022.108190] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
Cancer cells must adapt to the hostile conditions of the microenvironment in terms of nutrition, space, and immune system attack. Mutations of DNA are the drivers of the tumorigenic process, but mutations must be able to hijack cellular functions to sustain the spread of mutant genomes. Transcriptional control is a key function in this context and is controlled by the rearrangement of the epigenome. Unlike genomic mutations, the epigenome of cancer cells can in principle be reversed. The discovery of the first epigenetic drugs triggered a contaminating enthusiasm. Unfortunately, the complexity of the epigenetic machinery has frustrated this enthusiasm. To develop efficient patient-oriented epigenetic therapies, we need to better understand the nature of this complexity. In this review, we will discuss recent advances in understanding the contribution of HDACs to the maintenance of the transformed state and the rational for their selective targeting.
Collapse
|
68
|
Xiong W, He W, Wang T, He S, Xu F, Wang Z, Wang X, Guo H, Ling J, Zhang H, Liu Y, Xing K, Li M, Zhang H, Li J, Niu N, Xue J, Zhan Q, Liu Z, Bei J, Huang P, Liu J, Xia L, Xia X. Smad4 Deficiency Promotes Pancreatic Cancer Immunogenicity by Activating the Cancer-Autonomous DNA-Sensing Signaling Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103029. [PMID: 35064757 PMCID: PMC8895117 DOI: 10.1002/advs.202103029] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Smad4, a key mediator of the transforming growth factor-β signaling, is mutated or deleted in 20% of pancreatic ductal adenocarcinoma (PDAC) cancers and significantly affects cancer development. However, the effect of Smad4 loss on the immunogenicity and tumor immune microenvironment of PDAC is still unclear. Here, a surprising function of Smad4 in suppressing mouse PDAC tumor immunogenicity is identified. Although Smad4 deletion in tumor cells enhances proliferation in vitro, the in vivo growth of Smad4-deficient PDAC tumor is significantly inhibited on immunocompetent C57BL/6 (B6) mice, but not on immunodeficient mice or CD8+ cell-depleted B6 mice. Mechanistically, Smad4 deficiency significantly increases tumor cell immunogenicity by promoting spontaneous DNA damage and stimulating STING-mediated type I interferon signaling,which contributes to the activation of type 1 conventional dendritic cells (cDC1) and subsequent CD8+ T cells for tumor control. Furthermore, retarded tumor growth of Smad4-deficient PDAC cells on B6 mice is largely reversed when Sting is codeleted, or when the cells are implanted into interferon-alpha receptor-deficientmice or cDC1-deficientmice. Accordingly, Smad4 deficiency promotes PDAC immunogenicity by inducing tumor-intrinsic DNA damage-elicited type I interferon signaling.
Collapse
Affiliation(s)
- Wenjing Xiong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Wenzhuo He
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- VIP RegionSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Tiantian Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Shuai He
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Feifei Xu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zining Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hui Guo
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jianhua Ling
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Huanling Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Kaili Xing
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Mengyun Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jiahui Li
- College of Food Science and EngineeringDalian Polytechnic UniversityLiaoning116034P. R. China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Qiuyao Zhan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Ze‐Xian Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jin‐Xin Bei
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Peng Huang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jinyun Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Liangping Xia
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- VIP RegionSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
69
|
Hosein AN, Dougan SK, Aguirre AJ, Maitra A. Translational advances in pancreatic ductal adenocarcinoma therapy. NATURE CANCER 2022; 3:272-286. [PMID: 35352061 DOI: 10.1038/s43018-022-00349-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that is most frequently detected at advanced stages, limiting treatment options to systemic chemotherapy with modest clinical responses. Here, we review recent advances in targeted therapy and immunotherapy for treating subtypes of PDAC with diverse molecular alterations. We focus on the current preclinical and clinical evidence supporting the potential of these approaches and the promise of combinatorial regimens to improve the lives of patients with PDAC.
Collapse
Affiliation(s)
- Abdel Nasser Hosein
- Division of Hematology & Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Advocate Aurora Health, Vince Lombardi Cancer Clinic, Sheboygan, WI, USA.
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
70
|
Velez-Delgado A, Donahue KL, Brown KL, Du W, Irizarry-Negron V, Menjivar RE, Lasse Opsahl EL, Steele NG, The S, Lazarus J, Sirihorachai VR, Yan W, Kemp SB, Kerk SA, Bollampally M, Yang S, Scales MK, Avritt FR, Lima F, Lyssiotis CA, Rao A, Crawford HC, Bednar F, Frankel TL, Allen BL, Zhang Y, Pasca di Magliano M. Extrinsic KRAS Signaling Shapes the Pancreatic Microenvironment Through Fibroblast Reprogramming. Cell Mol Gastroenterol Hepatol 2022; 13:1673-1699. [PMID: 35245687 PMCID: PMC9046274 DOI: 10.1016/j.jcmgh.2022.02.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Oncogenic Kirsten Rat Sarcoma virus (KRAS) is the hallmark mutation of human pancreatic cancer and a driver of tumorigenesis in genetically engineered mouse models of the disease. Although the tumor cell-intrinsic effects of oncogenic Kras expression have been widely studied, its role in regulating the extensive pancreatic tumor microenvironment is less understood. METHODS Using a genetically engineered mouse model of inducible and reversible oncogenic Kras expression and a combination of approaches that include mass cytometry and single-cell RNA sequencing we studied the effect of oncogenic KRAS in the tumor microenvironment. RESULTS We have discovered that non-cell autonomous (ie, extrinsic) oncogenic KRAS signaling reprograms pancreatic fibroblasts, activating an inflammatory gene expression program. As a result, fibroblasts become a hub of extracellular signaling, and the main source of cytokines mediating the polarization of protumorigenic macrophages while also preventing tissue repair. CONCLUSIONS Our study provides fundamental knowledge on the mechanisms underlying the formation of the fibroinflammatory stroma in pancreatic cancer and highlights stromal pathways with the potential to be exploited therapeutically.
Collapse
Affiliation(s)
| | | | | | - Wenting Du
- Department of Surgery, Ann Arbor, Michigan
| | | | | | | | - Nina G Steele
- Department of Cell and Developmental Biology, Ann Arbor, Michigan
| | - Stephanie The
- Department of Computational Medicine and Bioinformatics, Ann Arbor, Michigan
| | | | | | - Wei Yan
- Department of Surgery, Ann Arbor, Michigan
| | - Samantha B Kemp
- Molecular and Cellular Pathology Program, Ann Arbor, Michigan
| | | | | | - Sion Yang
- Life Sciences and Arts College, Ann Arbor, Michigan
| | - Michael K Scales
- Department of Cell and Developmental Biology, Ann Arbor, Michigan
| | | | | | - Costas A Lyssiotis
- Cancer Biology Program, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan
| | - Arvind Rao
- Cancer Biology Program, Ann Arbor, Michigan; Department of Computational Medicine and Bioinformatics, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan; Michigan Institute of Data Science, Ann Arbor, Michigan; Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Howard C Crawford
- Cancer Biology Program, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan
| | - Filip Bednar
- Department of Surgery, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan
| | - Timothy L Frankel
- Department of Surgery, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan.
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, Ann Arbor, Michigan; Cancer Biology Program, Ann Arbor, Michigan; Department of Surgery, Ann Arbor, Michigan; Cellular and Molecular Biology Program, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
71
|
Song H, Jiang C. Recent advances in targeted drug delivery for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Drug Deliv 2022; 19:281-301. [PMID: 35220832 DOI: 10.1080/17425247.2022.2045943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) has become a serious health problem with high impact worldwide. The heterogeneity of PDAC makes it difficult to apply drug delivery systems (DDS) used in other cancer models, for example, the poorly developed vascular system makes anti-angiogenic therapy ineffective. Due to its various malignant pathological changes, drug delivery against PDAC is a matter of urgent concern. Based on this situation, various drug delivery strategies specially designed for PDAC have been generated. AREAS COVERED This review will briefly describe how delivery systems can be designed through nanotechnology and formulation science. Most research focused on penetrating the stromal barrier, exploiting and alleviating the hypoxic microenvironment, targeting immune cells, or designing vaccines, and combination therapies. This review will summarize the ways to reverse the malignant pathological features of PDAC and hopefully provide ideas for subsequent studies. EXPERT OPINION Drug delivery systems designed to achieve penetrating functions or to alleviate hypoxia and activate immunity have achieved good therapeutic results in animal models in several studies. In future studies, there is a need to deliver PDAC therapeutics in a more precise manner, or the use of drug carriers for multiple functions simultaneously, are potential therapeutic strategy.
Collapse
Affiliation(s)
- Haolin Song
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| | - Chen Jiang
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| |
Collapse
|
72
|
Jiang H, Courau T, Borison J, Ritchie AJ, Mayer AT, Krummel MF, Collisson EA. Activating Immune Recognition in Pancreatic Ductal Adenocarcinoma via Autophagy Inhibition, MEK Blockade, and CD40 Agonism. Gastroenterology 2022; 162:590-603.e14. [PMID: 34627860 DOI: 10.1053/j.gastro.2021.09.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/27/2021] [Accepted: 09/30/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Patients with pancreatic ductal adenocarcinoma (PDA) have not yet benefitted from the revolution in cancer immunotherapy due in large part to a dominantly immunosuppressive tumor microenvironment. MEK inhibition combined with autophagy inhibition leads to transient tumor responses in some patients with PDA. We examined the functional effects of combined MEK and autophagy inhibition on the PDA immune microenvironment and the synergy of combined inhibition of MEK and autophagy with CD40 agonism (aCD40) against PDA using immunocompetent model systems. METHODS We implanted immunologically "cold" murine PDA cells orthotopically in wide type C57BL/6J mice. We administered combinations of inhibitors of MEK1/2, inhibitors of autophagy, and aCD40 and measured anticancer efficacy and immune sequelae using mass cytometry and multiplexed immunofluorescence imaging analysis to characterize the tumor microenvironment. We also used human and mouse PDA cell lines and human macrophages in vitro to perform functional assays to elucidate the cellular effects induced by the treatments. RESULTS We find that coinhibition of MEK (using cobimetinib) and autophagy (using mefloquine), but not either treatment alone, activates the STING/type I interferon pathway in tumor cells that in turn activates paracrine tumor associated macrophages toward an immunogenic M1-like phenotype. This switch is further augmented by aCD40. Triple therapy (cobimetinib + mefloquine + aCD40) achieved cytotoxic T-cell activation in an immunologically "cold" mouse PDA model, leading to enhanced antitumor immunity. CONCLUSIONS MEK and autophagy coinhibition coupled with aCD40 invokes immune repolarization and is an attractive therapeutic approach for PDA immunotherapy development.
Collapse
Affiliation(s)
- Honglin Jiang
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Tristan Courau
- Department of Pathology, University of California San Francisco, San Francisco, California; ImmunoX Initiative, University of California San Francisco, San Francisco, California
| | | | - Alexa J Ritchie
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | | | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, California; ImmunoX Initiative, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Eric A Collisson
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California.
| |
Collapse
|
73
|
Zhou Y, Jin X, Yu H, Qin G, Pan P, Zhao J, Chen T, Liang X, Sun Y, Wang B, Ren D, Zhu S, Wu H. HDAC5 modulates PD-L1 expression and cancer immunity via p65 deacetylation in pancreatic cancer. Theranostics 2022; 12:2080-2094. [PMID: 35265200 PMCID: PMC8899586 DOI: 10.7150/thno.69444] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/13/2022] [Indexed: 11/26/2022] Open
Abstract
Rationale: Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a dismal 5-year survival less than 10%. Most patients with PDAC exhibit poor response to single-agent immunotherapy. Multimodal therapies targeting mechanisms of resistance to immunotherapy are urgently needed. We found that the class IIa histone deacetylase (HDAC) member, HDAC5 is downregulated in multiple solid tumors and its level were associated with favorable prognosis in PDAC patients. Upregulated genes in patients harboring HDAC5 deletions were enriched in adaptive immune responses and lymphocyte-mediated immunity in The Cancer Genome Atlas (TCGA) pancreatic cancer dataset. Methods: Tissue microarray of pancreatic cancer were used to analysis the correlation between HDAC5 and PD-L1. RNA-seq, transcription factor motif analysis, drug screening and molecular biology assays were performed to identify the mechanism of HDAC5's repression on PD-L1. Allografts of pancreatic cancer in mouse were applied to test the efficiency of HDAC5 inhibition and anti-PD1 co-treatment. Results: HDAC5 regulated PD-L1 expression by directly interacting with NF-κB p65; this interaction was suppressed by p65 phosphorylation at serine-311. Additionally, HDAC5 diminished p65 acetylation at lysine-310, which is essential for the transcriptional activity of p65. Importantly, we demonstrated that HDAC5 silencing or inhibition sensitized PDAC tumors to immune checkpoint blockade (ICB) therapy in syngeneic mouse model and KPC mouse derived PDAC model. Conclusion: Our findings revealed a previously unknown role of HDAC5 in regulating the NF-κB signaling pathway and antitumor immune responses. These findings provide a strong rationale for augment the antitumor effects of ICB in immunotherapy-resistant PDAC by inhibiting HDAC5.
Collapse
Affiliation(s)
- Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Haixin Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Gengdu Qin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Penglin Pan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Taoyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Bo Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Shikai Zhu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Organ Transplant Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
74
|
Roalsø MTT, Hald ØH, Alexeeva M, Søreide K. Emerging Role of Epigenetic Alterations as Biomarkers and Novel Targets for Treatments in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14030546. [PMID: 35158814 PMCID: PMC8833770 DOI: 10.3390/cancers14030546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Epigenetic alterations cause changes in gene expression without affecting the DNA sequence and are found to affect several molecular pathways in pancreatic tumors. Such changes are reversible, making them potential drug targets. Furthermore, epigenetic alterations occur early in the disease course and may thus be explored for early detection. Hence, a deeper understanding of epigenetics in pancreatic cancer may lead to improved diagnostics, treatments, and prognostication. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with limited treatment options. Emerging evidence shows that epigenetic alterations are present in PDAC. The changes are potentially reversible and therefore promising therapeutic targets. Epigenetic aberrations also influence the tumor microenvironment with the potential to modulate and possibly enhance immune-based treatments. Epigenetic marks can also serve as diagnostic screening tools, as epigenetic changes occur at early stages of the disease. Further, epigenetics can be used in prognostication. The field is evolving, and this review seeks to provide an updated overview of the emerging role of epigenetics in the diagnosis, treatment, and prognostication of PDAC.
Collapse
Affiliation(s)
- Marcus T. T. Roalsø
- Department of Quality and Health Technology, University of Stavanger, 4036 Stavanger, Norway;
- HPB Unit, Department of Gastrointestinal Surgery, Stavanger University Hospital, 4068 Stavanger, Norway;
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, 4068 Stavanger, Norway
| | - Øyvind H. Hald
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway;
| | - Marina Alexeeva
- HPB Unit, Department of Gastrointestinal Surgery, Stavanger University Hospital, 4068 Stavanger, Norway;
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, 4068 Stavanger, Norway
| | - Kjetil Søreide
- HPB Unit, Department of Gastrointestinal Surgery, Stavanger University Hospital, 4068 Stavanger, Norway;
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, 4068 Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Correspondence:
| |
Collapse
|
75
|
Lim J, Ramesh A, Shioda T, Leon Parada K, Luderer U. Sex Differences in Embryonic Gonad Transcriptomes and Benzo[a]pyrene Metabolite Levels After Transplacental Exposure. Endocrinology 2022; 163:bqab228. [PMID: 34734245 PMCID: PMC8633617 DOI: 10.1210/endocr/bqab228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 11/19/2022]
Abstract
Polycyclic aromatic hydrocarbons like benzo[a]pyrene (BaP) are generated during incomplete combustion of organic materials. Prior research has demonstrated that BaP is a prenatal ovarian toxicant and carcinogen. However, the metabolic pathways active in the embryo and its developing gonads and the mechanisms by which prenatal exposure to BaP predisposes to ovarian tumors later in life remain to be fully elucidated. To address these data gaps, we orally dosed pregnant female mice with BaP from embryonic day (E) 6.5 to E11.5 (0, 0.2, or 2 mg/kg/day) for metabolite measurement or E9.5 to E11.5 (0 or 3.33 mg/kg/day) for embryonic gonad RNA sequencing. Embryos were harvested at E13.5 for both experiments. The sum of BaP metabolite concentrations increased significantly with dose in the embryos and placentas, and concentrations were significantly higher in female than male embryos and in embryos than placentas. RNA sequencing revealed that enzymes involved in metabolic activation of BaP are expressed at moderate to high levels in embryonic gonads and that greater transcriptomic changes occurred in the ovaries in response to BaP than in the testes. We identified 490 differentially expressed genes (DEGs) with false discovery rate P-values < 0.05 when comparing BaP-exposed to control ovaries but no statistically significant DEGs between BaP-exposed and control testes. Genes related to monocyte/macrophage recruitment and activity, prolactin family genes, and several keratin genes were among the most upregulated genes in the BaP-exposed ovaries. Results show that developing ovaries are more sensitive than testes to prenatal BaP exposure, which may be related to higher concentrations of BaP metabolites in female embryos.
Collapse
Affiliation(s)
- Jinhwan Lim
- Department of Environmental and Occupational Health, University of California Irvine, Irvine, CA, USA
- Department of Medicine, University of California Irvine, Irvine, CA, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Toshi Shioda
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, USA
| | - Kathleen Leon Parada
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Ulrike Luderer
- Department of Environmental and Occupational Health, University of California Irvine, Irvine, CA, USA
- Department of Medicine, University of California Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
76
|
Hou P, Wang YA. Conquering oncogenic KRAS and its bypass mechanisms. Theranostics 2022; 12:5691-5709. [PMID: 35966590 PMCID: PMC9373815 DOI: 10.7150/thno.71260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Aberrant activation of KRAS signaling is common in cancer, which has catalyzed heroic drug development efforts to target KRAS directly or its downstream signaling effectors. Recent works have yielded novel small molecule drugs with promising preclinical and clinical activities. Yet, no matter how a cancer is addicted to a specific target - cancer's genetic and biological plasticity fashions a variety of resistance mechanisms as a fait accompli, limiting clinical benefit of targeted interventions. Knowledge of these mechanisms may inform combination strategies to attack both oncogenic KRAS and subsequent bypass mechanisms.
Collapse
Affiliation(s)
- Pingping Hou
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.,Lead contact
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
77
|
Lu J, He X, Zhang L, Zhang R, Li W. Acetylation in Tumor Immune Evasion Regulation. Front Pharmacol 2021; 12:771588. [PMID: 34880761 PMCID: PMC8645962 DOI: 10.3389/fphar.2021.771588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
Acetylation is considered as one of the most common types of epigenetic modifications, and aberrant histone acetylation modifications are associated with the pathological process of cancer through the regulation of oncogenes and tumor suppressors. Recent studies have shown that immune system function and tumor immunity can also be affected by acetylation modifications. A comprehensive understanding of the role of acetylation function in cancer is essential, which may help to develop new therapies to improve the prognosis of cancer patients. In this review, we mainly discussed the functions of acetylase and deacetylase in tumor, immune system and tumor immunity, and listed the information of drugs targeting these enzymes in tumor immunotherapy.
Collapse
Affiliation(s)
- Jun Lu
- Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Xiang He
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ran Zhang
- Hunan Normal University School of Medicine, Changsha, China
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
78
|
Rozengurt E, Eibl G. Crosstalk between KRAS, SRC and YAP Signaling in Pancreatic Cancer: Interactions Leading to Aggressive Disease and Drug Resistance. Cancers (Basel) 2021; 13:5126. [PMID: 34680275 PMCID: PMC8533944 DOI: 10.3390/cancers13205126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the predominant form of pancreatic cancer, remains a devastating disease. The purpose of this review is to highlight recent literature on mechanistic and translational developments that advance our understanding of a complex crosstalk between KRAS, YAP and Src tyrosine kinase family (SFK) in PDAC development and maintenance. We discuss recent studies indicating the importance of RAS dimerization in signal transduction and new findings showing that the potent pro-oncogenic members of the SFK phosphorylate and inhibit RAS function. These surprising findings imply that RAS may not play a crucial role in maintaining certain subtypes of PDAC. In support of this interpretation, current evidence indicates that the survival of the basal-like subtype of PDAC is less dependent on RAS but relies, at least in part, on the activity of YAP/TAZ. Based on current evidence, we propose that SFK propels PDAC cells to a state of high metastasis, epithelial-mesenchymal transition (EMT) and reduced dependence on KRAS signaling, salient features of the aggressive basal-like/squamous subtype of PDAC. Strategies for PDAC treatment should consider the opposite effects of tyrosine phosphorylation on KRAS and SFK/YAP in the design of drug combinations that target these novel crosstalk mechanisms and overcome drug resistance.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| |
Collapse
|
79
|
RNAi-Based Approaches for Pancreatic Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101638. [PMID: 34683931 PMCID: PMC8541396 DOI: 10.3390/pharmaceutics13101638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is one of the most lethal forms of cancer, predicted to be the second leading cause of cancer-associated death by 2025. Despite intensive research for effective treatment strategies and novel anticancer drugs over the past decade, the overall patient survival rate remains low. RNA interference (RNAi) is capable of interfering with expression of specific genes and has emerged as a promising approach for pancreatic cancer because genetic aberrations and dysregulated signaling are the drivers for tumor formation and the stromal barrier to conventional therapy. Despite its therapeutic potential, RNA-based drugs have remaining hurdles such as poor tumor delivery and susceptibility to serum degradation, which could be overcome with the incorporation of nanocarriers for clinical applications. Here we summarize the use of small interfering RNA (siRNA) and microRNA (miRNA) in pancreatic cancer therapy in preclinical reports with approaches for targeting either the tumor or tumor microenvironment (TME) using various types of nanocarriers. In these studies, inhibition of oncogene expression and induction of a tumor suppressive response in cancer cells and surrounding immune cells in TME exhibited a strong anticancer effect in pancreatic cancer models. The review discusses the remaining challenges and prospective strategies suggesting the potential of RNAi-based therapeutics for pancreatic cancer.
Collapse
|
80
|
Crawford HC. Anticipating resistance to KRAS inhibition: a novel role for USP21 in macropinocytosis regulation. Genes Dev 2021; 35:1325-1326. [PMID: 34599002 PMCID: PMC8494204 DOI: 10.1101/gad.348971.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This Outlook discusses the finding by Hou et al. describing the mechanism by which the deubiquitinase USP21 up-regulates the nutrient-scavenging process of macropinocytosis, rescuing PDAC cells from Kras extinction. Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Virtually all PDAC harbors an oncogenic mutation in the KRAS gene, making it the prime target for therapy. Most previous attempts to inhibit KRAS directly have been disappointing, but recent success in targeting some KRAS mutants presages a new era in PDAC therapy. Models of PDAC have predicted that identifying KRAS inhibitor resistance mechanisms will be critical. In this issue of Genes & Development, Hou and colleagues (pp. 1327–1332) identify one such mechanism in which the deubiquitinase USP21 up-regulates the nutrient-scavenging process of macropinocytosis, rescuing PDAC cells from Kras extinction.
Collapse
Affiliation(s)
- Howard C Crawford
- Henry Ford Pancreatic Cancer Center, Henry Ford Health System, Detroit, Michigan 48202, USA
| |
Collapse
|
81
|
Hou P, Ma X, Yang Z, Zhang Q, Wu CJ, Li J, Tan L, Yao W, Yan L, Zhou X, Kimmelman AC, Lorenzi PL, Zhang J, Jiang S, Spring D, Wang YA, DePinho RA. USP21 deubiquitinase elevates macropinocytosis to enable oncogenic KRAS bypass in pancreatic cancer. Genes Dev 2021; 35:1327-1332. [PMID: 34531315 DOI: 10.1101/gad.348787.121] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Activating mutations in KRAS (KRAS*) are present in nearly all pancreatic ductal adenocarcinoma (PDAC) cases and critical for tumor maintenance. By using an inducible KRAS* PDAC mouse model, we identified a deubiquitinase USP21-driven resistance mechanism to anti-KRAS* therapy. USP21 promotes KRAS*-independent tumor growth via its regulation of MARK3-induced macropinocytosis, which serves to maintain intracellular amino acid levels for anabolic growth. The USP21-mediated KRAS* bypass, coupled with the frequent amplification of USP21 in human PDAC tumors, encourages the assessment of USP21 as a novel drug target as well as a potential parameter that may affect responsiveness to emergent anti-KRAS* therapy.
Collapse
Affiliation(s)
- Pingping Hou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zecheng Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Qiang Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wantong Yao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Liang Yan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xin Zhou
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, ChangChun 130061, China
| | - Alec C Kimmelman
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016, USA.,Department of Radiation Oncology, New York University School of Medicine, New York, New York 10016, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shan Jiang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Denise Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
82
|
Bannoura SF, Uddin MH, Nagasaka M, Fazili F, Al-Hallak MN, Philip PA, El-Rayes B, Azmi AS. Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer Metastasis Rev 2021; 40:819-835. [PMID: 34499267 PMCID: PMC8556325 DOI: 10.1007/s10555-021-09990-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Kirsten Rat Sarcoma (KRAS) is a master oncogene involved in cellular proliferation and survival and is the most commonly mutated oncogene in all cancers. Activating KRAS mutations are present in over 90% of pancreatic ductal adenocarcinoma (PDAC) cases and are implicated in tumor initiation and progression. Although KRAS is a critical oncogene, and therefore an important therapeutic target, its therapeutic inhibition has been very challenging, and only recently specific mutant KRAS inhibitors have been discovered. In this review, we discuss the activation of KRAS signaling and the role of mutant KRAS in PDAC development. KRAS has long been considered undruggable, and many drug discovery efforts which focused on indirect targeting have been unsuccessful. We discuss the various efforts for therapeutic targeting of KRAS. Further, we explore the reasons behind these obstacles, novel successful approaches to target mutant KRAS including G12C mutation as well as the mechanisms of resistance.
Collapse
Affiliation(s)
- Sahar F Bannoura
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Misako Nagasaka
- Division of Hematology/Oncology, Department of Medicine, UCI Health, Orange, CA, 92868, USA
| | - Farzeen Fazili
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al-Hallak
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bassel El-Rayes
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
83
|
Eyres M, Lanfredini S, Xu H, Burns A, Blake A, Willenbrock F, Goldin R, Hughes D, Hughes S, Thapa A, Vavoulis D, Hubert A, D'Costa Z, Sabbagh A, Abraham AG, Blancher C, Jones S, Verrill C, Silva M, Soonawalla Z, Maughan T, Schuh A, Mukherjee S, O'Neill E. TET2 Drives 5hmc Marking of GATA6 and Epigenetically Defines Pancreatic Ductal Adenocarcinoma Transcriptional Subtypes. Gastroenterology 2021; 161:653-668.e16. [PMID: 33915173 DOI: 10.1053/j.gastro.2021.04.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/12/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is characterized by advanced disease stage at presentation, aggressive disease biology, and resistance to therapy, resulting in an extremely poor 5-year survival rate of <10%. PDAC is classified into transcriptional subtypes with distinct survival characteristics, although how these arise is not known. Epigenetic deregulation, rather than genetics, has been proposed to underpin progression, but exactly why is unclear and is hindered by the technical limitations of analyzing clinical samples. METHODS We performed genome-wide epigenetic mapping of DNA modifications 5-methylcytosine and 5-hydroxymethylcytosine (5hmc) using oxidative bisulfite sequencing from formalin-embedded sections. We identified overlap with transcriptional signatures in formalin-fixed, paraffin-embedded tissue from resected patients, via bioinformatics using iCluster and mutational profiling and confirmed them in vivo. RESULTS We found that aggressive squamous-like PDAC subtypes result from epigenetic inactivation of loci, including GATA6, which promote differentiated classical pancreatic subtypes. We showed that squamous-like PDAC transcriptional subtypes are associated with greater loss of 5hmc due to reduced expression of the 5-methylcytosine hydroxylase TET2. Furthermore, we found that SMAD4 directly supports TET2 levels in classical pancreatic tumors, and loss of SMAD4 expression was associated with reduced 5hmc, GATA6, and squamous-like tumors. Importantly, enhancing TET2 stability using metformin and vitamin C/ascorbic acid restores 5hmc and GATA6 levels, reverting squamous-like tumor phenotypes and WNT-dependence in vitro and in vivo. CONCLUSIONS We identified epigenetic deregulation of pancreatic differentiation as an underpinning event behind the emergence of transcriptomic subtypes in PDAC. Our data showed that restoring epigenetic control increases biomarkers of classical pancreatic tumors that are associated with improved therapeutic responses and survival.
Collapse
MESH Headings
- 5-Methylcytosine/analogs & derivatives
- 5-Methylcytosine/metabolism
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Ascorbic Acid/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Differentiation
- Cell Line, Tumor
- DNA Methylation/drug effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dioxygenases/genetics
- Dioxygenases/metabolism
- Epigenesis, Genetic/drug effects
- Epigenome
- Epigenomics
- GATA6 Transcription Factor/genetics
- GATA6 Transcription Factor/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Metformin/pharmacology
- Mice, Nude
- Mice, Transgenic
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Retrospective Studies
- Smad4 Protein/genetics
- Smad4 Protein/metabolism
- Transcription, Genetic/drug effects
- Transcriptome
- Wnt Signaling Pathway/genetics
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Michael Eyres
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Haonan Xu
- Department of Oncology, University of Oxford, Oxford, UK
| | - Adam Burns
- Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew Blake
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Robert Goldin
- Centre for Pathology, Imperial College, London, United Kingdom
| | - Daniel Hughes
- Department of Oncology, University of Oxford, Oxford, UK; Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - Sophie Hughes
- Department of Oncology, University of Oxford, Oxford, UK
| | - Asmita Thapa
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Aline Hubert
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Ahmad Sabbagh
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Christine Blancher
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Stephanie Jones
- Oxford Radcliffe Biobank, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Clare Verrill
- Nuffield Department of Surgical Sciences and Oxford National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michael Silva
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - Zahir Soonawalla
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | | | - Anna Schuh
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
84
|
Kerk SA, Papagiannakopoulos T, Shah YM, Lyssiotis CA. Metabolic networks in mutant KRAS-driven tumours: tissue specificities and the microenvironment. Nat Rev Cancer 2021; 21:510-525. [PMID: 34244683 DOI: 10.1038/s41568-021-00375-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Oncogenic mutations in KRAS drive common metabolic programmes that facilitate tumour survival, growth and immune evasion in colorectal carcinoma, non-small-cell lung cancer and pancreatic ductal adenocarcinoma. However, the impacts of mutant KRAS signalling on malignant cell programmes and tumour properties are also dictated by tumour suppressor losses and physiological features specific to the cell and tissue of origin. Here we review convergent and disparate metabolic networks regulated by oncogenic mutant KRAS in colon, lung and pancreas tumours, with an emphasis on co-occurring mutations and the role of the tumour microenvironment. Furthermore, we explore how these networks can be exploited for therapeutic gain.
Collapse
Affiliation(s)
- Samuel A Kerk
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
85
|
Hua Q, Li T, Liu Y, Shen X, Zhu X, Xu P. Upregulation of KLK8 Predicts Poor Prognosis in Pancreatic Cancer. Front Oncol 2021; 11:624837. [PMID: 34395235 PMCID: PMC8362328 DOI: 10.3389/fonc.2021.624837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a growing cause of cancer-related mortality worldwide. Kallikrein-related peptidase 8 (KLK8) has potential clinical values in many cancers. However, the clinicopathological significances of KLK8 in PDAC remain unknown. We explored the relationship of KLK8 to clinicopathological features of PDAC based on public databases. KLK8 expression was examined in human PDAC tissues. Cell proliferation and apoptosis were evaluated in KLK8-overexpressed human pancreatic cancer cell lines Mia-paca-2 and Panc-1. The related signaling pathways of KLK8 involved in pancreatic cancer progression were analyzed by gene set enrichment analysis (GSEA) and further verified in in vitro studies. We found that KLK8 was up-regulated in tumor tissues in the TCGA-PAAD cohort, and was an independent prognostic factor for both overall survival and disease-free survival of PDAC. KLK8 mRNA and protein expressions were increased in PDAC tissues compared with para-cancerous pancreas. KLK8 overexpression exerted pro-proliferation and anti-apoptotic functions in Mia-paca-2 and Panc-1 cells. GSEA analysis showed that KLK8 was positively associated with PI3K-Akt-mTOR and Notch pathways. KLK8-induced pro-proliferation and anti-apoptotic effects in Mia-paca-2 and Panc-1 cells were attenuated by inhibitors for PI3K, Akt, and mTOR, but not by inhibitor for Notch. Furthermore, overexpression of KLK8 in Mia-paca-2 and Panc-1 cells significantly increased epidermal growth factor (EGF) levels in the culture media. EGF receptor (EGFR) inhibitor could block KLK8-induced activation of PI3K/Akt/mTOR pathway and attenuate pro-proliferation and anti-apoptotic of KLK8 in Mia-paca-2 and Panc-1 cells. In conclusion, KLK8 overexpression exerts pro-proliferation and anti-apoptotic functions in pancreatic cancer cells via EGF signaling-dependent activation of PI3K/Akt/mTOR pathway. Upregulated KLK8 in PDAC predicts poor prognosis and may be a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Qing Hua
- Department of Anesthesiology, Shanghai Cancer Centre, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianjiao Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Fudan University Shanghai, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yixuan Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Clinical Laboratory, Shanghai Cancer Centre, Fudan University, Shanghai, China
| | - Xuefang Shen
- Department of Anesthesiology, Shanghai Cancer Centre, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, Shanghai, China
| | - Pingbo Xu
- Department of Anesthesiology, Shanghai Cancer Centre, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
86
|
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 2021; 6:249. [PMID: 34219130 PMCID: PMC8255319 DOI: 10.1038/s41392-021-00659-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
Collapse
Affiliation(s)
- Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe-Fang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Xiao-Lin Wu
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Cheng-Hui Zhou
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jia-Yan Yan
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - De-Liang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Key laboratory of whole-period monitoring and precise intervention of digestive cancer, Shanghai Municipal Health Commission (SMHC), Shanghai, China.
| |
Collapse
|
87
|
Encarnación-Rosado J, Kimmelman AC. Harnessing metabolic dependencies in pancreatic cancers. Nat Rev Gastroenterol Hepatol 2021; 18:482-492. [PMID: 33742165 PMCID: PMC8249349 DOI: 10.1038/s41575-021-00431-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with a 5-year survival rate of <10%. The tumour microenvironment (TME) of PDAC is characterized by excessive fibrosis and deposition of extracellular matrix, termed desmoplasia. This unique TME leads to high interstitial pressure, vascular collapse and low nutrient and oxygen diffusion. Together, these factors contribute to the unique biology and therapeutic resistance of this deadly tumour. To thrive in this hostile environment, PDAC cells adapt by using non-canonical metabolic pathways and rely on metabolic scavenging pathways such as autophagy and macropinocytosis. Here, we review the metabolic pathways that PDAC use to support their growth in the setting of an austere TME. Understanding how PDAC tumours rewire their metabolism and use scavenging pathways under environmental stressors might enable the identification of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Alec C Kimmelman
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
- Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
88
|
Guo Y, Liu B, Liu Y, Sun W, Gao W, Mao S, Chen L. Oncogenic Chromatin Modifier KAT2A Activates MCT1 to Drive the Glycolytic Process and Tumor Progression in Renal Cell Carcinoma. Front Cell Dev Biol 2021; 9:690796. [PMID: 34268311 PMCID: PMC8276638 DOI: 10.3389/fcell.2021.690796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/17/2021] [Indexed: 01/17/2023] Open
Abstract
Objectives This study aims to investigate the underlying mechanisms of KAT2A/MCT1 axis in renal cell carcinoma (RCC), providing potential therapeutic targets. Methods We obtained the expression data of KAT2A and MCT1 from The Cancer Genome Atlas Kidney Clear Cell Carcinoma (TCGA-KIRC) and International Cancer Genome Consortium (ICGC) databases. Differential analysis was conducted via the limma package. The CCK8 assay, soft agar assay, clone formation assay, and patients-derived organoid models were used to detect cell growth. The transwell and wound-healing assays were utilized to detect cell migration. The in vitro and in vivo assays were further conducted to assess the oncogenic roles of KAT2A. The transcriptome sequencing and chromatin immunoprecipitation (ChIP) sequencing were conducted to screen KAT2A downstream targets. The dose-effect curves were used to detect the 50% inhibiting concentration (IC50) of AZD3965. Data analysis was performed in the Graphpad Prism (Version 8.3.0) and R software (Version 3.6.1). Results Our study found that KAT2A was highly expressed in RCC versus normal samples. Prognostic analysis indicated that a high KAT2A was an independent biomarker and associated with poor survival outcomes. KAT2A could promote RCC proliferation and distal metastasis in vitro and in vivo. Transcriptome analysis and ChIP-seq were combined to find that KAT2A mainly regulated the glycolytic process. Validation and rescue assays revealed that MCT1 was the downstream target of KAT2A, and KAT2A depended on MCT1 to promote RCC malignant phenotypes. Lastly, MCT1 inhibitor (AZD3965) was effective to treat KAT2A-induced RCC progression. Conclusion Our study indicated that KAT2A was an oncogenic chromatin modifier that promotes RCC progression by inducing MCT1 expression. We proposed that MCT1 inhibitor (AZD3965) was useful for suppressing RCC.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Beibei Liu
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Yihan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Wuyue Gao
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Shilong Mao
- Department of Pharmacy, Shanghai Xuhui District Central Hospital, Xuhui Hospital of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui District Central Hospital, Xuhui Hospital of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
89
|
Ferrarini I, Louie A, Zhou L, El-Deiry WS. ONC212 is a Novel Mitocan Acting Synergistically with Glycolysis Inhibition in Pancreatic Cancer. Mol Cancer Ther 2021; 20:1572-1583. [PMID: 34224362 DOI: 10.1158/1535-7163.mct-20-0962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/08/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
ONC212 is a fluorinated imipridone with preclinical efficacy against pancreatic and other malignancies. Although mitochondrial protease ClpP was identified as an ONC212-binding target, the mechanism leading to cancer cell death is incompletely understood. We investigated mitochondrial dysfunction and metabolic rewiring triggered by ONC212 in pancreatic cancer, a deadly malignancy with an urgent need for novel therapeutics. We found ClpP is expressed in pancreatic cancer cells and is required for ONC212 cytotoxicity. ClpX, the regulatory binding partner of ClpP, is suppressed upon ONC212 treatment. Immunoblotting and extracellular flux analysis showed ONC212 impairs oxidative phosphorylation (OXPHOS) with decrease in mitochondrial-derived ATP production. Although collapse of mitochondrial function is observed across ONC212-treated cell lines, only OXPHOS-dependent cells undergo apoptosis. Cells relying on glycolysis undergo growth arrest and upregulate glucose catabolism to prevent ERK1/2 inhibition and apoptosis. Glucose restriction or combination with glycolytic inhibitor 2-deoxy-D-glucose synergize with ONC212 and promote apoptosis in vitro and in vivo Thus, ONC212 is a novel mitocan targeting oxidative metabolism in pancreatic cancer, leading to different cellular outcomes based on divergent metabolic programs.
Collapse
Affiliation(s)
- Isacco Ferrarini
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,Department of Medicine, Section of Hematology, Cancer Research and Cell Biology Laboratory, University of Verona, Verona, Italy.,Department of Pathology and Laboratory medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Rhode Island.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Anna Louie
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,Department of Pathology and Laboratory medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Rhode Island.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,Department of Surgery, Brown University, Lifespan Health System and Warren, Alpert Medical School, Brown University, Providence, Rhode Island
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,Department of Pathology and Laboratory medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Rhode Island.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island. .,Department of Pathology and Laboratory medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Rhode Island.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
90
|
Yang J, Gong C, Ke Q, Fang Z, Chen X, Ye M, Xu X. Insights Into the Function and Clinical Application of HDAC5 in Cancer Management. Front Oncol 2021; 11:661620. [PMID: 34178647 PMCID: PMC8222663 DOI: 10.3389/fonc.2021.661620] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Histone deacetylase 5 (HDAC5) is a class II HDAC. Aberrant expression of HDAC5 has been observed in multiple cancer types, and its functions in cell proliferation and invasion, the immune response, and maintenance of stemness have been widely studied. HDAC5 is considered as a reliable therapeutic target for anticancer drugs. In light of recent findings regarding the role of epigenetic reprogramming in tumorigenesis, in this review, we provide an overview of the expression, biological functions, regulatory mechanisms, and clinical significance of HDAC5 in cancer.
Collapse
Affiliation(s)
- Jun Yang
- Department of Orthopedic Surgery, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Chaoju Gong
- Central Laboratory, The Municipal Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qinjian Ke
- Central Laboratory, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Zejun Fang
- Central Laboratory, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Xiaowen Chen
- Department of Pathophysiology, Zunyi Medical University, Zunyi, China
| | - Ming Ye
- Department of General Surgery, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Xi Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
91
|
He JS, Liu SJ, Zhang YR, Chu XD, Lin ZB, Zhao Z, Qiu SH, Guo YG, Ding H, Pan YL, Pan JH. The Application of and Strategy for Gold Nanoparticles in Cancer Immunotherapy. Front Pharmacol 2021; 12:687399. [PMID: 34163367 PMCID: PMC8215714 DOI: 10.3389/fphar.2021.687399] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy of malignant tumor is a verified and crucial anti-tumor strategy to help patients with cancer for prolonging prognostic survival. It is a novel anticancer tactics that activates the immune system to discern and damage cancer cells, thereby prevent them from proliferating. However, immunotherapy still faces many challenges in view of clinical efficacy and safety issues. Various nanomaterials, especially gold nanoparticles (AuNPs), have been developed not only for anticancer treatment but also for delivering antitumor drugs or combining other treatment strategies. Recently, some studies have focused on AuNPs for enhancing cancer immunotherapy. In this review, we summarized how AuNPs applicated as immune agents, drug carriers or combinations with other immunotherapies for anticancer treatment. AuNPs can not only act as immune regulators but also deliver immune drugs for cancer. Therefore, AuNPs are candidates for enhancing the efficiency and safety of cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yun-long Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jing-hua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
92
|
Alzhrani R, Alsaab HO, Vanamal K, Bhise K, Tatiparti K, Barari A, Sau S, Iyer AK. Overcoming the Tumor Microenvironmental Barriers of Pancreatic Ductal Adenocarcinomas for Achieving Better Treatment Outcomes. ADVANCED THERAPEUTICS 2021; 4:2000262. [PMID: 34212073 PMCID: PMC8240487 DOI: 10.1002/adtp.202000262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with the lowest survival rate among all solid tumors. The lethality of PDAC arises from late detection and propensity of the tumor to metastasize and develop resistance against chemo and radiation therapy. A highly complex tumor microenvironment composed of dense stroma, immune cells, fibroblast, and disorganized blood vessels, is the main obstacle to current PDAC therapy. Despite the tremendous success of immune checkpoint inhibitors (ICIs) in cancers, PDAC remains one of the poorest responders of ICIs therapy. The immunologically "cold" phenotype of PDAC is attributed to the low mutational burden, high infiltration of myeloid-derived suppressor cells and T-regs, contributing to a significant immunotherapy resistance mechanism. Thus, the development of innovative strategies for turning immunologically "cold" tumor into "hot" ones is an unmet need to improve the outcome of PDAC ICIs therapies. Other smart strategies, such as nanomedicines, sonic Hedgehog inhibitor, or smoothened inhibitor, are discussed to enhance chemotherapeutic agents' efficiency by disrupting the PDAC stroma. This review highlights the current challenges and various preclinical and clinical strategies to overcome current PDAC therapy difficulties, thus significantly advancing PDAC research knowledge.
Collapse
Affiliation(s)
- Rami Alzhrani
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kushal Vanamal
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ayatakshi Barari
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|
93
|
Carr RM, Fernandez-Zapico ME. It Takes a Village to Overcome KRAS Dependence in Pancreatic Cancer. Cancer Discov 2021; 10:910-912. [PMID: 32611735 DOI: 10.1158/2159-8290.cd-20-0490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue, Hou and colleagues present their exciting work demonstrating that, through remodeling of the local tumor microenvironment (TME), pancreatic ductal adenocarcinoma forms a tumor-supportive niche capable of liberating cancer cells from dependence on oncogenic KRAS signaling. Through extensive experimentation both in vitro and in vivo, the authors reveal that the HDAC5-CCL2 axis drives the recruitment of tumor-associated macrophages to the TME to provide trophic signaling.See related article by Hou et al., p. 1058.
Collapse
Affiliation(s)
- Ryan M Carr
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota.,Department of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
94
|
Gao M, Lin Y, Liu X, Zhao Z, Zhu Z, Zhang H, Ban Y, Bie Y, He X, Sun X, Zhang S. TERT Mutation Is Accompanied by Neutrophil Infiltration and Contributes to Poor Survival in Isocitrate Dehydrogenase Wild-Type Glioma. Front Cell Dev Biol 2021; 9:654407. [PMID: 33996815 PMCID: PMC8119999 DOI: 10.3389/fcell.2021.654407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Mutation of the telomerase reverse transcriptase (TERT) promoter has been demonstrated as an unfavorable prognostic marker in patients with isocitrate dehydrogenase wild-type (IDHwt) glioma. This study aimed to investigate the immune role of TERT promoter mutation status which could improve prognostic prediction in IDHwt. TERT mutation status, IDH mutation, and 1p-19q codeletion status data were obtained from 614 glioma cases from the Cancer Genome Atlas, and 325 cases from the Chinese Glioma Genome Atlas. The same information was obtained from 49 clinical glioma tissues. TERT mutation is preferentially present in glioblastoma and IDH-wt gliomas and is associated with poor prognosis. Moreover, TERT mutation was associated with infiltration of neutrophils and expression of neutrophil chemokines. which might partially contribute to the poor outcome in IDH-wt glioma. Furthermore, patients with IDH-wt glioma did not harbor increased peripheral neutrophils, implying that the infiltrated neutrophil in the tumor environment might due to cytokine chemotaxis. In this study, we hereby propose that TERT mutation might be a molecular driver of the dysfunctional immune microenvironment in IDH-wt glioma. TERT mutation may be a potential immune therapeutic target for optimizing treatment combinations and patient selection for glioma immunotherapy.
Collapse
Affiliation(s)
- Mengqi Gao
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yi Lin
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xing Liu
- Chinese Glioma Genome Atlas Network, Beijing, China
| | - Zheng Zhao
- Chinese Glioma Genome Atlas Network, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyuan Zhu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongbo Zhang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yunchao Ban
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yanan Bie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaozheng He
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiang Sun
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shizhong Zhang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
95
|
Mutant KRAS triggers functional reprogramming of tumor-associated macrophages in colorectal cancer. Signal Transduct Target Ther 2021; 6:144. [PMID: 33833221 PMCID: PMC8032794 DOI: 10.1038/s41392-021-00534-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/27/2020] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
Oncogenic KRAS has been previously identified to act in a cell-intrinsic manner to modulate multiple biological functions of colorectal cancer (CRC). Here, we demonstrate a cell-extrinsic role of KRAS, where KRAS engages with the tumor microenvironment by functional reprogramming of tumor-associated macrophages (TAMs). In human CRC specimens, mutant KRAS positively correlates with the presence of TAMs. Mutationally activated KRAS in tumor cells reprograms macrophages to a TAM-like phenotype via a combination effect of tumor-derived CSF2 and lactate. In turn, KRAS-reprogrammed macrophages were shown to not only promote tumor progression but also induce the resistance of tumor cells to cetuximab therapy. Mechanistically, KRAS drives the production of CSF2 and lactate in tumor cells by stabilizing hypoxia-inducible factor-1α (HIF-1α), a transcription factor that controls the expression of CSF2 and glycolytic genes. Mutant KRAS increased the production of reactive oxygen species, an inhibitor of prolyl hydroxylase activity which decreases HIF-1α hydroxylation, leading to enhanced HIF-1α stabilization. This cell-extrinsic mechanism awards KRAS a critical role in engineering a permissive microenvironment to promote tumor malignancy, and may present new insights on potential therapeutic defense strategies against mutant KRAS tumors.
Collapse
|
96
|
Yang Y, Wang Y. Role of Epigenetic Regulation in Plasticity of Tumor Immune Microenvironment. Front Immunol 2021; 12:640369. [PMID: 33868269 PMCID: PMC8051582 DOI: 10.3389/fimmu.2021.640369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor immune microenvironment (TIME), an immunosuppressive niche, plays a pivotal role in contributing to the development, progression, and immune escape of various types of cancer. Compelling evidence highlights the feasibility of cancer therapy targeting the plasticity of TIME as a strategy to retrain the immunosuppressive immune cells, including innate immune cells and T cells. Epigenetic alterations, such as DNA methylation, histone post-translational modifications, and noncoding RNA-mediated regulation, regulate the expression of many human genes and have been reported to be accurate in the reprogramming of TIME according to vast majority of published results. Recently, mounting evidence has shown that the gut microbiome can also influence the colorectal cancer and even extraintestinal tumors via metabolites or microbiota-derived molecules. A tumor is a kind of heterogeneous disease with specificity in time and space, which is not only dependent on genetic regulation, but also regulated by epigenetics. This review summarizes the reprogramming of immune cells by epigenetic modifications in TIME and surveys the recent progress in epigenetic-based cancer clinical therapeutic approaches. We also discuss the ongoing studies and future areas of research that benefits to cancer eradication.
Collapse
Affiliation(s)
- Yunkai Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
97
|
Kawalerski RR, Leach SD, Escobar-Hoyos LF. Pancreatic cancer driver mutations are targetable through distant alternative RNA splicing dependencies. Oncotarget 2021; 12:525-533. [PMID: 33796221 PMCID: PMC7984828 DOI: 10.18632/oncotarget.27901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer, has one of the highest case fatality rates of all known solid malignancies. Over the past decade, several landmark studies have established mutations in KRAS and TP53 as the predominant drivers of PDAC pathogenesis and therapeutic resistance, though treatment options for PDACs and other tumors with these mutations remain extremely limited. Hampered by late tumor discovery and diagnosis, clinicians are often faced with using aggressive and non-specific chemotherapies to treat advanced disease. Clinically meaningful responses to targeted therapy are often limited to the minority of patients with susceptible PDACs, and immunotherapies have routinely encountered roadblocks in effective activation of tumor-infiltrating immune cells. Alternative RNA splicing (ARS) has recently gained traction in the PDAC literature as a field from which we may better understand and treat complex mechanisms of PDAC initiation, progression, and therapeutic resistance. Here, we review PDAC pathogenesis as it relates to fundamental ARS biology, with an extension to implications for PDAC patient clinical management.
Collapse
Affiliation(s)
- Ryan R. Kawalerski
- Medical Scientist Training Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven D. Leach
- Departments of Molecular and Systems Biology, Surgery, and Medicine, Dartmouth Geisel School of Medicine and Norris Cotton Cancer Center, Lebanon, NH 03766, USA
| | - Luisa F. Escobar-Hoyos
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06513, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06513, USA
- Department of Pathology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
98
|
Gagliano T, Brancolini C. Epigenetic Mechanisms beyond Tumour-Stroma Crosstalk. Cancers (Basel) 2021; 13:cancers13040914. [PMID: 33671588 PMCID: PMC7926949 DOI: 10.3390/cancers13040914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Despite cancer having been usually considered the result of genetic mutations, it is now well established that epigenetic dysregulations play pivotal roles in cancer onset and progression. Hence, inactivation of tumour suppressor genes can be gained not only by genetic mutations, but also by epigenetic mechanisms such as DNA methylation and histone modifications. To occur, epigenetic events need to be triggered by genetic alterations of the epigenetic regulators, or they can be mediated by intracellular and extracellular stimuli. In this last setting, the tumour microenvironment (TME) plays a fundamental role. Therefore, to decipher how epigenetic changes are associated with TME is a challenge still open. The complex signalling between tumour cells and stroma is currently under intensive investigation, and most of the molecules and pathways involved still need to be identified. Neoplastic initiation and development are likely to involve a back-and-forth crosstalk among cancer and stroma cells. An increasing number of studies have highlighted that the cancer epigenome can be influenced by tumour microenvironment and vice versa. Here, we discuss about the recent literature on tumour-stroma interactions that focus on epigenetic mechanisms and the reciprocal regulation between cancer and TME cells.
Collapse
|
99
|
Noë M, Hong SM, Wood LD, Thompson ED, Roberts NJ, Goggins MG, Klein AP, Eshleman JR, Kern SE, Hruban RH. Pancreatic cancer pathology viewed in the light of evolution. Cancer Metastasis Rev 2021; 40:661-674. [PMID: 33555482 PMCID: PMC8556193 DOI: 10.1007/s10555-020-09953-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
One way to understand ductal adenocarcinoma of the pancreas (pancreatic cancer) is to view it as unimaginably large numbers of evolving living organisms interacting with their environment. This “evolutionary view” creates both expected and surprising perspectives in all stages of neoplastic progression. Advances in the field will require greater attention to this critical evolutionary prospective.
Collapse
Affiliation(s)
- Michaël Noë
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Carnegie 415, 600 North Wolfe Street, Baltimore, MD, 21287, USA
- Sol Goldman Pancreatic Cancer Research Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Laura D Wood
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Carnegie 415, 600 North Wolfe Street, Baltimore, MD, 21287, USA
- Sol Goldman Pancreatic Cancer Research Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Elizabeth D Thompson
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Carnegie 415, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Nicholas J Roberts
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Carnegie 415, 600 North Wolfe Street, Baltimore, MD, 21287, USA
- Sol Goldman Pancreatic Cancer Research Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Michael G Goggins
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Carnegie 415, 600 North Wolfe Street, Baltimore, MD, 21287, USA
- Sol Goldman Pancreatic Cancer Research Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Sol Goldman Pancreatic Cancer Research Center, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alison P Klein
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Carnegie 415, 600 North Wolfe Street, Baltimore, MD, 21287, USA
- Sol Goldman Pancreatic Cancer Research Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Epidemiology, Bloomberg School of Public Health, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - James R Eshleman
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Carnegie 415, 600 North Wolfe Street, Baltimore, MD, 21287, USA
- Sol Goldman Pancreatic Cancer Research Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Scott E Kern
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Carnegie 415, 600 North Wolfe Street, Baltimore, MD, 21287, USA
- Sol Goldman Pancreatic Cancer Research Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ralph H Hruban
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Carnegie 415, 600 North Wolfe Street, Baltimore, MD, 21287, USA.
- Sol Goldman Pancreatic Cancer Research Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
100
|
Abstract
Pancreatic cancer is a recalcitrant cancer with one of the lowest 5-year survival rates. A hallmark of pancreatic cancer is the prevalence of oncogenic mutation in the KRAS gene. The KRAS oncogene plays a critical role in the initiation and maintenance of pancreatic tumors and its signaling network represents a major target for therapeutic intervention. A number of inhibitors have been developed against kinase effectors in various Ras signaling pathways. Their clinical activity, however, has been disappointing thus far. More recently, covalent inhibitors targeting the KRASG12C oncoprotein have been developed. These inhibitors showed promising activity in KRASG12C mutant pancreatic cancer in early clinical trials. This review will present an updated summary of our understanding of mutant KRAS function in pancreatic cancer and discuss therapeutic strategies that target oncogenic KRAS signaling in this disease.
Collapse
Affiliation(s)
- Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD.
| |
Collapse
|