51
|
Iwami D, Nonomura K, Shirasugi N, Niimi M. Immunomodulatory effects of eicosapentaenoic acid through induction of regulatory T cells. Int Immunopharmacol 2010; 11:384-9. [PMID: 21182821 DOI: 10.1016/j.intimp.2010.11.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/07/2010] [Accepted: 11/29/2010] [Indexed: 01/01/2023]
Abstract
Dietary intake of omega-3 polyunsaturated fatty acids (PUFAs) has been found to affect inflammation and metabolism, and many researchers have shown that omega-3 PUFAs provide benefits in immunologic and metabolic disorders. These effects were assumed to result mainly from a modification in the production of inflammatory mediators and the suppression of inflammatory leukocytes. Among PUFAs, eicosapentaenoic acid (EPA), a component of fish oil, apparently has the most potent effect. Recently, much research has focused on regulatory T cells (Tregs) as controllers of immune responses not only to self-antigens but also to non-self-antigens, including donor alloantigens. Therefore, induction of antigen-specific Tregs may be an attractive strategy for managing autoimmune diseases and transplant rejection. Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated nuclear receptor that regulates lipid and glucose metabolism, can be activated by thiazolidinediones, fatty acids, and eicosanoids, including EPA. PPARγ was recently found to have immunoregulatory effects, and a PPARγ agonist inhibited immune responses in a rat model of autoimmune disease. Furthermore, in a murine model, one high dose of purified EPA given the day of transplantation induced marked prolongation of cardiac allograft survival in a dose-dependent manner. These findings suggest that EPA induced Tregs by means of a PPARγ-dependent mechanism. This review describes the immunomodulatory effects of PUFAs, especially EPA, and summarizes recent research that may have implications for the development of therapies for autoimmune diseases and transplant rejection that are based on induction of Tregs.
Collapse
Affiliation(s)
- Daiki Iwami
- Department of Surgery, Teikyo University, Kaga 2-11-1, Itabashi-ku, 173-8605, Tokyo, Japan
| | | | | | | |
Collapse
|
52
|
Butters D, Whitehouse M. Beyond conventional DMARDs: extending TNF-regulant therapies to the vast majority/less privileged who do need them. Int J Rheum Dis 2010; 12:299-306. [PMID: 20374366 DOI: 10.1111/j.1756-185x.2009.01427.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article is a plea to find (better) ways to extend the benefits of anti-cytokine therapies to ensure they will become available as widely as possible. Pessimistically, this will probably involve substituting more affordable, although somewhat less specific, non-biological agents for present target-specific bio-DMARDs (disease-modifying antirheumatic drugs) to ensure far wider distribution of benefits. Optimistically, new developments in technology and bio-engineering might dramatically reduce costs of present 'biological' therapies. (The antibiotics we now take for granted were once also horrendously expensive.). Pragmatically, one goal for this mission should include seriously pursuing more research and pilot clinical trials of non-protein combination therapies able to control: (i) TNF or other pro-inflammatory cytokines; and also (ii) other mediators sustaining chronic inflammation (-->pain, effusion, fibrosis, porosis, etc.). This can be immediately facilitated by drawing upon the immense resources of non-prescription Asia-Pacific traditional therapies--particularly when these have already been shown to either reduce TNF synthesis or control TNF-induced responses in preclinical studies. Could this be a major goal for the next decade, helping rectify some of the omissions of the current Bone & Joint Decade 2000-2010?
Collapse
Affiliation(s)
- Desley Butters
- Therapeutics Research Unit, Department of Medicine, Princess Alexandra Hospital, Woolloongabba, Brisbane, Queensland, Australia
| | | |
Collapse
|
53
|
Pepe M, Recchia FA. Omega-3 Fatty Acids for the Prevention of Myocardial Infarction and Arrhythmias. Cardiovasc Ther 2010; 28:e1-4. [DOI: 10.1111/j.1755-5922.2010.00138.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
54
|
Casós K, Zaragozá MC, Zarkovic N, Zarkovic K, Andrisic L, Portero-Otín M, Cacabelos D, Mitjavila MT. A fish oil-rich diet reduces vascular oxidative stress in apoE–/–mice. Free Radic Res 2010; 44:821-9. [DOI: 10.3109/10715762.2010.485992] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
55
|
The 2008 ESPEN Sir David Cuthbertson Lecture: Fatty acids and inflammation--from the membrane to the nucleus and from the laboratory bench to the clinic. Clin Nutr 2010; 29:5-12. [PMID: 19931231 DOI: 10.1016/j.clnu.2009.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/02/2009] [Accepted: 11/04/2009] [Indexed: 11/21/2022]
Abstract
Many chronic conditions involve excessive inflammation that is damaging to host tissues. Excessive or inappropriate inflammation and immunosuppression are components of the response to surgery, trauma, injury and infection in some individuals and these can lead, progressively, to sepsis and septic shock. Hyperinflammation is characterised by the production of inflammatory cytokines, eicosanoids and other inflammatory mediators, while the immunosuppression is characterised by impairment of antigen presentation and of certain T cell responses. N-6 fatty acids may contribute to the hyperinflamed and immunosuppressed states. N-3 fatty acids from fish oil decrease the production of inflammatory cytokines and eicosanoids. They act both directly (by replacing arachidonic acid as an eicosanoid precursor) and indirectly (by altering the expression of inflammatory genes through effects on transcription factor activation). Thus, these fatty acids are potentially useful anti-inflammatory agents and may be of benefit in patients with chronic inflammatory diseases or at risk of hyperinflammation and sepsis. An emerging application of n-3 fatty acids is in surgical or critically ill patients where they may be added to parenteral or enteral formulas. Studies to date are suggestive of clinical benefits from these approaches, although more robust data are needed especially in critically ill patients.
Collapse
|
56
|
Dietary n-3 polyunsaturated fatty acids and the aetiology of ulcerative colitis: a UK prospective cohort study. Eur J Gastroenterol Hepatol 2010; 22:602-6. [PMID: 20216220 DOI: 10.1097/meg.0b013e3283352d05] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The aetiology of ulcerative colitis (UC) is largely unknown, although it is plausible that dietary n-3 polyunsaturated fatty acids (PUFAs) may be protective. Metabolites derived from n-3 PUFAs are less proinflammatory than those from n-6 PUFAs. Earlier, no prospective cohort studies have investigated this hypothesis, using dietary information collected from food diaries. The aim of this study was to investigate the total dietary intake of n-3 PUFAs and the specific n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the risk of developing incident UC. METHODOLOGY Twenty-five thousand six hundred and thirty-nine participants, living in Norfolk UK, aged 45-74 years (median age at recruitment of 59.2 years), completed 7-day food diaries. These were interpreted using a computer programme, which converted food items into nutrients, including n-3 PUFAs. The cohort was monitored for participants who developed UC. Each case was matched with four controls and an analysis performed using conditional logistic regression. RESULTS In the cohort, 22 incident cases of UC were identified after a median follow-up time of 4.2 years (range 1.8-8.3 years). A statistically significant protective odds ratio (OR) for the trend across tertiles was found for DHA [OR = 0.43, 95% confidence interval (CI)=0.22-0.86, P = 0.02] and borderline statistically significant differences for trends for total total n-3 PUFAs (OR = 0.56, 95% CI=0.28-1.13, P = 0.10) and EPA (OR = 0.53, 95% CI=0.27-1.03, P = 0.06) after adjusting for age, sex, total energy intake, smoking, and other fatty acids. CONCLUSION Total dietary n-3 PUFAs, EPA, and DHA, particularly DHA were associated with protection from UC in a cohort aged over 45 years. If the association is causal, then increasing the population's intake of n-3 PUFAs from oily fish may help prevent UC.
Collapse
|
57
|
Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients 2010; 2:355-374. [PMID: 22254027 PMCID: PMC3257651 DOI: 10.3390/nu2030355] [Citation(s) in RCA: 654] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 12/21/2022] Open
Abstract
Long chain fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or at least associated with, changes in fatty acid composition of cell membranes. Changes in these compositions can modify membrane fluidity, cell signaling leading to altered gene expression, and the pattern of lipid mediator production. Cell involved in the inflammatory response are typically rich in the n-6 fatty acid arachidonic acid, but the contents of arachidonic acid and of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can be altered through oral administration of EPA and DHA. Eicosanoids produced from arachidonic acid have roles in inflammation. EPA also gives rise to eicosanoids and these often have differing properties from those of arachidonic acid-derived eicosanoids. EPA and DHA give rise to newly discovered resolvins which are anti-inflammatory and inflammation resolving. Increased membrane content of EPA and DHA (and decreased arachidonic acid content) results in a changed pattern of production of eicosanoids and resolvins. Changing the fatty acid composition of cells involved in the inflammatory response also affects production of peptide mediators of inflammation (adhesion molecules, cytokines etc.). Thus, the fatty acid composition of cells involved in the inflammatory response influences their function; the contents of arachidonic acid, EPA and DHA appear to be especially important. The anti-inflammatory effects of marine n-3 PUFAs suggest that they may be useful as therapeutic agents in disorders with an inflammatory component.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, MP887 Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
58
|
Calder PC. Fatty acids and immune function: relevance to inflammatory bowel diseases. Int Rev Immunol 2010; 28:506-34. [PMID: 19954361 DOI: 10.3109/08830180903197480] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fatty acids may influence immune function through a variety of mechanisms; many of these are associated with changes in fatty acid composition of immune cell membranes. Eicosanoids produced from arachidonic acid have roles in inflammation and immunity. Increased membrane content of n-3 fatty acids results in a changed pattern of production of eicosanoids, resolvins, and cytokines. Changing the fatty acid composition of immune cells also affects T cell reactivity and antigen presentation. Little attention has been paid to the influence of fatty acids on the gut-associated lymphoid tissue. However, there has been considerable interest in fatty acids and gut inflammation.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom.
| |
Collapse
|
59
|
Degirolamo C, Kelley KL, Wilson MD, Rudel LL. Dietary n-3 LCPUFA from fish oil but not alpha-linolenic acid-derived LCPUFA confers atheroprotection in mice. J Lipid Res 2010; 51:1897-905. [PMID: 20154006 DOI: 10.1194/jlr.m005058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The atheroprotective potential of n-3 alpha-linolenic acid (ALA) has not yet been fully determined, even in murine models of atherosclerosis. We tested whether ALA-derived, n-3 long chain polyunsaturated fatty acids (LCPUFA) could offer atheroprotection in a dose-dependent manner. Apolipoprotein B (ApoB)100/100LDLr-/- mice were fed with diets containing two levels of ALA from flaxseed oil for 16 weeks. Fish oil- and cis-monounsaturated-fat-enriched diets were used as positive and negative controls, respectively. The mice fed cis-monounsaturated fat and ALA-enriched diets exhibited equivalent plasma total cholesterol (TPC) and LDL-cholesterol (LDL-c) levels; only mice fed the fish-oil diet had lower TPC and LDL-c concentrations. Plasma LDL-CE fatty acid composition analysis showed that ALA-enriched diets lowered the percentage of atherogenic cholesteryl oleate compared with cis-monounsaturated-fat diet (44% versus 55.6%) but not as efficiently as the fish-oil diet (32.4%). Although both ALA and fish-oil diets equally enriched hepatic phospholipids with eicosapentaenoic acid (EPA) and ALA-enriched diets lowered hepatic cholesteryl ester (CE) levels compared with cis-monounsaturated-fat diet, only fish oil strongly protected from atherosclerosis. These outcomes indicate that dietary n-3 LCPUFA from fish oil and n-3 LCPUFA (mostly EPA) synthesized endogenously from ALA were not equally atheroprotective in these mice.
Collapse
Affiliation(s)
- Chiara Degirolamo
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | |
Collapse
|
60
|
Dyall SC. Amyloid-Beta Peptide, Oxidative Stress and Inflammation in Alzheimer's Disease: Potential Neuroprotective Effects of Omega-3 Polyunsaturated Fatty Acids. Int J Alzheimers Dis 2010. [PMCID: PMC2911611 DOI: 10.4061/2010/274128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease is the most common form of dementia in the elderly and is a progressive neurodegenerative disorder characterised by a decline in cognitive function and also profound alterations in mood and behaviour. The pathology of the disease is characterised by the presence of extracellular amyloid peptide deposits and intracellular neurofibrillary tangles in the brain. Although many hypotheses have been put forward for the aetiology of the disease, increased inflammation and oxidative stress appear key to be features contributing to the pathology. The omega-3 polyunsaturated fats, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have well-characterised effects on inflammation and may have neuroprotective effects in a number of neurodegenerative conditions including Alzheimer's disease. The aims of this paper are to review the neuroprotective effects of EPA and DHA in Alzheimer's disease, with special emphasis on their role in modulating oxidative stress and inflammation and also examine their potential as therapeutic agents.
Collapse
Affiliation(s)
- S. C. Dyall
- British College of Osteopathic Medicine, Lief House, 120-122 Finchely Road, London NW5 5HR, UK
| |
Collapse
|
61
|
Brown JM, Chung S, Sawyer JK, Degirolamo C, Alger HM, Nguyen TM, Zhu X, Duong MN, Brown AL, Lord C, Shah R, Davis MA, Kelley K, Wilson MD, Madenspacher J, Fessler MB, Parks JS, Rudel LL. Combined therapy of dietary fish oil and stearoyl-CoA desaturase 1 inhibition prevents the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 30:24-30. [PMID: 19834103 DOI: 10.1161/atvbaha.109.198036] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Stearoyl-CoA desaturase 1 (SCD1) is a critical regulator of energy metabolism and inflammation. We have previously reported that inhibition of SCD1 in hyperlipidemic mice fed a saturated fatty acid (SFA)-enriched diet prevented development of the metabolic syndrome, yet surprisingly promoted severe atherosclerosis. In this study we tested whether dietary fish oil supplementation could prevent the accelerated atherosclerosis caused by SCD1 inhibition. METHODS AND RESULTS LDLr(-/-), ApoB(100/100) mice were fed diets enriched in saturated fat or fish oil in conjunction with antisense oligonucleotide (ASO) treatment to inhibit SCD1. As previously reported, in SFA-fed mice, SCD1 inhibition dramatically protected against development of the metabolic syndrome, yet promoted atherosclerosis. In contrast, in mice fed fish oil, SCD1 inhibition did not result in augmented macrophage inflammatory response or severe atherosclerosis. In fact, the combined therapy of dietary fish oil and SCD1 ASO treatment effectively prevented both the metabolic syndrome and atherosclerosis. CONCLUSIONS SCD1 ASO treatment in conjunction with dietary fish oil supplementation is an effective combination therapy to comprehensively combat the metabolic syndrome and atherosclerosis in mice.
Collapse
Affiliation(s)
- J Mark Brown
- Wake Forest University School of Medicine, Department of Pathology, Section on Lipid Sciences, Medical Center Blvd, Winston-Salem, NC 27157-1040, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
The n-6 fatty acid arachidonic acid (AA; 20:4n-6) gives rise to eicosanoid mediators that have established roles in inflammation and AA metabolism is a long recognised target for commonly used anti-inflammatory therapies. It has generally been assumed that all AA-derived eicosanoids are pro-inflammatory. However this is an over-simplification since some actions of eicosanoids are anti-inflammatory (e.g. prostaglandin (PG) E(2) inhibits production of some inflammatory cytokines) and it has been discovered quite recently that PGE(2) inhibits production of inflammatory leukotrienes and induces production of inflammation resolving lipoxin A(4). The n-3 fatty acids from oily fish and "fish oils", eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), are incorporated into inflammatory cell phospholipids in a time- and dose-dependent manner. They are incorporated partly at the expense of AA, but also of other n-6 fatty acids. EPA and DHA inhibit AA metabolism. Thus production of AA-derived eicosanoids is decreased by these n-3 fatty acids; this occurs in a dose-dependent manner. EPA gives rise to an alternative family of eicosanoids (e.g. PGE(3)), which frequently, but not always, have lower potency than those produced from AA. Recently a new family of EPA- and DHA-derived lipid mediators called resolvins (E- and D-series) has been described. These have potent anti-inflammatory and inflammation resolving properties in model systems. It seems likely that these mediators will explain many of the antiinflammatory actions of n-3 fatty acids that have been described. In addition to modifying the profile of lipid-derived mediators, fatty acids can also influence peptide mediator (i.e. cytokine) production. To a certain extent this action may be due to the altered profile of regulatory eicosanoids, but it seems likely that eicosanoid-independent actions are a more important mechanism. Indeed effects on transcription factors that regulate inflammatory gene expression (e.g. nuclear factor kappaB) seem to be important.
Collapse
|
63
|
Takai S, Jin D, Kawashima H, Kimura M, Shiraishi-Tateishi A, Tanaka T, Kakutani S, Tanaka K, Kiso Y, Miyazaki M. Anti-atherosclerotic effects of dihomo-gamma-linolenic acid in ApoE-deficient mice. J Atheroscler Thromb 2009; 16:480-9. [PMID: 19713674 DOI: 10.5551/jat.no430] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Dihomo-gamma-linolenic acid (DGLA) is an n-6 polyunsaturated fatty acid that is mainly metabolized to an anti-inflammatory eicosanoid, prostaglandin (PG) E1, via the cyclooxygenase (COX) pathway. We evaluated the effect of DGLA on atherosclerosis in apoE-deficient mice and studied the mechanism of the anti-atherosclerotic effect. METHODS ApoE-deficient mice were fed a normal diet supplemented with 0.5% DGLA or vehicle for 6 months. ApoE-deficient mice were also fed a high-cholesterol diet supplemented with 0.5% DGLA or vehicle for 1 month. To clarify the influence of a COX inhibitor, naproxen, on the anti-atherosclerotic effect of DGLA, age-matched apoE-deficient mice fed a high-cholesterol diet supplemented with 0.5% DGLA were given oral naproxen for 1 month. RESULTS In normal diet-fed mice, acetylcholine-induced vascular relaxation was significantly greater in the DGLA group than in the vehicle group. NADPH oxidase subunits, p22phox and gp91phox, intercellular adhesion molecule-1, and vascular cellular adhesion molecule-1 were significantly lower in the DGLA group than in the vehicle group, and DGLA significantly prevented atherosclerosis. In high-cholesterol diet-fed mice, DGLA also significantly prevented atherosclerosis, but the anti-atherosclerotic effect was attenuated by naproxen. CONCLUSION DGLA may have an anti-atherosclerotic effect in apoE-deficient mice via PGE1 formation.
Collapse
Affiliation(s)
- Shinji Takai
- Department of Pharmacology, Osaka Medical College,Takatsuki, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Anderson BM, Ma DWL. Are all n-3 polyunsaturated fatty acids created equal? Lipids Health Dis 2009; 8:33. [PMID: 19664246 PMCID: PMC3224740 DOI: 10.1186/1476-511x-8-33] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 08/10/2009] [Indexed: 12/14/2022] Open
Abstract
N-3 Polyunsaturated fatty acids have been shown to have potential beneficial effects for chronic diseases including cancer, insulin resistance and cardiovascular disease. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in particular have been studied extensively, whereas substantive evidence for a biological role for the precursor, alpha-linolenic acid (ALA), is lacking. It is not enough to assume that ALA exerts effects through conversion to EPA and DHA, as the process is highly inefficient in humans. Thus, clarification of ALA's involvement in health and disease is essential, as it is the principle n-3 polyunsaturated fatty acid consumed in the North American diet and intakes of EPA and DHA are typically very low. There is evidence suggesting that ALA, EPA and DHA have specific and potentially independent effects on chronic disease. Therefore, this review will assess our current understanding of the differential effects of ALA, EPA and DHA on cancer, insulin resistance, and cardiovascular disease. Potential mechanisms of action will also be reviewed. Overall, a better understanding of the individual role for ALA, EPA and DHA is needed in order to make appropriate dietary recommendations regarding n-3 polyunsaturated fatty acid consumption.
Collapse
Affiliation(s)
- Breanne M Anderson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada.
| | | |
Collapse
|
65
|
Schwerbrock NMJ, Karlsson EA, Shi Q, Sheridan PA, Beck MA. Fish oil-fed mice have impaired resistance to influenza infection. J Nutr 2009; 139:1588-94. [PMID: 19549756 PMCID: PMC2709305 DOI: 10.3945/jn.109.108027] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/14/2009] [Accepted: 05/29/2009] [Indexed: 01/21/2023] Open
Abstract
Dietary fish oils, rich in (n-3) PUFA, including eicosapentaenoic acid and docosahexaenoic acid, have been shown to have antiinflammatory properties. Although the antiinflammatory properties of fish oil may be beneficial during a chronic inflammatory illness, the same antiinflammatory properties can suppress the inflammatory responses necessary to combat acute viral infection. Given that (n-3) fatty acid-rich fish oil supplementation is on the rise and with the increasing threat of an influenza pandemic, we tested the effect of fish oil feeding for 2 wk on the immune response to influenza virus infection. Male C57BL/6 mice fed either a menhaden fish oil/corn oil diet (4 g fish oil:1 g corn oil, wt:wt at 5 g/100 g diet) or a control corn oil diet were infected with influenza A/PuertoRico/8/34 and analyzed for lung pathology and immune function. Although fish oil-fed mice had lower lung inflammation compared with controls, fish oil feeding also resulted in a 40% higher mortality rate, a 70% higher lung viral load at d 7 post infection, and a prolonged recovery period following infection. Although splenic natural killer (NK) cell activity was suppressed in fish oil-fed mice, lung NK activity was not affected. Additionally, lungs of infected fish oil-fed mice had significantly fewer CD8+ T cells and decreased mRNA expression of macrophage inflammatory protein-1-alpha, tumor necrosis factor-alpha, and interleukin-6. These results suggest that the antiinflammatory properties of fish oil feeding can alter the immune response to influenza infection, resulting in increased morbidity and mortality.
Collapse
Affiliation(s)
- Nicole M J Schwerbrock
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
66
|
Quinn MJ, Moore ES, Thomson DU, Depenbusch BE, May ML, Higgins JJ, Carter JF, Drouillard JS. The effects of feeding flaxseed during the receiving period on morbidity, mortality, performance, and carcass characteristics of heifers1. J Anim Sci 2008; 86:3054-61. [DOI: 10.2527/jas.2007-0271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
67
|
Calder PC. Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol Nutr Food Res 2008; 52:885-97. [PMID: 18504706 DOI: 10.1002/mnfr.200700289] [Citation(s) in RCA: 327] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With regard to inflammatory processes, the main fatty acids of interest are the n-6 PUFA arachidonic acid (AA), which is the precursor of inflammatory eicosanoids like prostaglandin E(2) and leukotriene B(4), and the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). EPA and DHA are found in oily fish and fish oils. EPA and DHA inhibit AA metabolism to inflammatory eicosanoids. They also give rise to mediators that are less inflammatory than those produced from AA or that are anti-inflammatory. In addition to modifying the lipid mediator profile, n-3 PUFAs exert effects on other aspects of inflammation like leukocyte chemotaxis and inflammatory cytokine production. Some of these effects are likely due to changes in gene expression, as a result of altered transcription factor activity. Fish oil has been shown to decrease colonic damage and inflammation, weight loss and mortality in animal models of colitis. Fish oil supplementation in patients with inflammatory bowel diseases results in n-3 PUFA incorporation into gut mucosal tissue and modification of inflammatory mediator profiles. Clinical outcomes have been variably affected by fish oil, although some trials report improved gut histology, decreased disease activity, use of corticosteroids and relapse.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
68
|
Session 3: Joint Nutrition Society and Irish Nutrition and Dietetic Institute Symposium on ‘Nutrition and autoimmune disease’ PUFA, inflammatory processes and rheumatoid arthritis. Proc Nutr Soc 2008; 67:409-18. [DOI: 10.1017/s0029665108008690] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease manifested by swollen and painful joints, bone erosion and functional impairment. The joint lesions are characterised by infiltration of T lymphocytes, macrophages and B lymphocytes into the synovium and by synovial inflammation involving eicosanoids, cytokines and matrix metalloproteinases. In relation to inflammatory processes, the main fatty acids of interest are the n-6 PUFA arachidonic acid, which is the precursor of inflammatory eicosanoids such as PGE2 and leukotriene B4, and the n-3 PUFA EPA and DHA, which are found in oily fish and fish oils. Eicosanoids derived from the n-6 PUFA arachidonic acid play a role in RA, and the efficacy of non-steroidal anti-inflammatory drugs in RA indicates the importance of pro-inflammatory cyclooxygenase pathway products of arachidonic acid in the pathophysiology of the disease. EPA and DHA inhibit arachidonic acid metabolism to inflammatory eicosanoids. EPA also gives rise to eicosanoid mediators that are less inflammatory than those produced from arachidonic acid and both EPA and DHA give rise to resolvins that are anti-inflammatory and inflammation resolving. In addition to modifying the lipid mediator profile, n-3 PUFA exert effects on other aspects of immunity relevant to RA such as antigen presentation, T-cell reactivity and inflammatory cytokine production. Fish oil has been shown to slow the development of arthritis in an animal model and to reduce disease severity. Randomised clinical trials have demonstrated a range of clinical benefits in patients with RA that include reducing pain, duration of morning stiffness and use of non-steroidal anti-inflammatory drugs.
Collapse
|
69
|
Brown JM, Chung S, Sawyer JK, Degirolamo C, Alger HM, Nguyen T, Zhu X, Duong MN, Wibley AL, Shah R, Davis MA, Kelley K, Wilson MD, Kent C, Parks JS, Rudel LL. Inhibition of stearoyl-coenzyme A desaturase 1 dissociates insulin resistance and obesity from atherosclerosis. Circulation 2008; 118:1467-75. [PMID: 18794388 DOI: 10.1161/circulationaha.108.793182] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Stearoyl-coenzyme A desaturase 1 (SCD1) is a well-known enhancer of the metabolic syndrome. The purpose of the present study was to investigate the role of SCD1 in lipoprotein metabolism and atherosclerosis progression. METHODS AND RESULTS Antisense oligonucleotides were used to inhibit SCD1 in a mouse model of hyperlipidemia and atherosclerosis (LDLr(-/-)Apob(100/100)). In agreement with previous reports, inhibition of SCD1 protected against diet-induced obesity, insulin resistance, and hepatic steatosis. Unexpectedly, however, SCD1 inhibition strongly promoted aortic atherosclerosis, which could not be reversed by dietary oleate. Further analyses revealed that SCD1 inhibition promoted accumulation of saturated fatty acids in plasma and tissues and reduced plasma triglyceride, yet had little impact on low-density lipoprotein cholesterol. Because dietary saturated fatty acids have been shown to promote inflammation through toll-like receptor 4, we examined macrophage toll-like receptor 4 function. Interestingly, SCD1 inhibition resulted in alterations in macrophage membrane lipid composition and marked hypersensitivity to toll-like receptor 4 agonists. CONCLUSIONS This study demonstrates that atherosclerosis can occur independently of obesity and insulin resistance and argues against SCD1 inhibition as a safe therapeutic target for the metabolic syndrome.
Collapse
Affiliation(s)
- J Mark Brown
- Department of Pathology, Wake Forest University School of Medicine, Section on Lipid Sciences, Winston-Salem, NC 27157-1040, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Vedin I, Cederholm T, Freund Levi Y, Basun H, Garlind A, Faxén Irving G, Jönhagen ME, Vessby B, Wahlund LO, Palmblad J. Effects of docosahexaenoic acid-rich n-3 fatty acid supplementation on cytokine release from blood mononuclear leukocytes: the OmegAD study. Am J Clin Nutr 2008; 87:1616-22. [PMID: 18541548 DOI: 10.1093/ajcn/87.6.1616] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dietary fish or fish oil rich in n-3 fatty acids (n-3 FAs), eg, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), ameliorate inflammatory reactions by various mechanisms. Whereas most studies have explored the effects of predominantly EPA-based n-3 FAs preparations, few have addressed the effects of n-3 FAs preparations with DHA as the main FA. OBJECTIVE The objective was to determine the effects of 6 mo of dietary supplementation with an n-3 FAs preparation rich in DHA on release of cytokines and growth factors from peripheral blood mononuclear cells (PBMCs). DESIGN In a randomized, double-blind, placebo-controlled trial, 174 Alzheimer disease (AD) patients received daily either 1.7 g DHA and 0.6 g EPA (n-3 FAs group) or placebo for 6 mo. In the present study blood samples were obtained from the 23 first randomized patients, and PBMCs were isolated before and after 6 mo of treatment. RESULTS Plasma concentrations of DHA and EPA were significantly increased at 6 mo in the n-3 FAs group. This group also showed significant decreases of interleukin (IL)-6, IL-1beta, and granulocyte colony-stimulating factor secretion after stimulation of PBMCs with lipopolysaccharide. Changes in the DHA and EPA concentrations were negatively associated with changes in IL-1beta and IL-6 release for all subjects. Reductions of IL-1beta and IL-6 were also significantly correlated with each other. In contrast, this n-3 FA treatment for 6 mo did not decrease tumor necrosis factor-alpha, IotaL-8, IL-10, and granulocyte-macrophage colony-stimulating factor secretion. CONCLUSION AD patients treated with DHA-rich n-3 FAs supplementation increased their plasma concentrations of DHA (and EPA), which were associated with reduced release of IL-1beta, IL-6, and granulocyte colony-stimulating factor from PBMCs. This trial was registered at clinicaltrials.gov as NCT00211159.
Collapse
Affiliation(s)
- Inger Vedin
- Department of Medicine and the Division of Clinical Nutrition and Metabolism Research, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Matsumoto M, Sata M, Fukuda D, Tanaka K, Soma M, Hirata Y, Nagai R. Orally administered eicosapentaenoic acid reduces and stabilizes atherosclerotic lesions in ApoE-deficient mice. Atherosclerosis 2008; 197:524-33. [PMID: 17765904 DOI: 10.1016/j.atherosclerosis.2007.07.023] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 07/07/2007] [Accepted: 07/15/2007] [Indexed: 10/22/2022]
Abstract
Accumulating evidence demonstrates that dietary intake of n-3 polyunsaturated fatty acids (PUFAs) is associated with reduced incidence of cardiovascular events. However, the molecular mechanisms by which n-3 PUFAs prevent atherosclerosis are not fully understood. Here, we examined the effect of eicosapentaenoic acid (EPA), a major n-3 PUFA, on the pathogenesis of atherosclerosis in ApoE-deficient mice. Five-week-old ApoE-deficient male mice were fed on western-type diet supplemented with 5% (w/w) EPA (EPA group, n=7) or not (control group, n=5) for 13 weeks. An analysis of the fatty acid composition of liver homogenates revealed a marked increase of the n-3 PUFA content in the EPA group (n-3/n-6 ratio: 0.20+/-0.01 vs. 2.5+/-0.2, p<0.01). En face Sudan IV staining of the aorta and oil red O-staining of the aortic sinus revealed that EPA significantly suppressed the development of atherosclerotic lesions. We also observed anti-atherosclerotic effects of EPA in LDL-receptor-deficient mice. The lesions of the EPA group contained more collagen (19.6+/-2.4% vs. 32.9+/-3.9%, p<0.05) and smooth muscle cells (1.3+/-0.2% vs. 3.6+/-0.8%, p<0.05) and less macrophages (32.7+/-4.1% vs. 14.7+/-2.0%, p<0.05). Pretreatment with EPA attenuated the up-regulation of VCAM-1, ICAM-1 and MCP-1 in HUVECs as well as the expression of MMP-2 and MMP-9 in macrophage-like cells induced by TNF-alpha. The anti-inflammatory effects of EPA were abrogated when the expression of peroxisome proliferator-activated receptor alpha (PPARalpha) was suppressed. EPA may potentially reduce and stabilize atherosclerotic lesions through its anti-inflammatory effects.
Collapse
Affiliation(s)
- Miwa Matsumoto
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
72
|
Atherosclerosis prevention by a fish oil-rich diet in apoE(-/-) mice is associated with a reduction of endothelial adhesion molecules. Atherosclerosis 2008; 201:306-17. [PMID: 18439610 DOI: 10.1016/j.atherosclerosis.2008.02.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 02/11/2008] [Accepted: 02/13/2008] [Indexed: 11/24/2022]
Abstract
Dietary intake of long-chain n-3 polyunsaturated fatty acids (PUFA) reduces the risk for atherosclerosis. Here we examine the effect of a fish oil (FO)-rich diet on the development of atherosclerotic lesions in apolipoprotein E-deficient (apoE(-/-)) mice, which are vulnerable because of their high plasma cholesterol and triacylglycerol levels, focusing on the expression of endothelial adhesion molecules. Mice were fed semi-purified diets containing 5% corn oil (CO), rich in n-6 PUFA or menhaden oil as FO, rich in long-chain n-3 PUFA and 0.15% cholesterol after reaching 4 weeks of age, and they were killed when they were 4 weeks, 12 weeks, 18 weeks or 24 weeks old. Oxidative stress in plasma and aortic tissue was not increased in mice fed the FO-rich diet, despite its high peroxidizability index. A reduction of stenosis and intrusion at the aortic root, a decrease in the surface area of atherosclerotic lesions at the aorta and a decrease in P-selectin, vascular cellular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression were observed in FO-fed mice compared to CO-fed mice. It seems likely that the reduced expression of VCAM-1 and ICAM-1 could be transcriptionally regulated by nuclear factor-kappaB in the aortic root. The protective effect of FO against atherosclerosis was more evident at early ages. In conclusion, FO reduces adhesion molecule expression in lesions in apoE(-/-) mice. Because these molecules are involved in lesion progression the effect of FO may explain the observed decrease in atherogenesis.
Collapse
|
73
|
Luu NT, Madden J, Calder PC, Grimble RF, Shearman CP, Chan T, Dastur N, Howell WM, Rainger GE, Nash GB. Dietary supplementation with fish oil modifies the ability of human monocytes to induce an inflammatory response. J Nutr 2007; 137:2769-74. [PMID: 18029497 DOI: 10.1093/jn/137.12.2769] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monocytes/macrophages are key orchestrators of inflammation and are involved in the pathogenesis of chronic inflammatory disorders, including atherosclerosis. (n-3) Fatty acids, found in fish oil, have been shown to have protective effects in such disorders. To investigate possible modes of action, we used a monocyte:endothelial cell (EC) coculture model to investigate the pro-inflammatory potential of monocytes. Monocytes were isolated from the blood of donors with peripheral arterial disease (PAD) or control donors, before and after a 12-wk supplementation of their diet with fish oil. The monocytes were cultured with human umbilical vein EC (HUVEC) for 24 h, after which the ability of the HUVEC to recruit flowing neutrophils was tested. Monocytes from either group of donors stimulated the EC to support the adhesion and migration of neutrophils. Fish oil supplementation reduced the potency of monocytes from normal subjects, but not those from patients with PAD, to induce recruitment. Concurrent medication may have acted as a complicating factor. On subgroup analysis, only those free of medication showed a significant effect of fish oil. Responses before or after supplementation were not closely linked to patterns of secretion of cytokines by cultured monocytes, tested in parallel monocultures. These results suggest that fish oil can modulate the ability of monocytes to stimulate EC and that this might contribute to their protective effects against chronic inflammatory disorders. Benefits, however, may depend on existing medical status and on other treatments being received.
Collapse
Affiliation(s)
- Nguyet-Thin Luu
- Centre for Cardiovascular Sciences, Department of Physiology, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Skuladottir IH, Petursdottir DH, Hardardottir I. The effects of omega-3 polyunsaturated fatty acids on TNF-alpha and IL-10 secretion by murine peritoneal cells in vitro. Lipids 2007; 42:699-706. [PMID: 17605061 DOI: 10.1007/s11745-007-3081-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
Omega-3 polyunsaturated fatty acids (PUFA) affect immune response, partly by affecting cytokine secretion. Omega-3 PUFA decrease tumor necrosis factor (TNF)-alpha secretion by RAW 264.7 macrophages but increase TNF-alpha secretion by primary elicited peritoneal macrophages in vitro. In this study, the effects of omega-3 and omega-6 PUFA on lipopolysaccharide induced TNF-alpha and interleukin (IL)-10 secretion by murine primary resident and elicited peritoneal macrophages and by RAW 264.7 macrophages, were examined in vitro using an enzyme-linked immunosorbent assay. In addition, the effects of dietary omega-3 PUFA on the number of cells secreting these cytokines were examined with enzyme-linked immunospot assay. All cell types secreted more TNF-alpha but similar amounts of IL-10 when incubated with the omega-3 PUFA, eicosapentaenoic acid or docosahexaenoic acid, compared with that when incubated with the omega-6 PUFA, linoleic acid or arachidonic acid. Dietary fish oil did not affect the number of TNF-alpha secreting resident peritoneal macrophages but decreased the number of macrophages secreting IL-10 ex vivo. These results show that dietary omega-3 PUFA and omega-3 PUFA added to cells in vitro increase TNF-alpha secretion by resident peritoneal macrophages, probably by a direct effect on the cells. In contrast, omega-3 PUFA did not affect IL-10 secretion by the cells but decreased the number of cells secreting IL-10 ex vivo, possibly by affecting cell recruitment, maturation or proliferation.
Collapse
Affiliation(s)
- Ingibjorg H Skuladottir
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101, Reykjavik, Iceland
| | | | | |
Collapse
|
75
|
Abstract
Total parenteral nutrition is the final option for nutritional support of patients with severe intestinal failure. Lipid emulsions constitute the main source of fuel calories and fatty acids (FAs) in parenteral nutrition formulations. However, adverse effects on patient outcomes have been attributed to the use of lipids, mostly in relation to impaired immune defenses and altered inflammatory responses. Over the years, this issue has remained in the limelight, also because technical advances have provided no safeguard against the most daunting problems, ie, infectious complications. Nevertheless, numerous investigations have failed to produce a clear picture of the immunologic characteristics of the most commonly used soybean oil-derived lipid emulsions, although their high content of n-6 polyunsaturated FAs (PUFAs) has been considered a drawback because of their proinflammatory potential. This concern initiated the development of emulsions in which part of the n-6 FA component is replaced by less bioactive FAs, such as coconut oil (rich in medium-chain saturated FAs) or olive oil (rich in the n-9 monounsaturated FA oleic acid). Another approach has been to use fish oil (rich in n-3 PUFA), the FAs of which have biological activities different from those of n-6 PUFAs. Recent studies on the modulation of host defenses and inflammation by fish-oil emulsions have yielded consistent data, which indicate that these emulsions may provide a tool to beneficially alter the course of immune-mediated conditions. Although most of these lipids have not yet become available on the US market, this review synthesizes available information on immunologic characteristics of the different lipids that currently can be applied via parenteral nutrition support.
Collapse
MESH Headings
- Coconut Oil
- Dietary Fats, Unsaturated/administration & dosage
- Dietary Fats, Unsaturated/immunology
- Fat Emulsions, Intravenous/adverse effects
- Fat Emulsions, Intravenous/chemistry
- Fat Emulsions, Intravenous/metabolism
- Fatty Acids, Omega-3/administration & dosage
- Fatty Acids, Omega-3/immunology
- Fatty Acids, Omega-6/administration & dosage
- Fatty Acids, Omega-6/immunology
- Fish Oils/administration & dosage
- Fish Oils/chemistry
- Fish Oils/immunology
- Humans
- Immune System/drug effects
- Lipid Metabolism/drug effects
- Lipid Metabolism/physiology
- Membrane Lipids/metabolism
- Olive Oil
- Parenteral Nutrition, Total/methods
- Plant Oils
- Soybean Oil/administration & dosage
- Soybean Oil/chemistry
- Soybean Oil/immunology
Collapse
Affiliation(s)
- Geert J A Wanten
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands.
| | | |
Collapse
|
76
|
Abstract
Fish oil had been shown to have an immunomodulating effect and had favorable effect on the pathogenesis of atherosclerosis. The aim of this study was to estimate the effect of fish oil on the graft arteriosclerosis and graft immune response after rat allogenic small intestinal transplantation. Since two wk pretransplantation, the Lewis rats were supplemented by gavage with: (i) phosphate buffer saline, 0.6% volume of body weight (V/W), as control group; (ii) fish oil (0.6%, V/W); (iii) fish oil (0.3%, V/W). Total intestine from donor F344 was heterotopically transplanted into the Lewis recipient. The recipient rats were killed on the 60th day post-transplantation. The cytokine levels, the activity of NF-kappa B and the arteriosclerosis of grafts were analyzed. Intragastrical supplementation with 0.6% fish oil induced pronounced inhibition of the pro-inflammtory cytokine expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha, and the increase of anti-inflammtory cytokine expression of IL-10 in graft. Suppression of the TNF-alpha and IL-6 expression by fish oil was attributed to its inhibitory effect on NF-kappaB activation. Intragastric 0.6% fish oil infusion ameliorated the development of graft arteriosclerosis. Fish oil was therefore considered to have an immunosuppressive effect on rat allogenic small intestinal transplant model based on the intra-graft IL-6, TNF-alpha and IL-10 levels. It might result in ameliorating the arteriosclerosis of the grafts.
Collapse
Affiliation(s)
- Hao Ma
- Department of General Surgery, Jinling Hospital, Clinical School of Medicine, Nanjing University, Nanjing, China
| | | | | | | | | |
Collapse
|
77
|
Abstract
Excessive or inappropriate inflammation and immunosuppression are components of the response to surgery, trauma, injury and infection in some individuals and can lead, progressively, to sepsis and septic shock. The hyperinflammation is characterised by the production of inflammatory cytokines, arachidonic acid-derived eicosanoids and other inflammatory mediators, while the immunosuppression is characterised by impairment of antigen presentation and of T-helper lymphocyte type-1 responses. Long-chain n-3 fatty acids from fish oil decrease the production of inflammatory cytokines and eicosanoids. They act both directly (by replacing arachidonic acid as an eicosanoid substrate and by inhibiting arachidonic acid metabolism) and indirectly (by altering the expression of inflammatory genes through effects on transcription factor activation). Thus, long-chain n-3 fatty acids are potentially useful anti-inflammatory agents and may be of benefit in patients at risk of hyperinflammation and sepsis. As a consequence, an emerging application for n-3 fatty acids, in which they may be added to parenteral (or enteral) formulas, is in surgical or critically-ill patients. Parenteral nutrition that includes n-3 fatty acids appears to preserve immune function better than standard formulas and appears to diminish the extent of the inflammatory response. Studies to date are suggestive of clinical benefits from these approaches, especially in patients post surgery, although evidence of clinical benefit in patients with sepsis is emerging.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.
| |
Collapse
|
78
|
Kusunoki M, Tsutsumi K, Nakayama M, Kurokawa T, Nakamura T, Ogawa H, Fukuzawa Y, Morishita M, Koide T, Miyata T. Relationship between serum concentrations of saturated fatty acids and unsaturated fatty acids and the homeostasis model insulin resistance index in Japanese patients with type 2 diabetes mellitus. THE JOURNAL OF MEDICAL INVESTIGATION 2007; 54:243-7. [PMID: 17878672 DOI: 10.2152/jmi.54.243] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Consumption of polyunsaturated fatty acids (PUFA) improves the lipid metabolism of diabetics, leading to prevents of arteriosclerosis. Exact relationship between saturated fatty acids (SFA) or PUFA and the insulin resistance of diabetics are unknown. SUBJECTS AND METHODS We investigated the relationship between the serum concentrations of saturated and unsaturated fatty acids and the homeostasis model insulin resistance index (HOMA-R) in Japanese patients with type 2 diabetes mellitus. RESULTS The SFA, i.e., lauric acid, myristic acid, palmitic acid, and stearic acid; the monounsaturated fatty acids (MUFA), i.e., palmitoleic acid, oleic acid, and erucic acid; and the PUFA, i.e., eicosadienoic acid, dihomo-gamma-linolenic acid, docosatetraenoic acid, and docosapentaenoic acid were positively correlated with HOMA-R. However, no correlations were found between HOMA-R and SFA, i.e., arachidic acid, behenic acid, and lignoceric acid; the MUFA, i.e., eicosenoic acid and nervonic acid; and the PUFA, i.e., linoleic acid, gamma-linolenic acid, linolenic acid, 5-8-11 eicosatrienoic acid, arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. CONCLUSIONS Some PUFA as well as SFA were positively correlated with HOMA-R. These results indicate that the intake of diet fatty acid must be well balanced in diabetic patients and it is not always true to refrain from taking SFA and increase the unsaturated fatty acids in their diets.
Collapse
|
79
|
Rahman MM, Bhattacharya A, Fernandes G. Docosahexaenoic acid is more potent inhibitor of osteoclast differentiation in RAW 264.7 cells than eicosapentaenoic acid. J Cell Physiol 2007; 214:201-9. [DOI: 10.1002/jcp.21188] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
80
|
Abstract
N-3 (omega-3) (polyunsaturated) fatty acids are thought to display a variety of beneficial effects for human health. Clues to the occurrence of cardiovascular protective effects have been, however, the spur for the first biomedical interest in these compounds, and are the best documented. Historically, the epidemiologic association between dietary consumption of n-3 fatty acids and cardiovascular protection was first suggested by Bang and Dyerberg, who identified the high consumption of fish, and therefore, of fish oil-derived n-3 fatty acids, as the likely explanation for the strikingly low rate of coronary heart disease events reported in the Inuit population. Since their initial reports, research has proceeded in parallel to provide further evidence for their cardioprotection and to understand underlying mechanisms. Decreased atherogenesis is currently thought to be a part of the cardiovascular protection by n-3 fatty acids. This article summarizes the evidence for such a claim and the mechanisms putatively involved.
Collapse
|
81
|
Abstract
The n-6 polyunsaturated fatty acid arachidonic acid gives rise to the eicosanoid family of mediators (prostaglandins, thromboxanes, leukotrienes and related metabolites). These have inflammatory actions in their own right and also regulate the production of other mediators including inflammatory cytokines. Consumption of long chain n-3 polyunsaturated fatty acids decreases the amount of arachidonic acid in cell membranes and so available for eicosanoid production. Thus, n-3 polyunsaturated fatty acids decrease production of arachidonic acid-derived eicosanoids. These fatty acids also decrease the production of the classic inflammatory cytokines tumour necrosis factor, interleukin-1, and interleukin-6 and the expression of adhesion molecules involved in inflammatory interactions between leukocytes and endothelial cells. These latter effects may occur by eicosanoid-independent mechanisms including modulation of the activation of transcription factors involved in inflammatory processes. The anti-inflammatory actions of long chain n-3 fatty acid-induced effects may be of therapeutic use in conditions with an acute or chronic inflammatory component.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.
| |
Collapse
|
82
|
Møller S, Lauridsen C. Dietary fatty acid composition rather than vitamin E supplementation influence ex vivo cytokine and eicosanoid response of porcine alveolar macrophages. Cytokine 2006; 35:6-12. [PMID: 16914322 DOI: 10.1016/j.cyto.2006.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/19/2006] [Accepted: 07/02/2006] [Indexed: 11/16/2022]
Abstract
This study examined the influence of different dietary fat sources (animal fat, sunflower oil, and fish oil) and supplementation of vitamin E (85, 150 and 300 mg all-rac-alpha-tocopheryl acetate/kg diet) on the ex vivo synthesis of eicosanoids and cytokines by porcine alveolar macrophages. Supplementation of vitamin E provoked an increase in the concentration of alpha-tocopherol of the macrophages irrespective of fat sources. Fish oil increased the macrophage n-3 content with 100% and 40%, and reduced the n-6 with 60% and 53% in comparison with sunflower oil and animal fat, respectively. Fish oil decreased the production of TNF-alpha, IL-8, LTB4, and PGE2 (but not IL-6) relative to the other dietary fat sources, and no difference was observed between sunflower oil and animal fat. Positive correlations were found between the n-6 fatty acid content and the production of PGE2, and the PGE2 production was positively correlated with TNF-alpha and IL-8. Negative correlations were found between the n-3 PUFA content and the concentration of PGE2, TNF-alpha and IL-8. In conclusion, dietary fish oil supplemented at a level of 5%, but not supplemental vitamin E, influenced the inflammatory responses of alveolar macrophages isolated from weaned pigs relatively to animal fat and sunflower oil.
Collapse
Affiliation(s)
- S Møller
- Department of Animal Health, Welfare and Nutrition, Danish Institute of Agricultural Sciences, Research Centre Foulum, P.O. Box 50, DK-8830 Tjele, Denmark
| | | |
Collapse
|
83
|
Abstract
Inflammation is part of the normal host response to infection and injury. However, excessive or inappropriate inflammation contributes to a range of acute and chronic human diseases and is characterized by the production of inflammatory cytokines, arachidonic acid-derived eicosanoids (prostaglandins, thromboxanes, leukotrienes, and other oxidized derivatives), other inflammatory agents (e.g., reactive oxygen species), and adhesion molecules. At sufficiently high intakes, long-chain n-3 polyunsaturated fatty acids (PUFAs), as found in oily fish and fish oils, decrease the production of inflammatory eicosanoids, cytokines, and reactive oxygen species and the expression of adhesion molecules. Long-chain n-3 PUFAs act both directly (e.g., by replacing arachidonic acid as an eicosanoid substrate and inhibiting arachidonic acid metabolism) and indirectly (e.g., by altering the expression of inflammatory genes through effects on transcription factor activation). Long-chain n-3 PUFAs also give rise to a family of antiinflammatory mediators termed resolvins. Thus, n-3 PUFAs are potentially potent antiinflammatory agents. As such, they may be of therapeutic use in a variety of acute and chronic inflammatory settings. Evidence of their clinical efficacy is reasonably strong in some settings (e.g., in rheumatoid arthritis) but is weak in others (e.g., in inflammatory bowel diseases and asthma). More, better designed, and larger trials are required to assess the therapeutic potential of long-chain n-3 PUFAs in inflammatory diseases. The precursor n-3 PUFA alpha-linolenic acid does not appear to exert antiinflammatory effects at achievable intakes.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
84
|
Pizato N, Bonatto S, Piconcelli M, de Souza LM, Sassaki GL, Naliwaiko K, Nunes EA, Curi R, Calder PC, Fernandes LC. Fish oil alters T-lymphocyte proliferation and macrophage responses in Walker 256 tumor-bearing rats. Nutrition 2006; 22:425-32. [PMID: 16472986 DOI: 10.1016/j.nut.2005.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 11/08/2005] [Accepted: 11/12/2005] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We investigated the effect of the dietary ratio of omega-6 to omega-3 polyunsaturated fatty acids (PUFAs) from postweaning until adulthood on T-lymphocyte proliferation, T-lymphocyte subpopulations (helper and cytotoxic), and production of cytotoxic mediators by macrophages in tumor-bearing rodents. METHODS Weanling male Wistar rats received a normal low-fat (40 g/kg of diet) chow diet or a high-fat (300 g /kg) diet that included fish or sunflower oil or blends of fish and sunflower oils to yield omega-6:omega-3 PUFA ratios of approximately 6:1, 30:1, and 60:1 ad libitum. After 8 wk, 50% of rats in each group were inoculated with 1 mL of 2 x 10(7) Walker 256 cells. Fourteen days after tumor inoculation, animals were killed and lymphocytes and macrophages were obtained for study. RESULTS The diets richest in omega-6 PUFA resulted in higher proliferation of thymus, spleen, and gut-associated lymphocytes compared with the chow diet irrespective of tumor burden. In contrast, the fish oil diet resulted in lower proliferation of thymus and spleen lymphocytes compared with the chow diet. Diets rich in omega-6 PUFA decreased the proportion of CD8+ lymphocytes. In non-tumor-bearing and tumor-bearing rats, hydrogen peroxide production by macrophages was highest in rats that consumed diets high in omega-3 PUFAs. Superoxide and nitric oxide production were little affected by the dietary ratio of omega-6 to omega-3 PUFAs. CONCLUSION Dietary omega-6 and omega-3 PUFA contents alter immune function in non-tumor-bearing and tumor-bearing rats. The omega-3 PUFAs decreased T-cell proliferation but increased hydrogen peroxide production compared with omega-6 PUFAs. Decreased tumor growth and cachexia and increased survival previously reported for fish oil in Walker 256 tumor-bearing rats may be related to improved macrophage function rather than to improved T-cell function.
Collapse
Affiliation(s)
- Nathalia Pizato
- Department of Physiology, Federal University of Paraná, Paraná, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
De Caterina R, Zampolli A. Antiatherogenic Effects of n-3 Fatty Acids - Evidence and Mechanisms. Heart Int 2006. [DOI: 10.1177/1826186806002003-403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
86
|
Abstract
The n-6 polyunsaturated fatty acid, arachidonic acid, is a precursor of prostaglandins, leukotrienes and related compounds that have important roles as mediators and regulators of inflammation. Consuming increased amounts of long chain n-3 polyunsaturated fatty acids (found in oily fish and fish oils) results in a partial replacement of the arachidonic acid in cell membranes by eicosapentaenoic and docosahexaenoic acids. This leads to decreased production of arachidonic acid-derived mediators. This alone is a potentially beneficial anti-inflammatory effect of n-3 fatty acids. However, n-3 fatty acids have a number of other effects that might occur downstream of altered eicosanoid production or are independent of this. For example, they result in suppressed production of pro-inflammatory cytokines and can modulate adhesion molecule expression. These effects occur at the level of altered gene expression.
Collapse
Affiliation(s)
- P C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.
| |
Collapse
|
87
|
Zampolli A, Bysted A, Leth T, Mortensen A, De Caterina R, Falk E. Contrasting effect of fish oil supplementation on the development of atherosclerosis in murine models. Atherosclerosis 2005; 184:78-85. [PMID: 15946668 DOI: 10.1016/j.atherosclerosis.2005.04.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Revised: 04/06/2005] [Accepted: 04/27/2005] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Increased fish oil intake is associated with protection against coronary heart disease and sudden death, while effects on atherosclerosis are controversial. We explored the effects of supplementing fish oil (rich in n-3 polyunsaturated fatty acids, PUFA) or corn oil (rich in n-6 PUFA) in two different models of atherosclerosis. METHODS AND RESULTS Sixty-three low density lipoprotein receptor-deficient (LDLR(-/-)) mice and sixty-nine apolipoprotein E-deficient (apoE(-/-)) mice were fed diets without supplementations or supplemented with either 1% fish oil or 1% corn oil. In apoE(-/-) mice, neither fish oil nor corn oil had any major impact on plasma lipids or atherosclerosis. In LDLR(-/-) mice, conversely, the fish oil and the corn oil group had lower levels of LDL-cholesterol and triglycerides and had lesser atherosclerosis in the aortic root and in the entire aorta (p < 0.01 versus unsupplemented group). Atherosclerosis was significantly less in the fish oil group compared with the corn oil group when evaluated en face in the aortic arch (area positive to lipid staining: 32% with fish oil versus 38% with corn oil; 48% with unsupplemented diet). CONCLUSIONS n-3 and n-6 PUFA supplementation retarded the development of atherosclerosis in LDLR(-/-) mice, with a stronger effect seen with n-3 PUFA. There was an important strain-dependence of the effect, with no protection against atherosclerosis in apoE(-/-) mice.
Collapse
Affiliation(s)
- Antonella Zampolli
- Department of Cardiology, Institute of Experimental and Clinical Research, Skejby University Hospital, Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
88
|
SanGiovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 2005; 24:87-138. [PMID: 15555528 DOI: 10.1016/j.preteyeres.2004.06.002] [Citation(s) in RCA: 524] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this work we advance the hypothesis that omega-3 (omega-3) long-chain polyunsaturated fatty acids (LCPUFAs) exhibit cytoprotective and cytotherapeutic actions contributing to a number of anti-angiogenic and neuroprotective mechanisms within the retina. omega-3 LCPUFAs may modulate metabolic processes and attenuate effects of environmental exposures that activate molecules implicated in pathogenesis of vasoproliferative and neurodegenerative retinal diseases. These processes and exposures include ischemia, chronic light exposure, oxidative stress, inflammation, cellular signaling mechanisms, and aging. A number of bioactive molecules within the retina affect, and are effected by such conditions. These molecules operate within complex systems and include compounds classified as eicosanoids, angiogenic factors, matrix metalloproteinases, reactive oxygen species, cyclic nucleotides, neurotransmitters and neuromodulators, pro-inflammatory and immunoregulatory cytokines, and inflammatory phospholipids. We discuss the relationship of LCPUFAs with these bioactivators and bioactive compounds in the context of three blinding retinal diseases of public health significance that exhibit both vascular and neural pathology. How is omega-3 LCPUFA status related to retinal structure and function? Docosahexaenoic acid (DHA), a major dietary omega-3 LCPUFA, is also a major structural lipid of retinal photoreceptor outer segment membranes. Biophysical and biochemical properties of DHA may affect photoreceptor membrane function by altering permeability, fluidity, thickness, and lipid phase properties. Tissue DHA status affects retinal cell signaling mechanisms involved in phototransduction. DHA may operate in signaling cascades to enhance activation of membrane-bound retinal proteins and may also be involved in rhodopsin regeneration. Tissue DHA insufficiency is associated with alterations in retinal function. Visual processing deficits have been ameliorated with DHA supplementation in some cases. What evidence exists to suggest that LCPUFAs modulate factors and processes implicated in diseases of the vascular and neural retina? Tissue status of LCPUFAs is modifiable by and dependent upon dietary intake. Certain LCPUFAs are selectively accreted and efficiently conserved within the neural retina. On the most basic level, omega-3 LCPUFAs influence retinal cell gene expression, cellular differentiation, and cellular survival. DHA activates a number of nuclear hormone receptors that operate as transcription factors for molecules that modulate reduction-oxidation-sensitive and proinflammatory genes; these include the peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and the retinoid X receptor. In the case of PPAR-alpha, this action is thought to prevent endothelial cell dysfunction and vascular remodeling through inhibition of: vascular smooth muscle cell proliferation, inducible nitric oxide synthase production, interleukin-1 induced cyclooxygenase (COX)-2 production, and thrombin-induced endothelin 1 production. Research on model systems demonstrates that omega-3 LCPUFAs also have the capacity to affect production and activation of angiogenic growth factors, arachidonic acid (AA)-based vasoregulatory eicosanoids, and MMPs. Eicosapentaenoic acid (EPA), a substrate for DHA, is the parent fatty acid for a family of eicosanoids that have the potential to affect AA-derived eicosanoids implicated in abnormal retinal neovascularization, vascular permeability, and inflammation. EPA depresses vascular endothelial growth factor (VEGF)-specific tyrosine kinase receptor activation and expression. VEGF plays an essential role in induction of: endothelial cell migration and proliferation, microvascular permeability, endothelial cell release of metalloproteinases and interstitial collagenases, and endothelial cell tube formation. The mechanism of VEGF receptor down-regulation is believed to occur at the tyrosine kinase nuclear factor-kappa B (NFkappaB). NFkappaB is a nuclear transcription factor that up-regulates COX-2 expression, intracellular adhesion molecule, thrombin, and nitric oxide synthase. All four factors are associated with vascular instability. COX-2 drives conversion of AA to a number angiogenic and proinflammatory eicosanoids. Our general conclusion is that there is consistent evidence to suggest that omega-3 LCPUFAs may act in a protective role against ischemia-, light-, oxygen-, inflammatory-, and age-associated pathology of the vascular and neural retina.
Collapse
Affiliation(s)
- John Paul SanGiovanni
- Division of Epidemiology and Clinical Research, National Eye Insitute, National Institutes of Health, 31 Center Drive, Building 31, Room 6A52, MSC 2510, Bethesda, MD 20892-2510, USA.
| | | |
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW This review discusses recent advances in delineating basic mechanisms underlying the beneficial effects of omega-3 fatty acids on health and on disease. RECENT FINDINGS While a substantial number of studies have delineated many differences between the biological effects of saturated versus polyunsaturated fatty acids, less is known about the long-chain omega-3 fatty acids commonly present in certain fish oils. In this review, we focus on recent studies relating to basic mechanisms whereby omega-3 fatty acids modulate cellular pathways to exert beneficial effects on promoting health and decreasing risks of certain diseases. We will use, as examples, conditions of the cardiovascular, neurological, and immunological systems as well as diabetes and cancer, and then discuss basic regulatory pathways. SUMMARY Omega-3 fatty acids are major regulators of multiple molecular pathways, altering many areas of cellular and organ function, metabolism and gene expression. Generally, these regulatory events lead to "positive" endpoints relating to health and disease.
Collapse
Affiliation(s)
- Toru Seo
- Department of Pediatrics, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, 630 W. 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
90
|
Zhao Y, Chen LH. Eicosapentaenoic acid prevents lipopolysaccharide-stimulated DNA binding of activator protein-1 and c-Jun N-terminal kinase activity. J Nutr Biochem 2005; 16:78-84. [PMID: 15681165 DOI: 10.1016/j.jnutbio.2004.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activator protein-1 (AP-1) is a transcription factor that plays an important role in regulating the expression of proinflammatory cytokines including tumor necrosis factor-alpha (TNF-alpha). Many studies have shown that fish oil supplementation inhibits TNF-alpha production in mice and humans; however, the mechanisms remain unclear. In this study, the effects of eicosapentaenoic acid (EPA), a major n-3 fatty acid in fish oil, on lipopolysaccharide (LPS)-stimulated activation of AP-1 were investigated in human monocytic THP-1 cells. The results demonstrated that AP-1 DNA binding activity stimulated by LPS was suppressed by preincubating cells with EPA. Lipopolysaccharide-stimulated increase of c-Jun and c-Fos protein levels was also attenuated by EPA pretreatment. In addition, EPA pretreatment decreased LPS-induced c-Jun phosphorylation and c-Jun N-terminal kinase (JNK) activation. The results suggest that suppression of TNF-alpha expression by EPA may be partly mediated by its inhibitory effect on AP-1 activation.
Collapse
Affiliation(s)
- Yan Zhao
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40506, USA
| | | |
Collapse
|
91
|
Yamashita T, Oda E, Sano T, Yamashita T, Ijiru Y, Giddings JC, Yamamoto J. Varying the ratio of dietary n−6/n−3 polyunsaturated fatty acid alters the tendency to thrombosis and progress of atherosclerosis in apoE−/− LDLR−/− double knockout mouse. Thromb Res 2005; 116:393-401. [PMID: 16122552 DOI: 10.1016/j.thromres.2005.01.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 12/20/2004] [Accepted: 01/24/2005] [Indexed: 02/02/2023]
Abstract
We have investigated the influence of dietary n-6/n-3 (ù-6/ù-3) polyunsaturated fatty acid-balance on the tendency to arterial thrombosis and the progress of atherosclerosis in apoE-/- LDLR-/- double knockout mouse. Homozygous apoE-/- LDLR-/- double knockout mouse (DKO mice, 129XC57BL/6J background) and male C57BL/6 mice aged 6 weeks were divided into four groups. Each group was fed a diet containing a different n-6/n-3 ratio (Group l: 0.29; Group 2: 1.43; Group 3: 5.00; Group 4: 8), prepared with high linolenic (LNA) flaxseed oil (n-3 rich) and high linoleic (LA) safflower oil (n-6 rich). There were no statistical differences in the gain in body weight between the four groups. After 16 weeks, plasma triglyceride and LDL levels in Group 1 were significantly lower than in the other groups. Conversely, HDL was the highest. After 8 and 16 weeks, the tendency to arterial thrombosis was assessed using a He-Ne laser-induced thrombosis model. The degree of atherosclerosis was measured using the entire aorta method employing image analysis software. The n-6/n-3 ratio had a dose-dependent antithrombotic effect (thrombus volume decreased 23%, Group 1 vs. Group 4), In addition, the extent of atherosclerosis was less in the animals fed a low n-6/n-3 ratio compared with the high n-6/n-3 ratio group (atherosclerotic area decreased 40%, Group 1 vs. Group 4). The lowest n-6/n-3 ratio tested (0.29) was the most effective in suppressing the thrombotic and atherosclerotic parameters in these DKO mice.
Collapse
Affiliation(s)
- T Yamashita
- Laboratory of Physiology, Faculty of Nutrition, and High Technology Research Center, Kobe Gakuin University, Kobe, Japan.
| | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Over the last 25 years, the effects of fatty acids on the immune system have been characterized using in vitro, animal and human studies. Advances in fatty acid biochemistry and molecular techniques have recently suggested new mechanisms by which fatty acids could potentially modify immune responses, including modification of the organization of cellular lipids and interaction with nuclear receptors. Possibilities for the clinical applications of n-3 PUFA are now developing. The present review focuses on the hypothesis that the anti-inflammatory properties of n-3 PUFA in the arterial wall may contribute to the protective effects of n-3 PUFA in CVD, as suggested by epidemiological and secondary prevention studies. Studies are just beginning to show that dietary n-3 PUFA can be incorporated into plaque lipid in human subjects, where they may influence the morphology and stability of the atherosclerotic lesion.
Collapse
Affiliation(s)
- Parveen Yaqoob
- Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK.
| |
Collapse
|
93
|
Calder PC. n–3 Fatty acids and cardiovascular disease: evidence explained and mechanisms explored. Clin Sci (Lond) 2004; 107:1-11. [PMID: 15132735 DOI: 10.1042/cs20040119] [Citation(s) in RCA: 364] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 05/07/2004] [Accepted: 05/10/2004] [Indexed: 11/17/2022]
Abstract
Long chain n–3 PUFAs (polyunsaturated fatty acids) are found in fatty fish and in fish oils. Substantial evidence from epidemiological and case-control studies indicates that consumption of fish, fatty fish and long-chain n–3 PUFAs reduces the risk of cardiovascular mortality. Secondary prevention studies using long-chain n–3 PUFAs in patients post-myocardial infarction have shown a reduction in total and cardiovascular mortality, with an especially potent effect on sudden death. Long-chain n–3 PUFAs have been shown to decrease blood triacylglycerol (triglyceride) concentrations, to decrease production of chemoattractants, growth factors, adhesion molecules, inflammatory eicosanoids and inflammatory cytokines, to lower blood pressure, to increase nitric oxide production, endothelial relaxation and vascular compliance, to decrease thrombosis and cardiac arrhythmias and to increase heart rate variability. These mechanisms most likely explain the primary and secondary cardiovascular protection afforded by long-chain n–3 PUFA consumption. A recent study suggests that long-chain n–3 PUFAs might also act to stabilize advanced atherosclerotic plaques, perhaps through their anti-inflammatory effects. As a result of the robust evidence in their favour, a number of recommendations to increase intake of long-chain n–3 PUFAs have been made.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.
| |
Collapse
|
94
|
Vega-López S, Kaul N, Devaraj S, Cai RY, German B, Jialal I. Supplementation with omega3 polyunsaturated fatty acids and all-rac alpha-tocopherol alone and in combination failed to exert an anti-inflammatory effect in human volunteers. Metabolism 2004; 53:236-40. [PMID: 14767877 DOI: 10.1016/j.metabol.2003.09.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
There is growing evidence supporting the importance of inflammation in all stages of atherosclerosis. While both omega-3 polyunsaturated fatty acids (n3PUFA) and the lipid-soluble antioxidant alpha-tocopherol (AT) have been shown to independently have significant anti-inflammatory effects, there is paucity of data examining the effect of n3PUFA alone and in combination with AT on markers of inflammation and monocyte function. Therefore, we tested the effect of n3PUFA alone, all-rac (synthetic) AT alone, and the combination on markers of inflammation and monocyte function. Healthy nonsmoking volunteers were randomly assigned to 1 of 4 groups (n = 20 per group): 1.5 g/d n3PUFA, 800 IU/d AT, 1.5 g n3PUFA + 800 IU/d AT, or placebo in a parallel double-blinded study. Compared to baseline, 12 weeks of supplementation resulted in no changes in plasma lipids regardless of treatment. Plasma AT was significantly increased only in those groups that received AT (P <.0001). Similarly, groups receiving n3PUFA showed a significant increase in plasma docosahexaenoic acid (P <.0001). No significant within- or between-group differences were found for plasma levels of high-sensitivity C-reactive protein (hsCRP). Furthermore, there were no differences in monocyte proinflammatory cytokine release (interleukin [IL]-1beta, tumor necrosis factor [TNF]-alpha and IL-6) after activation with monocyte chemotactic protein-1 (MCP-1). In conclusion, supplementation with n3PUFA and all-rac AT at these doses is not anti-inflammatory.
Collapse
Affiliation(s)
- Sonia Vega-López
- Laboratory for Atherosclerosis and Metabolic Research, University of California, Davis, Medical Center, Sacramento, CA, USA
| | | | | | | | | | | |
Collapse
|
95
|
Zhao Y, Joshi-Barve S, Barve S, Chen LH. Eicosapentaenoic Acid Prevents LPS-Induced TNF-α Expression by Preventing NF-κB Activation. J Am Coll Nutr 2004; 23:71-8. [PMID: 14963056 DOI: 10.1080/07315724.2004.10719345] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Many studies have shown that fish oil supplementation inhibits tumor necrosis factor-alpha (TNF-alpha) production in mice and human subjects; however, the mechanisms remain unclear. Nuclear factor-kappaB (NF-kappaB) is a transcription factor that plays an important role in controlling the expression of pro-inflammatory genes including TNF-alpha. Activation of NF-kappaB has been shown to mediate the maximal expression of TNF-alpha in human monocytes. NF-kappaB is kept in an inactive form in the cytoplasm by IkappaB, the inhibitory subunit of NF-kappaB complex. Phosphorylation and subsequent degradation of IkappaB lead to NF-kappaB activation. OBJECTIVES The effect of eicosapentaenoic acid (EPA), a major n-3 fatty acid in fish oil, on the lipopolysaccharide (LPS)-induced expression of TNF-alpha and activation of NF-kappaB were investigated. The mechanism underlying EPA modulation of NF-kappaB activation was also studied. METHODS Human monocytic THP-1 cells were pre-incubated with EPA and stimulated with LPS. The levels of secreted TNF-alpha were determined by ELISA. The DNA binding activity of NF-kappaB was analyzed by EMSA. The degradation and phosphorylation of IkappaB-alpha were examined by Western blot analysis. RESULTS TNF-alpha production and expression induced by LPS were significantly decreased in cells pre-incubated with EPA. LPS-induced NF-kappaB activation, translocation of p65 subunit to the nucleus, phosphorylation and degradation of IkappaB-alpha were partially prevented by EPA. CONCLUSIONS The results suggest that suppression of the TNF-alpha expression by EPA is partly attributed to its inhibitory effect on NF-kappaB activation. EPA appears to prevent NF-kappaB activation by preventing the phosphorylation of IkappaB-alpha.
Collapse
Affiliation(s)
- Yan Zhao
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40506-0054, USA
| | | | | | | |
Collapse
|
96
|
Aguila MB, Mandarim-de-Lacerda CA. Aorta wall quantitative alterations due to different long-term high-fat diet in rats. Food Chem Toxicol 2003; 41:1391-7. [PMID: 12909273 DOI: 10.1016/s0278-6915(03)00147-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Twenty Wistar male rats, with ages varying from 21 days to 12 months, were fed with diets supplemented by soybean oil (S group), canola oil (CA group), lard and egg yolk (LE group), and canola plus lard and egg yolk (CA+LE group). The LE group presented the highest heart mass/body mass ratio and the highest blood pressure as well. The aortic structure suffered a number of alterations, from CA rats group (minor alterations) to LE and CA+LE rats group (major alterations). The CA group showed the smallest aorta thickness. No significant differences among groups were found concerning the number of aortic lamellae and the density of tunica media smooth muscle nuclei. Surface density of the aortic lamellae was greater in the CA group and smaller in the LE group. These results suggest that the dietary intake of canola oil could attenuate the aorta structure aging process with a favorable BP maintenance.
Collapse
Affiliation(s)
- Marcia Barbosa Aguila
- Biomedical Center, Institute of Biology, State University of Rio de Janeiro, 20551-030 Rio de Janeiro, Brazil.
| | | |
Collapse
|
97
|
Moreno JJ, Mitjavila MT. The degree of unsaturation of dietary fatty acids and the development of atherosclerosis (review). J Nutr Biochem 2003; 14:182-95. [PMID: 12770642 DOI: 10.1016/s0955-2863(02)00294-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is the principal contributor to the pathogenesis of myocardial and cerebral infarction, gangrene and loss of function in the extremities. It results from an excessive inflammatory-fibroproliferative response to various forms of insult to the endothelium and smooth muscle of the artery wall. Atherosclerotic lesions develop fundamentally in three stages: dysfunction of the vascular endothelium, fatty streak formation and fibrous cap formation. Each stage is regulated by the action of vasoactive molecules, growth factors and cytokines. This multifactorial etiology can be modulated through the diet. The degree of unsaturation of dietary fatty acids affects lipoprotein composition as well as the expression of adhesion molecules and other pro-inflammatory factors, and the thrombogenicity associated with atherosclerosis development. Thus, the preventive effects of a monounsaturated-fatty acid-rich diet on atherosclerosis may be explained by the enhancement of high-density lipoprotein-cholesterol levels and the impairment of low-density lipoprotein-cholesterol levels, the low-density lipoprotein susceptibility to oxidation, cellular oxidative stress, thrombogenicity and atheroma plaque formation. On the other hand, the increase of high-density lipoprotein cholesterol levels and the reduction of thrombogenicity, atheroma plaque formation and vascular smooth muscle cell proliferation may account for the beneficial effects of polyunsaturated fatty acid on the prevention of atherosclerosis. Thus, the advantages of the Mediterranean diet rich in olive oil and fish on atherosclerosis may be due to the modulation of the cellular oxidative stress/antioxidant status, the modification of lipoproteins and the down-regulation of inflammatory mediators.
Collapse
Affiliation(s)
- Juan José Moreno
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Barcelon, Spain
| | | |
Collapse
|
98
|
Abstract
The immune system is involved in host defense against infectious agents, tumor cells, and environmental insults. Inflammation is an important component of the early immunologic response. Inappropriate or dysfunctional immune responses underlie acute and chronic inflammatory diseases. The n-6 PUFA arachidonic acid (AA) is the precursor of prostaglandins, leukotrienes, and related compounds that have important roles in inflammation and in the regulation of immunity. Feeding fish oil results in partial replacement of AA in cell membranes by EPA. This leads to decreased production of AA-derived mediators, through several mechanisms, including decreased availability of AA, competition for cyclooxygenase (COX) and lipoxygenase (LOX) enzymes, and decreased expression of COX-2 and 5-LOX. This alone is a potentially beneficial anti-inflammatory effect of n-3 FA. However, n-3 FA have a number of other effects that might occur downstream of altered eicosanoid production or might be independent of this effect. For example, dietary fish oil results in suppressed production of proinflammatory cytokines and can modulate adhesion molecule expression. These effects occur at the level of altered gene expression. Fish oil feeding has been shown to ameliorate the symptoms of some animal models of autoimmune disease and to protect against the effects of endotoxin. Clinical studies have reported that oral fish oil supplementation has beneficial effects in rheumatoid arthritis and among some asthmatics, supporting the idea that the n-3 FA in fish oil are anti-inflammatory. There are indications that the inclusion of fish oil in enteral and parenteral formulae is beneficial to patients.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, United Kingdom.
| |
Collapse
|
99
|
Piolot A, Blache D, Boulet L, Fortin LJ, Dubreuil D, Marcoux C, Davignon J, Lussier-Cacan S. Effect of fish oil on LDL oxidation and plasma homocysteine concentrations in health. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2003; 141:41-9. [PMID: 12518167 DOI: 10.1067/mlc.2003.3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidation of low-density lipoprotein (LDL) and hyperhomocysteinemia are believed to play a role in therogenesis. Whether n-3 polyunsaturated fatty acids increase LDL susceptibility to oxidation or influence homocysteine (Hcy) metabolism has long been a subject of controversy. In this study, we evaluated the effect of 8 weeks of dietary supplementation with 6 g/day of fish oil (FO; 3 g of n-3 fatty acids) on plasma lipoproteins, in vitro LDL peroxidation, antioxidant status, and plasma Hcy concentrations in 16 normolipidemic subjects. FO rapidly and significantly (P < .01) decreased plasma total and very low density lipoprotein triglyceride concentrations and had no effect on LDL or high-density-lipoprotein cholesterol. The mean lag time before onset of Cu(2+)-induced LDL oxidation, as well as plasma and LDL alpha-tocopherol and beta-carotene concentrations, was unchanged. However, changes in plasma aminothiol concentrations occurred during the study. Specifically, a progressive and significant increase in total Hcy plasma concentrations was observed (13.4% and 20% after 4 and 8 weeks, respectively; P < .01). Total glutathione concentrations were significantly higher after 8 weeks (P < .05). The tHcy increase was not associated with changes in plasma folate or vitamin B(12) concentrations. However, concentrations of plasma nitric oxide metabolites (NO(x) = NO(2) + NO(3)) were significantly higher than at baseline after 8 weeks of FO intake (74%; P < .01). Further, the changes in total Hcy and NO(x) plasma concentrations observed after 8 weeks of FO were found to be significantly correlated (r = .78, P < .001). With this study, we report for the first time the apparent interaction of n-3 fatty acids and nitric oxide on Hcy metabolism.
Collapse
Affiliation(s)
- Alain Piolot
- Hyperlipidemia and Atherosclerosis Research Group of the Clinical Research Institute of Montreal and INSERM-U498-Faculté de Médecine, Université de Bourgogne, Dijon, Canada
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Yang M, Cook ME. Dietary conjugated linoleic acid decreased cachexia, macrophage tumor necrosis factor-alpha production, and modifies splenocyte cytokines production. Exp Biol Med (Maywood) 2003; 228:51-8. [PMID: 12524473 DOI: 10.1177/153537020322800107] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effect of conjugated linoleic acid (CLA) on macrophage functions were studied in vitro, in vivo, and ex vivo. In RAW macrophage cell line, CLA (mixed isomers) was shown to inhibit lipopolysaccharide (LPS)-stimulated tumor necrosis factor-alpha (TNF-alpha) production. Two CLA isomers, c9,t11 and t10,c12, were tested on RAW cells and it was found that the c9,t11 was the isomer responsible for the inhibition of LPS-induced TNF-alpha production. BALB/c mice were used to determine the effect of dietary CLA on body weight wasting and feed intake after LPS injection. CLA was protective against LPS-induced body weight wasting and anorexia. Plasma TNF-alpha levels after LPS injection were lower in the CLA group compared with the corn oil-fed control group 2 hr post-LPS injection. In a separate experiment, 30 mice were fed a CLA-supplemented diet or a corn oil-supplemented diet for 6 weeks and peritoneal resident macrophages were obtained for measuring TNF-alpha and nitric oxide production after in vitro exposure to interferon-gamma (IFN-gamma) and/or LPS. TNF-alpha production was not found to be different in peritoneal macrophages from mice fed the dietary treatments, but less nitric oxide was produced in macrophages from CLA-fed mice upon stimulation when compared with macrophages from control-fed mice. Splenocytes were also collected from the mice fed the dietary treatments and stimulated to produce cytokines in culture. Supernatant was used to run cytokine enzyme-linked immunoabsorbant assays. Interleukin-4 (IL-4) was decreased in CLA-fed mice when splenocytes were stimulated with concanavalin A (Con A) for 44 hr; however, IL-2 and the IL-2-to-IL-4 ratio were elevated.
Collapse
Affiliation(s)
- Mingder Yang
- Department of Animal Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|