51
|
Restorative potentiality of S-allylcysteine against diabetic nephropathy through attenuation of oxidative stress and inflammation in streptozotocin-nicotinamide-induced diabetic rats. Eur J Nutr 2018; 58:2425-2437. [PMID: 30062492 DOI: 10.1007/s00394-018-1795-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022]
Abstract
AIM In the present study, we evaluated the therapeutic potentiality of S-allylcysteine (SAC) in streptozotocin (STZ)-nicotinamide (NAD)-induced diabetic nephropathy (DN) in experimental rats. METHODS SAC was orally administered for 45 days to rats with STZ-NAD-induced DN; a metformin-treated group was included for comparison. Effect of SAC on body weight, organ weight, blood glucose, levels of insulin, glycated haemoglobin, and renal biochemical markers was determined. Body composition by total body electrical conductivity (TOBEC) and dual-X ray absorptiometry (DXA), kidney antioxidant analysis, real-time polymerase chain reaction, and western blot analysis of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), nuclear factor kappa B (NF-κB), interleukin (IL)-6, and tumor necrosis factor (TNF)-α; histopathological and scanning electron microscope (SEM) analysis of the kidneys were performed in both control and experimental rats. RESULTS SAC treatment showed significantly decreased levels of blood glucose, glycated haemoglobin, creatinine, albumin, AST, ALT, creatinine kinase, lactate dehydrogenase, and expressions of NF-κB, IL-6, and TNF-α compared with DN control rats. Furthermore, SAC administration to DN rats significantly improved body composition and antioxidant defense mechanism which was confirmed by the upregulation of mRNA and protein expressions of antioxidant genes. CONCLUSIONS Thus, SAC showed adequate therapeutic effect against DN by downregulation of inflammatory factors and attenuation of oxidative stress. Histological and SEM observations also indicated that SAC treatment notably reverses renal damage and protects the kidneys from hyperglycemia-mediated oxidative damage.
Collapse
|
52
|
Carino D, Sarac TP, Ziganshin BA, Elefteriades JA. Abdominal Aortic Aneurysm: Evolving Controversies and Uncertainties. Int J Angiol 2018; 27:58-80. [PMID: 29896039 PMCID: PMC5995687 DOI: 10.1055/s-0038-1657771] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is defined as a permanent dilatation of the abdominal aorta that exceeds 3 cm. Most AAAs arise in the portion of abdominal aorta distal to the renal arteries and are defined as infrarenal. Most AAAs are totally asymptomatic until catastrophic rupture. The strongest predictor of AAA rupture is the diameter. Surgery is indicated to prevent rupture when the risk of rupture exceeds the risk of surgery. In this review, we aim to analyze this disease comprehensively, starting from an epidemiological perspective, exploring etiology and pathophysiology, and concluding with surgical controversies. We will pursue these goals by addressing eight specific questions regarding AAA: (1) Is the incidence of AAA increasing? (2) Are ultrasound screening programs for AAA effective? (3) What causes AAA: Genes versus environment? (4) Animal models: Are they really relevant? (5) What pathophysiology leads to AAA? (6) Indications for AAA surgery: Are surgeons over-eager to operate? (7) Elective AAA repair: Open or endovascular? (8) Emergency AAA repair: Open or endovascular?
Collapse
Affiliation(s)
- Davide Carino
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| | - Timur P. Sarac
- Section of Vascular and Endovascular Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Bulat A. Ziganshin
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
- Department of Surgical Diseases # 2, Kazan State Medical University, Kazan, Russia
| | - John A. Elefteriades
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
53
|
Kadry SM, El-Dakdoky MH, Haggag NZ, Rashed LA, Hassen MT. Melatonin improves the therapeutic role of mesenchymal stem cells in diabetic rats. Toxicol Mech Methods 2018; 28:529-538. [DOI: 10.1080/15376516.2018.1471634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Shadia M. Kadry
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Mai H. El-Dakdoky
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Nawal Z. Haggag
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Laila A. Rashed
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Marwa T. Hassen
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
54
|
Cigarette Smoking and Adipose Tissue: The Emerging Role in Progression of Atherosclerosis. Mediators Inflamm 2017; 2017:3102737. [PMID: 29445255 PMCID: PMC5763059 DOI: 10.1155/2017/3102737] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Smoking is an established risk factor for atherosclerosis through several underlying pathways. Moreover, in the development of atherosclerotic plaque formation, obesity, defined as excess fat mass accumulation, also plays a vital role in dyslipidemia and insulin resistance. Substantial evidence shows that cigarette smoking induces multiple pathological effects in adipose tissue, such as differentiation of adipocytes, lipolysis, and secretion properties in adipose tissue. Therefore, there is an emerging speculation in which adipose tissue abnormality induced by smoking or nicotine is likely to accelerate the progression of atherosclerosis. Herein, this review aims to investigate the possible interplay between smoking and adipose tissue dysfunction in the development of atherosclerosis.
Collapse
|
55
|
Willy K, Girndt M, Voelkl J, Fiedler R, Martus P, Storr M, Schindler R, Zickler D. Expanded Haemodialysis Therapy of Chronic Haemodialysis Patients Prevents Calcification and Apoptosis of Vascular Smooth Muscle Cells in vitro. Blood Purif 2017; 45:131-138. [PMID: 29402827 DOI: 10.1159/000484925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/02/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Vascular calcification is a common phenomenon in patients with chronic kidney disease and strongly associated with increased cardiovascular mortality. Vascular calcification is an active process mediated in part by inflammatory processes in vascular smooth muscle cells (VSMC). These could be modified by the insufficient removal of proinflammatory cytokines through conventional high-flux (HF) membranes. Recent trials demonstrated a reduction of inflammation in VSMC by use of dialysis membranes with a higher and steeper cut-off. These membranes caused significant albumin loss. Therefore, the effect of high retention Onset (HRO) dialysis membranes on vascular calcification and its implications in vitro was evaluated. METHODS In the PERCI II trial, 48 chronic dialysis patients were dialyzed using HF and HRO dialyzers and serum samples were collected. Calcifying VSMC were incubated with the serum samples. Calcification was determined using alizarin red staining (AZR) and determination of alkaline phosphatase (ALP) activity. Furthermore, apoptosis was evaluated, and release of matrix Gla protein (MGP), osteopontin (OPN) and growth differentiation factor 15 (GDF-15) were measured in cell supernatants. RESULTS Vascular calcification in vitro was significantly reduced by 24% (ALP) and 36% (AZR) after 4 weeks of HRO dialysis and by 33% (ALP) and 48% (AZR) after 12 weeks of dialysis using HRO membranes compared to HF dialysis. Apoptosis was significantly lower in the HRO group. The concentrations of MGP and OPN were significantly elevated after incubation with HF serum compared to HRO serum and healthy controls. Similarly, GDF-15 release in the supernatant was elevated after incubation with HF serum, an effect significantly ameliorated after treatment with HRO medium. CONCLUSIONS Expanded haemodialysis therapy reduces the pro-calcific potential of serum from dialysis patients in vitro. With a markedly reduced albumin filtration compared to high cut-off dialysis, use of the HRO dialyzers may possibly provide a treatment option for chronic dialysis patients to reduce the progression of vascular calcification.
Collapse
Affiliation(s)
- Kevin Willy
- Charité University Medicine Berlin, Campus Virchow Clinic, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin-Luther-University Halle, Halle, Germany
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité Campus Virchow, Charité Center for Cardiovascular Research (CCR), Berlin, Germany
| | - Roman Fiedler
- Department of Internal Medicine II, Martin-Luther-University Halle, Halle, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Markus Storr
- Department of Research and Development, Gambro Dialysatoren GmbH, Hechingen, Germany
| | - Ralf Schindler
- Charité University Medicine Berlin, Campus Virchow Clinic, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Daniel Zickler
- Charité University Medicine Berlin, Campus Virchow Clinic, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
56
|
Zhang L, Zhou J, Jing Z, Xiao Y, Sun Y, Wu Y, Sun H. Glucocorticoids Regulate the Vascular Remodeling of Aortic Dissection Via the p38 MAPK-HSP27 Pathway Mediated by Soluble TNF-RII. EBioMedicine 2017; 27:247-257. [PMID: 29287621 PMCID: PMC5828293 DOI: 10.1016/j.ebiom.2017.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 01/18/2023] Open
Abstract
Increasing researches suggest that inflammatory response is involved in vascular remodeling, which plays an important role in the development of aortic dissection. Glucocorticoids have been widely used in the clinical practice due to its powerful and effective anti-inflammatory property. However, the potential relationship between glucocorticoids and aortic dissection was still obscure. This study sought to elucidate the effect of glucocorticoids on the development and progression of aortic dissection, and the potential mechanism involved. Serum cortisol in aortic dissection patients was significantly higher than that in non-ruptured aortic aneurysm patients and healthy volunteers by radioimmunoassay. In modified C57BL/6 mouse model of aortic dissection, glucocorticoids reduced the incidence of aortic dissection and protected the collagen from degradation. Furthermore, glucocorticoids inhibited the TNF-α secretion of THP-1 monocytes, decreased the migration, phenotype switch from contractile type to synthetic type, and the apoptosis of human aortic smooth muscle cells induced by TNF-α. Finally, TNF-sRII was identified as an important cytokine in cellular interaction that participated in vascular remodeling by targeting the p38 MAPK-HSP27 pathway. These results indicate that glucocorticoids inhibit the incidence of aortic dissection by decreasing the TNF-α secretion and increasing the uncombined TNF-sRII, positively participating in vascular remodeling. Glucocorticoids participate in the vascular remodeling of aortic dissection mediated by soluble TNF-RII. Soluble TNF-RII may be used as a potential and attractive target for the intervention of aortic dissection in the future.
In clinical study, we found the serum cortisol in aortic dissection patients was significantly higher than that in non-ruptured aortic aneurysm patients and healthy volunteers. In modified C57BL/6 mouse model, we found glucocorticoids reduced the incidence of aortic dissection, and protected the collagen from degradation. Furthermore, glucocorticoids inhibited the TNF-α secretion of macrophages, decreased the migration, the phenotype switch from contractile type to synthetic type, and the apoptosis of human aortic smooth muscle cells induced by TNF-α. In general, glucocorticoids participate the vascular remodeling of aortic dissection via the p38 MAPK-HSP27 pathway mediated by TNF-sRII.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jian Zhou
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Zaiping Jing
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Yu Xiao
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yudong Sun
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yani Wu
- Department of Breast and Thyroid Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Huiying Sun
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
57
|
Abstract
Cardiovascular diseases (CVDs) are the commonest cause of global mortality and morbidity. Atherosclerosis, the fundamental pathological manifestation of CVDs, is a complex process and is poorly managed both in terms of preventive and therapeutic intervention. Aberrant lipid metabolism and chronic inflammation play critical roles in the development of atherosclerosis. These processes can be targeted for effective management of the disease. Although managing lipid metabolism is in the forefront of current therapeutic approaches, controlling inflammation may also prove to be crucial for an efficient treatment regimen of the disease. Flavonoids, the plant-derived polyphenols, are known for their antiinflammatory properties. This review discusses the possible antiatherogenic role of 3 flavonoids, namely, chrysin, quercetin, and luteolin primarily known for their antiinflammatory properties.
Collapse
|
58
|
Xu R, Li C, Wu Y, Shen L, Ma J, Qian J, Ge J. Role of KCa3.1 Channels in Macrophage Polarization and Its Relevance in Atherosclerotic Plaque Instability. Arterioscler Thromb Vasc Biol 2017; 37:226-236. [PMID: 28062499 DOI: 10.1161/atvbaha.116.308461] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022]
Abstract
Objective—
Emerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The calcium-activated potassium channel KCa3.1 is critically involved in macrophage activation and function. However, the role of KCa3.1 in macrophage polarization is unknown. This study investigates the potential role of KCa3.1 in transcriptional regulation in macrophage polarization and its relationship to plaque instability.
Approach and Results—
Human monocytes were differentiated into macrophages using macrophage colony-stimulating factor. Macrophages were then polarized into proinflammatory M1 cells by interferon-γ and lipopolysaccharide and into alternative M2 macrophages by interleukin-4. A model for plaque instability was induced by combined partial ligation of the left renal artery and left common carotid artery in apolipoprotein E knockout mice. Significant upregulation of KCa3.1 expression was observed during the differentiation of human monocytes into macrophages. Blocking KCa3.1 significantly reduced the expression of proinflammatory genes during macrophages polarization. Further mechanistic studies indicated that blocking KCa3.1 inhibited macrophage differentiation toward the M1 phenotype by downregulating signal transducer and activator of transcription-1 phosphorylation. In animal models, KCa3.1 blockade therapy strikingly reduced the incidence of plaque rupture and luminal thrombus in carotid arteries, decreased the expression of markers associated with M1 macrophage polarization, and enhanced the expression of M2 markers within atherosclerotic lesions.
Conclusions—
These results suggest that blocking KCa3.1 suppresses plaque instability in advanced stages of atherosclerosis by inhibiting macrophage polarization toward an M1 phenotype.
Collapse
Affiliation(s)
- Rende Xu
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenguang Li
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yizhe Wu
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Shen
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianying Ma
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juying Qian
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
59
|
Ramadan A, Al-Omran M, Verma S. The putative role of autophagy in the pathogenesis of abdominal aortic aneurysms. Atherosclerosis 2017; 257:288-296. [PMID: 28139205 DOI: 10.1016/j.atherosclerosis.2017.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/08/2016] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
Abstract
Abdominal aortic aneurysms (AAA) are a significant cause of worldwide mortality and morbidity. While the histopathological characteristics of AAA are well documented, the cellular and molecular mechanisms involved in the pathogenesis of AAA are not entirely understood. Autophagy is a highly conserved basal cellular process in eukaryotic cells that involves the turnover of organelles and proteins. It is also activated as an adaptive response to stressful conditions to promote cell survival. While autophagy typically promotes pro-survival processes, it can sometimes lead to cellular demise. Preclinical studies have revealed autophagy to be a protective mechanism in certain vascular diseases with several autophagy-related genes reported to be markedly upregulated in human aneurysmal tissue. The role autophagy plays in the pathogenesis of AAA, however, remains poorly defined. In this review, we discuss the putative role of autophagy in AAA by reviewing several in vitro and in vivo studies that address the functional significance of autophagy in cells that are involved in the pathophysiology of AAA, amongst which are macrophages, smooth muscle and endothelial cells.
Collapse
Affiliation(s)
- Azza Ramadan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada
| | - Mohammed Al-Omran
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada; Department of Surgery, University of Toronto, ON, Canada; Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada; Department of Surgery, University of Toronto, ON, Canada.
| |
Collapse
|
60
|
Maione AS, Cipolletta E, Sorriento D, Borriello F, Soprano M, Rusciano MR, D'Esposito V, Markabaoui AK, De Palma GD, Martino G, Maresca L, Nobile G, Campiglia P, Formisano P, Ciccarelli M, Marone G, Trimarco B, Iaccarino G, Illario M. Cellular subtype expression and activation of CaMKII regulate the fate of atherosclerotic plaque. Atherosclerosis 2017; 256:53-61. [PMID: 28011257 DOI: 10.1016/j.atherosclerosis.2016.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a degenerative process of the arterial wall implicating activation of macrophages and proliferation of vascular smooth muscle cells. Calcium-calmodulin dependent kinase type II (CaMKII) in vascular smooth muscle cells (VSMCs) regulates proliferation, while in macrophages, this kinase governs diapedesis, infiltration and release of extracellular matrix enzymes. We aimed at understanding the possible role of CaMKII in atherosclerosis plaques to regulate plaque evolution towards stability or instability. METHODS Clinically defined stable and unstable plaques obtained from patients undergoing carotid end arteriectomy were processed for evaluation of CaMKs protein expression, activity and localization. RESULTS The larger content of CaMKII was found in CD14+myeloid cells that were more abundant in unstable rather than stable plaques. To test the biological effect of activated CD14+myeloid cells, VSMCs were exposed to the conditioned medium (CM) of macrophages extracted from carotid plaques. CM induced attenuation of CaMKs expression and activity in VSMCs, leading to the reduction of VSMCs proliferation. This appears to be due to the CaMKII dependent release of cytokines. CONCLUSIONS These results indicate a pivotal role of CaMKs in atherosclerosis by regulating activated myeloid cells on VSMCs activity. CaMKII could represent a possible target for therapeutic strategies based on macrophages specific inhibition for the stabilization of arteriosclerotic lesions.
Collapse
MESH Headings
- Aged
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Carotid Arteries/enzymology
- Carotid Arteries/pathology
- Carotid Arteries/surgery
- Carotid Artery Diseases/enzymology
- Carotid Artery Diseases/pathology
- Carotid Artery Diseases/surgery
- Cell Proliferation
- Cells, Cultured
- Culture Media, Conditioned/metabolism
- Cytokines/metabolism
- Endarterectomy, Carotid
- Enzyme Activation
- Female
- Humans
- Macrophage Activation
- Macrophages/enzymology
- Macrophages/pathology
- Male
- Middle Aged
- Monocytes/enzymology
- Monocytes/pathology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic
- Rupture, Spontaneous
- Time Factors
Collapse
Affiliation(s)
- Angela Serena Maione
- Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Ersilia Cipolletta
- Department of Medicine, Surgery Odontoiatrics-Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Daniela Sorriento
- Department of Advanced Biomedical Science, Federico II University, Naples, Italy
| | - Francesco Borriello
- Department of Translational Medical Science, Federico II University, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Italy
| | - Maria Soprano
- Department of Translational Medical Science, Federico II University, Naples, Italy
| | | | - Vittoria D'Esposito
- Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Abdul Karim Markabaoui
- Department of Gastroenterology, Endocrinology and Surgery, Federico II University, Naples, Italy
| | | | - Giovanni Martino
- Department of Gastroenterology, Endocrinology and Surgery, Federico II University, Naples, Italy
| | - Lucio Maresca
- AziendadeiColli Hospital, Department of Vascular Surgery, Naples, Italy
| | - Giuseppe Nobile
- AziendadeiColli Hospital, Department of Vascular Surgery, Naples, Italy
| | | | - Pietro Formisano
- Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery Odontoiatrics-Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Gianni Marone
- Department of Translational Medical Science, Federico II University, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Italy; CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Science, Federico II University, Naples, Italy
| | - Guido Iaccarino
- Department of Medicine, Surgery Odontoiatrics-Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Maddalena Illario
- Department of Translational Medical Science, Federico II University, Naples, Italy; Federico II University and Hospital, Naples, Italy.
| |
Collapse
|
61
|
Alonso J, Galán M, Martí-Pàmies I, Romero JM, Camacho M, Rodríguez C, Martínez-González J. NOR-1/NR4A3 regulates the cellular inhibitor of apoptosis 2 (cIAP2) in vascular cells: role in the survival response to hypoxic stress. Sci Rep 2016; 6:34056. [PMID: 27654514 PMCID: PMC5032021 DOI: 10.1038/srep34056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/07/2016] [Indexed: 12/16/2022] Open
Abstract
Vascular cell survival is compromised under pathological conditions such as abdominal aortic aneurysm (AAA). We have previously shown that the nuclear receptor NOR-1 is involved in the survival response of vascular cells to hypoxia. Here, we identify the anti-apoptotic protein cIAP2 as a downstream effector of NOR-1. NOR-1 and cIAP2 were up-regulated in human AAA samples, colocalizing in vascular smooth muscle cells (VSMC). While NOR-1 silencing reduced cIAP2 expression in vascular cells, lentiviral over-expression of this receptor increased cIAP2 mRNA and protein levels. The transcriptional regulation of the human cIAP2 promoter was analyzed in cells over-expressing NOR-1 by luciferase reporter assays, electrophoretic mobility shift analysis and chromatin immunoprecipitation, identifying a NGFI-B site (NBRE-358/-351) essential for NOR-1 responsiveness. NOR-1 and cIAP2 were up-regulated by hypoxia and by a hypoxia mimetic showing a similar time-dependent pattern. Deletion and site-directed mutagenesis studies show that NOR-1 mediates the hypoxia-induced cIAP2 expression. While NOR-1 over-expression up-regulated cIAP2 and limited VSMC apoptosis induced by hypoxic stress, cIAP2 silencing partially prevented this NOR-1 pro-survival effect. These results indicate that cIAP2 is a target of NOR-1, and suggest that this anti-apoptotic protein is involved in the survival response to hypoxic stress mediated by NOR-1 in vascular cells.
Collapse
Affiliation(s)
- Judith Alonso
- Centro de Investigación Cardiovascular (CSIC-ICCC), Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), c/Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - María Galán
- Centro de Investigación Cardiovascular (CSIC-ICCC), Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), c/Sant Antoni Maria Claret 167, 08025 Barcelona, Spain.,Laboratorio de Angiología, Biología Vascular e Inflamación y Servicio de Cirugía Vascular, IIB-Sant Pau, c/Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Ingrid Martí-Pàmies
- Centro de Investigación Cardiovascular (CSIC-ICCC), Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), c/Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - José María Romero
- Laboratorio de Angiología, Biología Vascular e Inflamación y Servicio de Cirugía Vascular, IIB-Sant Pau, c/Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Mercedes Camacho
- Laboratorio de Angiología, Biología Vascular e Inflamación y Servicio de Cirugía Vascular, IIB-Sant Pau, c/Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Cristina Rodríguez
- Centro de Investigación Cardiovascular (CSIC-ICCC), Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), c/Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - José Martínez-González
- Centro de Investigación Cardiovascular (CSIC-ICCC), Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), c/Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| |
Collapse
|
62
|
Tay C, Liu YH, Hosseini H, Kanellakis P, Cao A, Peter K, Tipping P, Bobik A, Toh BH, Kyaw T. B-cell-specific depletion of tumour necrosis factor alpha inhibits atherosclerosis development and plaque vulnerability to rupture by reducing cell death and inflammation. Cardiovasc Res 2016; 111:385-97. [PMID: 27492217 DOI: 10.1093/cvr/cvw186] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022] Open
Abstract
AIMS B2 lymphocytes promote atherosclerosis development but their mechanisms of action are unknown. Here, we investigated the role of tumour necrosis factor alpha (TNF-α) produced by B2 cells in atherogenesis. METHODS AND RESULTS We found that 50% of TNF-α-producing spleen lymphocytes were B2 cells and ∼20% of spleen and aortic B cells produced TNF-α in hyperlipidemic ApoE(-/-) mice. We generated mixed bone marrow (80% μMT/20% TNF-α(-/-)) chimeric LDLR(-/-) mice where only B cells did not express TNF-α. Atherosclerosis was reduced in chimeric LDLR(-/-) mice with TNF-α-deficient B cells. TNF-α expression in atherosclerotic lesions and in macrophages were also reduced accompanied by fewer apoptotic cells, reduced necrotic cores, and reduced lesion Fas, interleukin-1β and MCP-1 in mice with TNF-α-deficient B cells compared to mice with TNF-α-sufficient B cells. To confirm that the reduced atherosclerosis is attributable to B2 cells, we transferred wild-type and TNF-α-deficient B2 cells into ApoE(-/-) mice deficient in B cells or in lymphocytes. After 8 weeks of high fat diet, we found that atherosclerosis was increased by wild-type but not TNF-α-deficient B2 cells. Lesions of mice with wild-type B2 cells but not TNF-α-deficient B2 cells also had increased apoptotic cells and necrotic cores. Transferred B2 cells were found in lesions of recipient mice, suggesting that TNF-α-producing B2 cells promote atherosclerosis within lesions. CONCLUSION We conclude that TNF-α produced by B2 cells is a key mechanism by which B2 cells promote atherogenesis through augmenting macrophage TNF-α production to induce cell death and inflammation that promote plaque vulnerability.
Collapse
Affiliation(s)
- Christopher Tay
- Vascular Biology and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences. Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Yu-Han Liu
- Vascular Biology and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia
| | - Hamid Hosseini
- Vascular Biology and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences. Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Peter Kanellakis
- Vascular Biology and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia
| | - Anh Cao
- Vascular Biology and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences. Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia
| | - Peter Tipping
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences. Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences. Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Tin Kyaw
- Vascular Biology and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences. Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| |
Collapse
|
63
|
Abstract
Aortic dissection is a life-threatening condition caused by a tear in the intimal layer of the aorta or bleeding within the aortic wall, resulting in the separation (dissection) of the layers of the aortic wall. Aortic dissection is most common in those 65-75 years of age, with an incidence of 35 cases per 100,000 people per year in this population. Other risk factors include hypertension, dyslipidaemia and genetic disorders that involve the connective tissue, such as Marfan syndrome. Swift diagnostic confirmation and adequate treatment are crucial in managing affected patients. Contemporary management is multidisciplinary and includes serial non-invasive imaging, biomarker testing and genetic risk profiling for aortopathy. The choice of approach for repairing or replacing the damaged region of the aorta depends on the severity and the location of the dissection and the risks of complication from surgery. Open surgical repair is most commonly used for dissections involving the ascending aorta and the aortic arch, whereas minimally invasive endovascular intervention is appropriate for descending aorta dissections that are complicated by rupture, malperfusion, ongoing pain, hypotension or imaging features of high risk. Recent advances in the understanding of the underlying pathophysiology of aortic dissection have led to more patients being considered at substantial risk of complications and, therefore, in need of endovascular intervention rather than only medical or surgical intervention.
Collapse
|
64
|
Sakamuri SSVP, Higashi Y, Sukhanov S, Siddesha JM, Delafontaine P, Siebenlist U, Chandrasekar B. TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE(-/-) mice. Atherosclerosis 2016; 252:153-160. [PMID: 27237075 DOI: 10.1016/j.atherosclerosis.2016.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a major cause of heart attack and stroke. Inflammation plays a critical role in the development of atherosclerosis. Since the cytoplasmic adaptor molecule TRAF3IP2 (TRAF3-Interacting Protein 2) plays a causal role in various autoimmune and inflammatory diseases, we hypothesized that TRAF3IP2 mediates atherosclerotic plaque development. METHODS TRAF3IP2/ApoE double knockout (DKO) mice were generated by crossing TRAF3IP2(-/-) and ApoE(-/-) mice. ApoE(-/-) mice served as controls. Both DKO and control mice were fed a high-fat diet for 12 weeks. Plasma lipids were measured by ELISA, atherosclerosis by en face analysis of aorta and plaque cross-section measurements at the aortic valve region, plaque necrotic core area, collagen and smooth muscle cell (SMC) content by histomorphometry, and aortic gene expression by RT-qPCR. RESULTS The plasma lipoprotein profile was not altered by TRAF3IP2 gene deletion in ApoE(-/-) mice. While total aortic plaque area was decreased in DKO female, but not male mice, the plaque necrotic area was significantly decreased in DKO mice of both genders. Plaque collagen and SMC contents were increased significantly in both female and male DKO mice compared to respective controls. Aortic expression of proinflammatory cytokine (Tumor necrosis factor α, TNFα), chemokine (Chemokine (C-X-C motif) Ligand 1, CXCL1) and adhesion molecule (Vascular cell adhesion molecule 1, VCAM1; and Intercellular adhesion molecule 1, ICAM1) gene expression were decreased in both male and female DKO mice. In addition, the male DKO mice expressed markedly reduced levels of extracellular matrix (ECM)-related genes, including TIMP1 (Tissue inhibitor of metalloproteinase 1), RECK (Reversion-Inducing-Cysteine-Rich Protein with Kazal Motifs) and ADAM17 (A Disintegrin And Metalloproteinase 17). CONCLUSIONS TRAF3IP2 plays a causal role in atherosclerotic plaque development and vulnerability, possibly by inducing the expression of multiple proinflammatory mediators. TRAF3IP2 could be a potential therapeutic target in atherosclerotic vascular diseases.
Collapse
Affiliation(s)
| | - Yusuke Higashi
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Sergiy Sukhanov
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Jalahalli M Siddesha
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Patrice Delafontaine
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Ulrich Siebenlist
- Laboratory of Immunoregulation, NIAID/NIH, Bethesda, MD, 20892, United States
| | - Bysani Chandrasekar
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States; HS Truman Memorial Veterans Hospital, 800 Hospital Drive, Columbia, MO, 75201, United States.
| |
Collapse
|
65
|
Zhang P, Huang C, Li J, Li T, Guo H, Liu T, Li N, Zhu Q, Guo Y. Globular CTRP9 inhibits oxLDL-induced inflammatory response in RAW 264.7 macrophages via AMPK activation. Mol Cell Biochem 2016; 417:67-74. [PMID: 27188183 DOI: 10.1007/s11010-016-2714-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
C1q-TNF-related protein-9 (CTRP9) is increasingly recognized as a promising cardioprotective adipocytokine, which regulates biological processes like vascular relaxation, proliferation, apoptosis, and inflammation. We recently showed that CTRP9 enhanced carotid plaque stability by reducing pro-inflammatory cytokines in macrophages. However, the underlying molecular mechanism of CTRP9 on anti-inflammatory response in macrophages still remains unclear. We demonstrated that globular CTRP9 (gCTRP9) significantly reduced oxidized low-density lipoprotein (oxLDL)-induced tumor necrosis factor alpha and monocyte chemoattractant protein 1 expression by suppressing nuclear factor-κB phosphorylation and nuclear translocation in RAW 264.7 macrophages. Treatment with gCTRP9 strikingly increased the level of phosphorylated adenosine monophosphate-activated protein kinase (AMPK). AMPK inhibitor abolished the anti-inflammatory effects of gCTRP9. Moreover, gCTRP9 increased the expression of adiponectin receptor 1 (AdipoR1). Downregulation of AdipoR1 by siRNA could abrogate the activation of AMPK and the anti-inflammatory effects of gCTRP9. These results suggested that gCTRP9 protected RAW 264.7 macrophages from oxLDL via AMPK activation in an AdipoR1 dependent fashion.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiology, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, 250012, Shandong Province, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chengmin Huang
- Department of Cardiology, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, 250012, Shandong Province, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jun Li
- Department of Cardiology, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, 250012, Shandong Province, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Tingting Li
- Department of Cardiology, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, 250012, Shandong Province, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Haipeng Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.,Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Tianjiao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Na Li
- Department of Cardiology, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, 250012, Shandong Province, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Qing Zhu
- Department of Cardiology, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, 250012, Shandong Province, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yuan Guo
- Department of Cardiology, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, 250012, Shandong Province, China. .,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
66
|
Stylli SS, Adamides AA, Koldej RM, Luwor RB, Ritchie DS, Ziogas J, Kaye AH. miRNA expression profiling of cerebrospinal fluid in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 2016; 126:1131-1139. [PMID: 27128592 DOI: 10.3171/2016.1.jns151454] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) regulate gene expression and therefore play important roles in many physiological and pathological processes. The aim of this pilot study was to determine the feasibility of extraction and subsequent profiling of miRNA from CSF samples in a pilot population of aneurysmal subarachnoid hemorrhage patients and establish if there is a distinct CSF miRNA signature between patients who develop cerebral vasospasm and those who do not. METHODS CSF samples were taken at various time points during the clinical management of a subset of SAH patients (SAH patient samples without vasospasm, n = 10; SAH patient samples with vasospasm, n = 10). CSF obtained from 4 patients without SAH was also included in the analysis. The miRNA was subsequently isolated and purified and then analyzed on an nCounter instrument using the Human V2 and V3 miRNA assay kits. The data were imported into the nSolver software package for differential miRNA expression analysis. RESULTS From a total of 800 miRNAs that could be detected with each version of the miRNA assay kit, a total of 691 miRNAs were communal to both kits. There were 36 individual miRNAs that were differentially expressed (p < 0.01) based on group analyses, with a number of miRNAs showing significant changes in more than one group analysis. The changes largely reflected differences between non-SAH and SAH groups. These included miR-204-5p, miR-223-3p, miR-337-5p, miR-451a, miR-489, miR-508-3p, miR-514-3p, miR-516-5p, miR-548 m, miR-599, miR-937, miR-1224-3p, and miR-1301. However, a number of miRNAs did exclusively differ between the vasospasm and nonvasospasm SAH groups including miR-27a-3p, miR-516a-5p, miR-566, and miR-1197. CONCLUSIONS The findings indicate that temporal miRNA profiling can detect differences between CSF from aneurysmal SAH and non-SAH patients. Moreover, the miRNA profile of CSF samples from patients who develop cerebral vasopasm may be distinguishable from those who do not. These results provide a foundation for future research at identifying novel CSF biomarkers that might predispose to the development of cerebral vasospasm after SAH and therefore influence subsequent clinical management.
Collapse
Affiliation(s)
- Stanley S Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital.,Department of Neurosurgery, The Royal Melbourne Hospital
| | - Alexios A Adamides
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital.,Department of Neurosurgery, The Royal Melbourne Hospital
| | - Rachel M Koldej
- ACRF Translational Research Laboratory, The Department of Research, The Royal Melbourne Hospital; and
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital
| | - David S Ritchie
- ACRF Translational Research Laboratory, The Department of Research, The Royal Melbourne Hospital; and
| | - James Ziogas
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital.,Department of Neurosurgery, The Royal Melbourne Hospital
| |
Collapse
|
67
|
Elsherbiny NM, Al-Gayyar MMH. The role of IL-18 in type 1 diabetic nephropathy: The problem and future treatment. Cytokine 2016; 81:15-22. [PMID: 26836949 DOI: 10.1016/j.cyto.2016.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 12/18/2022]
Abstract
Diabetic vascular complication is a leading cause of diabetic nephropathy, a progressive increase in urinary albumin excretion coupled with elevated blood pressure leading to declined glomerular filtration and eventually end stage renal failure. There is growing evidence that activated inflammation is contributing factor to the pathogenesis of diabetic nephropathy. Meanwhile, IL-18, a member of the IL-1 family of inflammatory cytokines, is involved in the development and progression of diabetic nephropathy. However, the benefits derived from the current therapeutics for diabetic nephropathy strategies still provide imperfect protection against renal progression. This imperfection points to the need for newer therapeutic agents that have potential to affect primary mechanisms contributing to the pathogenesis of diabetic nephropathy. Therefore, the recognition of IL-18 as significant pathogenic mediators in diabetic nephropathy leaves open the possibility of new potential therapeutic targets.
Collapse
Affiliation(s)
- Nehal M Elsherbiny
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Mohammed M H Al-Gayyar
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
68
|
Lanuti M, Talamonti E, Maccarrone M, Chiurchiù V. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages. PLoS One 2015; 10:e0126839. [PMID: 25970609 PMCID: PMC4430319 DOI: 10.1371/journal.pone.0126839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/08/2015] [Indexed: 11/18/2022] Open
Abstract
The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9)-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases.
Collapse
Affiliation(s)
- Mirko Lanuti
- European Center for Brain Research (CERC), IRCCS, Santa Lucia Foundation, Rome, Italy
| | - Emanuela Talamonti
- European Center for Brain Research (CERC), IRCCS, Santa Lucia Foundation, Rome, Italy
- Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research (CERC), IRCCS, Santa Lucia Foundation, Rome, Italy
- Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
- * E-mail: (VC); (MM)
| | - Valerio Chiurchiù
- European Center for Brain Research (CERC), IRCCS, Santa Lucia Foundation, Rome, Italy
- Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
- * E-mail: (VC); (MM)
| |
Collapse
|
69
|
Zhang J, Zhao F, Yu X, Lu X, Zheng G. MicroRNA-155 modulates the proliferation of vascular smooth muscle cells by targeting endothelial nitric oxide synthase. Int J Mol Med 2015; 35:1708-14. [PMID: 25872580 DOI: 10.3892/ijmm.2015.2181] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/26/2015] [Indexed: 11/05/2022] Open
Abstract
A variety of microRNAs (miRNAs) have been reported to be significantly be involved in the regulation of vascular smooth muscle cell (VSMC) proliferation, which is an essential process for the formation of atherosclerotic plaque. The objective of the present study was to explore the role of microRNA-155 (miR-155) in the regulation of VSMC growth and migration. A total of 12 atherosclerotic plaque samples and 9 control samples were collected, and the expression levels of miR-155/endothelial nitric oxide synthase (eNOS) were determined in those samples by RT-qPCR and western blot analysis. The results revealed that the relative expression levels of miR-155 in the atherosclerotic plaque samples were significantly upregulated compared with those in the normal control samples. We further found eNOS to be an effective target of miR-155 in the VSMCs by luciferase assay, which was confirmed by the observation that VSMCs transfected with miR-155 mimics exhibited a significantly lower protein expression level of eNOS. We also demonstrated that the exogenous overexpression of miR-155 significantly enhanced cell proliferation by inhibiting apoptosis in human aortic SMCs (HASMCs), and it also promoted the migratory ability of the cells. In conclusion, our data demonstrate that miR-155 is significantly upregulated in atherosclerotic plaque, functioning to accelerate the proliferation and migration of VSMCs by targeting eNOS.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Respiratory Disease, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| | - Fei Zhao
- Department of Respiratory Disease, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| | - Xiaoling Yu
- Department of Respiratory Disease, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| | - Xiang Lu
- Department of Respiratory Disease, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| | - Guofeng Zheng
- Department of Respiratory Disease, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| |
Collapse
|
70
|
Inflammatory mediators in vascular disease: identifying promising targets for intracranial aneurysm research. Mediators Inflamm 2015; 2015:896283. [PMID: 25922566 PMCID: PMC4397479 DOI: 10.1155/2015/896283] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022] Open
Abstract
Inflammatory processes are implicated in many diseases of the vasculature and have been shown to play a key role in the formation of intracranial aneurysms (IAs). Although the specific mechanisms underlying these processes have been thoroughly investigated in related pathologies, such as atherosclerosis, there remains a paucity of information regarding the immunopathology of IA. Cells such as macrophages and lymphocytes and their effector molecules have been suggested to be players in IA, but their specific interactions and the role of other components of the inflammatory response have yet to be determined. Drawing parallels between the pathogenesis of IA and other vascular disorders could provide a roadmap for developing a mechanistic understanding of the immunopathology of IA and uncovering useful targets for therapeutic intervention. Future research should address the presence and function of leukocyte subsets, mechanisms of leukocyte recruitment and activation, and the role of damage-associated molecular patterns in IA.
Collapse
|
71
|
Barutta F, Bruno G, Grimaldi S, Gruden G. Inflammation in diabetic nephropathy: moving toward clinical biomarkers and targets for treatment. Endocrine 2015; 48:730-42. [PMID: 25273317 DOI: 10.1007/s12020-014-0437-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/21/2014] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is a leading cause of end stage renal failure and there is an urgent need to identify new clinical biomarkers and targets for treatment to effectively prevent and slow the progression of the complication. Many lines of evidence show that inflammation is a cardinal pathogenetic mechanism in DN. Studies in animal models of experimental diabetes have demonstrated that there is a low-grade inflammation in the diabetic kidney. Both pharmacological and genetic strategies targeting inflammatory molecules have been shown to be beneficial in experimental DN. In vitro studies have cast light on the cellular mechanisms whereby diabetes triggers inflammation and in turn inflammation magnifies the kidney injury. Translation of this basic science knowledge into potential practical clinical applications is matter of great interest for researchers today. This review focuses on key pro-inflammatory systems implicated in the development of DN: the tumor necrosis factor(TNF)-α/TNF-α receptor system, the monocyte chemoattractant protein-1/CC-chemokine receptor-2 system, and the Endocannabinoid system that have been selected as they appear particularly promising for future clinical applications.
Collapse
Affiliation(s)
- Federica Barutta
- Department of Medical Sciences, University of Turin, C/so AM Dogliotti 14, Turin, Italy
| | | | | | | |
Collapse
|
72
|
Sherif IO, Al-Mutabagani LA, Alnakhli AM, Sobh MA, Mohammed HE. Renoprotective effects of angiotensin receptor blocker and stem cells in acute kidney injury: Involvement of inflammatory and apoptotic markers. Exp Biol Med (Maywood) 2015; 240:1572-9. [PMID: 25825359 DOI: 10.1177/1535370215577582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/20/2015] [Indexed: 12/11/2022] Open
Abstract
Cisplatin, Cis-diamminedichloroplatinum (CDDP), is a platinum-based chemotherapy drug, and its chemotherapeutic use is restricted by nephrotoxicity. Inflammatory and apoptotic mechanisms play a central role in the pathogenesis of CDDP-induced acute kidney injury (AKI). The aim of this study was to compare the therapeutic potential of candesartan, angiotensin II receptor blocker, versus bone marrow-derived mesenchymal stem cells (BM-MSCs) in a rat model of CDDP-induced nephrotoxicity. Adult male Wistar rats (n = 40) were divided into four groups; Normal control: received saline injection, CDPP group: received CDDP injection (6 mg/kg single dose), Candesartan group: received candesartan (10 mg/kg/day) for 10 days + CDDP at day 3, and Stem cells group: received CDDP + BM-MSCs intravenously one day after CDDP injection. The rats were sacrificed seven days after CDDP injection. Significant elevation in serum creatinine and urea, renal levels of tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1, renal expressions of nuclear factor kappa B (NF-κB), p38-mitogen-activated protein kinase (MAPK), caspase-3 and Bcl-2-associated x protein (Bax) were found in CDDP-injected rats when compared to normal rats. Both candesartan and BM-MSCs ameliorated renal function and reduced significantly the inflammatory markers (TNF-α , NF-κB, p38-MAPK and MCP-1) and apoptotic markers (caspase-3 and Bax) in renal tissue after CDDP injection. Candesartan as well as BM-MSCs have anti-inflammatory and anti-apoptotic actions and they can be used as nephroprotective agents against CDDP-induced nephrotoxicity. BM-MSCs is more effective than candesartan in amelioration of AKI induced by CDDP.
Collapse
Affiliation(s)
- Iman O Sherif
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Kingdom of Saudi Arabia
| | - Laila A Al-Mutabagani
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Kingdom of Saudi Arabia
| | - Anwar M Alnakhli
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Kingdom of Saudi Arabia
| | - Mohamed A Sobh
- Zoology Department, College of Science, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Hoda E Mohammed
- Biochemistry Department, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
73
|
Donate-Correa J, Martín-Núñez E, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. Inflammatory cytokines in diabetic nephropathy. J Diabetes Res 2015; 2015:948417. [PMID: 25785280 PMCID: PMC4345080 DOI: 10.1155/2015/948417] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/17/2015] [Accepted: 01/31/2015] [Indexed: 12/12/2022] Open
Abstract
Probably, the most paradigmatic example of diabetic complication is diabetic nephropathy, which is the largest single cause of end-stage renal disease and a medical catastrophe of worldwide dimensions. Metabolic and hemodynamic alterations have been considered as the classical factors involved in the development of renal injury in patients with diabetes mellitus. However, the exact pathogenic mechanisms and the molecular events of diabetic nephropathy remain incompletely understood. Nowadays, there are convincing data that relate the diabetes inflammatory component with the development of renal disease. This review is focused on the inflammatory processes that develop diabetic nephropathy and on the new therapeutic approaches with anti-inflammatory effects for the treatment of chronic kidney disease in the setting of diabetic nephropathy.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Research Unit, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Ernesto Martín-Núñez
- Research Unit, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Mercedes Muros-de-Fuentes
- Clinical Biochemistry Service, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Carmen Mora-Fernández
- Research Unit, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Juan F. Navarro-González
- Research Unit, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- Nephrology Service, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| |
Collapse
|
74
|
Abstract
Atherosclerosis is a silent chronic vascular pathology that is the cause of the majority of cardiovascular ischaemic events. The evolution of vascular disease involves a combination of endothelial dysfunction, extensive lipid deposition in the intima, exacerbated innate and adaptive immune responses, proliferation of vascular smooth muscle cells and remodelling of the extracellular matrix, resulting in the formation of an atherosclerotic plaque. High-risk plaques have a large acellular lipid-rich necrotic core with an overlying thin fibrous cap infiltrated by inflammatory cells and diffuse calcification. The formation of new fragile and leaky vessels that invade the expanding intima contributes to enlarge the necrotic core increasing the vulnerability of the plaque. In addition, biomechanical, haemodynamic and physical factors contribute to plaque destabilization. Upon erosion or rupture, these high-risk lipid-rich vulnerable plaques expose vascular structures or necrotic core components to the circulation, which causes the activation of tissue factor and the subsequent formation of a fibrin monolayer (coagulation cascade) and, concomitantly, the recruitment of circulating platelets and inflammatory cells. The interaction between exposed atherosclerotic plaque components, platelet receptors and coagulation factors eventually leads to platelet activation, aggregation and the subsequent formation of a superimposed thrombus (i.e. atherothrombosis) which may compromise the arterial lumen leading to the presentation of acute ischaemic syndromes. In this review, we will describe the progression of the atherosclerotic lesion along with the main morphological characteristics that predispose to plaque rupture, and discuss the multifaceted mechanisms that drive platelet activation and subsequent thrombus formation. Finally, we will consider the current scientific challenges and future research directions.
Collapse
Affiliation(s)
- L Badimon
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; Cardiovascular Research Chair, UAB, Barcelona, Spain
| | | |
Collapse
|
75
|
Medbury HJ, Williams H, Fletcher JP. Clinical significance of macrophage phenotypes in cardiovascular disease. Clin Transl Med 2014; 3:63. [PMID: 25635207 PMCID: PMC4303745 DOI: 10.1186/s40169-014-0042-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/11/2014] [Indexed: 01/28/2023] Open
Abstract
The emerging understanding of macrophage subsets and their functions in the atherosclerotic plaque has led to the consensus that M1 macrophages are pro-atherogenic while M2 macrophages may promote plaque stability, primarily though their tissue repair and anti-inflammatory properties. As such, modulating macrophage function to promote plaque stability is an exciting therapeutic prospect. This review will outline the involvement of the different macrophage subsets throughout atherosclerosis progression and in models of regression. It is evident that much of our understanding of macrophage function comes from in vitro or small animal models and, while such knowledge is valuable, we have much to learn about the roles of the macrophage subsets in the clinical setting in order to identify the key pathways to target to possibly promote plaque stability.
Collapse
Affiliation(s)
- Heather J Medbury
- Vascular Biology Research Centre, Department of Surgery, University of Sydney, Westmead Hospital, Westmead, NSW Australia
| | - Helen Williams
- Vascular Biology Research Centre, Department of Surgery, University of Sydney, Westmead Hospital, Westmead, NSW Australia
| | - John P Fletcher
- Vascular Biology Research Centre, Department of Surgery, University of Sydney, Westmead Hospital, Westmead, NSW Australia
| |
Collapse
|
76
|
Lim S, Park S. Role of vascular smooth muscle cell in the inflammation of atherosclerosis. BMB Rep 2014; 47:1-7. [PMID: 24388105 PMCID: PMC4163848 DOI: 10.5483/bmbrep.2014.47.1.285] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 01/13/2023] Open
Abstract
Atherosclerosis is a pathologic process occurring within the artery, in which many cell types, including T cell, macrophages, endothelial cells, and smooth muscle cells, interact, and cause chronic inflammation, in response to various inner- or outer-cellular stimuli. Atherosclerosis is characterized by a complex interaction of inflammation, lipid deposition, vascular smooth muscle cell proliferation, endothelial dysfunction, and extracellular matrix remodeling, which will result in the formation of an intimal plaque. Although the regulation and function of vascular smooth muscle cells are important in the progression of atherosclerosis, the roles of smooth muscle cells in regulating vascular inflammation are rarely focused upon, compared to those of endothelial cells or inflammatory cells. Therefore, in this review, we will discuss here how smooth muscle cells contribute or regulate the inflammatory reaction in the progression of atherosclerosis, especially in the context of the activation of various membrane receptors, and how they may regulate vascular inflammation.
Collapse
Affiliation(s)
| | - Sungha Park
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine; Cardiovascular Research Institute, Yonsei University College of Medicine; Division of Cardiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
77
|
Wirstlein PK, Mikołajczyk M, Jasiński P, Skrzypczak J. Evaluation of the Markers of Inflammation in the Umbilical Cord Blood of Newborns of Mothers with Thrombophilia. Am J Reprod Immunol 2014; 72:561-70. [DOI: 10.1111/aji.12317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 08/06/2014] [Indexed: 12/26/2022] Open
Affiliation(s)
- Przemyslaw K. Wirstlein
- Department of Gynecology and Obstetrics; Division of Reproduction; University of Medical Sciences; Poznań Poland
| | - Mateusz Mikołajczyk
- Department of Gynecology and Obstetrics; Division of Reproduction; University of Medical Sciences; Poznań Poland
| | - Piotr Jasiński
- Gynecological and Obstetric Clinical Hospital in Poznan; Poznan Poland
| | - Jana Skrzypczak
- Department of Gynecology and Obstetrics; Division of Reproduction; University of Medical Sciences; Poznań Poland
| |
Collapse
|
78
|
Zuniga MC, White SLP, Zhou W. Design and utilization of macrophage and vascular smooth muscle cell co-culture systems in atherosclerotic cardiovascular disease investigation. Vasc Med 2014; 19:394-406. [DOI: 10.1177/1358863x14550542] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerotic cardiovascular disease has been acknowledged as a chronic inflammatory condition. Monocytes and macrophages lead the inflammatory pathology of atherosclerosis whereas changes in atheromatous plaque thickness and matrix composition are attributed to vascular smooth muscle cells. Because these cell types are key players in atherosclerosis progression, it is crucial to utilize a reliable system to investigate their interaction. In vitro co-culture systems are useful platforms to study specific molecular mechanisms between cells. This review aims to summarize the various co-culture models that have been developed to investigate vascular smooth muscle cell and monocyte/macrophage interactions, focusing on the monocyte/macrophage effects on vascular smooth muscle cell function.
Collapse
Affiliation(s)
- Mary C Zuniga
- Surgical Services, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sharla L Powell White
- Division of Vascular Surgery, School of Medicine, Stanford University, Stanford, CA, USA
- Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Wei Zhou
- Surgical Services, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Vascular Surgery, School of Medicine, Stanford University, Stanford, CA, USA
- Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
79
|
García-García PM, Getino-Melián MA, Domínguez-Pimentel V, Navarro-González JF. Inflammation in diabetic kidney disease. World J Diabetes 2014; 5:431-443. [PMID: 25126391 PMCID: PMC4127580 DOI: 10.4239/wjd.v5.i4.431] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/24/2014] [Accepted: 06/11/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus entails significant health problems worldwide. The pathogenesis of diabetes is multifactorial, resulting from interactions of both genetic and environmental factors that trigger a complex network of pathophysiological events, with metabolic and hemodynamic alterations. In this context, inflammation has emerged as a key pathophysiology mechanism. New pathogenic pathways will provide targets for prevention or future treatments. This review will focus on the implications of inflammation in diabetes mellitus, with special attention to inflammatory cytokines.
Collapse
|
80
|
Ansari SA, Devi S, Tenguria S, Kumar A, Ahmed N. Helicobacter pylori protein HP0986 (TieA) interacts with mouse TNFR1 and triggers proinflammatory and proapoptotic signaling pathways in cultured macrophage cells (RAW 264.7). Cytokine 2014; 68:110-7. [DOI: 10.1016/j.cyto.2014.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/09/2014] [Accepted: 03/24/2014] [Indexed: 12/12/2022]
|
81
|
Ahad A, Ganai AA, Mujeeb M, Siddiqui WA. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol Appl Pharmacol 2014; 279:1-7. [PMID: 24848621 DOI: 10.1016/j.taap.2014.05.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/05/2014] [Accepted: 05/12/2014] [Indexed: 12/23/2022]
Abstract
Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-кB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway.
Collapse
Affiliation(s)
- Amjid Ahad
- Lipid Metabolism Laboratory, Department of Biochemistry, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Ajaz Ahmad Ganai
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohd Mujeeb
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Waseem Ahmad Siddiqui
- Lipid Metabolism Laboratory, Department of Biochemistry, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
82
|
Nakamura K, Fuster JJ, Walsh K. Adipokines: a link between obesity and cardiovascular disease. J Cardiol 2014; 63:250-9. [PMID: 24355497 PMCID: PMC3989503 DOI: 10.1016/j.jjcc.2013.11.006] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 12/12/2022]
Abstract
Obesity is a risk factor for various cardiovascular diseases including hypertension, atherosclerosis, and myocardial infarction. Recent studies aimed at understanding the microenvironment of adipose tissue and its impact on systemic metabolism have shed light on the pathogenesis of obesity-linked cardiovascular diseases. Adipose tissue functions as an endocrine organ by secreting multiple immune-modulatory proteins known as adipokines. Obesity leads to increased expression of pro-inflammatory adipokines and diminished expression of anti-inflammatory adipokines, resulting in the development of a chronic, low-grade inflammatory state. This adipokine imbalance is thought to be a key event in promoting both systemic metabolic dysfunction and cardiovascular disease. This review will focus on the adipose tissue microenvironment and the role of adipokines in modulating systemic inflammatory responses that contribute to cardiovascular disease.
Collapse
Affiliation(s)
- Kazuto Nakamura
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - José J Fuster
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Kenneth Walsh
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
83
|
Omote K, Gohda T, Murakoshi M, Sasaki Y, Kazuno S, Fujimura T, Ishizaka M, Sonoda Y, Tomino Y. Role of the TNF pathway in the progression of diabetic nephropathy in KK-A(y) mice. Am J Physiol Renal Physiol 2014; 306:F1335-47. [PMID: 24647715 DOI: 10.1152/ajprenal.00509.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic inflammation promotes the progression of diabetic nephropathy (DN). However, the role of TNF-α remains unclear. The objectives of the present study were to examine whether TNF-α inhibition with a soluble TNF receptor (TNFR)2 fusion protein, i.e., etanercept (ETN), improves the early stage of DN in the type 2 diabetic model of the KK-A(y) mouse and to also investigate which TNF pathway, TNFR1 or TNFR2, is predominantly involved in the progression of this disease. ETN was injected intraperitoneally into mice for 8 wk. Renal damage was evaluated by immunohistochemistry, Western blot analysis, and/or real-time PCR. In vitro, mouse tubular proximal cells were stimulated by TNF-α and/or high glucose (HG) and treated with ETN. ETN dramatically improved not only albuminuria but also glycemic control. Renal mRNA and/or protein levels of TNFR2, but not TNF-α and TNFR1, in ETN-treated KK-A(y) mice were significantly decreased compared with untreated KK-A(y) mice. mRNA levels of ICAM-1, VCAM-1, and monocyte chemoattractant protein-1 and the number of F4/80-positive cells were all decreased after treatment. Numbers of cleaved caspase-3- and TUNEL-positive cells in untreated mice were very few and were not different from ETN-treated mice. In vitro, stimulation with TNF-α or HG markedly increased both mRNA levels of TNFRs, unlike in the in vivo case. Furthermore, ETN partly recovered TNF-α-induced but not HG-induced TNFR mRNA levels. In conclusion, it appears that ETN may improve the progression of the early stage of DN predominantly through inhibition of the anti-inflammatory action of the TNF-α-TNFR2 pathway.
Collapse
Affiliation(s)
- Keisuke Omote
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Tomohito Gohda
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Maki Murakoshi
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Yu Sasaki
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Saiko Kazuno
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tsutomu Fujimura
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masanori Ishizaka
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Yuji Sonoda
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Yasuhiko Tomino
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| |
Collapse
|
84
|
Taghavie-Moghadam PL, Butcher MJ, Galkina EV. The dynamic lives of macrophage and dendritic cell subsets in atherosclerosis. Ann N Y Acad Sci 2014; 1319:19-37. [PMID: 24628328 DOI: 10.1111/nyas.12392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Atherosclerosis, the major pathological process through which arterial plaques are formed, is a dynamic chronic inflammatory disease of large- and medium-sized arteries in which the vasculature, lipid metabolism, and the immune system all play integral roles. Both the innate and adaptive immune systems are involved in the development and progression of atherosclerosis but myeloid cells represent the major component of the burgeoning atherosclerotic plaque. Various myeloid cells, including monocytes, macrophages (MΦs), and dendritic cells (DCs) can be found within the healthy and atherosclerotic arterial wall, where they can contribute to or regulate inflammation. However, the precise behaviors and functions of these cells in situ are still active areas of investigation that continue to yield exciting and surprising new data. Here, we review recent progress in understanding of the complex biology of MΦs and DCs, focusing particularly on the dynamic regulation of these subsets in the arterial wall and novel, emerging functions of these cells during atherogenesis.
Collapse
Affiliation(s)
- Parésa L Taghavie-Moghadam
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia
| | | | | |
Collapse
|
85
|
Yokoi T, Isono T, Saitoh M, Yoshimura Y, Nozaki K. Suppression of cerebral aneurysm formation in rats by a tumor necrosis factor-α inhibitor. J Neurosurg 2014; 120:1193-200. [PMID: 24628611 DOI: 10.3171/2014.1.jns13818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Although cerebral aneurysmal subarachnoid hemorrhage is a devastating disease for humans, effective medical treatments have not yet been established. Recent reports have shown that regression of some inflammatory-related mediators has protective effects in experimental cerebral aneurysm models. This study corroborated the effectiveness of tumor necrosis factor-α (TNF-α) inhibitor for experimentally induced cerebral aneurysms in rats. METHODS Five-week-old male rats were prepared for induction of cerebral aneurysms and divided into 3 groups, 2 groups administered different concentrations of a TNF-α inhibitor (etanercept), and 1 control group. One month after aneurysm induction, 7-T MRI was performed. The TNF-α inhibitor groups received subcutaneous injection of 25 μg or 2.5 μg of etanercept, and the control group received subcutaneous injection of normal saline every week. The TNF-α inhibitor administrations were started at 1 month after aneurysm induction to evaluate its suppressive effects on preexisting cerebral aneurysms. Arterial circles of Willis were obtained and evaluated 3 months after aneurysm induction. RESULTS Rats administered a TNF-α inhibitor experienced significant increases in media thickness and reductions in aneurysmal size compared with the control group. Immunohistochemical staining showed that treatment with a TNF-α inhibitor suppressed matrix metalloproteinase (MMP)-9 and inducible nitric oxide synthase (iNOS) expression through the luminal surface of the endothelial cell layer, the media and the adventitia at the site of aneurysmal formation, and the anterior cerebral artery-olfactory artery bifurcation. Quantitative polymerase chain reaction also showed suppression of MMP-9 and iNOS by TNF-α inhibitor administration. CONCLUSIONS Therapeutic administration of a TNF-α inhibitor significantly reduced the formation of aneurysms in rats. These data also suggest that TNF-α suppression reduced some inflammatory-related mediators that are in the downstream pathway of nuclear factor-κB.
Collapse
|
86
|
Wang Q, Ren J, Morgan S, Liu Z, Dou C, Liu B. Monocyte chemoattractant protein-1 (MCP-1) regulates macrophage cytotoxicity in abdominal aortic aneurysm. PLoS One 2014; 9:e92053. [PMID: 24632850 PMCID: PMC3954911 DOI: 10.1371/journal.pone.0092053] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/17/2014] [Indexed: 11/18/2022] Open
Abstract
Aims In abdominal aortic aneurysm (AAA), macrophages are detected in the proximity of aortic smooth muscle cells (SMCs). We have previously demonstrated in a murine model of AAA that apoptotic SMCs attract monocytes and other leukocytes by producing MCP-1. Here we tested whether infiltrating macrophages also directly contribute to SMC apoptosis. Methods and Results Using a SMC/RAW264.7 macrophage co-culture system, we demonstrated that MCP-1-primed RAWs caused a significantly higher level of apoptosis in SMCs as compared to control macrophages. Next, we detected an enhanced Fas ligand (FasL) mRNA level and membrane FasL protein expression in MCP-1-primed RAWs. Neutralizing FasL blocked SMC apoptosis in the co-culture. In situ proximity ligation assay showed that SMCs exposed to primed macrophages contained higher levels of receptor interacting protein-1 (RIP1)/Caspase 8 containing cell death complexes. Silencing RIP1 conferred apoptosis resistance to SMCs. In the mouse elastase injury model of aneurysm, aneurysm induction increased the level of RIP1/Caspase 8 containing complexes in medial SMCs. Moreover, TUNEL-positive SMCs in aneurysmal tissues were frequently surrounded by CD68+/FasL+ macrophages. Conversely, elastase-treated arteries from MCP-1 knockout mice display a reduction of both macrophage infiltration and FasL expression, which was accompanied by diminished apoptosis of SMCs. Conclusion Our data suggest that MCP-1-primed macrophages are more cytotoxic. MCP-1 appears to modulate macrophage cytotoxicity by increasing the level of membrane bound FasL. Thus, we showed that MCP-1-primed macrophages kill SMCs through a FasL/Fas-Caspase8-RIP1 mediated mechanism.
Collapse
Affiliation(s)
- Qiwei Wang
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Jun Ren
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Stephanie Morgan
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Zhenjie Liu
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, United States of America
| | | | - Bo Liu
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
87
|
Abdel Aziz MT, Wassef MAA, Ahmed HH, Rashed L, Mahfouz S, Aly MI, Hussein RE, Abdelaziz M. The role of bone marrow derived-mesenchymal stem cells in attenuation of kidney function in rats with diabetic nephropathy. Diabetol Metab Syndr 2014; 6:34. [PMID: 24606996 PMCID: PMC4007638 DOI: 10.1186/1758-5996-6-34] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/22/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Stem cell therapy holds a great promise for the repair of injured tissues and organs, including the kidney. We studied the effect of mesenchymal stem cells (MSC) on experimental diabetic nephropathy (DN) in rats and the possible paracrine signals that mediate their action. MATERIALS AND METHODS Rats were divided into controls, DN rats, DN rats receiving MSCs. MSCs were given in a dose of (106cells) by intravenous injection. After 4 weeks, 24 h urinary albumin, serum urea and creatinine concentrations, transforming growth factor β (TGF β), tumor necrosis factor α (TNFα), B-cell lymphoma 2 (bcl2) and Bax gene expression and vascular endothelial growth factor (VEGF) were assessed. Histopathology staining was performed. RESULTS MSC therapy significantly improved 24 h urinary albumin, serum urea and creatinine concentrations, increased angiogenic growth factor VEGF, and anti-apoptotic protein bcl2 while decreased the pro-inflammatory TNF-α, fibrogenic growth factor TGF β, and pro-apoptotic protein Bax. The histopathology examination showed patchy areas of minimal necrosis and degeneration in renal tubules.
Collapse
Affiliation(s)
- Mohamed Talaat Abdel Aziz
- Unit of Biochemistry and Molecular Biology, Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Mohamed Abdel Aziz Wassef
- Unit of Biochemistry and Molecular Biology, Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Hanan Hosni Ahmed
- Unit of Biochemistry and Molecular Biology, Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Laila Rashed
- Unit of Biochemistry and Molecular Biology, Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Soheir Mahfouz
- Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mayssa Ibrahim Aly
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania Elsayed Hussein
- Unit of Biochemistry and Molecular Biology, Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Mai Abdelaziz
- Unit of Biochemistry and Molecular Biology, Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| |
Collapse
|
88
|
Abstract
Understanding the pathophysiology of atherogenesis and the progression of atherosclerosis have been major goals of cardiovascular research during the previous decades. However, the complex molecular and cellular mechanisms underlying plaque destabilization remain largely obscure. Here, we review how lesional cells undergo cell death and how failed clearance exacerbates necrotic core formation. Advanced atherosclerotic lesions are further weakened by the pronounced local activity of matrix-degrading proteases as well as immature neovessels sprouting into the lesion. To stimulate translation of the current knowledge of molecular mechanisms of plaque destabilization into clinical studies, we further summarize available animal models of plaque destabilization. Based on the molecular mechanisms leading to plaque instability, we outline the current status of clinical and preclinical trials to induce plaque stability with a focus on induction of dead cell clearance, inhibition of protease activity, and dampening of inflammatory cell recruitment.
Collapse
|
89
|
Immunomodulation of macrophages by methylglyoxal conjugated with chitosan nanoparticles against Sarcoma-180 tumor in mice. Cell Immunol 2014; 287:27-35. [DOI: 10.1016/j.cellimm.2013.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/24/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022]
|
90
|
Richards CD. The enigmatic cytokine oncostatin m and roles in disease. ISRN INFLAMMATION 2013; 2013:512103. [PMID: 24381786 PMCID: PMC3870656 DOI: 10.1155/2013/512103] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/29/2013] [Indexed: 12/11/2022]
Abstract
Oncostatin M is a secreted cytokine involved in homeostasis and in diseases involving chronic inflammation. It is a member of the gp130 family of cytokines that have pleiotropic functions in differentiation, cell proliferation, and hematopoetic, immunologic, and inflammatory networks. However, Oncostatin M also has activities novel to mediators of this cytokine family and others and may have fundamental roles in mechanisms of inflammation in pathology. Studies have explored Oncostatin M functions in cancer, bone metabolism, liver regeneration, and conditions with chronic inflammation including rheumatoid arthritis, lung and skin inflammatory disease, atherosclerosis, and cardiovascular disease. This paper will review Oncostatin M biology in a historical fashion and focus on its unique activities, in vitro and in vivo, that differentiate it from other cytokines and inspire further study or consideration in therapeutic approaches.
Collapse
Affiliation(s)
- Carl D. Richards
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street, West, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
91
|
Barakonyi A, Miko E, Szereday L, Polgar PD, Nemeth T, Szekeres-Bartho J, Engels GL. Cell Death Mechanisms and Potentially Cytotoxic Natural Immune Cells in Human Pregnancies Complicated by Preeclampsia. Reprod Sci 2013; 21:155-66. [DOI: 10.1177/1933719113497288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Aliz Barakonyi
- Department of Medical Microbiology and Immunology, Clinical Centre, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, Pecs, Hungary
| | - Eva Miko
- Department of Medical Microbiology and Immunology, Clinical Centre, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, Pecs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Clinical Centre, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, Pecs, Hungary
| | - Petra Dora Polgar
- Department of Medical Microbiology and Immunology, Clinical Centre, University of Pecs, Pecs, Hungary
| | - Timea Nemeth
- Department of Languages for Specific Purposes, Medical School, University of Pecs, Pecs, Hungary
| | - Julia Szekeres-Bartho
- Department of Medical Microbiology and Immunology, Clinical Centre, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, Pecs, Hungary
| | - Geraldine Laura Engels
- Department of Medical Microbiology and Immunology, Clinical Centre, University of Pecs, Pecs, Hungary
| |
Collapse
|
92
|
Ruzevick J, Jackson C, Pradilla G, Garzon-Muvdi T, Tamargo RJ. Aneurysm formation in proinflammatory, transgenic haptoglobin 2-2 mice. Neurosurgery 2013; 72:70-6; discussion 76. [PMID: 23096414 DOI: 10.1227/neu.0b013e318276b306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inflammation and macrophages in particular are believed to play a role in aneurysm formation. The haptoglobin (Hp) 2-2 genotype is associated with a proinflammatory state. OBJECTIVE To investigate the role of inflammation in the formation of aneurysms using a murine model of aneurysm formation in transgenic, proinflammatory Hp2-2 mice and wild-type Hp1-1 mice. METHODS Carotid artery aneurysms were induced in the left common carotid artery of wild-type Hp1-1 mice and transgenic Hp2-2 mice using elastase to degrade the arterial wall of the common carotid artery and angiotensin II to induce hypertension. There were 4 experimental groups: (1) sham surgery (n = 11); (2) angiotensin II only (n = 10); (3) elastase only (n = 20); and (4) elastase + angiotensin II (n = 20). Aneurysm size was determined by measuring the outer circumference and luminal circumference of the blood vessel. Macrophages that infiltrated the aneurysm wall were quantified by immunohistochemistry. Results were analyzed using 2-way analysis of variance with a Bonferroni post-test. RESULTS Aneurysms in Hp2-2 mice were significantly larger than aneurysms in Hp1-1 mice in the setting of vessel wall degradation and hypertension (P = .02 for outer circumference, P = .01 for luminal circumference). Furthermore, the number of macrophages infiltrating the aneurysm wall was significantly increased in Hp2-2 mice (P < .001). CONCLUSION Hp2-2 mice formed aneurysms that were significantly larger and had a significantly greater number of macrophages in the aneurysm wall compared with Hp1-1 mice. This suggests that the proinflammatory state associated with the Hp2-2 protein is involved in aneurysm formation and that the Hp genotype may be a useful biomarker in predicting aneurysm progression.
Collapse
Affiliation(s)
- Jacob Ruzevick
- Department of Neurological Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | |
Collapse
|
93
|
Santolaya JL, Kugler L, Francois L, Stefano VD, Ebert GA, Wolf R, Wang B, Santolaya-Forgas J. Baseline TNFα operational capacity in fetal and maternal circulation prior to the onset of labor: "tuned for different purposes". Reprod Sci 2013; 20:838-44. [PMID: 23287097 PMCID: PMC5933195 DOI: 10.1177/1933719112468953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In this study, we sought to characterize the tumor necrosis factor α (TNFα) baseline operational capacity in mature fetuses and their mothers prior to the onset of labor. MATERIALS AND METHODS We used an experimental pregnant nonhuman primate model to measure the plasma concentration of TNFα, TNF transmembrane receptor I (TNFRI), and TNFRII with validated enzyme-linked immunosorbent assays. Coefficients of correlations between the maternal and the fetal values and the soluble TNFα, TNFRI, or TNFRII concentrations and ratios were calculated. RESULTS The TNFα/TNFRI ratio was 3 times lower in fetal circulation than in maternal circulation. No correlations were noted between the maternal and the fetal TNFα, TNFRI, or TNFRII plasma concentrations. CONCLUSIONS These findings suggest that the fetal and maternal baseline circulatory operational capacities of TNFα are independent of each other and tuned differently. This differential regulation of TNFα in fetal and maternal circulation at the end of pregnancy may be guided to protect the fetus from the systemic inflammatory response that is essential for the mechanisms of labor to proceed in the mother.
Collapse
Affiliation(s)
- Jacobo L Santolaya
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of Medicine and Dentistry New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways. Acta Pharmacol Sin 2013; 34:901-11. [PMID: 23645013 DOI: 10.1038/aps.2013.24] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/27/2013] [Indexed: 12/17/2022]
Abstract
AIM To investigate whether curcumin (Cur) suppressed lipopolysaccharide (LPS)-induced inflammation in vascular smooth muscle cells (VSMCs) of rats, and to determine its molecular mechanisms. METHODS Primary rat VSMCs were treated with LPS (1 μg/L) and Cur (5, 10, or 30 μmol/L) for 24 h. The levels of MCP-1, TNF-α, and iNOS were measured using ELISA and real-time RT-PCR. NO level was analyzed with the Griess reaction. Western-blotting was used to detect the activation of TLR4, MAPKs, IκBα, NF-κB p65, and the p47(phox) subunit of NADPH oxidase in the cells. RESULTS Treatment of VSMCs with LPS dramatically increased expression of inflammatory cytokines MCP-1 and TNF-α, expression of TLR4 and iNOS, and NO production. LPS also significantly increased phosphorylation of IκBα, nuclear translocation of NF-κB (p65) and phosphorylation of MAPKs in VSMCs. Furthermore, LPS significantly increased production of intracellular ROS, and decreased expression of p47(phox) subunit of NADPH oxidase. Pretreatment with Cur concentration-dependently attenuated all the aberrant changes in LPS-treated VSMCs. The LPS-induced overexpression of MCP-1 and TNF-α, and NO production were attenuated by pretreatment with the ERK inhibitor PD98059, the p38 MAPK inhibitor SB203580, the NF-κB inhibitor PDTC or anti-TLR4 antibody, but not with the JNK inhibitor SP600125. CONCLUSION Cur suppresses LPS-induced overexpression of inflammatory mediators in VSMCs in vitro via inhibiting the TLR4-MAPK/NF-κB pathways, partly due to block of NADPH-mediated intracellular ROS production.
Collapse
|
95
|
Sanz AB, Sanchez-Niño MD, Izquierdo MC, Gonzalez-Espinoza L, Ucero AC, Poveda J, Ruiz-Andres O, Ruiz-Ortega M, Selgas R, Egido J, Ortiz A. Macrophages and recently identified forms of cell death. Int Rev Immunol 2013; 33:9-22. [PMID: 23802146 DOI: 10.3109/08830185.2013.771183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent advances in cell death biology have uncovered an ever increasing range of cell death forms. Macrophages have a bidirectional relationship with cell death that modulates the immune response. Thus, macrophages engulf apoptotic cells and secrete cytokines that may promote cell death in parenchymal cells. Furthermore, the presence of apoptotic or necrotic dead cells in the microenvironment elicits differential macrophage responses. Apoptotic cells elicit anti-inflammatory responses in macrophages. By contrast macrophages may undergo a proinflammatory form of cell death (pyroptosis) in response to damage-associated molecular patterns (DAMPs) released from necrotic cells and also in response to pathogen-associated molecular patterns (PAMPs). Pyroptosis is a recently identified form of cell death that occurs predominantly in subsets of inflammatory macrophages and is associated to the release of interleukin-1β (IL-1β) and IL-18. Deregulation of these processes may result in disease. Thus, failure of macrophages to engulf apoptotic cells may be a source of autoantigens in autoimmune diseases, excessive macrophage release of proapoptotic factors or sterile pyroptosis may contribute to tissue injury and failure of pathogen-induced pyroptosis may contribute to pathogen survival. Ongoing research is exploring the therapeutic opportunities resulting this new knowledge.
Collapse
Affiliation(s)
- Ana B Sanz
- 1Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
The calcium chloride-induced rodent model of abdominal aortic aneurysm. Atherosclerosis 2012; 226:29-39. [PMID: 23044097 DOI: 10.1016/j.atherosclerosis.2012.09.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/01/2012] [Accepted: 09/14/2012] [Indexed: 11/22/2022]
Abstract
Abdominal aortic aneurysm (AAA) affects ∼5% men aged over 65 years and is an important cause of death in this population. Research into AAA pathogenesis has been fuelled by the need to identify new diagnostic biomarkers and therapeutic targets for this disease. One animal model of AAA involves peri-vascular application of calcium chloride (CaCl(2)) onto the infra-renal aorta of mice and rats to induce extracellular matrix remodelling. Twenty-three studies assessing CaCl(2)-induced AAA and six studies assessing AAA induced by a modified CaCl(2) method were identified. In the current report the preparation and pathological features of this AAA model are discussed. We also compared this animal model to human AAA. CaCl(2)-induced AAA shows the following pathological characteristics typically found in human AAA: calcification, inflammatory cell infiltration, oxidative stress, neovascularisation, elastin degradation and vascular smooth muscle cell apoptosis. A number of mechanisms involved in CaCl(2)-induced AAA have been identified which may be relevant to the pathogenesis of human AAA. Key molecules include c-Jun N-terminal kinase, peroxisome proliferator-activated receptor-γ, chemokine (C-C motif) receptor 2, group x secretory phospholipase A2 and plasminogen. CaCl(2)-induced AAA does not display aortic thrombus, atherosclerosis and rupture which are classical features of human AAA. Advantages of the CaCl(2)-induced AAA technique include (1) it can be applied to wild type mice making assessment of transgenic rodent models more straight forward and rapid; and (2) CaCl(2)-induced AAAs are usually developed in the infra-renal abdominal aorta, which is the most common location of human AAA. Currently findings obtained from the CaCl(2)-induced AAA model or other animal models of AAA have not been translated into the human situation. It is hoped that this deficiency will be corrected over the next decade with a number of clinical trials currently examining novel treatment options for AAA patients.
Collapse
|
97
|
Abstract
Diabetic nephropathy is the leading cause of end-stage kidney disease worldwide but current treatments remain suboptimal. This review examines the evidence for inflammation in the development and progression of diabetic nephropathy in both experimental and human diabetes, and provides an update on recent novel experimental approaches targeting inflammation and the lessons we have learned from these approaches. We highlight the important role of inflammatory cells in the kidney, particularly infiltrating macrophages, T-lymphocytes and the subpopulation of regulatory T cells. The possible link between immune deposition and diabetic nephropathy is explored, along with the recently described immune complexes of anti-oxidized low-density lipoproteins. We also briefly discuss some of the major inflammatory cytokines involved in the pathogenesis of diabetic nephropathy, including the role of adipokines. Lastly, we present the latest data on the pathogenic role of the stress-activated protein kinases in diabetic nephropathy, from studies on the p38 mitogen activated protein kinase and the c-Jun amino terminal kinase cell signalling pathways. The genetic and pharmacological approaches which reduce inflammation in diabetic nephropathy have not only enhanced our understanding of the pathophysiology of the disease but shown promise as potential therapeutic strategies.
Collapse
|
98
|
Feig JE, Feig JL. Macrophages, dendritic cells, and regression of atherosclerosis. Front Physiol 2012; 3:286. [PMID: 22934038 PMCID: PMC3429058 DOI: 10.3389/fphys.2012.00286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/29/2012] [Indexed: 01/15/2023] Open
Abstract
Atherosclerosis is the number one cause of death in the Western world. It results from the interaction between modified lipoproteins and cells such as macrophages, dendritic cells (DCs), T cells, and other cellular elements present in the arterial wall. This inflammatory process can ultimately lead to the development of complex lesions, or plaques, that protrude into the arterial lumen. Ultimately, plaque rupture and thrombosis can occur leading to the clinical complications of myocardial infarction or stroke. Although each of the cell types plays roles in the pathogenesis of atherosclerosis, the focus of this review will be primarily on the macrophages and DCs. The role of these two cell types in atherosclerosis is discussed, with a particular emphasis on their involvement in atherosclerosis regression.
Collapse
Affiliation(s)
- Jonathan E Feig
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Medical Center NY, USA
| | | |
Collapse
|
99
|
Frösen J, Tulamo R, Paetau A, Laaksamo E, Korja M, Laakso A, Niemelä M, Hernesniemi J. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol 2012; 123:773-86. [PMID: 22249619 DOI: 10.1007/s00401-011-0939-3] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/22/2011] [Accepted: 12/31/2011] [Indexed: 01/06/2023]
Abstract
Saccular intracranial aneurysms (sIA) are pouch-like pathological dilatations of intracranial arteries that develop when the cerebral artery wall becomes too weak to resist hemodynamic pressure and distends. Some sIAs remain stable over time, but in others mural cells die, the matrix degenerates, and eventually the wall ruptures, causing life-threatening hemorrhage. The wall of unruptured sIAs is characterized by myointimal hyperplasia and organizing thrombus, whereas that of ruptured sIAs is characterized by a decellularized, degenerated matrix and a poorly organized luminal thrombus. Cell-mediated and humoral inflammatory reaction is seen in both, but inflammation is clearly associated with degenerated and ruptured walls. Inflammation, however, seems to be a reaction to the ongoing degenerative processes, rather than the cause. Current data suggest that the loss of mural cells and wall degeneration are related to impaired endothelial function and high oxidative stress, caused in part by luminal thrombosis. The aberrant flow conditions caused by sIA geometry are the likely cause of the endothelial dysfunction, which results in accumulation of cytotoxic and pro-inflammatory substances into the sIA wall, as well as thrombus formation. This may start the processes that eventually can lead to the decellularized and degenerated sIA wall that is prone to rupture.
Collapse
Affiliation(s)
- Juhana Frösen
- Department of Neurosurgery, Helsinki University Central Hospital, Topeliuksenkatu 5, 00260 Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Boyle JJ, Christou I, Iqbal MB, Nguyen AT, Leung VWY, Evans PC, Liu Y, Johns M, Kirkham P, Haskard DO. Solid-phase immunoglobulins IgG and IgM activate macrophages with solid-phase IgM acting via a novel scavenger receptor a pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:347-61. [PMID: 22658487 DOI: 10.1016/j.ajpath.2012.03.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 02/26/2012] [Accepted: 03/20/2012] [Indexed: 01/21/2023]
Abstract
IgG may accelerate atherosclerosis via ligation of proinflammatory Fcγ receptors; however, IgM is unable to ligate FcγR and is often considered vasculoprotective. IgM aggravates ischemia-reperfusion injury, and solid-phase deposits of pure IgM, as seen with IgM-secreting neoplasms, are well known clinically to provoke vascular inflammation. We therefore examined the molecular mechanisms by which immunoglobulins can aggravate vascular inflammation, such as in atherosclerosis. We compared the ability of fluid- and solid-phase immunoglobulins to activate macrophages. Solid-phase immunoglobulins initiated prothrombotic and proinflammatory functions in human macrophages, including NF-κB p65 activation, H(2)O(2) secretion, macrophage-induced apoptosis, and tissue factor expression. Responses to solid-phase IgG (but not to IgM) were blocked by neutralizing antibodies to CD16 (FcγRIII), consistent with its known role. Macrophages from mice deficient in macrophage scavenger receptor A (SR-A; CD204) had absent IgM binding and no activation by solid-phase IgM. RNA interference-mediated knockdown of SR-A in human macrophages suppressed activation by solid-phase IgM. IgM binding to SR-A was demonstrated by both co-immunoprecipitation studies and the binding of fluorescently labeled IgM to SR-A-transfected cells. Immunoglobulins on solid-phase particles around macrophages were found in human plaques, increased in ruptured plaques compared with stable ones. These observations indicate that solid-phase IgM and IgG can activate macrophages and destabilize vulnerable plaques. Solid-phase IgM activates macrophages via a novel SR-A pathway.
Collapse
Affiliation(s)
- Joseph J Boyle
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|