51
|
Plasminogen activator inhitor-1 associates with cardiovascular risk factors in healthy young adults in the Cardiovascular Risk in Young Finns Study. Atherosclerosis 2012; 224:208-12. [PMID: 22840426 DOI: 10.1016/j.atherosclerosis.2012.06.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/18/2012] [Accepted: 06/23/2012] [Indexed: 11/20/2022]
Abstract
AIMS Hypofibrinolysis displayed by elevated serum plasminogen activator inhibitor 1 (PAI-1) level has been associated with cardiovascular disease (CVD) and its risk factors such as obesity and insulin resistance. However, no studies have examined associations between PAI-1 and CVD risk factors in healthy subjects. We examined associations between serum PAI-1, ultrasound markers of atherosclerosis and CVD risk factors and whether PAI-1 improves prediction of atherosclerosis over known risk factors in a cohort of asymptomatic adults. METHODS We analyzed PAI-1 and CVD risk factors and assessed carotid intima-media thickness (cIMT), distensibility (CDist) and the presence of a carotid atherosclerotic plaque and flow-mediated dilation (FMD) ultrasonographically for 2202 adults (993 men and 1,209 women, aged 30-45 years) participating in the ongoing longitudinal cohort study, The Cardiovascular Risk in Young Finns Study. High cIMT was defined as >90th percentile and/or carotid plaque and low CDist and low FMD as <20th percentile. RESULTS In bivariate analyses, PAI-1 correlated directly with cIMT and the risk factors: blood pressure, BMI, waist and hip circumference, alcohol use, total and LDL-cholesterol, triglycerides, glomerular filtration rate, high-sensitivity CRP and glucose (all P<0.005). PAI-1 was higher in men and increased with age. Inverse correlation was observed with CDist, HDL-cholesterol and adiponectin in both sexes, with testosterone and sex hormone binding globulin in men and with creatinine and oral contraceptive use in women (P<0.005). Independent direct associations were observed between PAI-1 and waist circumference, serum triglycerides, insulin, alcohol use and age and inverse with serum creatinine, HDL-cholesterol and adiponectin. PAI-1 did not improve estimation of high cIMT, low CDist and low FMD over conventional risk factors (P for difference in area under curve ≥ 0.37). CONCLUSION PAI-1 was independently associated with several known CVD risk factors, especially obesity markers, in both men and women. However, addition of PAI-1 to known risk factors did not improve cross-sectional prediction of high cIMT, low CDist and low FMD suggesting that PAI-1 is not a clinically important biomarker in early atherosclerosis.
Collapse
|
52
|
Baldwin JF, Sood V, Elfline MA, Luke CE, Dewyer NA, Diaz JA, Myers DD, Wakefield T, Henke PK. The role of urokinase plasminogen activator and plasmin activator inhibitor-1 on vein wall remodeling in experimental deep vein thrombosis. J Vasc Surg 2012; 56:1089-97. [PMID: 22796119 DOI: 10.1016/j.jvs.2012.02.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/22/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Deep vein thrombosis (DVT) resolution instigates an inflammatory response, resulting in vessel wall damage and scarring. Urokinase-plasminogen activator (uPA) and its inhibitor, plasminogen activator inhibitor-1 (PAI-1), are integral components of the fibrinolytic system, essential for venous thrombosis (VT) resolution. This study determined the vein wall response when exposed to increased and decreased plasmin activity. METHODS A mouse inferior vena cava (IVC) ligation model in uPA -/- or PAI-1 -/- and their genetic wild types (B6/SvEv and C57/BL6, respectively) was used to create stasis thrombi, with tissue harvest at either 8 or 21 days. Tissue analysis included gene expression of vascular smooth muscle cells (alpha smooth muscle actin [αSMA], SM22) and endothelial marker (CD31), by real-time polymerase chain reaction, enzyme-linked immunosorbent assay, matrix metalloproteinase (MMP)-2 and -9 activity by zymography, and vein wall collagen by picro-Sirius red histologic analysis. A P < .05 was considered significant. RESULTS Thrombi were significantly larger in both 8-day and 21-day uPA -/- as compared with wild type (WT) and were significantly smaller in both 8-day and 21-day PAI-1 -/- as compared with WT. Correspondingly, 8-day plasmin levels were reduced in half in uPA -/- and increased three-fold in PAI-1 -/- when compared with respective WT thrombi (P < .05; n = 5-6). The endothelial marker CD31 was elevated two-fold in PAI-1 -/- mice at 8 days, but reduced 2.5-fold at 21 days in uPA -/- as compared with WT (P = .02; n = 5-6), suggesting less endothelial preservation. Vein wall vascular smooth muscle cell (VSMC) gene expression showed that 8-day and 21-day PAI-1 -/- mice had 2.3- and 3.8-fold more SM22 and 1.8- and 2.3-fold more αSMA expression than respective WT (P < .05; n = 5-7), as well as 1.8-fold increased αSMA (+) cells (P ≤ .05; n = 3-5). No significant difference in MMP-2 or -9 activity was found in the PAI-1 -/- mice compared with WT, while 5.4-fold more MMP-9 was present in 21-day WT than 21-day uPA -/- (P = .03; n = 5). Lastly, collagen was ∼two-fold greater at 8 days in PAI-1 -/- IVC as compared with WT (P = .03; n = 6) with no differences observed in uPA -/- mice. CONCLUSIONS In stasis DVT, plasmin activity is critical for thrombus resolution. Divergent vein wall responses occur with gain or loss of plasmin activity, and despite smaller VT, greater vein wall fibrosis was associated with lack of PAI-1.
Collapse
Affiliation(s)
- Joe F Baldwin
- Jobst Vascular Surgery Laboratory, Section of Vascular Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Lishko VK, Yermolenko IS, Owaynat H, Ugarova TP. Fibrinogen counteracts the antiadhesive effect of fibrin-bound plasminogen by preventing its activation by adherent U937 monocytic cells. J Thromb Haemost 2012; 10:1081-90. [PMID: 22507544 PMCID: PMC4532274 DOI: 10.1111/j.1538-7836.2012.04745.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Fibrinogen and plasminogen strongly reduce adhesion of leukocytes and platelets to fibrin clots, highlighting a possible role for these plasma proteins in surface-mediated control of thrombus growth and stability. In particular, adsorption of fibrinogen on fibrin clots renders their surfaces non-adhesive, while the conversion of surface-bound plasminogen to plasmin by transiently adherent blood cells results in degradation of a superficial fibrin layer, leading to cell detachment. Although the mechanisms whereby these proteins exert their antiadhesive effects are different, the outcome is the same: the formation of a mechanically unstable surface that does not allow firm cell attachment. OBJECTIVES Since fibrin clots in circulation are exposed to both fibrinogen and plasminogen, their combined effect on adhesion of monocytic cells was examined. METHODS Fibrin gels were coated with plasminogen and its activation by adherent U937 monocytic cells in the presence of increasing concentrations of fibrinogen was examined by either measuring (125) I-labeled fibrin degradation products or plasmin amidolytic activity. RESULTS Unexpectedly, the antiadhesive effects of two fibrin binding proteins were not additive; in fact, in the presence of fibrinogen, the effect of plasminogen was strongly reduced. An investigation of the underlying mechanism revealed that fibrinogen prevented activation of fibrin-bound plasminogen by cells. Confocal microscopy showed that fibrinogen accumulates in a thin superficial layer of a clot, where it exerts its blocking effect on activation of plasminogen. CONCLUSION The results point to a complex interplay between the fibrinogen- and plasminogen-dependent antiadhesive systems, which may contribute to the mechanisms that control the adhesiveness of a fibrin shell on the surface of hemostatic thrombi.
Collapse
Affiliation(s)
- V K Lishko
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
54
|
Iwaki T, Urano T, Umemura K. PAI-1, progress in understanding the clinical problem and its aetiology. Br J Haematol 2012; 157:291-8. [PMID: 22360729 DOI: 10.1111/j.1365-2141.2012.09074.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/24/2012] [Indexed: 01/07/2023]
Abstract
Plasminogen activator inhibitor-1 (PAI-1, also known as SERPINE1) is a member of the serine protease inhibitor (SERPIN) superfamily and is the primary physiological regulator of urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) activity. Although the principal function of PAI-1 is the inhibition of fibrinolysis, PAI-1 possesses pleiotropic functions besides haemostasis. In the quarter century since its discovery, a number of studies have focused on improving our understanding of PAI-1 functions in vivo and in vitro. The use of Serpine1-deficient mice has particularly enhanced our understanding of the functions of PAI-1 in various physiological and pathophysiological conditions. In this review, the results of recent studies on PAI-1 and its role in clinical conditions are discussed.
Collapse
Affiliation(s)
- Takayuki Iwaki
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | |
Collapse
|
55
|
Sari I, Yuksel A, Kozaci D, Selcuk S, Gokce G, Yildiz Y, Demirel H, Sop G, Alacacioglu A, Gunay N, Akkoc N. The Effect of Regular Colchicine Treatment on Biomarkers Related with Vascular Injury in Newly Diagnosed Patients with Familial Mediterranean Fever. Inflammation 2012; 35:1191-7. [DOI: 10.1007/s10753-012-9428-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
56
|
Abstract
Serine protease inhibitors, termed serpins, are key regulators in many biologic events. Protease nexin-1 (PN-1) is a serpin that is barely detectable in plasma but found in many organs and produced by most cell types, including monocytes, platelets, and vascular cells. It has a large inhibition spectrum because it is the most efficient tissue inhibitor of thrombin but also a powerful inhibitor of plasminogen activators and plasmin. It has a high affinity for glycosaminoglycans, such as heparan sulfates, which potentiate its activity toward thrombin and target it to the pericellular space. PN-1 has been previously largely described as a crucial regulator of the proteolytic activity in nerves and of central and peripheral nervous system function. In contrast, little was known about its involvement in hemostasis and vascular biology. This article reviews recent data underlining its emerging role as a key factor in the responses of vessels to injury. Indeed, studies of PN-1-deficient mice have established important antithrombotic and antifibrinolytic properties of this serpin that have heretofore gone unrecognized. The roles of PN-1 in the areas of hemostasis and thrombosis summarized here provide insights that may allow the development of drugs and treatment strategies to prevent or limit thrombotic disorders.
Collapse
|
57
|
Simone TM, Higgins PJ. Low Molecular Weight Antagonists of Plasminogen Activator Inhibitor-1: Therapeutic Potential in Cardiovascular Disease. ACTA ACUST UNITED AC 2012; 1:101. [PMID: 23936868 DOI: 10.4172/2324-8769.1000102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Plasminogen activator inhibitor-1 (PAI-1; SERPINE1) is the major physiologic regulator of the plasmin-based pericellular proteolytic cascade, a modulator of vascular smooth muscle cell (VSMC) migration and a causative factor in cardiovascular disease and restenosis, particularly in the context of increased vessel transforming growth factor- β1 (TGF-β1) levels. PAI-1 limits conversion of plasminogen to plasmin (and, thereby, fibrin degradation) by inhibiting its protease targets urokinase and tissue-type plasminogen activators (uPA, tPA). PAI-1 also has signaling functions and binds to the low density lipoprotein receptor-related protein 1 (LRP1) to regulate LRP1-dependent cell motility that, in turn, contributes to neointima formation. PAI-1/uPA/uPA receptor/LRPI/integrin complexes are endocytosed with subsequent uPAR/LRP1/integrin redistribution to the leading edge, initiating an "adhesion-detachment-readhesion" cycle to promote cell migration. PAI-1 also interacts with LRP1 in a uPA/uPAR-independent manner triggering Jak/Stat1 pathway activation to stimulate cell motility. PAI-1 itself is a substrate for extracellular proteases and exists in a "cleaved" form which, while unable to interact with uPA and tPA, retains LRP1-binding and migratory activity. These findings suggest that there are multiple mechanisms through which inhibition of PAI-1 may promote cardiovascular health. Several studies have focused on the design, synthesis and preclinical assessment of PAI-1 antagonists including monoclonal antibodies, peptides and low molecular weight (LMW) antagonists. This review discusses the translational impact of LMW PAI-1 antagonists on cardiovascular disease addressing PAI-1-initiated signaling, PAI-1 structure, the design and characteristics of PAI-1-targeting drugs, results of in vitro and in vivo studies, and their clinical implications.
Collapse
Affiliation(s)
- Tessa M Simone
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | | |
Collapse
|
58
|
Chao MP, Majeti R, Weissman IL. Programmed cell removal: a new obstacle in the road to developing cancer. Nat Rev Cancer 2011; 12:58-67. [PMID: 22158022 DOI: 10.1038/nrc3171] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of cancer involves mechanisms by which aberrant cells overcome normal regulatory pathways that limit their numbers and their migration. The evasion of programmed cell death is one of several key early events that need to be overcome in the progression from normal cellular homeostasis to malignant transformation. Recently, we provided evidence in mouse and human cancers that successful cancer clones must also overcome programmed cell removal. In this Opinion article, we explore the role of programmed cell removal in both normal and neoplastic cells, and we place this pathway in the context of the initiation of programmed cell death.
Collapse
Affiliation(s)
- Mark P Chao
- Institute for Stem Cell Biology and Regenerative Medicine and Cancer Institute, Division of Haematology, Stanford University School of Medicine, Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, California 94305, USA.
| | | | | |
Collapse
|
59
|
Uchida HA, Poduri A, Subramanian V, Cassis LA, Daugherty A. Urokinase-type plasminogen activator deficiency in bone marrow-derived cells augments rupture of angiotensin II-induced abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2011; 31:2845-52. [PMID: 21868698 PMCID: PMC3220732 DOI: 10.1161/atvbaha.111.234997] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 08/09/2011] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysms (AAAs) are associated with fragmentation of extracellular matrix during development of aortic dilation and rupture. Therefore, it is important to identify specific protease systems involved in extracellular matrix degradation during AAA formation. The present study determined the contribution of the urokinase system to AAA formation and rupture. METHODS AND RESULTS Angiotensin II (Ang II)-induced AAAs were associated with increased aortic abundance of both urokinase-type plasminogen activator receptor (uPAR) and urokinase-type plasminogen activator (uPA) proteins. However, this increased presence was unrelated to AAA formation because deficiencies of either uPAR or uPA had no effect on either the incidence or size of Ang II-induced AAAs in both normolipidemic mice and low-density lipoprotein receptor-/- mice fed a saturated fat-enriched diet. Although uPA deficiency did not affect development of AAAs, there was an effect of increasing mortality rate from AAA rupture in hypercholesterolemic mice. Bone marrow transplantation demonstrated that enhanced aneurysmal rupture was attributable to deficiency of uPA in leukocytes. uPA deficiency led to an increased propensity for impaired resolution of the thrombotic material within the aneurysmal tissue. Neither uPAR nor uPA deficiency had any effect on Ang II-induced atherosclerosis in low-density lipoprotein receptor-/- mice. CONCLUSIONS The uPA-uPAR axis has no effect on the formation of Ang II-induced AAAs, but uPA deficiency promotes aneurysmal rupture.
Collapse
MESH Headings
- Aneurysm, Ruptured/epidemiology
- Aneurysm, Ruptured/physiopathology
- Angiotensin II/adverse effects
- Animals
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/physiopathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Apolipoproteins E/physiology
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Disease Models, Animal
- Hypercholesterolemia/metabolism
- Incidence
- Leukocytes/metabolism
- Leukocytes/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Receptors, LDL/physiology
- Receptors, Urokinase Plasminogen Activator/deficiency
- Receptors, Urokinase Plasminogen Activator/genetics
- Receptors, Urokinase Plasminogen Activator/physiology
- Urokinase-Type Plasminogen Activator/deficiency
- Urokinase-Type Plasminogen Activator/genetics
- Urokinase-Type Plasminogen Activator/physiology
Collapse
Affiliation(s)
- Haruhito A. Uchida
- Saha Cardiovascular Research Center, University of Kentucky Lexington, KY 40536
| | - Aruna Poduri
- Saha Cardiovascular Research Center, University of Kentucky Lexington, KY 40536
| | | | - Lisa A. Cassis
- Graduate Center for Nutritional Sciences, University of Kentucky Lexington, KY 40536
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky Lexington, KY 40536
- Graduate Center for Nutritional Sciences, University of Kentucky Lexington, KY 40536
| |
Collapse
|
60
|
Lampidonis A, Theodorou G, Pecorini C, Rebucci R, Baldi A, Politis I. Cloning of the 5′ regulatory regions and functional characterization of the core promoters of ovine PLAU (u-PA) and SERPIN1 (PAI-1). Gene 2011; 489:11-20. [DOI: 10.1016/j.gene.2011.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/08/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
61
|
Biological mechanisms influencing prosthetic bypass graft patency: possible targets for modern graft design. Eur J Vasc Endovasc Surg 2011; 43:66-72. [PMID: 22001149 DOI: 10.1016/j.ejvs.2011.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 09/09/2011] [Indexed: 11/21/2022]
Abstract
In recent years, ample attention has been directed towards the mechanisms that play a major role in the process of vascular graft failure, especially graft thrombosis and intimal narrowing have been highlighted. In this article, a survey is conducted into the key mechanisms of the biological processes of intimal hyperplasia and ultimate graft failure. The sequence of biochemical events that lead to thrombosis of grafts is used as a guideline to describe possible counteracting prosthetic surface interventions in each separate phase of the process.
Collapse
|
62
|
Vaidya B, Agrawal GP, Vyas SP. Platelets directed liposomes for the delivery of streptokinase: development and characterization. Eur J Pharm Sci 2011; 44:589-94. [PMID: 22009110 DOI: 10.1016/j.ejps.2011.10.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/15/2011] [Accepted: 10/01/2011] [Indexed: 12/28/2022]
Abstract
The present study was aimed to study the effect of RGD peptide conjugation on the bio-distribution behaviour of long circulatory liposomes in the thrombosed rat model. Further, thrombolysis study was also performed to evaluate the therapeutic activity of the prepared liposomes. Liposomes were prepared by film hydration method and peptide was subsequently conjugated on the preformed liposomes using carbodiimide chemistry. Prepared liposomes were characterized for size and size distribution, entrapment efficiency and in vitro drug release. In vitro targeting ability of the liposomes was determined by platelets binding assay. In vivo studies were performed in the rat model containing human blood clot inoculated in the carotid artery. Results of the study showed that RGD peptide conjugated liposomes significantly accumulated to the site of blood clot and higher thrombolytic activity was observed with peptide modified liposomes as compared to plain streptokinase solution and long circulatory liposomes.
Collapse
Affiliation(s)
- Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, Dr. H.S. Gour University, Sagar, Madhya Pradesh, India
| | | | | |
Collapse
|
63
|
Extracellular proteases in epilepsy. Epilepsy Res 2011; 96:191-206. [DOI: 10.1016/j.eplepsyres.2011.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/10/2011] [Accepted: 08/03/2011] [Indexed: 11/20/2022]
|
64
|
Abstract
The vascular endothelial cells line the inner surface of blood vessels and function to maintain blood fluidity by producing the protease plasmin that removes blood clots from the vasculature, a process called fibrinolysis. Plasminogen receptors play a central role in the regulation of plasmin activity. The protein complex annexin A2 heterotetramer (AIIt) is an important plasminogen receptor at the surface of the endothelial cell. AIIt is composed of 2 molecules of annexin A2 (ANXA2) bound together by a dimer of the protein S100A10. Recent work performed by our laboratory allowed us to clarify the specific roles played by ANXA2 and S100A10 subunits within the AIIt complex, which has been the subject of debate for many years. The ANXA2 subunit of AIIt functions to stabilize and anchor S100A10 to the plasma membrane, whereas the S100A10 subunit initiates the fibrinolytic cascade by colocalizing with the urokinase type plasminogen activator and receptor complex and also providing a common binding site for both tissue-type plasminogen activator and plasminogen via its C-terminal lysine residue. The AIIt mediated colocalization of the plasminogen activators with plasminogen results in the rapid and localized generation of plasmin to the endothelial cell surface, thereby regulating fibrinolysis.
Collapse
|
65
|
Affiliation(s)
| | - Jeffrey J.D. Henry
- Department of Bioengineering, University of California, Berkeley, California 94720;
| |
Collapse
|
66
|
Gilardini L, Pasqualinotto L, Di Matteo S, Caffetto K, Croci M, Girola A, Invitti C. Factors associated with early atherosclerosis and arterial calcifications in young subjects with a benign phenotype of obesity. Obesity (Silver Spring) 2011; 19:1684-9. [PMID: 21273999 DOI: 10.1038/oby.2010.342] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We assessed (i) the association between early arterial disease and factors linked to adiposity, dietary habits, and family in a young cohort of 151 obese children and adolescents with less than or equal to one cardiovascular (CV) risk factor, (ii) whether in subjects with carotid calcifications there was an imbalance of calcium-phosphorus homeostasis. Measurement included: carotid ultrasound, oral glucose tolerance test, anthropometry, body composition, dietary history, white blood cells count, lipids, uric acid, adiponectin, insulin, C-reactive protein, plasminogen activator inhibitor 1 (PAI-1), 25-hydroxyvitamin D, parathyroid hormone (PTH), calcium and phosphorus. Obese children with carotid artery intima media thickness (cIMT) values >75° percentile (0.55 mm), compared to those with lower cIMT, were more obese, more often pubertal and had higher prevalence of family history of CV disease (CVD) (P < 0.05), higher plasma PAI-1 and uric acid (P < 0.001) and lower adiponectin (P < 0.05) and high-density lipoprotein (HDL) cholesterol levels (P < 0.05). After adjustment for sex, age, puberty, obesity, and insulin levels, only PAI-I remained significantly different between the two groups (10.9 (7.2-29.8) vs. 6.2 (4.3-10.6) ng/ml, P < 0.001). Dietary intake did not affect cIMT values. Eight percent of subjects showed nonatherosclerotic carotid calcifications with patchy pattern. These children had a worse lipid profile (P < 0.05) and higher plasma PTH levels (48.6 ± 21.5 vs 38.5 ± 16.9 pg/ml, P < 0.05) that were inversely associated with 25-hydroxyvitamin D levels (r = 0.245, P < 0.01). Present results suggest that (i) several adiposity-related factors may play a role in promoting the development of early arterial diseases in young subjects with a benign phenotype of obesity, (ii) a PTH rise resulting from a subclinical imbalance in calcium-phosphorus homeostasis may affect the biological process of vascular calcifications.
Collapse
Affiliation(s)
- Luisa Gilardini
- Department of Medical Sciences and Rehabilitation, Istituto Auxologico Italiano, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
67
|
Ji Y, Strawn TL, Grunz EA, Stevenson MJ, Lohman AW, Lawrence DA, Fay WP. Multifaceted role of plasminogen activator inhibitor-1 in regulating early remodeling of vein bypass grafts. Arterioscler Thromb Vasc Biol 2011; 31:1781-7. [PMID: 21571686 DOI: 10.1161/atvbaha.111.228767] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The role of plasminogen activator inhibitor-1 (PAI-1) in vein graft (VG) remodeling is undefined. We examined the effect of PAI-1 on VG intimal hyperplasia and tested the hypothesis that PAI-1 regulates VG thrombin activity. METHODS AND RESULTS VGs from wild-type (WT), Pai1(-/-), and PAI-1-transgenic mice were implanted into WT, Pai1(-/-), or PAI-1-transgenic arteries. VG remodeling was assessed 4 weeks later. Intimal hyperplasia was significantly greater in PAI-1-deficient mice than in WT mice. The proliferative effect of PAI-1 deficiency was retained in vitronectin-deficient mice, suggesting that PAI-1's antiproteolytic function plays a key role in regulating intimal hyperplasia. Thrombin-induced proliferation of PAI-1-deficient venous smooth muscle cells (SMC) was significantly greater than that of WT SMC, and thrombin activity was significantly higher in PAI-1-deficient VGs than in WT VGs. Increased PAI-1 expression, which has been associated with obstructive VG disease, did not increase intimal hyperplasia. CONCLUSIONS Decreased PAI-1 expression (1) promotes intimal hyperplasia by pathways that do not require vitronectin and (2) increases thrombin activity in VG. PAI-1 overexpression, although it promotes SMC migration in vitro, did not increase intimal hyperplasia. These results challenge the concept that PAI-1 drives nonthrombotic obstructive disease in VG and suggest that PAI-1's antiproteolytic function, including its antithrombin activity, inhibits intimal hyperplasia.
Collapse
Affiliation(s)
- Yan Ji
- Department of Internal Medicine and Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Taylan A, Sari I, Kozaci DL, Yildiz Y, Bilge S, Coker I, Maltas S, Gunay N, Akkoc N. Evaluation of various endothelial biomarkers in ankylosing spondylitis. Clin Rheumatol 2011; 31:23-8. [PMID: 21556780 DOI: 10.1007/s10067-011-1760-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/28/2011] [Accepted: 04/17/2011] [Indexed: 10/18/2022]
Abstract
Atherosclerosis has been shown to be increased in chronic inflammatory diseases including ankylosing spondylitis (AS). Impaired endothelial function, the first step in atherosclerosis, may be reflected by changes in various endothelial biomarkers of hemostasis and the release of several cellular adhesion molecules or cytokines. In this study, we investigated changes in the levels of various possible markers with regard to disease activity and treatment regimen with/without anti-TNF-α drugs. Fifty-six AS patients (44 males) and 27 controls (19 males) with no known cardiovascular risk factors were included in the study. Spinal mobility was assessed by the Bath Ankylosing Spondylitis Metrology Index, and patients were evaluated with the Bath Ankylosing Spondylitis Functional Index and the Bath Ankylosing Spondylitis Disease Activity Index. Cytokines and various endothelial biomarkers were measured in serum samples using commercially available ELISA kits. Age, sex, BMI, waist circumference, fasting glucose, MAP, lipids are all similar between patients and controls. von Willebrand factor (vWF), soluble thrombomodulin (sTM), and urotensin (UT-II) were found to be significantly higher in the sera of the patients compared to the controls. Treatment with anti-TNF-α compared to conventional therapy and disease activity in AS patients seemed to have no effect on the blood levels of UT-II, sTM, CD146, vWF, plasminogen activator inhibitor-1, tissue plasminogen activator, or the thrombin-antithrombin complex. The increased UT-II, sTM, and vWF in AS patient sera regardless of treatment and disease activity suggest an increased tendency for atherosclerosis.
Collapse
Affiliation(s)
- Ali Taylan
- Department of Rheumatology, Izmir Tepecik Training and Research Hospital, Izmir, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Thuma PE, van Dijk J, Bucala R, Debebe Z, Nekhai S, Kuddo T, Nouraie M, Weiss G, Gordeuk VR. Distinct clinical and immunologic profiles in severe malarial anemia and cerebral malaria in Zambia. J Infect Dis 2011; 203:211-9. [PMID: 21288821 DOI: 10.1093/infdis/jiq041] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The mechanisms of severe malarial anemia and cerebral malaria, which are extreme manifestations of Plasmodium falciparum malaria, are not fully understood. METHODS Children aged <6 years from southern Zambia presenting to the hospital with severe malarial anemia (n = 72), cerebral malaria (n = 28), or uncomplicated malaria (n = 66) were studied prospectively. Children with overlapping severe anemia and cerebral malaria were excluded. RESULTS Low interleukin 10 concentrations had the strongest association with severe anemia (standard β = .61; P < .001) followed by high tumor necrosis factor α and sFas concentrations, low weight-for-age z scores, presence of stool parasites, and splenomegaly (standard β = .15-.25; P ≤ .031); most of these factors were also associated with lower reticulocytes. Greater parasitemia was associated with higher interleukin 10 and tumor necrosis factor α concentrations, whereas sulfadoxizole/pyrimethamine therapy and lower weight-for-age z scores were associated with lower interleukin 10 levels. Thrombocytopenia and elevated tissue plasminogen activator inhibitor 1 levels had the strongest associations with cerebral malaria (standard β = .37 or .36; P < .0001), followed by exposure to traditional herbal medicine and hemoglobinuria (standard β = .21-.31; P ≤ .006). CONCLUSIONS Predictors of severe malarial anemia (altered immune responses, poor nutrition, intestinal parasites, and impaired erythropoiesis) differed from those of cerebral malaria (thrombocytopenia, herbal medicine, and intravascular hemolysis). Improved preventive and therapeutic measures may need to consider these differences.
Collapse
|
70
|
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) and therefore plays an important role in the plasminogen/plasmin system. PAI-1 is involved in a variety of cardiovascular diseases (mainly through inhibition of t-PA) as well as in cell migration and tumor development (mainly through inhibition of u-PA and interaction with vitronectin). PAI-1 is a unique member of the serpin superfamily, exhibiting particular unique conformational and functional properties. Since its involvement in various biological and pathophysiological processes PAI-1 has been the subject of many in vivo studies in mouse models. We briefly discuss structural and physiological differences between human and mouse PAI-1 that should be taken into account prior to extrapolation of data obtained in mouse models to the human situation. The current review provides an overview of the various models, with a focus on cardiovascular disease and cancer, using wild-type mice or genetically modified mice, either deficient in PAI-1 or overexpressing different variants of PAI-1.
Collapse
|
71
|
Boncela J, Przygodzka P, Papiewska-Pajak I, Wyroba E, Osinska M, Cierniewski CS. Plasminogen activator inhibitor type 1 interacts with alpha3 subunit of proteasome and modulates its activity. J Biol Chem 2010; 286:6820-31. [PMID: 21135093 DOI: 10.1074/jbc.m110.173781] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor type-1 (PAI-1), a multifunctional protein, is an important physiological regulator of fibrinolysis, extracellular matrix homeostasis, and cell motility. Recent observations show that PAI-1 may also be implicated in maintaining integrity of cells, especially with respect to cellular proliferation or apoptosis. In the present study we provide evidence that PAI-1 interacts with proteasome and affects its activity. First, by using the yeast two-hybrid system, we found that the α3 subunit of proteasome directly interacts with PAI-1. Then, to ensure that the PAI-1-proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after transfection of HeLa cells with pCMV-PAI-1 and coimmunoprecipitation of both proteins with anti-PAI-1 antibodies. Subsequently, cellular distribution of the PAI-1-proteasome complexes was established by immunogold staining and electron microscopy analyses. Both proteins appeared in a diffuse cytosolic pattern but also could be found in a dense perinuclear and nuclear location. Furthermore, PAI-1 induced formation of aggresomes freely located in endothelial cytoplasm. Increased PAI-1 expression abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-1 and pd2EGFP-N1 and prevented degradation of p53 as well as IκBα, as evidenced both by confocal microscopy and Western immunoblotting.
Collapse
Affiliation(s)
- Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, Lodz 93-232, Poland
| | | | | | | | | | | |
Collapse
|
72
|
Cesari M, Pahor M, Incalzi RA. Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc Ther 2010; 28:e72-91. [PMID: 20626406 PMCID: PMC2958211 DOI: 10.1111/j.1755-5922.2010.00171.x] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION The close relationship existing between aging and thrombosis has growingly been studied in this last decade. The age-related development of a prothrombotic imbalance in the fibrinolysis homeostasis has been hypothesized as the basis of this increased cardiovascular and cerebrovascular risk. Fibrinolysis is the result of the interactions among multiple plasminogen activators and inhibitors constituting the enzymatic cascade, and ultimately leading to the degradation of fibrin. The plasminogen activator system plays a key role in a wide range of physiological and pathological processes. METHODS Narrative review. RESULTS Plasminogen activator inhibitor-1 (PAI-1) is a member of the superfamily of serine-protease inhibitors (or serpins), and the principal inhibitor of both the tissue-type and the urokinase-type plasminogen activator, the two plasminogen activators able to activate plasminogen. Current evidence describing the central role played by PAI-1 in a number of age-related subclinical (i.e., inflammation, atherosclerosis, insulin resistance) and clinical (i.e., obesity, comorbidities, Werner syndrome) conditions is presented. CONCLUSIONS Despite some controversial and unclear issues, PAI-1 represents an extremely promising marker that may become a biological parameter to be progressively considered in the prognostic evaluation, in the disease monitoring, and as treatment target of age-related conditions in the future.
Collapse
Affiliation(s)
- Matteo Cesari
- Area di Geriatria, Università Campus Bio-Medico, Rome, Italy.
| | | | | |
Collapse
|
73
|
Diebold I, Petry A, Djordjevic T, Belaiba RS, Fineman J, Black S, Schreiber C, Fratz S, Hess J, Kietzmann T, Görlach A. Reciprocal regulation of Rac1 and PAK-1 by HIF-1alpha: a positive-feedback loop promoting pulmonary vascular remodeling. Antioxid Redox Signal 2010; 13:399-412. [PMID: 20001745 DOI: 10.1089/ars.2009.3013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pulmonary vascular remodeling associated with pulmonary hypertension is characterized by media thickening, disordered proliferation, and in situ thrombosis. The p21-activated kinase-1 (PAK-1) can control growth, migration, and prothrombotic activity, and the hypoxia-inducible transcription factor HIF-1alpha was associated with pulmonary vascular remodeling. Here we studied whether PAK-1 and HIF-1alpha are linked in pulmonary vascular remodeling. PAK-1 was expressed in the media of remodeled pulmonary vessels from patients with pulmonary vasculopathy and was upregulated, together with its upstream regulator Rac1 and HIF-1alpha in lung tissue from lambs with pulmonary vascular remodeling. PAK-1 and Rac1 were activated by thrombin involving calcium, thus resulting in enhanced generation of reactive oxygen species (ROS) in human pulmonary artery smooth muscle cells (PASMCs). Activation of PAK-1 stimulated HIF activity and HIF-1alpha expression involving ROS and NF-kappaB, enhanced the expression of the HIF-1 target gene plasminogen activator inhibitor-1, and stimulated PASMC proliferation. Importantly, HIF-1 itself bound to the Rac1 promoter and enhanced Rac1 and PAK-1 transcription. Thus, PAK-1 and its activator Rac1 are novel HIF-1 targets that may constitute a positive-feedback loop for induction of HIF-1alpha by thrombin and ROS, thus explaining elevated levels of PAK-1, Rac1, and HIF-1alpha in remodeled pulmonary vessels.
Collapse
Affiliation(s)
- Isabel Diebold
- Department of Pediatric Cardiology, Technical University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Schuliga M, Harris T, Stewart AG. Plasminogen activation by airway smooth muscle is regulated by type I collagen. Am J Respir Cell Mol Biol 2010; 44:831-9. [PMID: 20693403 DOI: 10.1165/rcmb.2009-0469oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plasmin, the activated protease product of plasminogen, is involved in collagen remodeling, and is strongly implicated in asthma pathophysiology by recent genome-wide association studies. This study examines plasminogen "activation" by airway smooth muscle cells, and its regulation in a fibrotic environment created by culture on type I collagen and incubation with transforming growth factor (TGF)-β. Urokinase plasminogen activator (uPA) activity was detected in the supernatants of human airway smooth muscle cell cultures maintained in serum-free conditions. Incubation with plasminogen (1.5-50.0 μg/ml, 24 h) increased plasmin activity in a concentration-dependent manner (P < 0.001). uPA activity was higher in cultures maintained on fibrillar type I collagen substrata than in those on plastic, as was plasmin activity after incubation with plasminogen (20 μg/ml). Pretreatment with TGF-β (100 pM) for 18 hours inhibited plasminogen activation by airway smooth muscle cells maintained on plastic, but not on collagen. TGF-β stimulated an increase in the level of uPA mRNA in airway smooth muscle cells grown on collagen, but not on plastic. Reducing the levels of β1-integrin collagen receptor, using interference RNA, attenuated plasmin formation by airway smooth muscle cells grown on collagen, and restored the inhibitory effect of TGF-β. This study shows that airway smooth muscle activation of plasminogen by uPA is accelerated in a collagen-rich environment in which the inhibitory effect of TGF-β is attenuated in association with greater uPA expression induced via β1-integrin signaling. These findings suggest that the plasminogen-activation system involving uPA has the potential to contribute to airway wall remodeling in asthma.
Collapse
Affiliation(s)
- Michael Schuliga
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
75
|
Garg N, Goyal N, Strawn TL, Wu J, Mann KM, Lawrence DA, Fay WP. Plasminogen activator inhibitor-1 and vitronectin expression level and stoichiometry regulate vascular smooth muscle cell migration through physiological collagen matrices. J Thromb Haemost 2010; 8:1847-54. [PMID: 20492459 PMCID: PMC2941703 DOI: 10.1111/j.1538-7836.2010.03907.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) migration is a critical process in arterial remodeling. Purified plasminogen activator inhibitor-1 (PAI-1) is reported to both promote and inhibit VSMC migration on two-dimensional (D) surfaces. OBJECTIVE To determine the effects of PAI-1 and vitronectin (VN) expressed by VSMC themselves on migration through physiological collagen matrices. METHODS We studied migration of wild-type (WT), PAI-1-deficient, VN-deficient, PAI-1/VN doubly-deficient (DKO) and PAI-1-transgenic (Tg) VSMC through three-D collagen gels. RESULTS WT VSMC migrated significantly slower than PAI-1- and VN-deficient VSMC, but significantly faster than DKO VSMC. Experiments with recombinant PAI-1 suggested that basal VSMC PAI-1 expression inhibits migration by binding VN, which is secreted by VSMC and binds collagen. However, PAI-1-over-expressing Tg VSMC migrated faster than WT VSMC. Reconstitution experiments with recombinant PAI-1 mutants suggested that the pro-migratory effect of PAI-1 over-expression required its anti-plasminogen activator (PA) and LDL receptor-related protein (LRP) binding functions, but not VN binding. While promoting VSMC migration in the absence of PAI-1, VN inhibited the pro-migratory effect of active PAI-1. CONCLUSIONS In isolation, VN and PAI-1 are each pro-migratory. However, via formation of a high-affinity, non-motogenic complex, PAI-1 and VN each buffers the other's pro-migratory effect. The level of PAI-1 expression by VSMC and the concentration of VN in extracellular matrix are critical determinants of whether PAI-1 and VN promote or inhibit migration. These findings help to rectify previously conflicting reports and suggest that PAI-1/VN stoichiometry plays an important role in VSMC migration and vascular remodeling.
Collapse
Affiliation(s)
- N Garg
- Department of Internal Medicine, University of Missouri School of Medicine and Research Service, Harry S. Truman Memorial Veterans Affairs Hospital, Columbia, MO, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Boutsikou T, Mastorakos G, Kyriakakou M, Margeli A, Hassiakos D, Papassotiriou I, Kanaka-Gantenbein C, Malamitsi-Puchner A. Circulating levels of inflammatory markers in intrauterine growth restriction. Mediators Inflamm 2010; 2010:790605. [PMID: 20614004 PMCID: PMC2896837 DOI: 10.1155/2010/790605] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 02/25/2010] [Accepted: 03/24/2010] [Indexed: 01/04/2023] Open
Abstract
We aimed to investigate possible alterations in circulating levels of the perinatal stress markers high sensitivity (hs)-CRP, PAI-1, and S100B--probably reflecting brain and adipose tissue inflammation--in intrauterine growth-restricted-(IUGR) and appropriate-for-gestational-age-(AGA) pregnancies, given that these groups differ in fat mass and metabolic mechanisms involving aseptic inflammation. Serum hs-CRP, PAI-1, and S100B levels were measured in 40 mothers, and their 20 AGA and 20 IUGR full-term fetuses and neonates on postnatal days 1 and 4. hs-CRP, PAI-1, and S100B levels did not differ at all time points between AGA and IUGR groups. We conclude that the lack of difference in hs-CRP, PAI-1 and S100B levels, between IUGR and AGA fetuses/neonates--despite the lower birth weight, reflecting reduced fat mass in the former--might indicate more intense adipose tissue and nervous system inflammation in IUGRs. However, implication of other inflammation-related mechanisms, common in the IUGR state (e.g. preeclampsia), cannot be excluded.
Collapse
Affiliation(s)
- Theodora Boutsikou
- Neonatal Division, Second Department of Obstetrics and Gynecology, University of Athens, 11528 Athens, Greece
| | - George Mastorakos
- Neonatal Division, Second Department of Obstetrics and Gynecology, University of Athens, 11528 Athens, Greece
| | - Marialena Kyriakakou
- Neonatal Division, Second Department of Obstetrics and Gynecology, University of Athens, 11528 Athens, Greece
| | - Alexandra Margeli
- Department of Clinical Biochemistry, “Aghia Sophia” Children's Hospital, 11527 Athens, Greece
| | - Demetrios Hassiakos
- Neonatal Division, Second Department of Obstetrics and Gynecology, University of Athens, 11528 Athens, Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, “Aghia Sophia” Children's Hospital, 11527 Athens, Greece
| | | | - Ariadne Malamitsi-Puchner
- Neonatal Division, Second Department of Obstetrics and Gynecology, University of Athens, 11528 Athens, Greece
| |
Collapse
|
77
|
Yu M, Mo Y, Wan R, Chien S, Zhang X, Zhang Q. Regulation of plasminogen activator inhibitor-1 expression in endothelial cells with exposure to metal nanoparticles. Toxicol Lett 2010; 195:82-89. [PMID: 20171267 PMCID: PMC2856729 DOI: 10.1016/j.toxlet.2010.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 01/25/2023]
Abstract
Recent studies demonstrated that exposure to nanoparticles could enhance the adhesion of endothelial cells and modify the membrane structure of vascular endothelium. The endothelium plays an important role in the regulation of fibrinolysis, and imbalance of the fibrinolysis system potential contributes to the development of thrombosis. Plasminogen activator inhibitor-1 (PAI-1) is the most potent endogenous inhibitor of fibrinolysis and is involved in the pathogenesis of several cardiovascular diseases. The aim of this study was to investigate the alteration of PAI-1 expression in mouse pulmonary microvascular endothelial cells (MPMVEC) exposed to the metal nanoparticles that are known to be reactive, and the potential underlying mechanisms. We compared the alteration of PAI-1 expression in MPMVEC exposed to non-toxic doses of nano-size copper (II) oxide (Nano-CuO) and nano-size titanium dioxide (Nano-TiO(2)). Our results showed that Nano-CuO caused a dose- and time-dependent increase in PAI-1 expression. Moreover, exposure of MPMVEC to Nano-CuO caused reactive oxygen species (ROS) generation that was abolished by pre-treatment of cells with ROS scavengers or inhibitors, DPI, NAC and catalase. Exposure of MPMVEC to Nano-CuO also caused a dose- and time-dependent increase in p38 phosphorylation by Western blot. These effects were significantly attenuated when MPMVEC were pre-treated with DPI, NAC and catalase. To further investigate the role of p38 phosphorylation in Nano-CuO-induced PAI-1 overexpression, the p38 inhibitor, SB203580, was used to pre-treat cells prior to Nano-CuO exposure. We found that Nano-CuO-induced overexpression of PAI-1 was attenuated by p38 inhibitor pre-treatment. However, Nano-TiO(2) did not show the same results. Our results suggest that Nano-CuO caused up-regulation of PAI-1 in endothelial cells is mediated by p38 phosphorylation due to oxidative stress. These findings have important implications for understanding the potential health effects of metal nanoparticle exposure.
Collapse
Affiliation(s)
- Min Yu
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
- Department of Hygiene, Zhejiang Academy of Medical Sciences, Zhejiang, P.R. China
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Rong Wan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Sufan Chien
- Department of Surgery, School of Medicine, University of Louisville
| | - Xing Zhang
- Department of Hygiene, Zhejiang Academy of Medical Sciences, Zhejiang, P.R. China
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
78
|
Rana GSJB, York TP, Edmiston JS, Zedler BK, Pounds JG, Adkins JN, Smith RD, Liu Z, Li G, Webb BT, Murrelle EL, Flora JW. Proteomic biomarkers in plasma that differentiate rapid and slow decline in lung function in adult cigarette smokers with chronic obstructive pulmonary disease (COPD). Anal Bioanal Chem 2010; 397:1809-19. [DOI: 10.1007/s00216-010-3742-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/06/2010] [Accepted: 04/12/2010] [Indexed: 11/24/2022]
|
79
|
York TP, van den Oord EJCG, Langston TB, Edmiston JS, McKinney W, Webb BT, Murrelle EL, Zedler BK, Flora JW. High-resolution mass spectrometry proteomics for the identification of candidate plasma protein biomarkers for chronic obstructive pulmonary disease. Biomarkers 2010; 15:367-77. [DOI: 10.3109/13547501003789901] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
80
|
Theodorou G, Bizelis I, Rogdakis E, Politis I. The ovine plasminogen activator inhibitors type 1 and type 2 cDNAs: Molecular cloning, characterization and expression in various tissues. Gene 2010; 454:20-30. [DOI: 10.1016/j.gene.2010.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/19/2010] [Accepted: 01/20/2010] [Indexed: 01/23/2023]
|
81
|
Shen D, Xu X, Zhang L, Wu H, Peng L. Identification of a nitric oxide-dependent hypotensive effect of anticoagulation factor II from the venom of Agkistrodon acutus. Biochem Pharmacol 2010; 79:498-506. [DOI: 10.1016/j.bcp.2009.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/25/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
|
82
|
Abstract
Bleeding is a common and potentially serious complication of acute and chronic renal failure. The pathogenesis of bleeding in uremia is multifactorial; however, the major role is played by abnormalities in platelet-platelet and platelet-vessel wall interaction. Platelet dysfunction is partially due to uremic toxins present in circulating blood. Despite decreased platelet function, abnormalities of blood coagulation and fibrinolysis predispose the uremic patients to a hypercoagulable state carrying the risk of cardiovascular and thrombotic complications. Dialysis improves platelet abnormalities and reduces, but does not eliminate, the risk of hemorrhage. Hemodialysis can even contribute to the bleeding through the continuous platelet activation induced by the interaction between blood and artificial surfaces and the use of anticoagulants. Correction of anemia improves hemostasis in uremic patients. Therapeutic management of bleeding in patients with uremia is discussed.
Collapse
Affiliation(s)
- Miriam Galbusera
- Mario Negri Institute for Pharmacological Research, Via Gavazzeni 11, Bergamo, Italy
| | | | | |
Collapse
|
83
|
Acute myocardial ischemia in a patient with heterozygous alpha-2-plasmin inhibitor deficiency. Blood Coagul Fibrinolysis 2009; 20:599-600. [DOI: 10.1097/mbc.0b013e32832d9b33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
84
|
Numaguchi Y, Ishii M, Kubota R, Morita Y, Yamamoto K, Matsushita T, Okumura K, Murohara T. Ablation of angiotensin IV receptor attenuates hypofibrinolysis via PAI-1 downregulation and reduces occlusive arterial thrombosis. Arterioscler Thromb Vasc Biol 2009; 29:2102-8. [PMID: 19745198 DOI: 10.1161/atvbaha.109.195057] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Reduced fibrinolytic activity is associated with adverse cardiovascular events. Although insulin-regulated aminopeptidase (IRAP) was recently identified as the angiotensin (Ang) IV receptor (AT4R), the impact of AngIV-AT4R signaling distal to AngII on the activation of type-1 plasminogen activator inhibitor (PAI-1) in the fibrinolytic process and subsequent formation of thrombosis remains unclarified. METHODS AND RESULTS To determine whether AngIV would inhibit fibrinolysis via PAI-1 activation and promote thrombosis, we evaluated the degree of fibrinolysis in thrombosis models and investigated the roles of AT4R after vascular injury using IRAP knockout mice (IRAP(-/-)). In endothelial cells from control mice (WT; C57Bl6/J), both AngII and AngIV treatments increased PAI-1 mRNA expression in a dose-dependent manner, whereas the response was blunted in endothelial cells from IRAP(-/-) mice. FeCl(3)-induced thrombosis was suppressed in the carotid arteries of IRAP(-/-) mice when compared with WT mice. Similarly, in a model of carotid artery ligation and cuff placement, IRAP(-/-) mice demonstrated accelerated fibrinolysis 7 days after surgery and reduced occlusive thrombosis with negative remodeling at 28 days. CONCLUSIONS AngIV-AT4R signaling has a key role in fibrinolysis and the subsequent formation of arterial thrombosis after vascular injury. AT4R may be a novel therapeutic target against cardiovascular disease.
Collapse
Affiliation(s)
- Yasushi Numaguchi
- Department of Medical Science of Proteases, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Sazonova IY, McNamee RA, Houng AK, King SM, Hedstrom L, Reed GL. Reprogrammed streptokinases develop fibrin-targeting and dissolve blood clots with more potency than tissue plasminogen activator. J Thromb Haemost 2009; 7:1321-8. [PMID: 19566545 PMCID: PMC3911889 DOI: 10.1111/j.1538-7836.2009.03491.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Given the worldwide epidemic of cardiovascular diseases, a more effective means of dissolving thrombi that cause heart attacks, could markedly reduce death, disability and healthcare costs. Plasminogen activators (PAs) such as streptokinase (SK) and tissue plasminogen activator (TPA) are currently used to dissolve fibrin thrombi. SK is cheaper and more widely available, but it appears less effective because it lacks TPA's fibrin-targeted properties that focus plasminogen activation on the fibrin surface. OBJECTIVE We examined whether re-programming SK's mechanism of action would create PAs with greater fibrin-targeting and potency than TPA. METHODS AND RESULTS When fibrinogen consumption was measured in human plasma, reprogrammed molecules SKDelta1 and SKDelta59 were 5-fold and > 119-fold more fibrin-dependent than SK (P < 0.0001), and 2-fold and > 50-fold more fibrin-dependent than TPA (P < 0.001). The marked fibrin-targeting of SKDelta59 was due to the fact that: (i) it did not generate plasmin in plasma, (ii) it was rapidly inhibited by alpha2-antiplasmin, and (iii) it only processed fibrin-bound plasminogen. To assess the fibrin-targeting and therapeutic potential of these PAs in vivo, a novel 'humanized' fibrinolysis model was created by reconstituting plasminogen-deficient mice with human plasminogen. When compared with TPA, SKDelta1 and SKDelta59 were 4-fold (P < 0.0001) and 2-fold (P < 0.003) more potent at dissolving blood clots in vivo, respectively, on a mass-dose basis and 2-3 logs more potent than TPA (P < 0.0001) when doses were calibrated by standard activity assays. CONCLUSION These experiments suggest that reprogramming SK's mechanism of action markedly enhances fibrin-targeting and creates, in comparison with TPA, activators with greater fibrinolytic potency.
Collapse
Affiliation(s)
- I Y Sazonova
- Cardiovascular Research Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | |
Collapse
|
86
|
Abstract
Rationale:
We previously identified a novel serine carboxypeptidase, SCPEP1, that undergoes cleavage across all tissues where it is expressed. SCPEP1 bears the signature catalytic triad found in all serine carboxypeptidases, but its biological function is completely unknown.
Objective:
To begin elucidating the functions of SCPEP1 in vitro and in the vessel wall after injury.
Methods and Results:
Cultured smooth muscle cells were transduced with adenovirus carrying wild-type
Scpep1
, a short hairpin RNA to
Scpep1
, or variants of
Scpep1
with mutations that disrupt the catalytic triad domain or SCPEP1 cleavage. Western blotting of key growth regulators or growth and migratory responses were assessed following SCPEP1 gain- or loss-of-function in smooth muscle cells. Vascular injury-induced remodeling and cell proliferation were evaluated in wild-type or newly created
Scpep1
knockout mice. Overexpression of wild-type or cleavage-defective SCPEP1, but not a catalytic triad mutant SCPEP1, promotes smooth muscle cell proliferation and migration in vitro. A short hairpin RNA to
Scpep1
blunts endogenous growth, which is rescued on concurrent expression of
Scpep1
carrying silent mutations that evade knockdown. SCPEP1 protein is highly expressed in the neointima of 2 models of vascular remodeling.
Scpep1
-null mice show decreases in medial and intimal cell proliferation as well as vessel remodeling following arterial injury.
Conclusions:
SCPEP1 promotes smooth muscle cell proliferation and migration in a catalytic triad-dependent, cleavage-independent manner. SCPEP1 represents a new mediator of vascular remodeling and a potential therapeutic target for the treatment of vascular occlusive diseases.
Collapse
|
87
|
Testa R, Bonfigli AR, Salvioli S, Invidia L, Pierini M, Sirolla C, Marra M, Testa I, Fazioli F, Recchioni R, Marcheselli F, Olivieri F, Lanari L, Franceschi C. The Pro/Pro genotype of the p53 codon 72 polymorphism modulates PAI-1 plasma levels in ageing. Mech Ageing Dev 2009; 130:497-500. [PMID: 19523975 DOI: 10.1016/j.mad.2009.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 05/26/2009] [Accepted: 06/04/2009] [Indexed: 11/29/2022]
Abstract
Plasminogen activator inhibitor 1 (PAI-1) is over-expressed during ageing and it has been linked to cellular senescence. Recently, PAI-1 has been also identified in vitro as a critical downstream target of p53. TP53, the p53 gene, has a common functional polymorphism at codon 72 which influences the capability to modulate both apoptosis and cell senescence. In the attempt to demonstrate an in vivo role of p53 in the relationship between PAI-1 and age, we studied PAI-1 on 570 healthy subjects (aged from 18 to 92yrs.). PAI-1 showed significant relationship with age (r=0.12, p=0.02). Stratifying by genotype, it became evident that the association between PAI-1 and age was mainly due to Pro/Pro subjects (partial r=0.75, p<0.01). These results have been confirmed by a validation study on an independent sample population of 496 subjects (aged from 18 to 94yrs.). This is the first demonstration of an in vivo role of TP53 polymorphism in PAI-1 regulation, supporting the hypothesis that the effects of this polymorphism are age-dependent. In particular, our results indicate that Pro/Pro genotype plays a pivotal role in determining PAI-1 levels in aged subjects, while in Arg carriers PAI-1 levels are associated to the known insulin related determinants.
Collapse
Affiliation(s)
- Roberto Testa
- Department of Gerontological Research, Diabetology Unit, INRCA-IRCCS, Polytechnic University of Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
The beneficial effects of statins, the most widely prescribed class of drugs in the world, are now recognized to extend well beyond their lipid-lowering properties. Through a combination of both distinct and interdependent effects on endothelial cell (EC) Rho GTPase regulation, NAPDH oxidase activity, NO bioavailability, and differential gene expression, statins confer significant protection of the vasculature. Abundant in vitro data, in addition to myriad reports relying on a range of animal models, now firmly support the idea that these drugs may serve as novel and effective therapeutic agents in a variety of disease states characterized by vascular dysfunction.
Collapse
Affiliation(s)
- Jeffrey R Jacobson
- Section of Pulmonary and Critical Care Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
89
|
Tkachuk VA, Plekhanova OS, Parfyonova YV. Regulation of arterial remodeling and angiogenesis by urokinase-type plasminogen activatorThis article is one of a selection of papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart Health (published in part 2 of a 2-part Special Issue). Can J Physiol Pharmacol 2009; 87:231-51. [DOI: 10.1139/y08-113] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A wide variety of disorders are associated with an imbalance in the plasminogen activator system, including inflammatory diseases, atherosclerosis, intimal hyperplasia, the response mechanism to vascular injury, and restenosis. Urokinase-type plasminogen activator (uPA) is a multifunctional protein that in addition to its fibrinolytic and matrix degradation capabilities also affects growth factor bioavailability, cytokine modulation, receptor shedding, cell migration and proliferation, phenotypic modulation, protein expression, and cascade activation of proteases, inhibitors, receptors, and modulators. uPA is the crucial protein for neointimal growth and vascular remodeling. Moreover, it was recently shown to be implicated in the stimulation of angiogenesis, which makes it a promising multipurpose therapeutic target. This review is focused on the mechanisms by which uPA can regulate arterial remodeling, angiogenesis, and cell migration and proliferation after arterial injury and the means by which it modulates gene expression in vascular cells. The role of domain specificity of urokinase in these processes is also discussed.
Collapse
Affiliation(s)
- Vsevolod A. Tkachuk
- Cardiology Research Centre, Laboratory of Molecular Endocrinology, Moscow 121552, Russia
- Medical School, Lomonosov Moscow State University, Moscow, Russia
| | - Olga S. Plekhanova
- Cardiology Research Centre, Laboratory of Molecular Endocrinology, Moscow 121552, Russia
- Medical School, Lomonosov Moscow State University, Moscow, Russia
| | - Yelena V. Parfyonova
- Cardiology Research Centre, Laboratory of Molecular Endocrinology, Moscow 121552, Russia
- Medical School, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
90
|
Lieb W, Larson MG, Benjamin EJ, Yin X, Tofler GH, Selhub J, Jacques PF, Wang TJ, Vita JA, Levy D, Vasan RS, Mitchell GF. Multimarker approach to evaluate correlates of vascular stiffness: the Framingham Heart Study. Circulation 2008; 119:37-43. [PMID: 19103986 DOI: 10.1161/circulationaha.108.816108] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Arterial stiffness increases with age and contributes to the pathogenesis of systolic hypertension and cardiovascular disease in the elderly. Knowledge about the pathophysiological processes that determine arterial stiffness may help guide therapeutic approaches. METHODS AND RESULTS We related 7 circulating biomarkers representing distinct biological pathways (C-reactive protein, aldosterone-to-renin ratio, N-terminal proatrial natriuretic peptide and B-type natriuretic peptide, plasminogen activator inhibitor-1, fibrinogen, and homocysteine) to 5 vascular function measures (central pulse pressure, carotid-femoral pulse-wave velocity, mean arterial pressure, forward pressure wave amplitude [all measures of conduit artery stiffness], and augmented pressure, an indicator of wave reflection) in 2000 Framingham Offspring Study participants (mean age, 61 years; 55% women). Tonometry measures were obtained on average 3 years after the biomarkers were measured. In multivariable linear regression models adjusting for covariates, the biomarker panel was significantly associated with all 5 vascular measures (P<0.003 for all). On backward elimination, the aldosterone-to-renin ratio was positively associated with each stiffness measure (P< or =0.002 for all). In addition, C-reactive protein was positively related to augmented pressure (P=0.0003), whereas plasminogen activator inhibitor-1 was positively associated with mean arterial pressure (P=0.003), central pulse pressure (P=0.001), and forward pressure wave (P=0.01). CONCLUSIONS Our cross-sectional data on a community-based sample suggest a distinctive pattern of positive associations of biomarkers of renin-angiotensin-aldosterone system activation with pan-arterial vascular stiffness, plasminogen activator inhibitor-1 with central vascular stiffness indices, and C-reactive protein with wave reflection. These observations support the notion of differential influences of biological pathways on vascular stiffness measures.
Collapse
|
91
|
Kremen M, Krishnan R, Emery I, Hu JH, Slezicki KI, Wu A, Qian K, Du L, Plawman A, Stempien-Otero A, Dichek DA. Plasminogen mediates the atherogenic effects of macrophage-expressed urokinase and accelerates atherosclerosis in apoE-knockout mice. Proc Natl Acad Sci U S A 2008; 105:17109-14. [PMID: 18957535 PMCID: PMC2579386 DOI: 10.1073/pnas.0808650105] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Indexed: 11/18/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA) is expressed at elevated levels in atherosclerotic human arteries, primarily in macrophages. Plasminogen (Plg), the primary physiologic substrate of uPA, is present at significant levels in blood and interstitial fluid. Both uPA and Plg have activities that could affect atherosclerosis progression. Moreover, correlations between increased Plg activation and accelerated atherosclerosis are reported in several human studies. However, a coherent picture of the role of the uPA/Plg system in atherogenesis has not yet emerged, with at least one animal study suggesting that Plg is atheroprotective. We used a transgenic mouse model of macrophage-targeted uPA overexpression in apolipoprotein E-deficient mice to investigate the roles of uPA and Plg in atherosclerosis. We found that macrophage-expressed uPA accelerated atherosclerotic plaque growth and promoted aortic root dilation through Plg-dependent pathways. These pathways appeared to affect lesion progression rather than initiation and to include actions that disproportionately increase lipid accumulation in the artery wall. In addition, loss of Plg was protective against atherosclerosis both in the presence and absence of uPA overexpression. Transgenic mice with macrophage-targeted uPA overexpression reveal atherogenic roles for both uPA and Plg and are a useful experimental setting for investigating the molecular mechanisms that underlie clinically established relationships between uPA expression, Plg activation, and atherosclerosis progression.
Collapse
Affiliation(s)
- Michal Kremen
- Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Seattle, WA 98195
| | - Ranjini Krishnan
- Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Seattle, WA 98195
| | - Isaac Emery
- Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Seattle, WA 98195
| | - Jie Hong Hu
- Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Seattle, WA 98195
| | - Katherine I. Slezicki
- Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Seattle, WA 98195
| | - Alyssa Wu
- Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Seattle, WA 98195
| | - Kun Qian
- Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Seattle, WA 98195
| | - Liang Du
- Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Seattle, WA 98195
| | - Abigail Plawman
- Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Seattle, WA 98195
| | - April Stempien-Otero
- Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Seattle, WA 98195
| | - David A. Dichek
- Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Seattle, WA 98195
| |
Collapse
|
92
|
Payeli SK, Latini R, Gebhard C, Patrignani A, Wagner U, Lüscher TF, Tanner FC. Prothrombotic gene expression profile in vascular smooth muscle cells of human saphenous vein, but not internal mammary artery. Arterioscler Thromb Vasc Biol 2008; 28:705-10. [PMID: 18258816 DOI: 10.1161/atvbaha.107.155333] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The resistance of internal mammary artery (IMA) toward thrombotic occlusion and accelerated atherosclerosis is not well understood. This study analyzed gene expression profiles of vascular smooth muscle cells (VSMCs) from IMA versus saphenous vein (SV). METHODS AND RESULTS 54'675 probe sets were examined by Affymetrix microarrays. Thirty-one genes belonged to the coagulation system; 2 were differentially expressed, namely tissue factor (TF) and tissue-type plasminogen activator (tPA). TF was 3.1-fold lower in IMA than SV (P=0.006), whereas tPA was 9.0-fold higher (P<0.001). TF mRNA expression was lower in IMA than SV (P<0.05); tPA was higher (P<0.001). TF protein expression was 4.2+/-0.5-fold lower in IMA than SV (P<0.001); tPA was 2.6+/-0.4-fold higher (P<0.01). In IMA VSMC supernatant, TF protein and activity was lower (P<0.05), TFPI and tPA protein higher (P<0.05 and P<0.005), and clotting time of human plasma prolonged (P<0.05) as compared to SV. Migration to TF/FVIIa (10(-9) mol/L) was 3-fold lower in IMA than SV (P=0.01); PAR-2 protein expression was similar (P=NS), PAR-2 blockade without effect (P=NS). CONCLUSIONS Among the genes of the coagulation system, TF and tPA are differentially expressed in VSMCs from IMA versus SV. This is consistent with protection of IMA from thrombus formation and vascular remodeling.
Collapse
Affiliation(s)
- S K Payeli
- Cardiovascular Research, Physiology Institute, University of Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
93
|
Hypochlorous acid is a potent inactivator of human plasminogen at concentrations secreted by activated granulocytes. Clin Chem Lab Med 2008; 46:1403-9. [DOI: 10.1515/cclm.2008.272] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
94
|
Abstract
Obesity is fast becoming one of the most important contributors to cardiovascular disease. Adipose tissue is gaining recognition as a key endocrine organ that secretes a growing number of adipokines, linking adiposity with inflammation, endothelial dysfunction and the initiation of atherosclerosis. In particular, accumulation of visceral adipose tissue is implicated in the development of cardiovascular disease as it is associated with increased macrophage infiltration and oversecretion of proinflammatory and prothrombotic factors, such as TNF-α, IL-6, plasminogen activator inhibitor-1, leptin, resistin and angiotensinogen, and reduced secretion of the antiatherogenic factor adiponectin. As adipokines represent a key molecular link between obesity and the atherogenic state, research directed at understanding the physiology and biochemistry of these factors should open the door for discovery of novel therapeutics.
Collapse
Affiliation(s)
- Kim S Bell-Anderson
- a Human Nutrition Unit, School of Molecular and Microbial Biosciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
95
|
Abstract
PURPOSE OF REVIEW Inflammation contributes to the formation and progression of atherosclerosis and the therapeutic potential of some anti-inflammatory drugs has been evaluated for possible antiatherosclerotic effects. This review will briefly describe the mechanisms underlying the inflammation-atherosclerosis connection, the effect of various anti-inflammatory therapies on atherosclerotic disease and a sampling of the potential targets and agents under evaluation. RECENT FINDINGS Some agents with anti-inflammatory properties appear to have beneficial effects on atherosclerosis or subsequent risk for cardiovascular events, while others have been disappointing. The anti-inflammatory actions of statins have been linked retrospectively with their favorable effects on atherosclerosis progression and clinical outcomes. The cardiovascular safety of COX-2 inhibitors is being assessed prospectively in patients with atherosclerosis. Potential new therapeutic agents targeting other inflammatory mechanisms and oxidative stress are being evaluated in animal models and clinical trials. SUMMARY Due to the contributory inflammatory pathways in atherosclerosis, the properties of existing and novel anti-inflammatory agents are being carefully and actively evaluated in cardiovascular disease. Advances in our understanding of both atherosclerosis and the inflammatory contributors may play an important role in future strategies to decrease the incidence of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Sami P Moubayed
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | | | | |
Collapse
|