51
|
Hatakeyama K, Muramatsu K, Nagashima T, Ichida H, Kawanishi Y, Fukumura R, Ohshima K, Shimoda Y, Ohnami S, Ohnami S, Maruyama K, Naruoka A, Kenmotsu H, Urakami K, Akiyama Y, Sugino T, Yamaguchi K. Tumor cell enrichment by tissue suspension improves sensitivity to copy number variation in diffuse gastric cancer with low tumor content. Sci Rep 2024; 14:13699. [PMID: 38871991 DOI: 10.1038/s41598-024-64541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
The detection of copy number variations (CNVs) and somatic mutations in cancer is important for the selection of specific drugs for patients with cancer. In cancers with sporadic tumor cells, low tumor content prevents the accurate detection of somatic alterations using targeted sequencing. To efficiently identify CNVs, we performed tumor cell enrichment using tissue suspensions of formalin-fixed paraffin-embedded (FFPE) tissue sections with low tumor cell content. Tumor-enriched and residual fractions were separated from FFPE tissue suspensions of intestinal and diffuse-type gastric cancers containing sporadic tumor cells, and targeted sequencing was performed on 225 cancer-related genes. Sequencing of a targeted panel of cancer-related genes using tumor-enriched fractions increased the number of detectable CNVs and the copy number of amplified genes. Furthermore, CNV analysis using the normal cell-enriched residual fraction as a reference for CNV scoring allowed targeted sequencing to detect CNV characteristics of diffuse-type gastric cancer with low tumor content. Our approach improves the CNV detection rate in targeted sequencing with tumor enrichment and the accuracy of CNV detection in archival samples without paired blood.
Collapse
Affiliation(s)
- Keiichi Hatakeyama
- Cancer Multiomics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Koji Muramatsu
- Division of Pathology, Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
- SRL Inc., Shinjuku-ku, Tokyo, 163-0409, Japan
| | - Hiroyuki Ichida
- SRL and Shizuoka Cancer Center Collaborative Laboratories Inc., Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yuichi Kawanishi
- SRL and Shizuoka Cancer Center Collaborative Laboratories Inc., Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ryutaro Fukumura
- SRL and Shizuoka Cancer Center Collaborative Laboratories Inc., Sunto-gun, Shizuoka, 411-8777, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Shumpei Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Koji Maruyama
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Akane Naruoka
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Hirotsugu Kenmotsu
- Division of Thoracic Oncology, Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yasuto Akiyama
- Immunotheraphy Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| |
Collapse
|
52
|
Ichikawa H, Usui K, Aizawa M, Shimada Y, Muneoka Y, Kano Y, Sugai M, Moro K, Hirose Y, Miura K, Sakata J, Yabusaki H, Nakagawa S, Kawasaki T, Umezu H, Okuda S, Wakai T. Clinical application of targeted tumour sequencing tests for detecting ERBB2 amplification and optimizing anti-HER2 therapy in gastric cancer. BMC Cancer 2024; 24:719. [PMID: 38862927 PMCID: PMC11167924 DOI: 10.1186/s12885-024-12482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Evaluation of human epidermal growth factor receptor 2 (HER2) overexpression caused by erb-b2 receptor tyrosine kinase 2 (ERBB2) amplification (AMP) by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) is essential for treating unresectable metastatic gastric cancer (GC). A targeted tumour sequencing test enables comprehensive assessment of alterations in cancer-related genes, including ERBB2. This study aimed to evaluate the concordance between the targeted tumour sequencing test and IHC/FISH for detecting HER2-positive GC and to clarify the significance of ERBB2 AMP and concomitant genetic alterations in HER2 downstream pathways (DPs) in anti-HER2 therapy for unresectable metastatic GC patients. METHODS ERBB2 copy number alteration (CNA) was examined via a targeted tumour sequencing test in 152 formalin-fixed paraffin-embedded (FFPE) GC tissues. ERBB2 CNA was compared to HER2 status evaluated by IHC/FISH in FFPE block sections, which were identical to those subjected to the targeted tumour sequencing test. Treatment outcomes of anti-HER2 therapy in 11 patients with unresectable metastatic GC was evaluated. RESULTS ERBB2 AMP (≥ 2.5-fold change) was detected by the targeted tumour sequencing test in 15 patients (9.9%), and HER2 positivity (IHC 3 + or IHC 2+/FISH positive) was detected in 21 patients (13.8%). The overall percent agreement, positive percent agreement, negative percent agreement and Cohen's kappa between ERBB2 CNA and HER2 status were 94.7%, 66.7%, 99.2% and 0.75, respectively. Progression-free survival for trastuzumab therapy in patients with ERBB2 AMP was significantly longer than that in patients with no ERBB2 AMP detected by the targeted tumour sequencing test (median 14 months vs. 4 months, P = 0.007). Treatment response to trastuzumab therapy was reduced in patients with ERBB2 AMP and concomitant CNAs of genes in HER2 DPs. One patient with ERBB2 AMP and concomitant CNAs of genes in HER2 DPs achieved a durable response to trastuzumab deruxtecan as fourth-line therapy. CONCLUSIONS A targeted tumour sequencing test is a reliable modality for identifying HER2-positive GC. ERBB2 AMP and concomitant genetic alterations detected through the targeted tumour sequencing test are potential indicators of treatment response to trastuzumab therapy. The targeted tumour sequencing test has emerged as a plausible candidate for companion diagnostics to determine indications for anti-HER2 therapy in the era of precision medicine for GC.
Collapse
Affiliation(s)
- Hiroshi Ichikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan.
| | - Kenji Usui
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Masaki Aizawa
- Department of Gastroenterological Surgery, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata City, Niigata, 951-8566, Japan
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Yusuke Muneoka
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Yosuke Kano
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Mika Sugai
- Division of Medical Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-Dori, Chuo-ku, Niigata City, Niigata, 951-8518, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Kohei Miura
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Hiroshi Yabusaki
- Department of Gastroenterological Surgery, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata City, Niigata, 951-8566, Japan
| | - Satoru Nakagawa
- Department of Gastroenterological Surgery, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata City, Niigata, 951-8566, Japan
| | - Takashi Kawasaki
- Department of Pathology, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata City, Niigata, 951-8566, Japan
| | - Hajime Umezu
- Division of Pathology, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8520, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, Niigata, 951-8514, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| |
Collapse
|
53
|
Fujii E, Kato MK, Yamaguchi M, Higuchi D, Koyama T, Komatsu M, Hamamoto R, Ishikawa M, Kato T, Kohno T, Shiraishi K, Yoshida H. Genomic profiles of Japanese patients with vulvar squamous cell carcinoma. Sci Rep 2024; 14:13058. [PMID: 38844774 PMCID: PMC11156893 DOI: 10.1038/s41598-024-63913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
The incidence of vulvar carcinoma varies by race; however, it is a rare disease, and its genomic profiles remain largely unknown. This study examined the characteristics of vulvar squamous cell carcinoma (VSCC) in Japanese patients, focusing on genomic profiles and potential racial disparities. The study included two Japanese groups: the National Cancer Center Hospital (NCCH) group comprised 19 patients diagnosed between 2015 and 2023, and the Center for Cancer Genomics and Advanced Therapeutics group comprised 29 patients diagnosed between 2019 and 2022. Somatic mutations were identified by targeted or panel sequencing, and TP53 was identified as the most common mutation (52-81%), followed by HRAS (7-26%), CDKN2A (21-24%), and PIK3CA (5-10%). The mutation frequencies, except for TP53, were similar to those of Caucasian cohorts. In the NCCH group, 16 patients of HPV-independent tumors were identified by immunohistochemistry and genotyping. Univariate analysis revealed that TP53-mutated patients were associated with a poor prognosis (log-rank test, P = 0.089). Japanese VSCC mutations resembled those of Caucasian vulvar carcinomas, and TP53 mutations predicted prognosis regardless of ethnicity. The present findings suggest potential molecular-targeted therapies for select VSCC patients.
Collapse
Affiliation(s)
- Erisa Fujii
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Mayumi Kobayashi Kato
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Maiko Yamaguchi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Daiki Higuchi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan.
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
54
|
Sasaki M, Kato D, Murakami K, Yoshida H, Takase S, Otsubo T, Ogiwara H. Targeting dependency on a paralog pair of CBP/p300 against de-repression of KREMEN2 in SMARCB1-deficient cancers. Nat Commun 2024; 15:4770. [PMID: 38839769 PMCID: PMC11153594 DOI: 10.1038/s41467-024-49063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
SMARCB1, a subunit of the SWI/SNF chromatin remodeling complex, is the causative gene of rhabdoid tumors and epithelioid sarcomas. Here, we identify a paralog pair of CBP and p300 as a synthetic lethal target in SMARCB1-deficient cancers by using a dual siRNA screening method based on the "simultaneous inhibition of a paralog pair" concept. Treatment with CBP/p300 dual inhibitors suppresses growth of cell lines and tumor xenografts derived from SMARCB1-deficient cells but not from SMARCB1-proficient cells. SMARCB1-containing SWI/SNF complexes localize with H3K27me3 and its methyltransferase EZH2 at the promotor region of the KREMEN2 locus, resulting in transcriptional downregulation of KREMEN2. By contrast, SMARCB1 deficiency leads to localization of H3K27ac, and recruitment of its acetyltransferases CBP and p300, at the KREMEN2 locus, resulting in transcriptional upregulation of KREMEN2, which cooperates with the SMARCA1 chromatin remodeling complex. Simultaneous inhibition of CBP/p300 leads to transcriptional downregulation of KREMEN2, followed by apoptosis induction via monomerization of KREMEN1 due to a failure to interact with KREMEN2, which suppresses anti-apoptotic signaling pathways. Taken together, our findings indicate that simultaneous inhibitors of CBP/p300 could be promising therapeutic agents for SMARCB1-deficient cancers.
Collapse
Affiliation(s)
- Mariko Sasaki
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Daiki Kato
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Karin Murakami
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shohei Takase
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tsuguteru Otsubo
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Hideaki Ogiwara
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
55
|
Nakata E, Osone T, Ogawa T, Taguchi T, Hattori K, Kohsaka S. Prevalence of neurotrophic tropomyosin receptor kinase (NTRK) fusion gene positivity in patients with solid tumors in Japan. Cancer Med 2024; 13:e7351. [PMID: 38925616 PMCID: PMC11199329 DOI: 10.1002/cam4.7351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Members of the neurotrophic tropomyosin receptor kinase (NTRK) gene family, NTRK1, NTRK2, and NTRK3 encode TRK receptor tyrosine kinases. Intra- or inter-chromosomal gene rearrangements produce NTRK gene fusions encoding fusion proteins which are oncogenic drivers in various solid tumors. METHODS This study investigated the prevalence of NTRK fusion genes and identified fusion partners in Japanese patients with solid tumors recorded in the Center for Cancer Genomics and Advanced Therapeutics database of comprehensive genomic profiling test. RESULTS In the analysis population (n = 46,621), NTRK fusion genes were detected in 91 patients (0.20%). The rate was higher in pediatric cases (<18 years; 1.69%) than in adults (0.16%). NTRK gene fusions were identified in 21 different solid tumor types involving 38 different partner genes including 22 (57.9%) previously unreported NTRK gene fusions. The highest frequency of NTRK gene fusions was head and neck cancer (1.31%) and thyroid cancer (1.31%), followed by soft tissue sarcoma (STS; 0.91%). A total of 97 NTRK fusion gene partners were analyzed involving mainly NTRK1 (49.5%) or NTRK3 (44.2%) gene fusions. The only fusion gene detected in head and neck cancer was ETV6::NTRK3 (n = 22); in STS, ETV6::NTRK3 (n = 7) and LMNA::NTRK1 (n = 5) were common. Statistically significant mutual exclusivity of NTRK fusions with alterations was confirmed in TP53, KRAS, and APC. NTRK gene fusion was detected from 11 STS cases: seven unclassified sarcoma, three sarcoma NOS, and one Ewing sarcoma. CONCLUSIONS NTRK gene fusion identification in solid tumors enables accurate diagnosis and potential TRK inhibitor therapy.
Collapse
Affiliation(s)
- Eiji Nakata
- Department of Orthopedic SurgeryOkayama UniversityOkayamaJapan
- Center for Comprehensive Genomic MedicineOkayama University HospitalOkayamaJapan
| | - Tatsunori Osone
- Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Toru Ogawa
- Medical Affairs & PharmacovigilanceBayer Yakuhin, LtdOsakaJapan
| | | | - Kana Hattori
- Medical Affairs & PharmacovigilanceBayer Yakuhin, LtdOsakaJapan
| | | |
Collapse
|
56
|
Yamaguchi T, Ikegami M, Aruga T, Kanemasa Y, Horiguchi SI, Kawai K, Takao M, Yamada T, Ishida H. Genomic landscape of comprehensive genomic profiling in patients with malignant solid tumors in Japan. Int J Clin Oncol 2024:10.1007/s10147-024-02554-8. [PMID: 38795236 DOI: 10.1007/s10147-024-02554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/14/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND Comprehensive genomic profiling (CGP) can aid the discovery of clinically useful, candidate antitumor agents; however, the variant annotations sometimes differ among the various types of CGP tests as well as the public database. The aim of this study is to clarify the genomic landscape of evaluating detected variants in patients with a malignant solid tumor. METHODS The present, cross-sectional study used data from 57,084 patients with a malignant solid tumor who underwent CGP at the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) between June 1, 2019 and August 18, 2023. The pathogenicity of the variants was annotated using public databases. RESULTS As a result of re-annotation of the detected variants, 20.1% were pathogenic and 1.4% were benign. The mean number of pathogenic variants was 4.30 (95% confidence interval: 4.27-4.32) per patient. Of the entire cohort, 5.7% had no pathogenic variant. The co-occurrence of the genes depended on the tumor type. Germline findings were detected in 6.2%, 8.8%, and 15.8% of the patients using a tumor/normal panel, tumor-only panel, and liquid panel, respectively, with the most common gene being BRCA2 followed by TP53 and BRCA1. CONCLUSIONS The detected variants should be re-annotated because several benign variants or variants of unknown significance were included in the CGP, and the genomic landscape derived from these results will help researchers and physicians interpret the results of CGP tests. The method of extracting presumptive, germline, pathogenic variants from patients using a tumor-only panel or circulating tumor DNA panel requires improvement.
Collapse
Affiliation(s)
- Tatsuro Yamaguchi
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.
| | - Masachika Ikegami
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
- Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Tomoyuki Aruga
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Yusuke Kanemasa
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Shin-Ichiro Horiguchi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kazushige Kawai
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Misato Takao
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Takeshi Yamada
- Department of Surgery, Nihon Medical University, Tokyo, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
57
|
Ichimura N, Urata Y, Kobayashi T, Hibi H. Mutational landscape of oral mucosal melanoma based on comprehensive cancer genomic profiling tests in a Japanese cohort. Oral Oncol 2024; 152:106807. [PMID: 38615585 DOI: 10.1016/j.oraloncology.2024.106807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVES Oral mucosal melanoma (OMM) is a rare but aggressive melanoma subtype. Due to its rarity, the genomic landscape of OMM remains unknown despite a relatively thorough understanding of the genetic profile of cutaneous melanoma (CM). In this study, we analyzed the genomic mutational profiles of Japanese patients with OMM and compared them with those of patients with nose/sinuses mucosal melanoma (NMM) and CM to identify potential therapeutic targets. MATERIALS AND METHODS We extracted clinical and genomic information of patients with OMM (n = 15), NMM (n = 63), and CM (n = 413) who underwent comprehensive genomic profiling tests under the National Health Insurance between June 2019 and November 2023 from the Center for Cancer Genomics and Therapeutics database. RESULTS The most frequent genomic alteration identified in OMM was RICTOR (40%) followed by CDK4 (33.3%), MDM2 (33.3%), KDR (30%), KIT (26.7%), and NF1 (26.7%). CDK4 and MDM2 were co-amplified. Gene alterations in MYC and NRAS were the highest in patients with NMM, followed by those with CM, and no MYC alteration was observed in patients with OMM. BRAF V600 mutation, which is frequently observed in patients with CM (23.2%) were only present in 1.6% of patients with NMM and none in patients with OMM. CONCLUSION This study clarified the genetic differences between OMM and NMM, and the first to report the frequent occurrence of RICTOR amplification in OMM. This analysis offers insights into the development of personalized therapeutics for OMM.
Collapse
Affiliation(s)
- Norihisa Ichimura
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School School of Medicine, Nagoya, Japan.
| | - Yusuke Urata
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Takeru Kobayashi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School School of Medicine, Nagoya, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School School of Medicine, Nagoya, Japan; Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
58
|
Horie S, Saito Y, Kogure Y, Mizuno K, Ito Y, Tabata M, Kanai T, Murakami K, Koya J, Kataoka K. Pan-Cancer Comparative and Integrative Analyses of Driver Alterations Using Japanese and International Genomic Databases. Cancer Discov 2024; 14:786-803. [PMID: 38276885 DOI: 10.1158/2159-8290.cd-23-0902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/02/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Using 48,627 samples from the Center for Cancer Genomics and Advanced Therapeutics (C-CAT), we present a pan-cancer landscape of driver alterations and their clinical actionability in Japanese patients. Comparison with White patients in Genomics Evidence Neoplasia Information Exchange (GENIE) demonstrates high TP53 mutation frequencies in Asian patients across multiple cancer types. Integration of C-CAT, GENIE, and The Cancer Genome Atlas data reveals many cooccurring and mutually exclusive relationships between driver mutations. At pathway level, mutations in epigenetic regulators frequently cooccur with PI3K pathway molecules. Furthermore, we found significant cooccurring mutations within the epigenetic pathway. Accumulation of mutations in epigenetic regulators causes increased proliferation-related transcriptomic signatures. Loss-of-function of many epigenetic drivers inhibits cell proliferation in their wild-type cell lines, but this effect is attenuated in those harboring mutations of not only the same but also different epigenetic drivers. Our analyses dissect various genetic properties and provide valuable resources for precision medicine in cancer. SIGNIFICANCE We present a genetic landscape of 26 principal cancer types/subtypes, including Asian-prevalent ones, in Japanese patients. Multicohort data integration unveils numerous cooccurring and exclusive relationships between driver mutations, identifying cooccurrence of multiple mutations in epigenetic regulators, which coordinately cause transcriptional and phenotypic changes. These findings provide insights into epigenetic regulator-driven oncogenesis. This article is featured in Selected Articles from This Issue, p. 695.
Collapse
Affiliation(s)
- Sara Horie
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Saito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kota Mizuno
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Ito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mariko Tabata
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Murakami
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Junji Koya
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
59
|
Yamaguchi K, Ito M, Isobe T, Koreishi S, Taguchi R, Uehara K, Ueno S, Imajima T, Kitazono T, Tsuchihashi K, Ohmura H, Yoshihiro T, Tanoue K, Nishiyori S, Iwama E, Maeda T, Akashi K, Baba E. Impact of Genomic Alterations on Efficacy of Trastuzumab Deruxtecan Against Human Epidermal Growth Factor Receptor-2-Positive Advanced Gastric Cancer. JCO Precis Oncol 2024; 8:e2300681. [PMID: 38748981 DOI: 10.1200/po.23.00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 03/15/2024] [Indexed: 08/07/2024] Open
Abstract
PURPOSE The impact of genomic alterations on response and resistance to trastuzumab deruxtecan (T-DXd) has not been elucidated. Thus, we sought to identify factors predicting sensitivity to T-DXd in gastric or gastroesophageal junction (G/GEJ) cancer. METHODS We conducted a retrospective study using real-world clinical data and next-generation sequencing-based comprehensive genomic profiling (CGP) data from patients with advanced G/GEJ cancers, collected by the nationwide database in Japan. We analyzed the associations between genomic alterations and the patients' survivals after T-DXd treatment. RESULTS In 114 patients with human epidermal growth factor receptor-2 (HER2)-positive G/GEJ cancer treated with T-DXd, the most frequently altered genes were TP53 (82%), ERBB2 (80%), and CCNE1 (36%). Multivariate Cox regression analysis revealed CCNE1 amplification to be a significant predictor of shorter progression-free survival (PFS) after T-DXd treatment among 91 patients whose CGP samples were obtained before T-DXd (median PFS, 131 days v 189 days; hazard ratio [HR], 1.90 [95% CI, 1.02 to 3.53]; P = .044). Analyses of 1,450 G/GEJ cancers revealed significant CCNE1/ERBB2 coamplification (41% relative to 11% CCNE1 amplification in ERBB2-nonamplified tumors; P < .0001). ERBB2-activating mutations were also detected in 3.7% of G/GEJ cancers and in 8.8% of HER2-positive G/GEJ cancers treated with T-DXd. Patients with ERBB2-mutated tumors showed shorter PFS than those without ERBB2 mutations after T-DXd treatment (mPFS, 105 v 180 days; P = .046). CONCLUSION CCNE1 amplification may confer primary resistance to T-DXd in HER2-positive G/GEJ cancer, suggesting that the cell cycle could be a potential therapeutic target in CCNE1/ERBB2 coamplified tumors. ERBB2-activating mutation may also attenuate T-DXd efficacy in HER2-positive G/GEJ cancer.
Collapse
Affiliation(s)
- Kyoko Yamaguchi
- Department of Hematology, Oncology, and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Clinical Education Center, Kyushu University Hospital, Fukuoka, Japan
| | - Mamoru Ito
- Department of Hematology, Oncology, and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Taichi Isobe
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sakuya Koreishi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Taguchi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koki Uehara
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Ueno
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Imajima
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takafumi Kitazono
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Tsuchihashi
- Department of Hematology, Oncology, and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Hirofumi Ohmura
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyasu Yoshihiro
- Department of Hematology, Oncology, and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Kenro Tanoue
- Department of Hematology, Oncology, and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Satoshi Nishiyori
- Department of Hematology, Oncology, and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Eiji Iwama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Maeda
- Division of Precision Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
60
|
Ishida M, Iwasaku M, Doi T, Ishikawa T, Tachibana Y, Sawada R, Ogura Y, Kawachi H, Katayama Y, Nishioka N, Morimoto K, Tokuda S, Yamada T, Takayama K. Nationwide data from comprehensive genomic profiling assays for detecting driver oncogenes in non-small cell lung cancer. Cancer Sci 2024; 115:1656-1664. [PMID: 38450844 DOI: 10.1111/cas.16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Driver oncogenes are investigated upfront at diagnosis using multi-CDx systems with next-generation sequencing techniques or multiplex reverse-transcriptase polymerase chain reaction assays. Additionally, from 2019, comprehensive genomic profiling (CGP) assays have been available in Japan for patients with advanced solid tumors who had completed or were expected to complete standard chemotherapy. These assays are expected to comprehensively detect the driver oncogenes, especially for patients with non-small cell lung cancer (NSCLC). However, there are no reports of nationwide research on the detection of driver oncogenes in patients with advanced NSCLC who undergo CGP assays, especially in those with undetected driver oncogenes at diagnosis. In this study, we investigated the proportion of driver oncogenes detected in patients with advanced NSCLC with undetectable driver oncogenes at initial diagnosis and in all patients with advanced NSCLC who underwent CGP assays. We retrospectively analyzed data from 986 patients with advanced NSCLC who underwent CGP assays between August 2019 and March 2022, using the Center for Cancer Genomics and Advanced Therapeutics database. The proportion of driver oncogenes newly detected in patients with NSCLC who tested negative for driver oncogenes at diagnosis and in all patients with NSCLC were investigated. Driver oncogenes were detected in 451 patients (45.7%). EGFR was the most common (16.5%), followed by KRAS (14.5%). Among the 330 patients with undetected EGFR, ALK, ROS1, and BRAF V600E mutations at diagnosis, 81 patients (24.5%) had newly identified driver oncogenes. CGP assays could be useful to identify driver oncogenes in patients with advanced NSCLC, including those initially undetected, facilitating personalized treatment.
Collapse
Affiliation(s)
- Masaki Ishida
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshifumi Doi
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Ishikawa
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Tachibana
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryo Sawada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuri Ogura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Kawachi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoya Nishioka
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
61
|
Ishikawa M, Nakamura K, Kawano R, Hayashi H, Ikeda T, Saito M, Niida Y, Sasaki J, Okuda H, Ishihara S, Yamaguchi M, Shimada H, Isobe T, Yuza Y, Yoshimura A, Kuroda H, Yukisawa S, Aoki T, Takeshita K, Ueno S, Nakazawa J, Sunakawa Y, Nohara S, Okada C, Nishimiya K, Tanishima S, Nishihara H. Clinical and Diagnostic Utility of Genomic Profiling for Digestive Cancers: Real-World Evidence from Japan. Cancers (Basel) 2024; 16:1504. [PMID: 38672586 PMCID: PMC11048180 DOI: 10.3390/cancers16081504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The usefulness of comprehensive genomic profiling (CGP) in the Japanese healthcare insurance system remains underexplored. Therefore, this large-scale study aimed to determine the usefulness of CGP in diagnosing digestive cancers. Patients with various cancer types recruited between March 2020 and October 2022 underwent the FoundationOne® CDx assay at the Keio PleSSision Group (19 hospitals in Japan). A scoring system was developed to identify potentially actionable genomic alterations of biological significance and actionable genomic alterations. The detection rates for potentially actionable genomic alterations, actionable genomic alterations, and alterations equivalent to companion diagnosis (CDx), as well as the signaling pathways associated with these alterations in each digestive cancer, were analyzed. Among the 1587 patients, 547 had digestive cancer. The detection rates of potentially actionable genomic alterations, actionable genomic alterations, and alterations equivalent to CDx were 99.5%, 62.5%, and 11.5%, respectively. APC, KRAS, and CDKN2A alterations were frequently observed in colorectal, pancreatic, and biliary cancers, respectively. Most digestive cancers, except esophageal cancer, were adenocarcinomas. Thus, the classification flowchart for digestive adenocarcinomas proposed in this study may facilitate precise diagnosis. CGP has clinical and diagnostic utility in digestive cancers.
Collapse
Affiliation(s)
- Marin Ishikawa
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Integrated Medical Research Building 3-S5, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (R.K.); (H.H.); (S.T.); (H.N.)
| | - Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Integrated Medical Research Building 3-S5, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (R.K.); (H.H.); (S.T.); (H.N.)
| | - Ryutaro Kawano
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Integrated Medical Research Building 3-S5, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (R.K.); (H.H.); (S.T.); (H.N.)
| | - Hideyuki Hayashi
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Integrated Medical Research Building 3-S5, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (R.K.); (H.H.); (S.T.); (H.N.)
| | - Tatsuru Ikeda
- Department of Cancer Genome Medical Center, Hakodate Goryoukaku Hospital, 38-3, Goryoukakucho, Hakodate-shi 040-8611, Hokkaido, Japan;
| | - Makoto Saito
- Department of Genetic Medicine, Ibaraki Prefectural Center Hospital, 6528, Koibuchi, Kasama-shi 309-1793, Ibaraki, Japan;
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, 1-1, Daigaku, Uchinada 920-0293, Ishikawa, Japan;
| | - Jiichiro Sasaki
- Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi 252-0329, Kanagawa, Japan;
| | - Hiroyuki Okuda
- Department of Medical Oncology, Keiyukai Sapporo Hospital, 1-1 Minami, Hondori 9, Chome, Shiroishi-ku, Sapporo 003-0026, Hokkaido, Japan;
| | - Satoshi Ishihara
- Cancer Genome Diagnosis and Treatment Center, Central Japan International Medical Center, 1-1 Kenkonomachi, Minokamo-shi 505-0010, Gifu, Japan;
| | - Masatoshi Yamaguchi
- Division of Clinical Genetics, Faculty of Medicine, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki-shi 889-1692, Miyazaki, Japan;
| | - Hideaki Shimada
- Department of Surgery and Clinical Oncology, Toho University Graduate School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541, Japan;
| | - Takeshi Isobe
- Cancer Genome Medical Center, Shimane University Hospital, 89-1, Enya-cho, Izumo-shi 693-8501, Shimane, Japan;
| | - Yuki Yuza
- Department of Hematology and Oncology, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu-shi 183-8561, Tokyo, Japan;
| | - Akinobu Yoshimura
- Department of Clinical Oncology Director, Outpatient Chemotherapy Center, Tokyo Medical University Hospital, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan;
| | - Hajime Kuroda
- Department of Pathology, Tokyo Women’s Medical University, Adachi Medical Center, 4-33-1 Kohta, Adachi-ku, Tokyo 123-8558, Japan;
| | - Seigo Yukisawa
- Department of Medical Oncology, Saiseikai Utsunomiya Hospital, 911-1, Takebayashi, Utsunomiya-shi 321-0974, Tochigi, Japan;
| | - Takuya Aoki
- Department of Clinical Oncology, Tokyo Medical University Hachioji Medical Center, 1163, Tatemachi, Hachioji-shi 193-0998, Tokyo, Japan;
| | - Kei Takeshita
- Department of Clinical Genetics, Tokai University Hospital, 143, Shimokasuya, Isehara-shi 259-1193, Kanagawa, Japan;
| | - Shinichi Ueno
- Oncology Center, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima-shi 890-0075, Kagoshima, Japan;
| | - Junichi Nakazawa
- Department of Medical Oncology, Kagoshima City Hospital, 37-1, Uearatacho, Kagoshima-shi 890-8760, Kagoshima, Japan;
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Kanagawa, Japan;
| | - Sachio Nohara
- Biomedical Informatics Department, Communication Engineering Center, Mitsubishi Electric Software Corporation, Fuji Techno-Square, 5-4-36 Tsukaguchi-Honmachi, Amagasaki-shi 661-0001, Hyogo, Japan; (S.N.); (C.O.); (K.N.)
| | - Chihiro Okada
- Biomedical Informatics Department, Communication Engineering Center, Mitsubishi Electric Software Corporation, Fuji Techno-Square, 5-4-36 Tsukaguchi-Honmachi, Amagasaki-shi 661-0001, Hyogo, Japan; (S.N.); (C.O.); (K.N.)
| | - Ko Nishimiya
- Biomedical Informatics Department, Communication Engineering Center, Mitsubishi Electric Software Corporation, Fuji Techno-Square, 5-4-36 Tsukaguchi-Honmachi, Amagasaki-shi 661-0001, Hyogo, Japan; (S.N.); (C.O.); (K.N.)
| | - Shigeki Tanishima
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Integrated Medical Research Building 3-S5, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (R.K.); (H.H.); (S.T.); (H.N.)
- Biomedical Informatics Department, Communication Engineering Center, Mitsubishi Electric Software Corporation, Fuji Techno-Square, 5-4-36 Tsukaguchi-Honmachi, Amagasaki-shi 661-0001, Hyogo, Japan; (S.N.); (C.O.); (K.N.)
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Integrated Medical Research Building 3-S5, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (R.K.); (H.H.); (S.T.); (H.N.)
| |
Collapse
|
62
|
Nakashima T, Yamamoto R, Ohno M, Sugino H, Takahashi M, Funakoshi Y, Nambu S, Uneda A, Yanagisawa S, Uzuka T, Arakawa Y, Hanaya R, Ishida J, Yoshimoto K, Saito R, Narita Y, Suzuki H. Development of a rapid and comprehensive genomic profiling test supporting diagnosis and research for gliomas. Brain Tumor Pathol 2024; 41:50-60. [PMID: 38332448 DOI: 10.1007/s10014-023-00476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/25/2023] [Indexed: 02/10/2024]
Abstract
A prompt and reliable molecular diagnosis for brain tumors has become crucial in precision medicine. While Comprehensive Genomic Profiling (CGP) has become feasible, there remains room for enhancement in brain tumor diagnosis due to the partial lack of essential genes and limitations in broad copy number analysis. In addition, the long turnaround time of commercially available CGPs poses an additional obstacle to the timely implementation of results in clinics. To address these challenges, we developed a CGP encompassing 113 genes, genome-wide copy number changes, and MGMT promoter methylation. Our CGP incorporates not only diagnostic genes but also supplementary genes valuable for research. Our CGP enables us to simultaneous identification of mutations, gene fusions, focal and broad copy number alterations, and MGMT promoter methylation status, with results delivered within a minimum of 4 days. Validation of our CGP, through comparisons with whole-genome sequencing, RNA sequencing, and pyrosequencing, has certified its accuracy and reliability. We applied our CGP for 23 consecutive cases of intracranial mass lesions, which demonstrated its efficacy in aiding diagnosis and prognostication. Our CGP offers a comprehensive and rapid molecular profiling for gliomas, which could potentially apply to clinical practices and research primarily in the field of brain tumors.
Collapse
Affiliation(s)
- Takuma Nakashima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Ryo Yamamoto
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hirokazu Sugino
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yusuke Funakoshi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shohei Nambu
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Atsuhito Uneda
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Takeo Uzuka
- Department of Neurosurgery, Dokkyo Medical University, 880 Kitakobaya-Shi, Mibu, Shimotsuga-Gun, Tochigi, 321-0293, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho Shogoin Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Joji Ishida
- Department of Neurosurgery, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Science, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka City, 812-8582, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
63
|
Kage H, Akiyama N, Chang H, Shinozaki‐Ushiku A, Ka M, Kawata J, Muto M, Okuma Y, Okita N, Tsuchihara K, Kikuchi J, Shirota H, Hayashi H, Kokuryo T, Yachida S, Hirasawa A, Kubo M, Kenmotsu H, Tanabe M, Ushiku T, Muto K, Seto Y, Oda K. Patient survey on cancer genomic medicine in Japan under the national health insurance system. Cancer Sci 2024; 115:954-962. [PMID: 38273803 PMCID: PMC10920978 DOI: 10.1111/cas.16065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
In Japan, comprehensive genomic profiling (CGP) tests have been reimbursed under the national health care system for solid cancer patients who have finished standard treatment. More than 50,000 patients have taken the test since June 2019. We performed a nation-wide questionnaire survey between March 2021 and July 2022. Questionnaires were sent to 80 designated Cancer Genomic Medicine Hospitals. Of the 933 responses received, 370 (39.7%) were web based and 563 (60.3%) were paper based. Most patients (784, 84%) first learned about CGP tests from healthcare professionals, and 775 (83.1%) gave informed consent to their treating physician. At the time of informed consent, they were most worried about test results not leading to novel treatment (536, 57.4%). On a scale of 0-10, 702 respondents (75.2%) felt that the explanations of the test result were easy to understand (7 or higher). Ninety-one patients (9.8%) started their recommended treatment. Many patients could not receive recommended treatment because no approved drugs or clinical trials were available (102/177, 57.6%). Ninety-eight patients (10.5%) did not wish their findings to be disclosed. Overall satisfaction with the CGP test process was high, with 602 respondents (64.5%) giving a score of 7-10. The major reason for choosing 0-6 was that the CGP test result did not lead to new treatment (217/277, 78.3%). In conclusion, satisfaction with the CGP test process was high. Patients and family members need better access to information. More patients need to be treated with genomically matched therapy.
Collapse
Affiliation(s)
- Hidenori Kage
- Department of Clinical GenomicsThe University of Tokyo HospitalTokyoJapan
- Next‐Generation Precision Medicine Development Laboratory, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Nana Akiyama
- Department of Clinical GenomicsThe University of Tokyo HospitalTokyoJapan
| | - Hyangri Chang
- Department of Clinical GenomicsThe University of Tokyo HospitalTokyoJapan
| | - Aya Shinozaki‐Ushiku
- Department of Clinical GenomicsThe University of Tokyo HospitalTokyoJapan
- Division of Integrative Genomics, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Mirei Ka
- Division of Integrative Genomics, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Junichi Kawata
- Department of Public PolicyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Manabu Muto
- Department of Therapeutic OncologyKyoto University Graduate School of MedicineKyotoJapan
| | - Yusuke Okuma
- Center for Cancer Genomics and Advanced TherapeuticsNational Cancer CenterTokyoJapan
| | - Natsuko Okita
- Center for Cancer Genomics and Advanced TherapeuticsNational Cancer CenterTokyoJapan
| | - Katsuya Tsuchihara
- Department of Genetic Medicine and ServicesNational Cancer Center Hospital EastChibaJapan
| | - Junko Kikuchi
- Division of Clinical Cancer GenomicsHokkaido University HospitalSapporoJapan
| | - Hidekazu Shirota
- Department of Clinical OncologyTohoku University HospitalSendaiJapan
| | - Hideyuki Hayashi
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineTokyoJapan
| | - Toshio Kokuryo
- Division of Surgical Oncology, Department of SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Akira Hirasawa
- Department of Clinical Genomic MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Makoto Kubo
- Department of Breast Surgical OncologyKyushu University HospitalFukuokaJapan
| | | | - Masahiko Tanabe
- Department of Breast and Endocrine Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kaori Muto
- Department of Public PolicyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Katsutoshi Oda
- Department of Clinical GenomicsThe University of Tokyo HospitalTokyoJapan
- Division of Integrative Genomics, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
64
|
Shirai Y, Ueno T, Kojima S, Ikeuchi H, Kitada R, Koyama T, Takahashi F, Takahashi K, Ichimura K, Yoshida A, Sugino H, Mano H, Narita Y, Takahashi M, Kohsaka S. The development of a custom RNA-sequencing panel for the identification of predictive and diagnostic biomarkers in glioma. J Neurooncol 2024; 167:75-88. [PMID: 38363490 PMCID: PMC10978676 DOI: 10.1007/s11060-024-04563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE Various molecular profiles are needed to classify malignant brain tumors, including gliomas, based on the latest classification criteria of the World Health Organization, and their poor prognosis necessitates new therapeutic targets. The Todai OncoPanel 2 RNA Panel (TOP2-RNA) is a custom-target RNA-sequencing (RNA-seq) using the junction capture method to maximize the sensitivity of detecting 455 fusion gene transcripts and analyze the expression profiles of 1,390 genes. This study aimed to classify gliomas and identify their molecular targets using TOP2-RNA. METHODS A total of 124 frozen samples of malignant gliomas were subjected to TOP2-RNA for classification based on their molecular profiles and the identification of molecular targets. RESULTS Among 55 glioblastoma cases, gene fusions were detected in 11 cases (20%), including novel MET fusions. Seven tyrosine kinase genes were found to be overexpressed in 15 cases (27.3%). In contrast to isocitrate dehydrogenase (IDH) wild-type glioblastoma, IDH-mutant tumors, including astrocytomas and oligodendrogliomas, barely harbor fusion genes or gene overexpression. Of the 34 overexpressed tyrosine kinase genes, MDM2 and CDK4 in glioblastoma, 22 copy number amplifications (64.7%) were observed. When comparing astrocytomas and oligodendrogliomas in gene set enrichment analysis, the gene sets related to 1p36 and 19q were highly enriched in astrocytomas, suggesting that regional genomic DNA copy number alterations can be evaluated by gene expression analysis. CONCLUSIONS TOP2-RNA is a highly sensitive assay for detecting fusion genes, exon skipping, and aberrant gene expression. Alterations in targetable driver genes were identified in more than 50% of glioblastoma. Molecular profiling by TOP2-RNA provides ample predictive, prognostic, and diagnostic biomarkers that may not be identified by conventional assays and, therefore, is expected to increase treatment options for individual patients with glioma.
Collapse
Affiliation(s)
- Yukina Shirai
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hiroshi Ikeuchi
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Rina Kitada
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hirokazu Sugino
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
65
|
Tsuda Y, Okajima K, Ishibashi Y, Zhang L, Hirai T, Kage H, Shinozaki-Ushiku A, Oda K, Tanaka S, Kobayashi H. Clinical genomic profiling of malignant giant cell tumor of bone: A retrospective analysis using a real‑world database. MEDICINE INTERNATIONAL 2024; 4:17. [PMID: 38476985 PMCID: PMC10928650 DOI: 10.3892/mi.2024.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Malignant giant cell tumor of bone (GCTB) is identified by the presence of multinucleated giant cells, with an aggressive behavior and a high risk of metastasis, which has not been genetically characterized in detail. H3 histone family member 3A (H3F3A) gene mutations are highly recurrent and specific in GCTB. The present study analyzed the clinical information and genomic sequencing data of eight cases of malignant GCTB (out of 384 bone sarcoma samples) using an anonymized genomic database. There were 5 males and 3 females among the cases, with a median age of 33 years at the time of the initial diagnosis. H3F3A G34W and G34L mutations were detected in 3 patients and 1 patient, respectively. In 75% of cases without H3F3A mutation, mitogen-activated protein kinase (MAPK) signaling pathway gene alterations were found (KRAS single nucleotide variant, KRAS amplification, nuclear respiratory factor 1-BRAF fusion). Moreover, the collagen type I alpha 2 chain-ALK fusion was detected in remaining one case. The most frequent gene alterations were related to cell cycle regulators, including TP53, RB1, cyclin-dependent kinase inhibitor 2A/B and cyclin E1 (75%, 6 of 8 cases). On the whole, the present study discovered recurrent MAPK signaling gene alterations or other gene alterations in cases of malignant GCTB. Of note, two fusion genes should be carefully validated following the pathology re-review by sarcoma pathologists. These two fusion genes may be detected in resembling tumors, which contain giant cells, apart from malignant GCTB. The real-world data used herein provide a unique perspective on genomic alterations in clinicopathologically diagnosed malignant GCTB.
Collapse
Affiliation(s)
- Yusuke Tsuda
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
- Department of Oral and Maxillofacial Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Koichi Okajima
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Yuki Ishibashi
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Liuzhe Zhang
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Toshihide Hirai
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hidenori Kage
- Next-Generation Precision Medicine Development Laboratory, The University of Tokyo Hospital, Tokyo 113-8655, Japan
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Aya Shinozaki-Ushiku
- Division of Integrative Genomics, The University of Tokyo, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Gynecology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Sakae Tanaka
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hiroshi Kobayashi
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| |
Collapse
|
66
|
Akahira R, Fukuda K, Shimazu K, Yoshida T, Taguchi D, Shinozaki H, Nanjyo H, Shibata H. Clinical response of pancreatic cancer bearing a germline BRCA2 p.I3169M fs*48 variant for platinum-based drug and PARP inhibitor. Jpn J Clin Oncol 2024; 54:201-205. [PMID: 37956396 PMCID: PMC10849180 DOI: 10.1093/jjco/hyad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic cancer is a malignancy with a high mortality rate, accounting for 37 000 people annually in Japan. It is rarely diagnosed in a resectable state, and effective medicines for its advanced stage are scarce. Some pancreatic cancer is hereditary, and ~10% have germline mutations of Breast cancer 1/2 (BRCA1/2). BRCA1/2 are key molecules involved in homologous recombination to repair DNA double-strand break. Platinum-based drugs and poly Adenosine diphosphate ribose (ADP) ribose polymerase inhibitors that induce synthetic lethality would be theoretically effective in patients with loss-of-function mutations in BRCA1/2. Strictly speaking, some discrepancy between the pathogenicity of BRCA1/2 and their drug sensitivity might be expected. Hence, we report that platinum-based anticancer agents and poly ADP ribose polymerase inhibitors were effective against pancreatic cancer bearing BRCA2 p.I3169M fs*48.
Collapse
Affiliation(s)
- Risa Akahira
- Department of Clinical Oncology, Graduaste School of Medicine, Akita University, Akita, Japan
| | - Koji Fukuda
- Department of Clinical Oncology, Graduaste School of Medicine, Akita University, Akita, Japan
| | - Kazuhiro Shimazu
- Department of Clinical Oncology, Graduaste School of Medicine, Akita University, Akita, Japan
| | - Taichi Yoshida
- Department of Clinical Oncology, Graduaste School of Medicine, Akita University, Akita, Japan
| | - Daiki Taguchi
- Department of Clinical Oncology, Graduaste School of Medicine, Akita University, Akita, Japan
| | - Hanae Shinozaki
- Department of Clinical Oncology, Graduaste School of Medicine, Akita University, Akita, Japan
| | - Hiroshi Nanjyo
- Department of Pathology, Akita University Hospital, Akita, Japan
| | - Hiroyuki Shibata
- Department of Clinical Oncology, Graduaste School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
67
|
Saito Y, Kobayashi K, Fukuoka O, Sakai T, Yamamura K, Ando M, Kondo K. Ultra-high combined positive score and high serum albumin are favorable prognostic biomarkers for immune checkpoint inhibitors in head and neck squamous cell carcinoma. Head Neck 2024; 46:367-377. [PMID: 38063247 DOI: 10.1002/hed.27576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Biomarkers that predict response to immune checkpoint inhibitor (ICI) in recurrent metastatic squamous cell carcinoma of the head and neck (RMHNSCC) are not well known. METHODS We prospectively measured the combined positive score (CPS) and administered ICI to patients with RMHNSCC. RESULTS Of 51 patients, 23 patients had a CPS <20 and 12 patients (23.5%) had a CPS ≥90. CPS showed a negative correlation with serum albumin. Survival analysis showed a 2-year survival rate of 24.1%. In multivariate analysis, CPS ≥90 (HR 0.3026, p = 0.02614) and albumin >3.5 (HR 0.3463, p = 0.01354) were the significant factors and plus chemotherapy (HR 0.4648, p = 0.07632) was not significant. Seven patients (14%) with CPS ≥90 and albumin >3.5 showed a 2-year survival rate of 66. 7%. CONCLUSIONS CPS ≥90 and albumin >3.5 cases are a subgroup of RMHNSCC that respond extremely well to ICI.
Collapse
Affiliation(s)
- Yuki Saito
- Departments of Otolaryngology, Head and Neck Surgery, University of Tokyo, Tokyo, Japan
| | - Kenya Kobayashi
- Departments of Otolaryngology, Head and Neck Surgery, University of Tokyo, Tokyo, Japan
| | - Osamu Fukuoka
- Departments of Otolaryngology, Head and Neck Surgery, University of Tokyo, Tokyo, Japan
| | - Toshihiko Sakai
- Departments of Otolaryngology, Head and Neck Surgery, University of Tokyo, Tokyo, Japan
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Koji Yamamura
- Departments of Otolaryngology, Head and Neck Surgery, University of Tokyo, Tokyo, Japan
| | - Mizuo Ando
- Departments of Otolaryngology, Head and Neck Surgery, University of Tokyo, Tokyo, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Okayama University, Graduate School of Medicine, Okayama, Japan
| | - Kenji Kondo
- Departments of Otolaryngology, Head and Neck Surgery, University of Tokyo, Tokyo, Japan
| |
Collapse
|
68
|
Ishimaru S, Shimoi T, Sunami K, Nakajima M, Ando Y, Okita N, Nakamura K, Shibata T, Fujiwara Y, Yamamoto N. Platform trial for off-label oncology drugs using comprehensive genomic profiling under the universal public healthcare system: the BELIEVE trial. Int J Clin Oncol 2024; 29:89-95. [PMID: 38112833 PMCID: PMC10808137 DOI: 10.1007/s10147-023-02439-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Precision medicine has transformed cancer treatment by focusing on personalized approaches based on genomic abnormalities. However, comprehensive genomic profiling (CGP) and access to targeted therapies are limited in Japan. This study investigates the BELIEVE trial, which aims to improve drug accessibility for patients with actionable genetic abnormalities through off-label drug administration. METHODS The BELIEVE trial is a platform trial with a single master protocol, conducted under the Clinical Trials Act and the patient-proposed health services (PPHS) scheme. Eligible patients with solid tumors exhibiting actionable alterations were enrolled, and CGP tests covered by national health insurance were employed. Treatment selection, study drugs from collaborating pharmaceutical companies, and treatment schedules adhered to predefined protocols. Primary and secondary endpoints were evaluated, and statistical analysis was conducted based on patient response rates. RESULTS The BELIEVE trial offered treatment opportunities for patients with relapse/refractory disease who lacked standard therapies or clinical trial options. This study addresses unmet medical needs and contributes to the establishment of precision medicine systems. Similar trials like NCI-MATCH and TAPUR are being conducted globally. The BELIEVE trial provides a platform for off-label drug administration, collects essential clinical data, and contributes to drug approval applications. CONCLUSION The BELIEVE trial provides hope for patients with actionable genetic abnormalities by facilitating access to targeted therapies through off-label drug administration. It establishes a regulatory framework and promotes collaboration between industry and academia by expanding organ-specific and cross-organ biomarker-based treatments.
Collapse
Affiliation(s)
- Sae Ishimaru
- Research Management Division, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
- Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Miho Nakajima
- Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yayoi Ando
- Research Management Division, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Natsuko Okita
- Research Management Division, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Kenichi Nakamura
- Department of International Clinical Development/Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Taro Shibata
- Biostatistics Division, Center for Research Administration and Support, National Cancer Center, Tokyo, Japan
| | - Yasuhiro Fujiwara
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
69
|
Mochizuki T, Ikegami M, Akiyama T. Factors predictive of second-line chemotherapy in soft tissue sarcoma: An analysis of the National Genomic Profiling Database. Cancer Sci 2024; 115:575-588. [PMID: 38115234 PMCID: PMC10859616 DOI: 10.1111/cas.16050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Of the drugs used in second-line chemotherapy for soft tissue sarcoma (STS), trabectedin is effective for liposarcoma and leiomyosarcoma (L-sarcoma), eribulin for liposarcoma, and pazopanib for non-liposarcoma. The indications for these drugs in STS other than L-sarcoma have not been established. Here we explored the prognosis, mutation profiles, and drug-response factors in STS using real-world big data. Clinicogenomic data on 1761 patients with sarcoma who underwent FoundationOne CDx were obtained from a national database in Japan. Patients with TP53 and KDM2D mutations had a significantly shorter survival period of 253 (95% CI, 99-404) and 330 (95% CI, 20-552) days, respectively, than those without mutations. Non-supervised clustering based on mutation profiles generated 13 tumor clusters. The response rate (RR) to trabectedin was highest in an MDM2-amplification cluster (odds ratio [OR]: 2.2; p = 0.2). The RR was lowest for eribulin in an MDM2-amplification cluster (OR: 0.4; p = 0.03) and highest in a TERT-mutation cluster (OR: 3.0; p = 0.03). The RR was highest for pazopanib in a PIK3CA/PTEN-wild type cluster (OR: 2.1; p = 0.03). In particular, patients harboring mutations in genes regulating the PI3K/Akt/mTOR pathway had a lower RR than patients without mutations (OR: 0.3; p = 0.04). In STS, mutation profiles were more useful in predicting the drug response than histology. The present study demonstrated the potential of tailored therapy guided by mutation profiles established by comprehensive genomic profiling testing in optimizing second-line chemotherapy for STS. The findings of this study will hopefully contribute some valuable insights into enhancing STS treatment strategies and outcomes.
Collapse
Affiliation(s)
- Takao Mochizuki
- Department of Orthopaedic Surgery, Saitama Medical CenterJichi Medical UniversitySaitamaJapan
- Department of Musculoskeletal OncologyTokyo Metropolitan Cancer and Infectious Diseases Center, Komagome HospitalTokyoJapan
| | - Masachika Ikegami
- Department of Musculoskeletal OncologyTokyo Metropolitan Cancer and Infectious Diseases Center, Komagome HospitalTokyoJapan
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| | - Toru Akiyama
- Department of Orthopaedic Surgery, Saitama Medical CenterJichi Medical UniversitySaitamaJapan
| |
Collapse
|
70
|
Sakakida T, Ishikawa T, Doi T, Morita R, Kataoka S, Miyake H, Yamaguchi K, Moriguchi M, Sogame Y, Yasuda H, Iwasaku M, Konishi H, Takayama K, Itoh Y. Genomic profile and clinical features of MSI-H and TMB-high pancreatic cancers: real-world data from C-CAT database. J Gastroenterol 2024; 59:145-156. [PMID: 38006445 DOI: 10.1007/s00535-023-02058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Microsatellite instability high (MSI-H) and tumor mutational burden high (TMB-high) pancreatic cancer are rare, and information is lacking. Based on the C-CAT database, we analyzed the clinical and genomic characteristics of patients with these subtypes. METHODS We retrospectively reviewed data on 2206 patients with unresectable pancreatic adenocarcinoma enrolled in C-CAT between July 2019 and January 2022. The clinical features, proportion of genomic variants classified as oncogenic/pathogenic in C-CAT, overall response rate (ORR), disease control rate (DCR), and time to treatment failure (TTF) of chemotherapy as first-line treatment were evaluated. RESULTS Numbers of patients with MSI-H and TMB-high were 7 (0.3%) and 39 (1.8%), respectively. All MSI-H patients were TMB-high. MSI-H and TMB-high patients harbored more mismatch repair genes, such as MSH2, homologous recombination-related genes, such as ATR and BRCA2, and other genes including BRAF, KMT2D, and SMARCA4. None of the 6 MSI-H patients who received chemotherapy achieved a clinical response, including 4 patients treated with gemcitabine plus nab-paclitaxel (GnP) therapy, whose DCR was significantly lower than that of microsatellite stable (MSS) patients (0 vs. 67.0%, respectively, p = 0.01). Among the TMB-high and TMB-low groups, no significant differences were shown in ORR, DCR (17.1 vs. 23.1% and 57.1 vs. 63.1%, respectively), or median TTF (25.9 vs. 28.0 weeks, respectively) of overall first-line chemotherapy. CONCLUSIONS MSI-H and TMB-high pancreatic cancers showed some distinct genomic and clinical features from our real-world data. These results suggest the importance of adapting optimal treatment strategies according to the genomic alterations.
Collapse
Affiliation(s)
- Tomoki Sakakida
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Ishikawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan.
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Outpatient Oncology Unit, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Toshifumi Doi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuichi Morita
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seita Kataoka
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| | - Hayato Miyake
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| | - Yoshio Sogame
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| | - Hiroaki Yasuda
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| | - Masahiro Iwasaku
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| | - Koichi Takayama
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Outpatient Oncology Unit, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| |
Collapse
|
71
|
Kikuchi Y, Shimada H, Hatanaka Y, Kinoshita I, Ikarashi D, Nakatsura T, Kitano S, Naito Y, Tanaka T, Yamashita K, Oshima Y, Nanami T. Clinical practice guidelines for molecular tumor markers, 2nd edition review part 1. Int J Clin Oncol 2024; 29:1-19. [PMID: 38019341 DOI: 10.1007/s10147-023-02430-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/14/2023] [Indexed: 11/30/2023]
Abstract
With advances in gene and protein analysis technologies, many target molecules that may be useful in cancer diagnosis have been reported. Therefore, the "Tumor Marker Study Group" was established in 1981 with the aim of "discovering clinically" useful molecules. Later, the name was changed to "Japanese Society for Molecular Tumor Marker Research" in 2000 in response to the remarkable progress in gene-related research. Currently, the world of cancer treatment is shifting from the era of representative tumor markers of each cancer type used for tumor diagnosis and treatment evaluation to the study of companion markers for molecular-targeted therapeutics that target cancer cells. Therefore, the first edition of the Molecular Tumor Marker Guidelines, which summarizes tumor markers and companion markers in each cancer type, was published in 2016. After publication of the first edition, the gene panel testing using next-generation sequencing became available in Japan in June 2019 for insured patients. In addition, immune checkpoint inhibitors have been indicated for a wide range of cancer types. Therefore, the 2nd edition of the Molecular Tumor Marker Guidelines was published in September 2021 to address the need to revise the guidelines. Here, we present an English version of the review (Part 1) of the Molecular Tumor Marker Guidelines, Second Edition.
Collapse
Affiliation(s)
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University, Tokyo, Japan.
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan.
| | - Yutaka Hatanaka
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Ichiro Kinoshita
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Hokkaido, Japan
| | - Daiki Ikarashi
- Department of Urology, Iwate Medical University, Iwate, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shigehisa Kitano
- Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoichi Naito
- Department of General Internal Medicine, National Cancer Center Hospital East, Chiba, Japan
| | - Toshimichi Tanaka
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Tokyo, Japan
| | - Keishi Yamashita
- Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Tokyo, Japan
| | - Yoko Oshima
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan
| | - Tatsuki Nanami
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan
| |
Collapse
|
72
|
Miyamoto H, Kawakami F, Abe S, Sugita H, Matsui H. Comprehensive Cancer Genomic Profiling of Liver Metastasis Led to the Unexpected Identification of Colorectal Cancer. Intern Med 2024; 63:63-70. [PMID: 37164664 PMCID: PMC10824646 DOI: 10.2169/internalmedicine.1845-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023] Open
Abstract
Comprehensive genomic profiling (CGP) of a metastatic liver tumor biopsy specimen suggested that the patient, who was initially diagnosed with cholangiocarcinoma, had colorectal cancer. The identification of both FBXW7 and APC mutations is deemed characteristic of colorectal cancer. Indeed, subsequent colonoscopy revealed sigmoid colon carcinoma that led to tumor resection followed by systemic chemotherapy. CGP is principally used to identify agents that might potentially benefit the patient. However, results must be interpreted carefully to ensure consistency with the initial diagnosis.
Collapse
Affiliation(s)
- Hideaki Miyamoto
- Cancer Genome Center, Kumamoto University Hospital, Japan
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Fumi Kawakami
- Cancer Genome Center, Kumamoto University Hospital, Japan
- Department of Diagnostic Pathology, Kumamoto University Hospital, Japan
| | - Sakiko Abe
- Genetic Counseling Department, Kumamoto University Hospital, Japan
| | - Hiroki Sugita
- Department of Surgery, Kumamoto Regional Medical Center, Japan
| | - Hirotaka Matsui
- Cancer Genome Center, Kumamoto University Hospital, Japan
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Japan
| |
Collapse
|
73
|
NISHIKAWA H. Establishment of immune suppression by cancer cells in the tumor microenvironment. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:114-122. [PMID: 38346752 PMCID: PMC10978970 DOI: 10.2183/pjab.100.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 02/15/2024]
Abstract
With the clinical success of immune checkpoint inhibitors (ICIs), cancer immunotherapy has become an important pillar of cancer treatment in various types of cancer. However, more than half of patients fail to respond to ICIs, even in combination, uncovering a limited window of clinical responses. Therefore, it is essential to develop more effective cancer immunotherapies and to define biomarkers for stratifying responders and nonresponders by exploring the immunological landscape in the tumor microenvironment (TME). It has become clear that differences in immune responses in the TME determine the clinical efficacy of cancer immunotherapies. Additionally, gene alterations in cancer cells contribute to the development of the immunological landscape, particularly immune suppression in the TME. Therefore, integrated analyses of immunological and genomic assays are key for understanding diverse immune suppressive mechanisms in the TME. Developing novel strategies to control immune suppression in the TME from the perspective of immunology and the cancer genome is crucial for effective cancer immunotherapy (immune-genome precision medicine).
Collapse
Affiliation(s)
- Hiroyoshi NISHIKAWA
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
74
|
Xi Q, Kage H, Ogawa M, Matsunaga A, Nishijima A, Sone K, Kawana K, Oda K. Genomic Landscape of Endometrial, Ovarian, and Cervical Cancers in Japan from the Database in the Center for Cancer Genomics and Advanced Therapeutics. Cancers (Basel) 2023; 16:136. [PMID: 38201563 PMCID: PMC10778092 DOI: 10.3390/cancers16010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
This study aimed to comprehensively clarify the genomic landscape and its association with tumor mutational burden-high (TMB-H, ≥10 mut/Mb) and microsatellite instability-high (MSI-H) in endometrial, cervical, and ovarian cancers. We obtained genomic datasets of a comprehensive genomic profiling test, FoundationOne® CDx, with clinical information using the "Center for Cancer Genomics and Advanced Therapeutics" (C-CAT) database in Japan. Patients can undergo the tests only after standardized treatments under universal health insurance coverage. Endometrial cancers were characterized by a high frequency of TMB-H and MSI-H, especially in endometrioid carcinomas. The lower ratio of POLE exonuclease mutations and the higher ratio of TP53 mutations compared to previous reports suggested the prognostic effects of the molecular subtypes. Among the 839 cervical cancer samples, frequent mutations of KRAS, TP53, PIK3CA, STK11, CDKN2A, and ERBB2 were observed in adenocarcinomas, whereas the ratio of TMB-H was significantly higher in squamous cell carcinomas. Among the 1606 ovarian cancer samples, genomic profiling of serous, clear cell, endometrioid, and mucinous carcinomas was characterized. Pathogenic mutations in the POLE exonuclease domain were associated with high TMB, and the mutation ratio was low in both cervical and ovarian cancers. The C-CAT database is useful for determining the mutational landscape of each cancer type and histological subtype. As the dataset is exclusively collected from patients after the standardized treatments, the information on "druggable" alterations highlights the unmet needs for drug development in major gynecological cancers.
Collapse
Affiliation(s)
- Qian Xi
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan; (Q.X.)
| | - Hidenori Kage
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Miho Ogawa
- Next-Generation Precision Medicine Development Laboratory, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Asami Matsunaga
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan; (Q.X.)
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nihon University, Tokyo 173-8610, Japan
| | - Akira Nishijima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nihon University, Tokyo 173-8610, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan; (Q.X.)
| |
Collapse
|
75
|
Okuma HS, Watanabe K, Tsuchihashi K, Machida R, Sadachi R, Hirakawa A, Ariyama H, Kanai M, Kamikura M, Anjo K, Hiramitsu A, Sekine S, Okita N, Mano H, Nishikawa H, Nakamura K, Yonemori K. Phase II Trial of Nivolumab in Metastatic Rare Cancer with dMMR or MSI-H and Relation with Immune Phenotypic Analysis (the ROCK Trial). Clin Cancer Res 2023; 29:5079-5086. [PMID: 37819940 PMCID: PMC10722134 DOI: 10.1158/1078-0432.ccr-23-1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Mismatch repair deficiency (dMMR)/microsatellite instability-high (MSI-H) are positive predictive markers for immune checkpoint inhibitors. However, data on the activity of nivolumab in advanced dMMR/MSI-H rare cancers and more accurate biomarkers are worth exploring. PATIENTS AND METHODS We conducted a multicenter phase II, open-label, single-arm clinical trial to explore the effectiveness and safety of nivolumab monotherapy in patients with advanced rare cancers with dMMR/MSI-H, in parallel with immune phenotype analysis, to explore new biomarkers. A Bayesian adaptive design was applied. Characterization of peripheral blood mononuclear cells (PBMC) was characterized by multicolor flow cytometric analysis and CyTOF using samples collected before and after the intervention. The dMMR was identified by the complete loss of MLH1/MSH2/MSH6/PMS2. RESULTS From May 2018 to March 2021, 242 patients were screened, and 11 patients were enrolled, of whom 10 were included in the full analysis. Median follow-up was 24.7 months (interquartile range, 12.4-31.5). Objective response rate was 60% [95% confidence interval (CI), 26.2-87.8] by central assessment and 70% (95% CI, 34.8-93.3) by local investigators. Median progression-free survival was 10.1 months (95% CI, 0.9-11.1). No treatment-related adverse events of grade 3 or higher were observed. Patients with a tumor mutation burden of ≥10/Mb showed a 100% response rate (95% CI, 47.8-100). Responders had increased T-bet+ PD-1+ CD4+ T cells in PBMC compared with nonresponders (P < 0.05). CONCLUSIONS The trial met its primary endpoint with nivolumab, demonstrating clinical benefit in advanced dMMR/MSI-H rare solid cancers. Besides, the proportion of T-bet+ PD-1+ CD4+ T-cells may serve as a novel predictive biomarker.
Collapse
Affiliation(s)
- Hitomi S. Okuma
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Keisuke Watanabe
- Division of Cancer Immunology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kenji Tsuchihashi
- Department of Hematology, Oncology & Cardiovascular Medicine, Kyushu University Hospital, Maidashi Higashi-ku, Fukuoka, Japan
| | - Ryunosuke Machida
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Ryo Sadachi
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Ariyama
- Department of Hematology, Oncology & Cardiovascular Medicine, Kyushu University Hospital, Maidashi Higashi-ku, Fukuoka, Japan
| | - Masashi Kanai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Shogoin-kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Masahisa Kamikura
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kenta Anjo
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Akari Hiramitsu
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Shigeki Sekine
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Natsuko Okita
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kenichi Nakamura
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| |
Collapse
|
76
|
Satake T, Kondo S, Tanabe N, Mizuno T, Katsuya Y, Sato J, Koyama T, Yoshida T, Hirata M, Yamamoto N. Pathogenic Germline Variants in BRCA1/2 and p53 Identified by Real-world Comprehensive Cancer Genome Profiling Tests in Asian Patients. CANCER RESEARCH COMMUNICATIONS 2023; 3:2302-2311. [PMID: 37916805 PMCID: PMC10644847 DOI: 10.1158/2767-9764.crc-23-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/05/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Cancer genome profiling (CGP) occasionally identifies pathogenic germline variants (PGV) in cancer susceptibility genes (CSG) as secondary findings. Here, we analyzed the prevalence and clinical characteristics of PGVs based on nationwide real-world data from CGP tests in Japan. We analyzed the genomic information and clinical characteristics of 23,928 patients with solid cancers who underwent either tumor-only (n = 20,189) or paired tumor-normal (n = 3,739) sequencing CGP tests between June 2019 and December 2021 using the comprehensive national database. We assigned clinical significance for all variants and highlighted the prevalence and characteristics of PGVs. Our primary analysis of the tumor-normal sequencing cohort revealed that 152 patients (4.1%) harbored PGVs in 15 CSGs. Among 783 germline variants, 113 were annotated as PGVs, 70 as benign variants, and 600 as variants of uncertain significance. The number of PGVs identified was highest in BRCA1/2, with 56, followed by TP53, with 18. PGVs were the most prevalent in ovarian and peritoneal cancers, including among cancer types common in Asia. In the tumor-only sequencing cohort, of the 5,184 pathogenic somatic variants across 26 CSGs, 784 (15.1%) were extracted according to the European Society for Medical Oncology recommendations for germline-focused tumor analysis. The prevalence of PGVs was similar to that previously reported in Europe and the United States. This is the largest analysis based on real-world tumor-normal sequencing tests in Asia. The more widespread use of the tumor-normal sequencing CGP test could be reasonable for evaluating PGVs. SIGNIFICANCE We analyzed real-world data from over 23,000 patients in Japan, revealing 4.1% harbored PGVs, particularly in BRCA1/2 and TP53, in CSGs. It highlights the prevalence of PGVs in Asian populations and supports the broader adoption of tumor-normal sequencing CGP tests for PGV evaluation.
Collapse
Affiliation(s)
- Tomoyuki Satake
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shunsuke Kondo
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Outpatient Treatment Center, National Cancer Center Hospital, Tokyo, Japan
| | - Noriko Tanabe
- Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Takaaki Mizuno
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Katsuya
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Jun Sato
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuya Yoshida
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Makoto Hirata
- Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
77
|
Hirakawa T, Doi M, Hamai K, Katsura R, Miyake S, Fujita S, Ueno S, Masuda K, Tanimoto T, Nishisaka T, Hinoi T, Hirasawa A, Ishikawa N. Comprehensive genomic profiling of Japanese patients with thoracic malignancies: A single-center retrospective study. Respir Investig 2023; 61:746-754. [PMID: 37714093 DOI: 10.1016/j.resinv.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Few studies have been conducted on comprehensive genomic profiling (CGP) panels in Japanese patients with thoracic malignancies after completing standard treatment. Consequently, its value in clinical practice remains unclear. METHODS We conducted a retrospective study of Japanese patients with thoracic malignancies who underwent CGP between June 2019 and November 2022 at our hospital. We evaluated the detection rate of actionable genetic alterations and percentage of patients who received genomically-matched therapy. Furthermore, we examined the value of the CGP panel in patients who underwent multiplex gene-panel testing prior to their initial treatment. This study was performed in accordance with the principles of the Declaration of Helsinki. RESULTS The study included 56 patients, of whom 47 (83.9%) had actionable genetic alterations and 8 (14.3%) received genomically-matched therapy. Of these, four patients were treated with approved drugs and three patients were treated with investigational agents. In addition, one patient was treated with approved drugs using the patient-directed care system. Of the 17 patients who had multiplex gene-panel testing performed at the start of their initial therapy, two (11.8%) were newly identified by the CGP panel and subsequently received genomically-matched therapy. EGFR L718Q and MET amplification were observed in two of the seven patients with epidermal growth factor receptor-tyrosine kinase inhibitor resistance. CONCLUSIONS The CGP panel could identify genetic alterations, thereby facilitating genomically-matched therapy, even in patients with thoracic malignancies who could not be identified using multiplex gene-panel testing.
Collapse
Affiliation(s)
- Tetsu Hirakawa
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Mihoko Doi
- Department of Genomic Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Kosuke Hamai
- Department of Respiratory Medicine, Onomichi General Hospital, 1-10-23 Hirahara, Onomichi, Hiroshima, 7220018, Japan
| | - Ryo Katsura
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Shinya Miyake
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Suguru Fujita
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Sayaka Ueno
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Ken Masuda
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Takuya Tanimoto
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Takashi Nishisaka
- Department of Pathology and Laboratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Takao Hinoi
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 7348551, Japan
| | - Akira Hirasawa
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama, 7008558, Japan
| | - Nobuhisa Ishikawa
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan.
| |
Collapse
|
78
|
Ando Y, Shimoi T, Suzuki T, Ueno H, Okita N, Nakamura K. Genomic medicine in clinical practice: national genomic medicine program in Japan. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0219. [PMID: 37818596 PMCID: PMC10875283 DOI: 10.20892/j.issn.2095-3941.2023.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Affiliation(s)
- Yayoi Ando
- Clinical Research Support Office, Research Management Division, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tatsuya Suzuki
- Department of Hematology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hideki Ueno
- Clinical Research Support Office, Clinical Research Coordinating Division, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Natsuko Okita
- Clinical Research Support Office, Research Management Division, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Kenichi Nakamura
- International Clinical Development, National Cancer Center Hospital, Tokyo 104-0045, Japan
| |
Collapse
|
79
|
Uehara Y, Koyama T, Katsuya Y, Sato J, Sudo K, Kondo S, Yoshida T, Shoji H, Shimoi T, Yonemori K, Yamamoto N. Travel Time and Distance and Participation in Precision Oncology Trials at the National Cancer Center Hospital. JAMA Netw Open 2023; 6:e2333188. [PMID: 37713200 PMCID: PMC10504617 DOI: 10.1001/jamanetworkopen.2023.33188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
Importance Genotype-matched trials, which are becoming increasingly important in the precision oncology era, require referrals from institutions providing comprehensive genomic profiling (CGP) testing to those conducting these trials, and the travel burden for trial participation is significant. However, it remains unknown whether travel time or distance are associated with genotype-matched trial participation. Objective To assess whether travel time or distance are associated with disparities in genotype-matched trial participation following CGP testing. Design, Setting, and Participants This retrospective cohort study from June 2020 to June 2022 included patients with advanced or metastatic solid tumors referred to the National Cancer Center Hospital for participation in genotype-matched trials following CGP testing and discussion by molecular tumor boards. Data were analyzed from June to October 2022. Exposures Travel time and distance. Main Outcomes and Measures The primary and secondary outcomes were enrollment in genotype-matched trials and all-cancer clinical trials, respectively. Results Of 1127 patients (mean [range] age, 62 [16-85] years; 584 women [52%]; all residents of Japan), 127 (11%) and 241 (21%) were enrolled in genotype-matched trials and all-cancer clinical trials, respectively. The overall median (IQR) travel distance and time were 38 (21-107) km and 55 (35-110) minutes, respectively. On multivariable regression with 23 covariates, travel distance (≥100 km vs <100 km) was not associated with the likelihood of genotype-matched trial participation (26 of 310 patients [8%] vs 101 of 807 patients [12%]; odds ratio [OR], 0.64; 95% CI, 0.40-1.02), whereas in patients with travel time of 120 minutes or more, the likelihood of genotype-matched trial participation was significantly lower than those with travel time less than 120 minutes (19 of 276 patients [7%] vs 108 of 851 patients [13%]; OR, 0.51; 95% CI, 0.29-0.84). The likelihood of genotype-matched trial participation decreased as travel time increased from less than 40 (38 of 283 patients [13%]) to 40 to 120 (70 of 568 patients [12%]) and 120 or more (19 of 276 patients [7%]) minutes (OR, 0.74; 95% CI, 0.48-1.17; OR, 0.41; 95% CI, 0.22-0.74, respectively). Neither travel time nor distance were associated with the likelihood of all-cancer clinical trial participation. Conclusions and Relevance In this cohort study of patients undergoing CGP testing, an increased travel time was associated with a decreased likelihood of genotype-matched trial participation. This warrants further research on interventions, such as decentralization of clinical trials to mitigate travel burden.
Collapse
Affiliation(s)
- Yuji Uehara
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
- Department of Precision Cancer Medicine, Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Katsuya
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Jun Sato
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Kazuki Sudo
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shunsuke Kondo
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuya Yoshida
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Shoji
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
80
|
Hiranuma K, Asami Y, Kato MK, Murakami N, Shimada Y, Matsuda M, Yazaki S, Fujii E, Sudo K, Kuno I, Komatsu M, Hamamoto R, Makinoshima H, Matsumoto K, Ishikawa M, Kohno T, Terao Y, Itakura A, Yoshida H, Shiraishi K, Kato T. Rare FGFR fusion genes in cervical cancer and transcriptome-based subgrouping of patients with a poor prognosis. Cancer Med 2023; 12:17835-17848. [PMID: 37537783 PMCID: PMC10524028 DOI: 10.1002/cam4.6415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/25/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Although cervical cancer is often characterized as preventable, its incidence continues to increase in low- and middle-income countries, underscoring the need to develop novel therapeutics for this disease.This study assessed the distribution of fusion genes across cancer types and used an RNA-based classification to divide cervical cancer patients with a poor prognosis into subgroups. MATERIAL AND METHODS RNA sequencing of 116 patients with cervical cancer was conducted. Fusion genes were extracted using StarFusion program. To identify a high-risk group for recurrence, 65 patients who received postoperative adjuvant therapy were subjected to non-negative matrix factorization to identify differentially expressed genes between recurrent and nonrecurrent groups. RESULTS We identified three cases with FGFR3-TACC3 and one with GOPC-ROS1 fusion genes as potential targets. A search of publicly available data from cBioPortal (21,789 cases) and the Center for Cancer Genomics and Advanced Therapeutics (32,608 cases) showed that the FGFR3 fusion is present in 1.5% and 0.6% of patients with cervical cancer, respectively. The frequency of the FGFR3 fusion gene was higher in cervical cancer than in other cancers, regardless of ethnicity. Non-negative matrix factorization identified that the patients were classified into four Basis groups. Pathway enrichment analysis identified more extracellular matrix kinetics dysregulation in Basis 3 and more immune system dysregulation in Basis 4 than in the good prognosis group. CIBERSORT analysis showed that the fraction of M1 macrophages was lower in the poor prognosis group than in the good prognosis group. CONCLUSIONS The distribution of FGFR fusion genes in patients with cervical cancer was determined by RNA-based analysis and used to classify patients into clinically relevant subgroups.
Collapse
Affiliation(s)
- Kengo Hiranuma
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of Obstetrics and GynecologyJuntendo University Faculty of MedicineTokyoJapan
| | - Yuka Asami
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of Obstetrics and GynecologyShowa University School of MedicineTokyoJapan
| | - Mayumi Kobayashi Kato
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Naoya Murakami
- Department of Radiation OncologyNational Cancer Center HospitalTokyoJapan
| | - Yoko Shimada
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
| | - Maiko Matsuda
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
| | - Shu Yazaki
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of Medical OncologyNational Cancer Center HospitalTokyoJapan
| | - Erisa Fujii
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Kazuki Sudo
- Department of Medical OncologyNational Cancer Center HospitalTokyoJapan
| | - Ikumi Kuno
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Masaaki Komatsu
- Division of Medical AI Research and DevelopmentNational Cancer Center Research InstituteTokyoJapan
- Cancer Translational Research TeamRIKEN Center for Advanced Intelligence ProjectTokyoJapan
| | - Ryuji Hamamoto
- Division of Medical AI Research and DevelopmentNational Cancer Center Research InstituteTokyoJapan
- Cancer Translational Research TeamRIKEN Center for Advanced Intelligence ProjectTokyoJapan
| | | | - Koji Matsumoto
- Department of Obstetrics and GynecologyShowa University School of MedicineTokyoJapan
| | - Mitsuya Ishikawa
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Takashi Kohno
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
| | - Yasuhisa Terao
- Department of Obstetrics and GynecologyJuntendo University Faculty of MedicineTokyoJapan
| | - Atsuo Itakura
- Department of Obstetrics and GynecologyJuntendo University Faculty of MedicineTokyoJapan
| | - Hiroshi Yoshida
- Department of Diagnostic PathologyNational Cancer Center HospitalTokyoJapan
| | - Kouya Shiraishi
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of Clinical GenomicsNational Cancer Center Research InstituteTokyoJapan
| | - Tomoyasu Kato
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| |
Collapse
|
81
|
Kobayashi K, Saito Y, Kage H, Fukuoka O, Yamamura K, Mukai T, Oda K, Yamasoba T. CDK12 alterations and ARID1A mutations are predictors of poor prognosis and therapeutic targets in high-grade salivary gland carcinoma: analysis of the National Genomic Profiling Database. Jpn J Clin Oncol 2023; 53:798-807. [PMID: 37357968 DOI: 10.1093/jjco/hyad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/03/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Due to the diversity of histopathologic types in salivary gland carcinoma, genomic analysis of large cohorts with next-generation sequencing by histologic type has not been adequately performed. METHODS We analysed data from 93 patients with salivary duct carcinoma and 243 patients with adenoid cystic carcinoma who underwent comprehensive genomic profiling testing in the Center for Cancer Genomics and Advanced Therapeutics database, a Japanese national genome profiling database. We visualised gene mutation profiles using the OncoPrinter platform. Fisher's exact test, Kaplan-Meier analysis, log-rank test and Cox regression models were used for statistical analysis. RESULTS In salivary duct carcinoma, a population with CDK12 and ERBB2 co-amplification was detected in 20 of 37 (54.1%) patients with ERBB2 amplification. We identified five loss-of-function variants in genes related to homologous recombination deficiency, such as BRCA2 and CDK12. Cox survival analysis showed that CDK12 and ERBB2 co-amplification is associated with overall survival (hazard ratio, 3.597; P = 0.045). In salivary duct carcinoma, NOTCH1 mutations were the most common, followed by mutations in chromatin modification genes such as KMT2D, BCOR, KDM6A, ARID1A, EP300 and CREBBP. In the multivariate Cox analysis, activating NOTCH1 mutations (hazard ratio, 3.569; P = 0.009) and ARID1A mutations (hazard ratio, 4.029; P = 0.034) were significantly associated with overall survival. CONCLUSION CDK12 and ERBB2 co-amplification is associated with a poor prognosis in salivary duct carcinoma. Chromatin remodelling genes are deeply involved in tumour progression in adenoid cystic carcinoma. One such gene, ARID1A, was an independent prognostic factor. In salivary duct carcinoma and adenoid cystic carcinoma, there might be minor populations with mutations that could be targeted for treatment with the synthetic lethality approach.
Collapse
Affiliation(s)
- Kenya Kobayashi
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Yuki Saito
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Hidenori Kage
- Department of Next-Generation Precision Medicine Development Laboratory, The University of Tokyo, Tokyo, Japan
| | - Osamu Fukuoka
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Koji Yamamura
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Mukai
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
82
|
Matsubara J, Mukai K, Kondo T, Yoshioka M, Kage H, Oda K, Kudo R, Ikeda S, Ebi H, Muro K, Hayashi R, Tokudome N, Yamamoto N, Muto M. First-Line Genomic Profiling in Previously Untreated Advanced Solid Tumors for Identification of Targeted Therapy Opportunities. JAMA Netw Open 2023; 6:e2323336. [PMID: 37459099 DOI: 10.1001/jamanetworkopen.2023.23336] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
IMPORTANCE Precision oncology using comprehensive genomic profiling (CGP) by next-generation sequencing is aimed at companion diagnosis and genomic profiling. The clinical utility of CGP before the standard of care (SOC) is still not resolved, and more evidence is needed. OBJECTIVE To investigate the clinical utility of next-generation CGP (FoundationOne CDx [F1CDx]) in patients with previously untreated metastatic or recurrent solid tumors. DESIGN, Setting, and Participants This multicenter, prospective, observational cohort study enrolled patients with previously untreated advanced solid tumors between May 18, 2021, and February 16, 2022, with follow-up through August 16, 2022. The study was conducted at 6 hospitals in Japan. Eligible patients were aged 20 years or older and had Eastern Cooperative Oncology Group performance status of 0 to 1 with previously untreated metastatic or recurrent cancers in the gastrointestinal or biliary tract; pancreas, lung, breast, uterus, or ovary; and malignant melanoma. EXPOSURE Comprehensive genomic profiling testing before SOC for advanced solid tumors. MAIN OUTCOMES AND MEASURES Proportion of patients with actionable or druggable genomic alterations and molecular-based recommended therapy (MBRT). RESULTS A total of 183 patients met the inclusion criteria and 180 patients (92 men [51.1%]) with a median age of 64 years (range, 23-88 years) subsequently underwent CGP (lung [n = 28], colon/small intestine [n = 27], pancreas [n = 27], breast [n = 25], biliary tract [n = 20], gastric [n = 19], uterus [n = 12], esophagus [n = 10], ovary [n = 6], and skin melanoma [n = 6]). Data from 172 patients were available for end point analyses. Actionable alterations were found in 172 patients (100.0%; 95% CI, 97.9%-100.0%) and druggable alternations were identified in 109 patients (63.4%; 95% CI, 55.7%-70.6%). The molecular tumor board identified MBRT for 105 patients (61.0%; 95% CI, 53.3%-68.4%). Genomic alterations included in the companion diagnostics list of the CGP test were found in 49 patients (28.5%; 95% CI, 21.9%-35.9%) in a tumor-agnostic setting. After a median follow-up of 7.9 months (range, 0.5-13.2 months), 34 patients (19.8%; 95% CI, 14.1%-26.5%) received MBRT. CONCLUSIONS AND RELEVANCE The findings of this study suggest that CGP testing before SOC for patients with advanced solid tumors may be clinically beneficial to guide the subsequent anticancer therapies, including molecularly matched treatments.
Collapse
Affiliation(s)
- Junichi Matsubara
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Kumi Mukai
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Tomohiro Kondo
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Masahiro Yoshioka
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Hidenori Kage
- Department of Clinical Genomics, The University of Tokyo Hospital, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Clinical Genomics, The University of Tokyo Hospital, Tokyo, Japan
| | - Ryo Kudo
- Department of Precision Cancer Medicine, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Sadakatsu Ikeda
- Department of Precision Cancer Medicine, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Ryuji Hayashi
- Department of Clinical Oncology, Toyama University Hospital, Toyama, Japan
| | - Nahomi Tokudome
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | | | - Manabu Muto
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
83
|
El Helali A, Lam TC, Ko EYL, Shih DJ, Chan CK, Wong CH, Wong JW, Cheung LW, Lau JK, Liu AP, Chan AS, Loong HH, Lam STS, Chan GCF, Lee VH, Yuen KK, Ng WT, Lee AW, Ma ES. The impact of the multi-disciplinary molecular tumour board and integrative next generation sequencing on clinical outcomes in advanced solid tumours. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 36:100775. [PMID: 37547050 PMCID: PMC10398587 DOI: 10.1016/j.lanwpc.2023.100775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 08/08/2023]
Abstract
Background The integration of next-generation sequencing (NGS) comprehensive gene profiling (CGP) into clinical practice is playing an increasingly important role in oncology. Therefore, the HKU-HKSH Multi-disciplinary Molecular Tumour Board (MTB) was established to advance precision oncology in Hong Kong. A multicenter retrospective study investigated the feasibility of the HKU-HKSH MTB in determining genome-guided therapy for treatment-refractory solid cancers in Hong Kong. Methods Patients who were presented at the HKU-HKSH MTB between August 2018 and June 2022 were included in this study. The primary study endpoints were the proportion of patients who receive MTB-guided therapy based on genomic analysis and overall survival (OS). Secondary endpoints included the proportion of patients with actionable genomic alterations, objective response rate (ORR), and disease control rate (DCR). The Kaplan-Meier method was used in the survival analyses, and hazard ratios were calculated using univariate Cox regression. Findings 122 patients were reviewed at the HKU-HKSH MTB, and 63% (n = 77) adopted treatment per the MTB recommendations. These patients achieved a significantly longer median OS than those who did not receive MTB-guided therapy (12.7 months vs. 5.2 months, P = 0.0073). Their ORR and DCR were 29% and 65%, respectively. Interpretation Our study demonstrated that among patients with heavily pre-treated advanced solid cancers, MTB-guided treatment could positively impact survival outcomes, thus illustrating the applicability of NGS CGPs in real-world clinical practice. Funding The study was supported by the Li Shu Pui Medical Foundation. Dr Aya El Helali was supported by the Li Shu Pui Medical Foundation Fellowship grant from the Li Shu Pui Medical Foundation. Funders had no role in study design, data collection, data analysis, interpretation, or writing of the report.
Collapse
Affiliation(s)
- Aya El Helali
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Oncology Medical Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Tai-Chung Lam
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Oncology Medical Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Elaine Yee-Ling Ko
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David J.H. Shih
- School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chun Kau Chan
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Charlene H.L. Wong
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Oncology Medical Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Jason W.H. Wong
- School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lydia W.T. Cheung
- School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Johnny K.S. Lau
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Oncology Medical Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Anthony P.Y. Liu
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ann S.Y. Chan
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong SAR, China
| | - Herbert H. Loong
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stephen Tak Sum Lam
- Clinical Genetics Service, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Victor H.F. Lee
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Oncology Medical Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Kwok Keung Yuen
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong SAR, China
| | - Wai-Tong Ng
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Oncology Medical Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Anne W.M. Lee
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Oncology Medical Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Edmond S.K. Ma
- Division of Clinical Pathology & Molecular Pathology, Hong Kong Sanatorium Hospital, Hong Kong SAR, China
| |
Collapse
|
84
|
Onaga R, Enokida T, Ito K, Ueda Y, Okano S, Fujisawa T, Wada A, Sato M, Tanaka H, Takeshita N, Tanaka N, Hoshi Y, Tahara M. Combination chemotherapy with taxane and platinum in patients with salivary gland carcinoma: a retrospective study of docetaxel plus cisplatin and paclitaxel plus carboplatin. Front Oncol 2023; 13:1185198. [PMID: 37397398 PMCID: PMC10311248 DOI: 10.3389/fonc.2023.1185198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
Background Despite advances in precision medicine, most patients with recurrent or metastatic salivary gland carcinoma still need conventional chemotherapies, such as the combination of taxane and platinum. However, evidence for these standardized regimens is limited. Methods We retrospectively reviewed patients with salivary gland carcinoma treated with a taxane and platinum, which contained docetaxel at a dose of 60 mg/m2 plus cisplatin at a dose of 70 mg/m2 on day 1, or paclitaxel at a dose of 100 mg/m2 plus carboplatin at a dose of area under the plasma concentration-time curve = 2.5 on days 1 and 8 (both on 21-day cycles), between January 2000 and September 2021. Result Forty patients with ten adenoid cystic carcinomas and thirty other pathologies were identified. Of these, 29 patients were treated with docetaxel plus cisplatin and 11 with paclitaxel plus carboplatin. For the total population, the objective response rate (ORR) and median progression-free survival (mPFS) were 37.5% and 5.4 months (95% confidence interval: 3.6-7.4 months), respectively. On subgroup analysis, docetaxel plus cisplatin provided favorable efficacy compared with paclitaxel plus carboplatin (ORR: 46.5% vs. 20.0%, mPFS: 7.2 vs. 2.8 months), and the findings were well retained in patients with adenoid cystic carcinoma (ORR: 60.0% vs. 0%, mPFS: 17.7 vs. 2.8 months). Grade 3/4 neutropenia was relatively frequent in the docetaxel plus cisplatin (59% vs.27%), although febrile neutropenia was uncommon (3%) in the cohort. No treatment-related death was seen in any case. Conclusion The combination of taxane and platinum is generally effective and well-tolerated for recurrent or metastatic salivary gland carcinoma. In contrast, paclitaxel plus carboplatin appears unfavorable in terms of efficacy in certain patients, such as those with adenoid cystic carcinoma.
Collapse
Affiliation(s)
- Ryutaro Onaga
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tomohiro Enokida
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kazue Ito
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Head and Neck Oncology, Miyagi Cancer Center, Natori, Japan
| | - Yuri Ueda
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Tokyo Medical University, Shinjuku, Japan
| | - Susumu Okano
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takao Fujisawa
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Akihisa Wada
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanobu Sato
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideki Tanaka
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Naohiro Takeshita
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Nobukazu Tanaka
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuta Hoshi
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Makoto Tahara
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
85
|
Sakakida T, Ishikawa T, Doi T, Morita R, Kataoka S, Miyake H, Yamaguchi K, Moriguchi M, Sogame Y, Yasuda H, Iwasaku M, Konishi H, Takayama K, Itoh Y. Genomic landscape and clinical features of rare subtypes of pancreatic cancer: analysis with the national database of Japan. J Gastroenterol 2023; 58:575-585. [PMID: 37029223 PMCID: PMC10199859 DOI: 10.1007/s00535-023-01986-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Special subtypes of pancreatic cancer, such as acinar cell carcinoma (ACC), adenosquamous carcinoma (ASC), and anaplastic carcinoma of the pancreas (ACP), are rare, and so data on them are limited. Using the C-CAT database, we analyzed clinical and genomic characteristics of patients with these and evaluated differences on comparison with pancreatic ductal adenocarcinoma (PDAC) patients. METHODS We retrospectively reviewed data on 2691 patients with unresectable pancreatic cancer: ACC, ASC, ACP, and PDAC, entered into C-CAT from June 2019 to December 2021. The clinical features, MSI/TMB status, genomic alterations, overall response rate (ORR), disease control rate (DCR), and time to treatment failure (TTF) on receiving FOLFIRINOX (FFX) or GEM + nab-PTX (GnP) therapy as first-line treatment were evaluated. RESULTS Numbers of patients with ACC, ASC, ACP, and PDAC were 44 (1.6%), 54 (2.0%), 25 (0.9%), and 2,568 (95.4%), respectively. KRAS and TP53 mutations were prevalent in ASC, ACP, and PDAC (90.7/85.2, 76.0/68.0, and 85.1/69.1%, respectively), while their rates were both significantly lower in ACC (13.6/15.9%, respectively). Conversely, the rate of homologous recombination-related (HRR) genes, including ATM and BRCA1/2, was significantly higher in ACC (11.4/15.9%) than PDAC (2.5/3.7%). In ASC and ACP, no significant differences in ORR, DCR, or TTF between FFX and GnP were noted, while ACC patients showed a trend toward higher ORR with FFX than GnP (61.5 vs. 23.5%, p = 0.06) and significantly more favorable TTF (median 42.3 vs. 21.0 weeks, respectively, p = 0.004). CONCLUSIONS ACC clearly harbors different genomics compared with PDAC, possibly accounting for differences in treatment efficacy.
Collapse
Affiliation(s)
- Tomoki Sakakida
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji Agaru, Kawaramachi Street, Kamigyoku, Kyoto City, Kyoto, 602-8566, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Ishikawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji Agaru, Kawaramachi Street, Kamigyoku, Kyoto City, Kyoto, 602-8566, Japan.
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Outpatient Oncology Unit, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Toshifumi Doi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji Agaru, Kawaramachi Street, Kamigyoku, Kyoto City, Kyoto, 602-8566, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuichi Morita
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji Agaru, Kawaramachi Street, Kamigyoku, Kyoto City, Kyoto, 602-8566, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seita Kataoka
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji Agaru, Kawaramachi Street, Kamigyoku, Kyoto City, Kyoto, 602-8566, Japan
| | - Hayato Miyake
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji Agaru, Kawaramachi Street, Kamigyoku, Kyoto City, Kyoto, 602-8566, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji Agaru, Kawaramachi Street, Kamigyoku, Kyoto City, Kyoto, 602-8566, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji Agaru, Kawaramachi Street, Kamigyoku, Kyoto City, Kyoto, 602-8566, Japan
| | - Yoshio Sogame
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji Agaru, Kawaramachi Street, Kamigyoku, Kyoto City, Kyoto, 602-8566, Japan
| | - Hiroaki Yasuda
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji Agaru, Kawaramachi Street, Kamigyoku, Kyoto City, Kyoto, 602-8566, Japan
| | - Masahiro Iwasaku
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji Agaru, Kawaramachi Street, Kamigyoku, Kyoto City, Kyoto, 602-8566, Japan
| | - Koichi Takayama
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Outpatient Oncology Unit, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji Agaru, Kawaramachi Street, Kamigyoku, Kyoto City, Kyoto, 602-8566, Japan
| |
Collapse
|
86
|
Yoshida T, Yatabe Y, Kato K, Ishii G, Hamada A, Mano H, Sunami K, Yamamoto N, Kohno T. The evolution of cancer genomic medicine in Japan and the role of the National Cancer Center Japan. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0036. [PMID: 37133223 PMCID: PMC10875288 DOI: 10.20892/j.issn.2095-3941.2023.0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
The journey to implement cancer genomic medicine (CGM) in oncology practice began in the 1980s, which is considered the dawn of genetic and genomic cancer research. At the time, a variety of activating oncogenic alterations and their functional significance were unveiled in cancer cells, which led to the development of molecular targeted therapies in the 2000s and beyond. Although CGM is still a relatively new discipline and it is difficult to predict to what extent CGM will benefit the diverse pool of cancer patients, the National Cancer Center (NCC) of Japan has already contributed considerably to CGM advancement for the conquest of cancer. Looking back at these past achievements of the NCC, we predict that the future of CGM will involve the following: 1) A biobank of paired cancerous and non-cancerous tissues and cells from various cancer types and stages will be developed. The quantity and quality of these samples will be compatible with omics analyses. All biobank samples will be linked to longitudinal clinical information. 2) New technologies, such as whole-genome sequencing and artificial intelligence, will be introduced and new bioresources for functional and pharmacologic analyses (e.g., a patient-derived xenograft library) will be systematically deployed. 3) Fast and bidirectional translational research (bench-to-bedside and bedside-to-bench) performed by basic researchers and clinical investigators, preferably working alongside each other at the same institution, will be implemented; 4) Close collaborations between academia, industry, regulatory bodies, and funding agencies will be established. 5) There will be an investment in the other branch of CGM, personalized preventive medicine, based on the individual's genetic predisposition to cancer.
Collapse
Affiliation(s)
- Teruhiko Yoshida
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Ken Kato
- Clinical Research Support Office, Clinical Research Coordinating Section, Biobank Translational Research Support Section, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroyuki Mano
- National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
87
|
Hijioka S, Nagashio Y, Maruki Y, Kawasaki Y, Takeshita K, Morizane C, Okusaka T. Endoscopic Ultrasound-Guided Tissue Acquisition of Pancreaticobiliary Cancer Aiming for a Comprehensive Genome Profile. Diagnostics (Basel) 2023; 13:diagnostics13071275. [PMID: 37046493 PMCID: PMC10093621 DOI: 10.3390/diagnostics13071275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, cancer genomic medicine centered on comprehensive genome profile (CGP) analysis has become widely used in the field of pancreatic cancer. Endoscopic ultrasound-guided tissue acquisition (EUS-TA) has played an important role in pancreatic cancer, and recently, more EUS-TA tissue samples are considered for CGP analysis. Differences exist between the Oncoguide NCC Oncopanel System and Foundation One CDx Cancer Genome Profile, which are CGP tests approved by insurance programs in Japan, including the analysis criteria, optimal needle selection for meeting these criteria, and puncture target. It is important to understand not only the specimen collection factors, but also the specimen processing factors that can increase the success rate of CGP testing. Furthermore, cancer genome medicine is expected to enter an era of increasing turbulence in the future, and endoscopists need to respond flexibly to these changes. Herein, we review the current status of cancer genome medicine in pancreatic and biliary tract cancers and cancer gene panel testing using EUS-TA.
Collapse
|
88
|
Asami Y, Kobayashi Kato M, Hiranuma K, Matsuda M, Shimada Y, Ishikawa M, Koyama T, Komatsu M, Hamamoto R, Nagashima M, Terao Y, Itakura A, Kohno T, Sekizawa A, Matsumoto K, Kato T, Shiraishi K, Yoshida H. Utility of molecular subtypes and genetic alterations for evaluating clinical outcomes in 1029 patients with endometrial cancer. Br J Cancer 2023; 128:1582-1591. [PMID: 36797358 PMCID: PMC10070437 DOI: 10.1038/s41416-023-02203-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND We investigated the utility of a molecular classifier tool and genetic alterations for predicting prognosis in Japanese patients with endometrial cancer. METHODS A total of 1029 patients with endometrial cancer from two independent cohorts were classified into four molecular subtype groups. The primary and secondary endpoints were relapse-free survival (RFS) and overall survival (OS), respectively. RESULTS Among the 265 patients who underwent initial surgery, classified according to immunohistochemistry, patients with DNA polymerase epsilon exonuclease domain mutation had an excellent prognosis (RFS and OS), patients with no specific molecular profile (NSMP) and mismatch repair protein deficiency had an intermediate prognosis, and those with protein 53 abnormal expression (p53abn) had the worst prognosis (P < 0.001). In the NSMP group, mutant KRAS and wild-type ARID1A were associated with significantly poorer 5-year RFS (41.2%) than other genomic characteristics (P < 0.001). The distribution of the subtypes differed significantly between patients with recurrence/progression and classified by sequencing (n = 764) and patients who underwent initial surgery (P < 0.001). Among patients with recurrence/progression, 51.4% had the opportunity to receive molecular targeted therapy. CONCLUSIONS A molecular classifier is a useful tool for determining prognosis and eligibility for molecularly targeted therapy in patients with endometrial cancer.
Collapse
Affiliation(s)
- Yuka Asami
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.,Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Mayumi Kobayashi Kato
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.,Department of Gynecology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Kengo Hiranuma
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, 113-8421, Japan
| | - Maiko Matsuda
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Yoko Shimada
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.,Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.,Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Minoru Nagashima
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Yasuhisa Terao
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, 113-8421, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, 113-8421, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Koji Matsumoto
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 104-0045, Tokyo, Japan.
| |
Collapse
|
89
|
Tang M, Pearson SA, Simes RJ, Chua BH. Harnessing Real-World Evidence to Advance Cancer Research. Curr Oncol 2023; 30:1844-1859. [PMID: 36826104 PMCID: PMC9955401 DOI: 10.3390/curroncol30020143] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Randomized controlled trials (RCTs) form a cornerstone of oncology research by generating evidence about the efficacy of therapies in selected patient populations. However, their implementation is often resource- and cost-intensive, and their generalisability to patients treated in routine practice may be limited. Real-world evidence leverages data collected about patients receiving clinical care in routine practice outside of clinical trial settings and provides opportunities to identify and address gaps in clinical trial evidence. This review outlines the strengths and limitations of real-world and RCT evidence and proposes a framework for the complementary use of the two bodies of evidence to advance cancer research. There are challenges to the implementation of real-world research in oncology, including heterogeneity of data sources, timely access to high-quality data, and concerns about the quality of methods leveraging real-world data, particularly causal inference. Improved understanding of the strengths and limitations of real-world data and ongoing efforts to optimise the conduct of real-world evidence research will improve its reliability, understanding and acceptance, and enable the full potential of real-world evidence to be realised in oncology practice.
Collapse
Affiliation(s)
- Monica Tang
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Randwick 2031, Australia
- Correspondence:
| | | | - Robert J. Simes
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown 2050, Australia
| | - Boon H. Chua
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Randwick 2031, Australia
- Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| |
Collapse
|