51
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 waitfor delay '0:0:5'-- cucf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
52
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [PMID: 33096812 DOI: 10.3390/ijms21207794;select pg_sleep(5)--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
53
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 and 8001=6496-- rwiz] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
54
|
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
55
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null,null-- dwtu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
56
|
Everts P, Onishi K, Jayaram P, Lana JF, Mautner K. Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [PMID: 33096812 DOI: 10.3390/ijms21207794);select dbms_pipe.receive_message(chr(114)||chr(122)||chr(104)||chr(84),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
Affiliation(s)
- Peter Everts
- Gulf Coast Biologics, Research and Science Division, Fort Myers, FL 33916, USA
| | - Kentaro Onishi
- Department of PM&R and Orthopedic Surgery, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA
| | - Prathap Jayaram
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - José Fábio Lana
- The Bone and Cartilage Institute, Indaiatuba, Sao Paulo, Brazil
| | - Kenneth Mautner
- Emory Sports Medicine and Primary Care Sports Medicine, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
57
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 and 9280=9280-- brrh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
58
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null,null,null,null-- wwis] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
59
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [PMID: 33096812 DOI: 10.3390/ijms21207794);select pg_sleep(5)--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
60
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 and 1530=3785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
61
|
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
62
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 waitfor delay '0:0:5'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
63
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [PMID: 33096812 DOI: 10.3390/ijms21207794;waitfor delay '0:0:5'--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
64
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [PMID: 33096812 DOI: 10.3390/ijms21207794);select sleep(5)#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
65
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null,null,null,null,null,null,null-- slaj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
66
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null,null,null,null,null-- vmia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
67
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 and 9006=(select 9006 from pg_sleep(5))-- hipd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
68
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null,null,null,null,null,null-- wibw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
69
|
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
70
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 and 9139=9139-- tpxo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
71
|
Everts P, Onishi K, Jayaram P, Lana JF, Mautner K. Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [PMID: 33096812 DOI: 10.3390/ijms21207794);waitfor delay '0:0:5'--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
Affiliation(s)
- Peter Everts
- Gulf Coast Biologics, Research and Science Division, Fort Myers, FL 33916, USA
| | - Kentaro Onishi
- Department of PM&R and Orthopedic Surgery, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA
| | - Prathap Jayaram
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - José Fábio Lana
- The Bone and Cartilage Institute, Indaiatuba, Sao Paulo, Brazil
| | - Kenneth Mautner
- Emory Sports Medicine and Primary Care Sports Medicine, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
72
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null,null,null-- cwli] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
73
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 and sleep(5)-- enpt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
74
|
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
75
|
Everts P, Onishi K, Jayaram P, Lana JF, Mautner K. Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [PMID: 33096812 DOI: 10.3390/ijms21207794;select sleep(5)#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
Affiliation(s)
- Peter Everts
- Gulf Coast Biologics, Research and Science Division, Fort Myers, FL 33916, USA
| | - Kentaro Onishi
- Department of PM&R and Orthopedic Surgery, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA
| | - Prathap Jayaram
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - José Fábio Lana
- The Bone and Cartilage Institute, Indaiatuba, Sao Paulo, Brazil
| | - Kenneth Mautner
- Emory Sports Medicine and Primary Care Sports Medicine, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
76
|
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
77
|
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
78
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 order by 1-- fumh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
79
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null,null,null,null,null,null,null-- ipuc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
80
|
Evaluation of the Effect of Plasma from Patients with Trophic Ulcers on the Function of Dermal Fibroblasts, Mesenchymal Stem Cells, and Endothelial Cells. Bull Exp Biol Med 2020; 169:558-563. [PMID: 32910395 DOI: 10.1007/s10517-020-04929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 10/23/2022]
Abstract
We studied the effect of platelet lysate and platelet-poor plasma from patients with trophic ulcers with and without type 2 diabetes mellitus on proliferation, migration, and apoptosis of human dermal fibroblast, mesenchymal stem cells, and endothelial cells. It is shown that plasma obtained from patients with type 2 diabetes mellitus produced inhibitory effects.
Collapse
|
81
|
LaBelle MW, Marcus RE. CORR Synthesis: What Is the Role of Platelet-rich Plasma Injection in the Treatment of Tendon Disorders? Clin Orthop Relat Res 2020; 478:1817-1824. [PMID: 32732562 PMCID: PMC7371072 DOI: 10.1097/corr.0000000000001312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/27/2025] [Indexed: 01/31/2023]
Affiliation(s)
- Mark W LaBelle
- M. W. Labelle, R. E. Marcus, Department of Orthopaedic Surgery, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Randall E Marcus
- M. W. Labelle, R. E. Marcus, Department of Orthopaedic Surgery, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
82
|
do Amaral RJFC, Zayed NMA, Pascu EI, Cavanagh B, Hobbs C, Santarella F, Simpson CR, Murphy CM, Sridharan R, González-Vázquez A, O'Sullivan B, O'Brien FJ, Kearney CJ. Functionalising Collagen-Based Scaffolds With Platelet-Rich Plasma for Enhanced Skin Wound Healing Potential. Front Bioeng Biotechnol 2019; 7:371. [PMID: 31921799 PMCID: PMC6915093 DOI: 10.3389/fbioe.2019.00371] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
Porous collagen-glycosaminoglycan (collagen-GAG) scaffolds have shown promising clinical results for wound healing; however, these scaffolds do not replace the dermal and epidermal layer simultaneously and rely on local endogenous signaling to direct healing. Functionalizing collagen-GAG scaffolds with signaling factors, and/or additional matrix molecules, could help overcome these challenges. An ideal candidate for this is platelet-rich plasma (PRP) as it is a natural reservoir of growth factors, can be activated to form a fibrin gel, and is available intraoperatively. We tested the factors released from PRP (PRPr) and found that at specific concentrations, PRPr enhanced cell proliferation and migration and induced angiogenesis to a greater extent than fetal bovine serum (FBS) controls. This motivated us to develop a strategy to successfully incorporate PRP homogeneously within the pores of the collagen-GAG scaffolds. The composite scaffold released key growth factors for wound healing (FGF, TGFβ) and vascularization (VEGF, PDGF) for up to 14 days. In addition, the composite scaffold had enhanced mechanical properties (when compared to PRP gel alone), while providing a continuous upper surface of extracellular matrix (ECM) for keratinocyte seeding. The levels of the factors released from the composite scaffold were sufficient to sustain proliferation of key cells involved in wound healing, including human endothelial cells, mesenchymal stromal cells, fibroblasts, and keratinocytes; even in the absence of FBS supplementation. In functional in vitro and in vivo vascularization assays, our composite scaffold demonstrated increased angiogenic and vascularization potential, which is known to lead to enhanced wound healing. Upon pro-inflammatory induction, macrophages released lower levels of the pro-inflammatory marker MIP-1α when treated with PRPr; and released higher levels of the anti-inflammatory marker IL1-ra upon both pro- and anti-inflammatory induction when treated with the composite scaffold. Finally, our composite scaffold supported a co-culture system of human fibroblasts and keratinocytes that resulted in an epidermal-like layer, with keratinocytes constrained to the surface of the scaffold; by contrast, keratinocytes were observed infiltrating the PRP-free scaffold. This novel composite scaffold has the potential for rapid translation to the clinic by isolating PRP from a patient intraoperatively and combining it with regulatory approved scaffolds to enhance wound repair.
Collapse
Affiliation(s)
- Ronaldo J. F. C. do Amaral
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland
| | - Noora M. A. Zayed
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Elena I. Pascu
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Chris Hobbs
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin (TCD), Dublin, Ireland
| | - Francesco Santarella
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Christopher R. Simpson
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ciara M. Murphy
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
| | - Rukmani Sridharan
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Arlyng González-Vázquez
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
| | - Barry O'Sullivan
- Beaumont Hospital, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| | - Cathal J. Kearney
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
83
|
Cecerska-Heryć E, Heryć R, Wiśniewska M, Michalczyk A, Dołęgowska B. Regenerative potential of platelets in patients with chronic kidney disease. Int Urol Nephrol 2019; 51:1831-1840. [PMID: 31197743 DOI: 10.1007/s11255-019-02190-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/04/2019] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Chronic kidney disease (CKD) is a systemic disease affecting many organs. Progression of renal failure aggravates ongoing inflammation and increases oxidative stress. In the final stage of CKD, it is necessary to use renal replacement therapy. A side effect of dialysis therapy is the synthesis of proinflammatory factors and increased oxidative stress, which activates platelets and immune cells. AIM OF THE STUDY To determine the regenerative potential of platelets in patients with CKD based on the analysis of the relationships between substances with potential regenerative action, as well as analysis of the influence of the type of renal replacement therapy used on regeneration of platelets. MATERIALS AND METHODS The study group consisted of 117 patients. Based on the type of therapy used, patients were divided into four groups: hemodialysis, peritoneal dialysis, kidney transplant patients, and conservative treatment (30, 30, 27, and 30 patients). The control group consisted of 30 healthy volunteers. The concentrations of IGF-1, TGF-β, and PDGF-B in the blood serum were measured by ELISA methods. RESULTS It was shown that renal replacement therapy significantly influences the concentration of platelet growth factors (IGF-1: p = 0.025 and PDGF-B: p = 0.012). There was a relationship between the type of renal replacement therapy and the duration of dialysis, and the concentration of IGF-1, PDGF-B (p < 0.00001, p < 0.001). CONCLUSIONS The type of renal replacement therapy has a different effect on the concentration of platelet-derived growth factors IGF-1 and PDGF-B. PD patients had the highest concentrations of all growth factors, and this may be due to the presence of inflammation induced by dialysis-related advanced end-products of glycosylation (AGE).
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Rafał Heryć
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Magda Wiśniewska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
84
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
85
|
Alsousou J, Harrison P. Therapeutic Platelet-Rich Plasma in Wound Healing. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
86
|
Chen CF, Liao HT. Platelet-rich plasma enhances adipose-derived stem cell-mediated angiogenesis in a mouse ischemic hindlimb model. World J Stem Cells 2018; 10:212-227. [PMID: 30613314 PMCID: PMC6306556 DOI: 10.4252/wjsc.v10.i12.212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/18/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the angiogenic effect of platelet-rich plasma (PRP)-preconditioned adipose-derived stem cells (ADSCs) both in vitro and in a mouse ischemic hindlimb model.
METHODS ADSCs were divided based on culture medium: 2.5% PRP, 5% PRP, 7.5% PRP, and 10% PRP. Cell proliferation rate was analyzed using the MTS assay. The gene expression of CD31, vascular endothelial growth factor, hypoxia-inducible factors, and endothelial cell nitric oxide synthase was analyzed using reverse transcription polymerase chain reaction. Cell markers and structural changes were assessed through immunofluorescence staining and the tube formation assay. Subsequently, we studied the in vivo angiogenic capabilities of ADSCs by a mouse ischemic hindlimb model.
RESULTS The proliferation rate of ADSCs was higher in the 2.5%, 5%, and 7.5% PRP groups. The expression of hypoxia-inducible factor, CD31, vascular endothelial growth factor, and endothelial cell nitric oxide synthase in the 5% and 7.5% PRP groups increased. The 5%, 7.5%, and 10% PRP groups showed higher abilities to promote both CD31 and vascular endothelial growth factor production and tubular structure formation in ADSCs. According to laser Doppler perfusion scan, the perfusion ratios of ischemic limb to normal limb were significantly higher in 5% PRP, 7.5% PRP, and human umbilical vein endothelial cells groups compared with the negative control and fetal bovine serum (FBS) groups (0.88 ± 0.08, 0.85 ± 0.07 and 0.81 ± 0.06 for 5%, 7.5% PRP and human umbilical vein endothelial cells compared with 0.42 ± 0.17 and 0.54 ± 0.14 for the negative control and FBS, P < 0.01).
CONCLUSION PRP-preconditioned ADSCs presented endothelial cell characteristics in vitro and significantly improved neovascularization in ischemic hindlimbs. The optimal angiogenic effect occurred in 5% PRP- and 7.5% PRP-preconditioned ADSCs.
Collapse
Affiliation(s)
- Chia-Fang Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Han-Tsung Liao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Craniofacial Research Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
87
|
Autologous fibrin scaffolds: When platelet- and plasma-derived biomolecules meet fibrin. Biomaterials 2018; 192:440-460. [PMID: 30500725 DOI: 10.1016/j.biomaterials.2018.11.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
The healing of vascularized mammalian tissue injuries initiate with hemostasis and clotting as part of biological defense system leading to the formation of a fibrin clot in which activated platelets are trapped to quickly stop bleeding and destroy microbials. In order to harness the therapeutic potential of biomolecules secreted by platelets and stemmed from plasma, blood deconstruction has allowed to yield autologous platelet-and plasma-derived protein fibrin scaffold. The autologous growth factors and microparticles stemmed from platelets and plasma, interact with fibrin, extracellular matrix, and tissue cells in a combinatorial, synergistic, and multidirectional way on mechanisms governing tissue repair. This interplay will induce a wide range of cell specifications during inflammation and repair process including but not limited to fibrogenesis, angiogenesis, and immunomodulation. As biology-as-a-drug approach, autologous platelet-and plasma-derived protein fibrin scaffold is emerging as a safe and efficacious natural human-engineered growth factor delivery system to repair musculoskeletal tissues, and skin and corneal ulcers and burns. In doing so, it acts as therapeutic agent not perfect but close to biological precision. However, this autologous, biocompatible, biodegradable, and long in vivo lasting strategy faces several challenges, including its non-conventional single dose-response effect, the lack of standardization in its preparation and application, and the patient's biological features. In this review, we give an account of the main events of tissue repair. Then, we describe the procedure to prepare autologous platelet-and plasma-derived protein fibrin scaffolds, and the rationale behind these biomaterials, and finally, we highlight the significance of strategic accuracy in their application.
Collapse
|
88
|
Tonogai I, Hayashi F, Iwame T, Takasago T, Matsuura T, Sairyo K. Platelet-rich plasma does not reduce skeletal muscle fibrosis after distraction osteogenesis. J Exp Orthop 2018; 5:26. [PMID: 30006750 PMCID: PMC6045562 DOI: 10.1186/s40634-018-0143-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
Background Skeletal muscle fibrosis caused by an increase in collagen deposition often occurs after distraction osteogenesis. Although studies are available reporting the effects of platelet-rich plasma (PRP) on tissue healing following injury, current findings remain controversial. This study focused on determining whether PRP reduces skeletal muscle fibrosis caused by distraction osteogenesis. Methods Tibial osteotomies were performed on 8-week-old wild type mice, and tibiae were distracted at a rate of 0.42 mm/day for 2 weeks, starting 1 week after osteotomy. Immediately after distraction was completed (3 weeks after osteotomy), PRP or phosphate buffered saline (as a sham) was injected into the gastrocnemius (GC) muscle. The GC muscles were harvested and analyzed. Results The amount and area of collagenous tissue increased in both the PRP and control groups following distraction osteogenesis, but the changes were not significantly different between both groups at all time points (p = 0.89, 0.45, 0.33 and 0.52 at 4, 6, 8 and 10 weeks). Conclusion From this study, our results suggest that PRP did not significantly reduce skeletal muscle fibrosis due to distraction osteogenesis.
Collapse
Affiliation(s)
- Ichiro Tonogai
- Department of Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| | - Fumio Hayashi
- Department of Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Toshiyuki Iwame
- Department of Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Tomoya Takasago
- Department of Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Tetsuya Matsuura
- Department of Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Koichi Sairyo
- Department of Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| |
Collapse
|
89
|
Wang B, Geng Q, Hu J, Shao J, Ruan J, Zheng J. Platelet-rich plasma reduces skin flap inflammatory cells infiltration and improves survival rates through induction of angiogenesis: An experiment in rabbits. J Plast Surg Hand Surg 2016; 50:239-45. [DOI: 10.3109/2000656x.2016.1159216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
90
|
Wang SZ, Chang Q, Lu J, Wang C. Growth factors and platelet-rich plasma: promising biological strategies for early intervertebral disc degeneration. INTERNATIONAL ORTHOPAEDICS 2015; 39:927-34. [PMID: 25653173 DOI: 10.1007/s00264-014-2664-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/28/2014] [Indexed: 12/20/2022]
Abstract
Intervertebral disc degeneration (IDD) is a complex process with the mechanism not fully elucidated. The current clinical treatments for IDD are mainly focused on providing symptomatic relief without addressing the underlying cause of the IDD. Biological therapeutic strategies to repair and regenerate the degenerated discs are drawing more attention. Growth factor therapy is one of the biological strategies and holds promising prospects. As a promising bioactive substance, platelet-rich plasma (PRP) is considered to be an ideal growth factor "cocktail" for intervertebral disc (IVD) restoration. Results from many in vitro and in vivo studies have confirmed the efficacy of growth factors and PRP in IVD repair and regeneration. It is essential to advance the research on growth factor therapy and associated mechanism for IDD. This article reviews the background of IDD, current concepts in growth factor and PRP-related therapy for IDD. Future research perspectives and clinical directions are also discussed.
Collapse
Affiliation(s)
- Shan-zheng Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Ding Jia Qiao Road, Nanjing, Jiangsu, 210009, People's Republic of China
| | | | | | | |
Collapse
|
91
|
The effect of platelet-rich plasma on survival of the composite graft and the proper time of injection in a rabbit ear composite graft model. Arch Plast Surg 2014; 41:647-53. [PMID: 25396175 PMCID: PMC4228205 DOI: 10.5999/aps.2014.41.6.647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022] Open
Abstract
Background Administration of growth factors has been associated with increased viability of composite grafts greater than 1-cm in diameter. Platelet-rich plasma (PRP) contains many of the growth factors studied. In this study, we evaluate the effect of PRP injection on composite graft viability and the proper time for injection. Methods A total of 24 New Zealand White rabbits were divided into four groups. Autologous PRP was injected into the recipient sites three days before grafting in group 1, on the day of grafting in group 2, and three days after grafting in group 3. Group 4 served as control without PRP administration. Auricular composite grafts of 3-cm diameter were harvested and grafted back into place after being rotated 180 degrees. Median graft viability and microvessel density were evaluated at day 21 of graft via macroscopic photographs and immunofluorescent staining, respectively. Results The median graft survival rate was 97.8% in group 1, 69.2% in group 2, 55.7% in group 3, and 40.8% in the control group. The median vessel counts were 34 (per ×200 HPF) in group 1, 24.5 in group 2, 19.5 in group 3, and 10.5 in the control group. Conclusions This study demonstrates that PRP administration is associated with increased composite graft viability. All experimental groups showed a significantly higher survival rate and microvessel density, compared with the control group. Pre-administration of PRP was followed by the highest graft survival rate and revascularization. PRP treatments are minimally invasive, fast, easily applicable, and inexpensive, and offer a potential clinical pathway to larger composite grafts.
Collapse
|
92
|
Lima AC, Mano JF, Concheiro A, Alvarez-Lorenzo C. Fast and Mild Strategy, Using Superhydrophobic Surfaces, to Produce Collagen/Platelet Lysate Gel Beads for Skin Regeneration. Stem Cell Rev Rep 2014; 11:161-79. [DOI: 10.1007/s12015-014-9548-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
93
|
Kang J, Hur J, Kang JA, Yun JY, Choi JI, Ko SB, Lee CS, Lee J, Han JK, Kim HK, Kim HS. Activated platelet supernatant can augment the angiogenic potential of human peripheral blood stem cells mobilized from bone marrow by G-CSF. J Mol Cell Cardiol 2014; 75:64-75. [PMID: 25016235 DOI: 10.1016/j.yjmcc.2014.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/17/2014] [Accepted: 06/30/2014] [Indexed: 11/20/2022]
Abstract
Platelets not only play a role in hemostasis, but they also promote angiogenesis and tissue recovery by releasing various cytokines and making an angiogenic milieu. Here, we examined autologous 'activated platelet supernatant (APS)' as a priming agent for stem cells; thereby enhance their pro-angiogenic potential and efficacy of stem cell-based therapy for ischemic diseases. The mobilized peripheral blood stem cells ((mob)PBSCs) were isolated from healthy volunteers after subcutaneous injection of granulocyte-colony stimulating factor. APS was collected separately from the platelet rich plasma after activation by thrombin. (mob)PBSCs were primed for 6h before analysis. Compared to naive platelet supernatants, APS had a higher level of various cytokines, such as IL8, IL17, PDGF and VEGF. APS-priming for 6h induced (mob)PBSCs to express key angiogenic factors, surface markers (i.e. CD34, CD31, and CXCR4) and integrins (integrins α5, β1 and β2). Also (mob)PBSCs were polarized toward CD14(++)/CD16(+) pro-angiogenic monocytes. The priming effect was reproduced by an in vitro reconstruction of APS. Through this phenotype, APS-priming increased cell-cell adhesion and cell-extracellular matrix adhesion. The culture supernatant of APS-primed (mob)PBSCs contained high levels of IL8, IL10, IL17 and TNFα, and augmented proliferation and capillary network formation of human umbilical vein endothelial cells. In vivo transplantation of APS-primed (mob)PBSCs into athymic mice ischemic hindlimbs and Matrigel plugs elicited vessel differentiation and tissue repair. In safety analysis, platelet activity increased after mixing with (mob)PBSCs regardless of priming, which was normalized by aspirin treatment. Collectively, our data identify that APS-priming can enhance the angiogenic potential of (mob)PBSCs, which can be used as an adjunctive strategy to improve the efficacy of cell therapy for ischemic diseases.
Collapse
Affiliation(s)
- Jeehoon Kang
- Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jin Hur
- Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Jin-A Kang
- Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Ji-Yeon Yun
- Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Jae-Il Choi
- Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Seung Bum Ko
- Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Choon-Soo Lee
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Jaewon Lee
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Jung-Kyu Han
- Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Republic of Korea
| | - Hyo-Soo Kim
- Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea; National Research Laboratory for Stem Cell Niche, Republic of Korea.
| |
Collapse
|
94
|
Lian Z, Yin X, Li H, Jia L, He X, Yan Y, Liu N, Wan K, Li X, Lin S. Synergistic effect of bone marrow-derived mesenchymal stem cells and platelet-rich plasma in streptozotocin-induced diabetic rats. Ann Dermatol 2014; 26:1-10. [PMID: 24648680 PMCID: PMC3956772 DOI: 10.5021/ad.2014.26.1.1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/23/2012] [Accepted: 12/15/2013] [Indexed: 11/26/2022] Open
Abstract
Background Diabetic wounds are a major clinical challenge, because minor skin wounds can lead to chronic, unhealed ulcers and ultimately result in infection, gangrene, or even amputation. Studies on bone marrow derived mesenchymal stem cells (BMSCs) and a series of growth factors have revealed their many benefits for wound healing and regeneration. Platelet-rich plasma (PRP) may improve the environment for BMSC development and differentiation. However, whether combined use of BMSCs and PRP may be more effective for accelerating diabetic ulcer healing remains unclear. Objective We investigated the efficacy of BMSCs and PRP for the repair of refractory wound healing in a diabetic rat model. Methods Forty-eight rats with diabetes mellitus induced by streptozotocin were divided into four groups: treatment with BMSCs plus PRP, BMSCs alone, PRP alone, phosphate buffered saline. The rate of wound closure was quantified. A histopathological study was conducted regarding wound depth and the skin edge at 7, 14, and 28 days after surgery. Results Wound healing rates were significantly higher in the BMSC plus PRP group than in the other groups. The immunohistochemistry results showed that the expression of platelet/endothelial cell adhesion molecule 1, proliferating cell nuclear antigen, and transforming growth factor-β1 increased significantly in the BMSC plus PRP group compared to the other treatment groups. On day 7, CD68 expression increased significantly in the wounds of the BMSC plus PRP group, but decreased markedly at day 14 compared to the controls. Conclusion The combination of BMSCs and PRP aids diabetic wound repair and regeneration.
Collapse
Affiliation(s)
- Zhenzhen Lian
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Xiaojing Yin
- Department of Endocrinology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hua Li
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Lili Jia
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Xiuzhen He
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Yongbo Yan
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Naihua Liu
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Kayiu Wan
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Shaoqiang Lin
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| |
Collapse
|
95
|
Peng Y, Huang S, Wu Y, Cheng B, Nie X, Liu H, Ma K, Zhou J, Gao D, Feng C, Yang S, Fu X. Platelet rich plasma clot releasate preconditioning induced PI3K/AKT/NFκB signaling enhances survival and regenerative function of rat bone marrow mesenchymal stem cells in hostile microenvironments. Stem Cells Dev 2013; 22:3236-51. [PMID: 23885779 PMCID: PMC3868358 DOI: 10.1089/scd.2013.0064] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/25/2013] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been optimal targets in the development of cell based therapies, but their limited availability and high death rate after transplantation remains a concern in clinical applications. This study describes novel effects of platelet rich clot releasate (PRCR) on rat bone marrow-derived MSCs (BM-MSCs), with the former driving a gene program, which can reduce apoptosis and promote the regenerative function of the latter in hostile microenvironments through enhancement of paracrine/autocrine factors. By using reverse transcription-polymerase chain reaction, immunofluorescence and western blot analyses, we showed that PRCR preconditioning could alleviate the apoptosis of BM-MSCs under stress conditions induced by hydrogen peroxide (H2O2) and serum deprivation by enhancing expression of vascular endothelial growth factor and platelet-derived growth factor (PDGF) via stimulation of the platelet-derived growth factor receptor (PDGFR)/PI3K/AKT/NF-κB signaling pathways. Furthermore, the effects of PRCR preconditioned GFP-BM-MSCs subcutaneously transplanted into rats 6 h after wound surgery were examined by histological and other tests from days 0-22 after transplantation. Engraftment of the PRCR preconditioned BM-MSCs not only significantly attenuated apoptosis and wound size but also improved epithelization and blood vessel regeneration of skin via regulation of the wound microenvironment. Thus, preconditioning with PRCR, which reprograms BM-MSCs to tolerate hostile microenvironments and enhance regenerative function by increasing levels of paracrine factors through PDGFR-α/PI3K/AKT/NF-κB signaling pathways would be a safe method for boosting the effectiveness of transplantation therapy in the clinic.
Collapse
Affiliation(s)
- Yan Peng
- The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area, PLA, Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Command, Guangzhou, People's Republic of China
- Southern Medical University, Guangzhou, People's Republic of China
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
| | - Sha Huang
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, People's Republic of China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical College, Mudanjiang, People's Republic of China
| | - Biao Cheng
- The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area, PLA, Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Command, Guangzhou, People's Republic of China
| | - Xiaohu Nie
- Southern Medical University, Guangzhou, People's Republic of China
| | - Hongwei Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Kui Ma
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
| | - Jiping Zhou
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
| | - Dongyun Gao
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
| | - Changjiang Feng
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
| | - Siming Yang
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
| | - Xiaobing Fu
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, People's Republic of China
| |
Collapse
|
96
|
Our treatment strategy for critical limb ischemia. Int J Vasc Med 2013; 2013:437471. [PMID: 24386568 PMCID: PMC3872428 DOI: 10.1155/2013/437471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 11/18/2022] Open
Abstract
For the treatment of critical limb ischemia, collaboration with wound specialists and cardiologists performing revascularization is important. The foot care unit affiliated with related departments opened at our hospital in July 2010 for limb salvage, mainly under the leadership of the departments of cardiovascular internal medicineand plastic surgery. We have treated 194 patients up until October 2012. The primary diseases included 81 cases (87 limbs) of foot ulcer and gangrene, with complications of peripheral arterial diseases (PADs) in all cases. Intravascular treatment was conducted for 69 limbs with PAD complications, and the initial success rate was 85.5%, of which surgical debridement or minor amputation was performed on 32 limbs. Regarding open wounds following operation and chronic ulcer, platelet-rich plasma therapy was conducted in 29 limbs and negative pressure wound therapy in 15 limbs. Among all of the patients treated, 58 limbs healed, 10 cases died, and the others are currently receiving ongoing treatment. Cardiovascular internal medicine specialists and plastic surgeons examine patients together at the outpatient clinic and prepare and implement a multidisciplinary treatment plan including vascular reconstructions and operation. We cooperate with physicians in each related department and efforts in team medicine have been made for the purpose of limb salvage.
Collapse
|
97
|
Intranasal delivery of plasma and platelet growth factors using PRGF-Endoret system enhances neurogenesis in a mouse model of Alzheimer's disease. PLoS One 2013; 8:e73118. [PMID: 24069173 PMCID: PMC3777974 DOI: 10.1371/journal.pone.0073118] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/24/2013] [Indexed: 12/23/2022] Open
Abstract
Neurodegeneration together with a reduction in neurogenesis are cardinal features of Alzheimer’s disease (AD) induced by a combination of toxic amyloid-β peptide (Aβ) and a loss of trophic factor support. Amelioration of these was assessed with diverse neurotrophins in experimental therapeutic approaches. The aim of this study was to investigate whether intranasal delivery of plasma rich in growth factors (PRGF-Endoret), an autologous pool of morphogens and proteins, could enhance hippocampal neurogenesis and reduce neurodegeneration in an amyloid precursor protein/presenilin-1 (APP/PS1) mouse model. Neurotrophic and neuroprotective actions were firstly evident in primary neuronal cultures, where cell proliferation and survival were augmented by Endoret treatment. Translation of these effects in vivo was assessed in wild type and APP/PS1 mice, where neurogenesis was evaluated using 5-bromodeoxyuridine (BdrU), doublecortin (DCX), and NeuN immunostaining 5 weeks after Endoret administration. The number of BrdU, DCX, and NeuN positive cell was increased after chronic treatment. The number of degenerating neurons, detected with fluoro Jade-B staining was reduced in Endoret-treated APP/PS1 mice at 5 week after intranasal administration. In conclusion, Endoret was able to activate neuronal progenitor cells, enhancing hippocampal neurogenesis, and to reduce Aβ-induced neurodegeneration in a mouse model of AD.
Collapse
|
98
|
The Effect of Platelet-Rich Plasma on Flap Survival in Random Extension of an Axial Pattern Flap in Rabbits. Plast Reconstr Surg 2013; 132:85-92. [DOI: 10.1097/prs.0b013e318290f61b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
99
|
Kakudo N, Morimoto N, Kushida S, Ogawa T, Kusumoto K. Platelet-rich plasma releasate promotes angiogenesis in vitro and in vivo. Med Mol Morphol 2013; 47:83-9. [PMID: 23604952 DOI: 10.1007/s00795-013-0045-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/27/2013] [Indexed: 01/09/2023]
Abstract
Platelet-rich plasma (PRP) is a plasma fraction in which several growth factors are concentrated at high levels. In recent years, the biological effects on various cells of the active soluble releasate that is isolated following platelet activation of PRP [PRP-releasate (PRPr)] have been reported. The purpose of this study was to determine the angiogenic effects of human PRPr in vitro and in vivo. PRPr was prepared from human whole blood using the double spin method and was activated with CaCl2 and autologous thrombin. PRPr stimulated proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) and in vivo angiogenesis-inducing ability in nude mice. PRPr led to the phosphorylation of Erk1/2 and Akt in HUVECs, and the induction of proliferation and migration by PRPr was suppressed by PRPr inhibitors PD98059 and LY294002. PRPr induces angiogenesis in vitro and in vivo, and the present findings suggest that the mechanism for this is activation of the ERK and phosphatidylinositol-3-kinase-Akt pathways. Our results demonstrate that PRPr is a promising autologous source for therapeutic angiogenesis in treating cardiovascular disease.
Collapse
Affiliation(s)
- Natsuko Kakudo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-3-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan,
| | | | | | | | | |
Collapse
|
100
|
El Backly RM, Zaky SH, Muraglia A, Tonachini L, Brun F, Canciani B, Chiapale D, Santolini F, Cancedda R, Mastrogiacomo M. A Platelet-Rich Plasma-Based Membrane as a Periosteal Substitute with Enhanced Osteogenic and Angiogenic Properties: A New Concept for Bone Repair. Tissue Eng Part A 2013; 19:152-65. [DOI: 10.1089/ten.tea.2012.0357] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Rania M. El Backly
- Department of Experimental Medicine, University of Genova, Genova, Italy
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
- Faculty of dentistry, Alexandria University, Alexandria, Egypt
| | - Samer H. Zaky
- Department of Experimental Medicine, University of Genova, Genova, Italy
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | | | - Laura Tonachini
- Department of Experimental Medicine, University of Genova, Genova, Italy
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | - Francesco Brun
- Department of Industrial Engineering and Information Technology, University of Trieste, Trieste, Italy
- Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Barbara Canciani
- Department of Experimental Medicine, University of Genova, Genova, Italy
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | - Danilo Chiapale
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | - Federico Santolini
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | - Ranieri Cancedda
- Department of Experimental Medicine, University of Genova, Genova, Italy
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | - Maddalena Mastrogiacomo
- Department of Experimental Medicine, University of Genova, Genova, Italy
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| |
Collapse
|