51
|
Luo T, Zhang Z, Xu J, Liu H, Cai L, Huang G, Wang C, Chen Y, Xia L, Ding X, Wang J, Li X. Atherosclerosis treatment with nanoagent: potential targets, stimulus signals and drug delivery mechanisms. Front Bioeng Biotechnol 2023; 11:1205751. [PMID: 37404681 PMCID: PMC10315585 DOI: 10.3389/fbioe.2023.1205751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiovascular disease (CVDs) is the first killer of human health, and it caused up at least 31% of global deaths. Atherosclerosis is one of the main reasons caused CVDs. Oral drug therapy with statins and other lipid-regulating drugs is the conventional treatment strategies for atherosclerosis. However, conventional therapeutic strategies are constrained by low drug utilization and non-target organ injury problems. Micro-nano materials, including particles, liposomes, micelles and bubbles, have been developed as the revolutionized tools for CVDs detection and drug delivery, specifically atherosclerotic targeting treatment. Furthermore, the micro-nano materials also could be designed to intelligently and responsive targeting drug delivering, and then become a promising tool to achieve atherosclerosis precision treatment. This work reviewed the advances in atherosclerosis nanotherapy, including the materials carriers, target sites, responsive model and treatment results. These nanoagents precisely delivery the therapeutic agents to the target atherosclerosis sites, and intelligent and precise release of drugs, which could minimize the potential adverse effects and be more effective in atherosclerosis lesion.
Collapse
Affiliation(s)
- Ting Luo
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhen Zhang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Junbo Xu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hanxiong Liu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lin Cai
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Gang Huang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Chunbin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yingzhong Chen
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Long Xia
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xunshi Ding
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Li
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
52
|
Abstract
Cardiometabolic diseases, including cardiovascular disease and diabetes, are major causes of morbidity and mortality worldwide. Despite progress in prevention and treatment, recent trends show a stalling in the reduction of cardiovascular disease morbidity and mortality, paralleled by increasing rates of cardiometabolic disease risk factors in young adults, underscoring the importance of risk assessments in this population. This review highlights the evidence for molecular biomarkers for early risk assessment in young individuals. We examine the utility of traditional biomarkers in young individuals and discuss novel, nontraditional biomarkers specific to pathways contributing to early cardiometabolic disease risk. Additionally, we explore emerging omic technologies and analytical approaches that could enhance risk assessment for cardiometabolic disease.
Collapse
Affiliation(s)
- Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School
| |
Collapse
|
53
|
Lu J, Peng W, Yi X, Fan D, Li J, Wang C, Luo H, Yu M. Inflammation and endothelial function-related gene polymorphisms are associated with carotid atherosclerosis-A study of community population in Southwest China. Brain Behav 2023:e3045. [PMID: 37137812 DOI: 10.1002/brb3.3045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVES To investigate the relationships between 18 single nucleotide polymorphisms with carotid atherosclerosis and whether interactions among these genes were associated with an increased risk of carotid atherosclerosis. METHODS Face-to-face surveys were conducted with individuals aged 40 or older in eight communities. A total of 2377 individuals were included in the study. Ultrasound was used to detect carotid atherosclerosis in the included population. 18 loci of 10 genes associated with inflammation and endothelial function were detected. Gene-gene interactions were analyzed using generalized multifactor dimensionality reduction (GMDR). RESULTS Among the 2377 subjects, 445 (18.7%) subjects had increased intima-media thickness in the common carotid artery (CCA-IMT), and 398 (16.7%) subjects were detected with vulnerable plaque. In addition, NOS2A rs2297518 polymorphism was associated with increased CCA-IMT, IL1A rs1609682, and HABP2 rs7923349 polymorphisms were associated with vulnerable plaque. Besides, GMDR analysis showed significant gene-gene interactions among TNFSF4 rs1234313, IL1A rs1609682, TLR4 rs1927911, ITGA2 rs1991013, NOS2A rs2297518, IL6R rs4845625, ITGA2 rs4865756, HABP2 rs7923349, NOS2A rs8081248, HABP2 rs932650. CONCLUSION The prevalences of increased CCA-IMT and vulnerable plaque were high in Southwestern China's high-risk stroke population. Furthermore, inflammation and endothelial function-related gene polymorphisms were associated with carotid atherosclerosis.
Collapse
Affiliation(s)
- Jing Lu
- Department of Neurology, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Wei Peng
- Department of Gastrointestinal Surgery, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Xingyang Yi
- Department of Neurology, the People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Daofeng Fan
- Department of Neurology, Longyan First Hospital Affiliated to Fujian Medical University, Fujian, China
| | - Jie Li
- Department of Neurology, the People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Chun Wang
- Department of Neurology, the People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Hua Luo
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Yu
- Department of Neurology, the Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
54
|
Atre R, Sharma R, Vadim G, Solanki K, Wadhonkar K, Singh N, Patidar P, Khabiya R, Samaur H, Banerjee S, Baig MS. The indispensability of macrophage adaptor proteins in chronic inflammatory diseases. Int Immunopharmacol 2023; 119:110176. [PMID: 37104916 DOI: 10.1016/j.intimp.2023.110176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
Adaptor proteins represent key signalling molecules involved in regulating immune responses. The host's innate immune system recognizes pathogens via various surface and intracellular receptors. Adaptor molecules are centrally involved in different receptor-mediated signalling pathways, acting as bridges between the receptors and other molecules. The presence of adaptors in major signalling pathways involved in the pathogenesis of various chronic inflammatory diseases has drawn attention toward the role of these proteins in such diseases. In this review, we summarize the importance and roles of different adaptor molecules in macrophage-mediated signalling in various chronic disease states. We highlight the mechanistic roles of adaptors and how they are involved in protein-protein interactions (PPI) via different domains to carry out signalling. Hence, we also provide insights into how targeting these adaptor proteins can be a good therapeutic strategy against various chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Gaponenko Vadim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Khandu Wadhonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Neha Singh
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Pramod Patidar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India; School of Pharmacy, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India.
| |
Collapse
|
55
|
Giebe S, Brux M, Hofmann A, Lowe F, Breheny D, Morawietz H, Brunssen C. Comparative study of the effects of cigarette smoke versus next-generation tobacco and nicotine product extracts on inflammatory biomarkers of human monocytes. Pflugers Arch 2023:10.1007/s00424-023-02809-9. [PMID: 37081240 DOI: 10.1007/s00424-023-02809-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Monocytes exhibiting a pro-inflammatory phenotype play a key role in adhesion and development of atherosclerotic plaques. As an alternative to smoking, next-generation tobacco and nicotine products (NGP) are now widely used. However, little is known about their pro-inflammatory effects on monocytes. We investigated cell viability, anti-oxidant and pro-inflammatory gene and protein expression in THP-1 monocytes after exposure to aqueous smoke extracts (AqE) of a heated tobacco product (HTP), an electronic cigarette (e-cig), a conventional cigarette (3R4F) and pure nicotine (nic). Treatment with 3R4F reduced cell viability in a dose-dependent manner, whereas exposure to alternative smoking products showed no difference to control. At the highest non-lethal dose of 3R4F (20%), the following notable mRNA expression changes were observed for 3R4F, HTP, and e-cig respectively, relative to control; HMOX1 (6-fold, < 2-fold, < 2-fold), NQO1 (3.5-fold, < 2-fold, < 2-fold), CCL2 (4-fold, 3.5-fold, 2.5-fold), IL1B (4-fold, 3-fold, < 2-fold), IL8 (5-fold, 2-fold, 2-fold), TNF (2-fold, 2-fold, < 2-fold) and ICAM1 was below the 2-fold threshold for all products. With respect to protein expression, IL1B (3-fold, < 2-fold, < 2-fold) and IL8 (3.5-fold, 2-fold, 2-fold) were elevated over the 2-fold threshold, whereas CCL2, TNF, and ICAM1 were below 2-fold expression for all products. At higher doses, greater inductions were observed with all extracts; however, NGP responses were typically lower than 3R4F. In conclusion, anti-oxidative and pro-inflammatory processes were activated by all products. NGPs overall showed lower responses relative to controls than THP-1 cells exposed to 3R4F AqE.
Collapse
Affiliation(s)
- Sindy Giebe
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Melanie Brux
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Frazer Lowe
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton, SO15 8TL, UK
| | - Damien Breheny
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton, SO15 8TL, UK
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, D-01307, Dresden, Germany.
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, D-01307, Dresden, Germany.
| |
Collapse
|
56
|
Chang S, Zhang G, Li L, Li H, Jin X, Wang Y, Li B. Sirt4 deficiency promotes the development of atherosclerosis by activating the NF-κB/IκB/CXCL2/3 pathway. Atherosclerosis 2023; 373:29-37. [PMID: 37121164 DOI: 10.1016/j.atherosclerosis.2023.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS As a member of mitochondrial sirtuins, Sirt4 plays a vital role in cellular metabolism and intracellular signal transduction; however, its effect on atherosclerosis is unclear. This study aimed to explore the effect of Sirt4 on atherosclerosis and its underlying mechanism. METHODS In vivo, Apoe-/- and Apoe-/-/Sirt4-/- mice were fed a high-fat diet to induce atherosclerosis. In vitro, peritoneal macrophages from two mouse types were extracted and treated with oxidized low-density lipoprotein to establish a cell model, THP-1 cells were used to observe the effect of Sirt4 on the adhesion ability of monocytes. The growth and composition of aortic plaques in two mouse types were analyzed by H&E staining, Oil Red O staining, Dil oxidized low-density lipoprotein, immunohistochemistry, real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Transcriptome analysis and Western blotting were performed to explore the specific mechanism. RESULTS Sirt4 deficiency aggravated atherosclerosis in mice. In vivo, aortic plaque size, lipid content, and expression of related inflammatory factors in Apoe-/-/Sirt4-/- mice were higher than those in the control group, whereas the content of collagen Ⅰ and smooth muscle actin-α was significantly lower. Sirt4-deficient macrophages exhibited stronger lipid phagocytosis in vitro, and the adhesion ability of monocytes increased when Sirt4 expression decreased. Transcriptome analysis showed that the expression of CXCL2 and CXCL3 in Sirt4-deficient peritoneal macrophages increased significantly, which may play a role by activating the NF-κB pathway. In further analysis, the results in vitro and in vivo showed that the expression of VCAM-1 and pro-inflammatory factors, such as IL-6, TNF-α and IL-1β, increased, whereas the expression of anti-inflammatory factor IL-37 decreased in Sirt4-deficient peritoneal macrophages and tissues. After blocking the effect with NK-κB inhibitor BAY11-7082, the inflammatory reaction in sirt4 deficient macrophages was also significantly decreased. CONCLUSIONS This study demonstrates that Sirt4 deficiency promotes the development of atherosclerosis by activating the NF-κB/IκB/CXCL2/3 pathway, suggesting that Sirt4 may exhibit a protective effect in atherosclerosis, which provides a new strategy for clinical prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuting Chang
- Department of Cardiology, Zibo Central Hospital Affiliated to Binzhou Medical College, NO.10, South Shanghai Road, Zibo, PR China; Weifang Medical University, No.7166, Baotong West Street, Weifang, PR China
| | - Guanzhao Zhang
- Department of Cardiology, Zibo Central Hospital Affiliated to Binzhou Medical College, NO.10, South Shanghai Road, Zibo, PR China
| | - Lanlan Li
- Center of Translational Medicine, Zibo Central Hospital, No. 10, South Shanghai Road, Zibo, PR China
| | - Haiying Li
- Medical Department, Zibo Central Hospital, No. 10, South Shanghai Road, Zibo, PR China
| | - Xiaodong Jin
- Department of Geriatrics, Zibo Central Hospital, No. 10, South Shanghai Road, Zibo, PR China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China.
| | - Bo Li
- Department of Cardiology, Zibo Central Hospital Affiliated to Binzhou Medical College, NO.10, South Shanghai Road, Zibo, PR China.
| |
Collapse
|
57
|
Kolobarić N, Mihalj M, Kozina N, Matić A, Mihaljević Z, Jukić I, Drenjančević I. Tff3-/- Knock-Out Mice with Altered Lipid Metabolism Exhibit a Lower Level of Inflammation following the Dietary Intake of Sodium Chloride for One Week. Int J Mol Sci 2023; 24:ijms24087315. [PMID: 37108475 PMCID: PMC10138311 DOI: 10.3390/ijms24087315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
A high salt intake causes hemodynamic changes and promotes immune response through cell activation and cytokine production, leading to pro-inflammatory conditions. Transgenic Tff3-/- knock-out mice (TFF3ko) (n = 20) and wild-type mice (WT) (n = 20) were each divided into the (1) low-salt (LS) group and (2) high-salt (HS) group. Ten-week-old animals were fed with standard rodent chow (0.4% NaCl) (LS) or food containing 4% NaCl (HS) for one week (7 days). Inflammatory parameters from the sera were measured by Luminex assay. The integrin expression and rates of T cell subsets of interest from the peripheral blood leukocytes (PBLs) and mesenteric lymph nodes (MLNs) were measured using flow cytometry. There was a significant increase in high-sensitivity C reactive protein (hsCRP) only in the WT mice following the HS diet, while there were no significant changes in the serum levels of IFN-γ, TNF-α, IL-2, IL-4, or IL-6 as a response to treatment in either study groups. The rates of CD4+CD25+ T cells from MLNs decreased, while CD3+γδTCR+ from peripheral blood increased following the HS diet only in TFF3ko. γδTCR expressing T cell rates decreased in WT following the HS diet. The CD49d/VLA-4 expression decreased in the peripheral blood leukocytes in both groups following the HS diet. CD11a/LFA-1 expression significantly increased only in the peripheral blood Ly6C-CD11ahigh monocytes in WT mice following salt loading. In conclusion, salt-loading in knock-out mice caused a lower level of inflammatory response compared with their control WT mice due to gene depletion.
Collapse
Grants
- #IP-2014-09-6380/V-ELI Athero, PI I. Drenjančević Croatian Science Foundation
- VIF-2018-MEFOS-09-1509 (The influence of increased NaCl values on endothelial function in model TFF-/- mice and HAEC cell cultures) Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Croatia
- VIF-2019-MEFOS (The effect of increased NaCl values on the mechanisms of vascular reactivity in model of Tff3-/- mice and HAEC cell cultures, PI I. Drenjančević) Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Croatia
- VIF-2020-MEFOS (The effect of increased NaCl values on the mechanisms of vascular reactivity in model of Tff3-/- mice, Sprague-Dawley rats and HAEC cell cultures, PI I. Drenjančević) Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Croatia
Collapse
Affiliation(s)
- Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, 31000 Osijek, Croatia
| | - Nataša Kozina
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Ivana Jukić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| |
Collapse
|
58
|
Abstract
Vascular age is determined by functional and structural changes in the arterial wall. When measured by its proxy, pulse wave velocity, it has been shown to predict cardiovascular and total mortality. Disconcordance between chronological and vascular age might represent better or worse vascular health. Cell senescence is caused by oxidative stress and sustained cell replication. Senescent cells acquire senescence-associated secretory phenotype. Oxidative stress, endothelial dysfunction, dysregulation of coagulation and leucocyte infiltration are observed in the aging endothelium. All of these mechanisms lead to increased vascular calcification and stiffness. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can involve the vascular endothelium. It enters cells using angiotensin-converting enzyme 2 (ACE-2) receptors, which are abundant in endothelial cells. The damage this virus does to the endothelium can be direct or indirect. Indirect damage is caused by hyperinflammation. Direct damage results from effects on ACE-2 receptors. The reduction of ACE-2 levels seen during coronavirus disease 2019 (COVID-19) infection might cause vasoconstriction and oxidative stress. COVID-19 and vascular aging share some pathways. Due to the novelty of the virus, there is an urgent need for studies that investigate its long-term effects on vascular health.
Collapse
Affiliation(s)
- Ignas Badaras
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania,Ignas Badaras, Faculty of Medicine, Vilnius
University, M. K. Ciurlionio g. 21/27, LT-03101, Vilnius 01513, Lithuania.
| | - Agnė Laučytė-Cibulskienė
- Department of Nephrology, Skåne University
Hospital, Malmö, Sweden,Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
59
|
Pekas EJ, Allen MF, Park SY. Prolonged sitting and peripheral vascular function: potential mechanisms and methodological considerations. J Appl Physiol (1985) 2023; 134:810-822. [PMID: 36794688 PMCID: PMC10042610 DOI: 10.1152/japplphysiol.00730.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Sitting time is associated with increased risks for subclinical atherosclerosis and cardiovascular disease development, and this is thought to be partially due to sitting-induced disturbances in macro- and microvascular function as well as molecular imbalances. Despite surmounting evidence supporting these claims, contributing mechanisms to these phenomena remain largely unknown. In this review, we discuss evidence for potential mechanisms of sitting-induced perturbations in peripheral hemodynamics and vascular function and how these potential mechanisms may be targeted using active and passive muscular contraction methods. Furthermore, we also highlight concerns regarding the experimental environment and population considerations for future studies. Optimizing prolonged sitting investigations may allow us to not only better understand the hypothesized sitting-induced transient proatherogenic environment but to also enhance methods and devise mechanistic targets to salvage sitting-induced attenuations in vascular function, which may ultimately play a role in averting atherosclerosis and cardiovascular disease development.
Collapse
Affiliation(s)
- Elizabeth J Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, United States
| | - Michael F Allen
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, United States
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, United States
| |
Collapse
|
60
|
Chhor M, Tulpar E, Nguyen T, Cranfield CG, Gorrie CA, Chan YL, Chen H, Oliver BG, McClements L, McGrath KC. E-Cigarette Aerosol Condensate Leads to Impaired Coronary Endothelial Cell Health and Restricted Angiogenesis. Int J Mol Sci 2023; 24:ijms24076378. [PMID: 37047355 PMCID: PMC10094580 DOI: 10.3390/ijms24076378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality worldwide, with cigarette smoking being a major preventable risk factor. Smoking cessation can be difficult due to the addictive nature of nicotine and the withdrawal symptoms following cessation. Electronic cigarettes (e-Cigs) have emerged as an alternative smoking cessation device, which has been increasingly used by non-smokers; however, the cardiovascular effects surrounding the use of e-Cigs remains unclear. This study aimed to investigate the effects of e-Cig aerosol condensate (EAC) (0 mg and 18 mg nicotine) in vitro on human coronary artery endothelial cells (HCAEC) and in vivo on the cardiovascular system using a mouse model of ‘e-vaping’. In vitro results show a decrease in cell viability of HCAEC when exposed to EAC either directly or after exposure to conditioned lung cell media (p < 0.05 vs. control). Reactive oxygen species were increased in HCAEC when exposed to EAC directly or after exposure to conditioned lung cell media (p < 0.0001 vs. control). ICAM-1 protein expression levels were increased after exposure to conditioned lung cell media (18 mg vs. control, p < 0.01). Ex vivo results show an increase in the mRNA levels of anti-angiogenic marker, FKBPL (p < 0.05 vs. sham), and endothelial cell adhesion molecule involved in barrier function, ICAM-1 (p < 0.05 vs. sham) in murine hearts following exposure to electronic cigarette aerosol treatment containing a higher amount of nicotine. Immunohistochemistry also revealed an upregulation of FKBPL and ICAM-1 protein expression levels. This study showed that despite e-Cigs being widely used for tobacco smoking cessation, these can negatively impact endothelial cell health with a potential to lead to the development of cardiovascular disease.
Collapse
Affiliation(s)
- Michael Chhor
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Esra Tulpar
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Tara Nguyen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Charles G. Cranfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Catherine A. Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Brian G. Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Correspondence: (L.M.); (K.C.M.)
| | - Kristine C. McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
- Correspondence: (L.M.); (K.C.M.)
| |
Collapse
|
61
|
Duan L, Zhao Y, Jia J, Chao T, Wang H, Liang Y, Lou Y, Zheng Q, Wang H. Myeloid-restricted CD68 deficiency attenuates atherosclerosis via inhibition of ROS-MAPK-apoptosis axis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166698. [PMID: 36965676 DOI: 10.1016/j.bbadis.2023.166698] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/24/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
In atherosclerosis, macrophages derived from blood monocytes contribute to non-resolving inflammation, which subsequently primes necrotic core formation, and ultimately triggers acute thrombotic vascular disease. Nevertheless, little is known about how inflammatory cells, especially the macrophages fuel atherosclerosis. CD68, a unique class D scavenger receptor (SRD) family member, is specifically expressed in monocytes/macrophages and remarkably up-regulated upon oxidized low-density lipoprotein (ox-LDL) stimulation. Nonetheless, whether and how myeloid-specific CD68 affects atherosclerosis remains to be defined. To determine the essential in vivo role and mechanism linking CD68 to atherosclerosis, we engineered global and myeloid-specific CD68-deficient mice on an ApoE background. On Western diet, both the mice with global and the myeloid-restricted deletion of CD68 on ApoE background attenuated atherosclerosis, accompanied by diminished immune/inflammatory cell burden and necrotic core content, but increased smooth muscle cell content in atherosclerotic plaques. In vitro experiments revealed that CD68 deficiency in macrophages resulted in attenuated ox-LDL-induced macrophage apoptosis. Additionally, CD68 deficiency suppressed ROS production, while removal of ROS can markedly reversed this effect. We further showed that CD68 deficiency affected apoptosis through inactivation of the mitogen-activated protein kinase (MAPK) pathway. Our findings establish CD68 as a macrophage lineage-specific regulator of "ROS-MAPK-apoptosis" axis, thus providing a previously unknown mechanism for the prominence of CD68 as a risk factor for coronary artery disease. Its therapeutic inhibition may provide a potent lever to alleviate the cardiovascular disease.
Collapse
Affiliation(s)
- Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yucong Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jing Jia
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tianzhu Chao
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, China
| | - Hao Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yinming Liang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yunwei Lou
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qianqian Zheng
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
62
|
Gerasimova EV, Popkova TV, Gerasimova DA, Markina YV, Kirichenko TV. Subclinical Carotid Atherosclerosis in Patients with Rheumatoid Arthritis at Low Cardiovascular Risk. Biomedicines 2023; 11:biomedicines11030974. [PMID: 36979953 PMCID: PMC10046543 DOI: 10.3390/biomedicines11030974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVE To evaluate the rate of subclinical carotid atherosclerosis and clinical significance of immunoinflammatory markers in patients with rheumatoid arthritis (RA) at low cardiovascular risk. MATERIALS AND METHODS The study included 275 RA patients and a control group of 100 participants without autoimmune diseases. All study participants were at low cardiovascular risk, calculated by the QRISK3 scale (<20%), and free of cardiovascular disease. Ultrasound examination of carotid arteries was performed to measure cIMT and to detect atherosclerotic plaques (ASP) in carotid arteries. sIСАМ-1, sVСАМ, and sCD40L levels were determined by enzyme immunoassay. RESULTS Carotid ASP was observed more frequently in RA patients (27%) than in the control group (17%), p = 0.03. The frequency of ASP in RA patients did not depend on the disease's stage or activity. There was a significant correlation between cIMT and age, cardiovascular risk determined by QRISK3, level of total cholesterol, LDL, and blood pressure in RA patients, p < 0.05 in all cases. No correlation between cIMT and blood levels of sCD40L, sVCAM, and sICAM was found. In RA patients, a higher concentration of sVCAM was detected in the carotid ASP group compared to the non-atherosclerotic group. sCD40L was associated with cIMT and total cholesterol in the ASP group and with total cholesterol and blood pressure in non-atherosclerotic patients. CONCLUSIONS Subclinical atherosclerotic lesions of the carotid arteries were observed significantly more frequently in RA patients with low cardiovascular risk than in the control group. The results of the study demonstrate the association between cIMT, traditional cardiovascular risk factors, and immunoinflammatory markers in RA patients.
Collapse
Affiliation(s)
| | - Tatiana V Popkova
- V.A. Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia
| | - Daria A Gerasimova
- Department of Organization and Economy of Pharmacy, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Yuliya V Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Tatiana V Kirichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
| |
Collapse
|
63
|
Troncoso MF, Díaz-Vesga MC, Sanhueza-Olivares F, Riquelme JA, Müller M, Garrido L, Gabrielli L, Chiong M, Corbalan R, Castro PF, Lavandero S. Targeting VCAM-1: a therapeutic opportunity for vascular damage. Expert Opin Ther Targets 2023; 27:207-223. [PMID: 36880349 DOI: 10.1080/14728222.2023.2187778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
INTRODUCTION The vascular cell adhesion molecule (VCAM-1) is a transmembrane sialoglycoprotein detected in activated endothelial and vascular smooth muscle cells involved in the adhesion and transmigration of inflammatory cells into damaged tissue. Widely used as a pro-inflammatory marker, its potential role as a targeting molecule has not been thoroughly explored. AREAS COVERED We discuss the current evidence supporting the potential targeting of VCAM-1 in atherosclerosis, diabetes, hypertension and ischemia/reperfusion injury. EXPERT OPINION There is emerging evidence that VCAM-1 is more than a biomarker and may be a promising therapeutic target for vascular diseases. While there are neutralizing antibodies that allow preclinical research, the development of pharmacological tools to activate or inhibit this protein are required to thoroughly assess its therapeutic potential.
Collapse
Affiliation(s)
- Mayarling F Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Magda C Díaz-Vesga
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana de Cali, Cali, Colombia
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Garrido
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Division Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ramon Corbalan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo F Castro
- Division Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
64
|
Association of soluble cell adhesion molecules and lipid levels in rheumatoid arthritis patients. Clin Rheumatol 2023; 42:731-739. [PMID: 36192664 DOI: 10.1007/s10067-022-06395-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To evaluate the relationship between soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble intracellular adhesion molecule-1 (sICAM-1), and lipid levels in rheumatoid arthritis (RA) patients with and without carotid plaque (CP). METHODS Cross-sectional study nested of a RA cohort. RA patients without a previous cardiovascular event or statins' therapy, aged 40-75 years were recruited at an outpatient cardio-rheumatology clinic. Carotid ultrasound was performed in all study subjects. RA patients with CP were included and matched to RA patients without CP by age, gender, and traditional cardiovascular risk factors. Blood samples were drawn at the time of recruitment to measure sVCAM-1, sICAM-1, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and lipid levels. Correlations between cell adhesion molecules, disease activity indexes, ESR and CRP with lipid levels were assessed with Spearman's correlation coefficient (rs). RESULTS We included 71 RA patients, 37 with CP and 34 without CP. RA (n = 71) patients had a moderate negative correlation of sVCAM-1 with total cholesterol (TC) (rs = - 0.366, p = 0.002) and low-density lipoprotein (LDL) (rs = - 0.316, p = 0.007), and a small negative correlation with high-density lipoprotein (rs = - 0.250, p = 0.036). ESR showed a small negative correlation with LDL (rs = - 0.247, p = 0.038). Patients with CP had a moderate negative correlation between sVCAM and TC (rs = - 0.405, p = 0.013). Patients without CP showed a moderate negative correlation between sVCAM with TC (rs = - 0.364, p = 0.034) and LDL (rs = - 0.352, p = 0.041), and sICAM with VLDL (rs = - 0.343, p = 0.047). CONCLUSIONS RA patients showed an inverse association of sVCAM-1 and lipid levels. More studies are needed to define the precise role of sVCAM-1 in the lipid paradox of RA.
Collapse
|
65
|
Wadey KS, Somos A, Leyden G, Blythe H, Chan J, Hutchinson L, Poole A, Frankow A, Johnson JL, George SJ. Pro-inflammatory role of Wnt/β-catenin signaling in endothelial dysfunction. Front Cardiovasc Med 2023; 9:1059124. [PMID: 36794234 PMCID: PMC9923234 DOI: 10.3389/fcvm.2022.1059124] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
Background Endothelial dysfunction is a critical component of both atherosclerotic plaque formation and saphenous vein graft failure. Crosstalk between the pro-inflammatory TNF-α-NFκB signaling axis and the canonical Wnt/β-catenin signaling pathway potentially plays an important role in regulating endothelial dysfunction, though the exact nature of this is not defined. Results In this study, cultured endothelial cells were challenged with TNF-α and the potential of a Wnt/β-catenin signaling inhibitor, iCRT-14, in reversing the adverse effects of TNF-α on endothelial physiology was evaluated. Treatment with iCRT-14 lowered nuclear and total NFκB protein levels, as well as expression of NFκB target genes, IL-8 and MCP-1. Inhibition of β-catenin activity with iCRT-14 suppressed TNF-α-induced monocyte adhesion and decreased VCAM-1 protein levels. Treatment with iCRT-14 also restored endothelial barrier function and increased levels of ZO-1 and focal adhesion-associated phospho-paxillin (Tyr118). Interestingly, inhibition of β-catenin with iCRT-14 enhanced platelet adhesion in cultured TNF-α-stimulated endothelial cells and in an ex vivo human saphenous vein model, most likely via elevating levels of membrane-tethered vWF. Wound healing was moderately retarded by iCRT-14; hence, inhibition of Wnt/β-catenin signaling may interfere with re-endothelialisation in grafted saphenous vein conduits. Conclusion Inhibition of the Wnt/β-catenin signaling pathway with iCRT-14 significantly recovered normal endothelial function by decreasing inflammatory cytokine production, monocyte adhesion and endothelial permeability. However, treatment of cultured endothelial cells with iCRT-14 also exerted a pro-coagulatory and moderate anti-wound healing effect: these factors may affect the suitability of Wnt/β-catenin inhibition as a therapy for atherosclerosis and vein graft failure.
Collapse
Affiliation(s)
- Kerry S. Wadey
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom,*Correspondence: Kerry S. Wadey,
| | - Alexandros Somos
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Genevieve Leyden
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Hazel Blythe
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Jeremy Chan
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Lawrence Hutchinson
- School of Physiology, Pharmacology and Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Alastair Poole
- School of Physiology, Pharmacology and Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Aleksandra Frankow
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Jason L. Johnson
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Sarah J. George
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
66
|
Sammartino AM, Falco R, Drera A, Dondi F, Bellini P, Bertagna F, Vizzardi E. "Vascular inflammation and cardiovascular disease: review about the role of PET imaging". Int J Cardiovasc Imaging 2023; 39:433-440. [PMID: 36255543 PMCID: PMC9870832 DOI: 10.1007/s10554-022-02730-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023]
Abstract
Inflammation characterizes all stages of atherothrombosis and provides a critical pathophysiological link between plaque formation and its acute rupture, leading to coronary occlusion and heart attack. In the last 20 years the possibility of quantifying the degree of inflammation of atherosclerotic plaques and, therefore, also of vascular inflammation aroused much interest. 18Fluoro-deoxy-glucose photon-emissions-tomography (18F-FDG-PET) is widely used in oncology for staging and searching metastases; in cardiology, the absorption of 18F-FDG into the arterial wall was observed for the first time incidentally in the aorta of patients undergoing PET imaging for cancer staging. PET/CT imaging with 18F-FDG and 18F-sodium fluoride (18F-NaF) has been shown to assess atherosclerotic disease in its molecular phase, when the process may still be reversible. This approach has several limitations in the clinical practice, due to lack of prospective data to justify their use routinely, but it's desirable to develop further scientific evidence to confirm this technique to detect high-risk patients for cardiovascular events.
Collapse
Affiliation(s)
- Antonio Maria Sammartino
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili, University of Brescia, Brescia, Italy.
| | - Raffaele Falco
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Andrea Drera
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Francesco Dondi
- Nuclear Medicine, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Di Brescia, University of Brescia, Brescia, Italy
| | - Pietro Bellini
- Nuclear Medicine, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Di Brescia, University of Brescia, Brescia, Italy
| | - Francesco Bertagna
- Nuclear Medicine, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Di Brescia, University of Brescia, Brescia, Italy
| | - Enrico Vizzardi
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili, University of Brescia, Brescia, Italy.
| |
Collapse
|
67
|
Bei YR, Zhang SC, Song Y, Tang ML, Zhang KL, Jiang M, He RC, Wu SG, Liu XH, Wu LM, Dai XY, Hu YW. EPSTI1 promotes monocyte adhesion to endothelial cells in vitro via upregulating VCAM-1 and ICAM-1 expression. Acta Pharmacol Sin 2023; 44:71-80. [PMID: 35778487 DOI: 10.1038/s41401-022-00923-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/21/2022] [Indexed: 01/18/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease of arterial wall, and circulating monocyte adhesion to endothelial cells is a crucial step in the pathogenesis of atherosclerosis. Epithelial-stromal interaction 1 (EPSTI1) is a novel gene, which is dramatically induced by epithelial-stromal interaction in human breast cancer. EPSTI1 expression is not only restricted to the breast but also in other normal tissues. In this study we investigated the role of EPSTI1 in monocyte-endothelial cell adhesion and its expression pattern in atherosclerotic plaques. We showed that EPSTI1 was dramatically upregulated in human and mouse atherosclerotic plaques when compared with normal arteries. In addition, the expression of EPSTI1 in endothelial cells of human and mouse atherosclerotic plaques is significantly higher than that of the normal arteries. Furthermore, we demonstrated that EPSTI1 promoted human monocytic THP-1 cell adhesion to human umbilical vein endothelial cells (HUVECs) via upregulating VCAM-1 and ICAM-1 expression in HUVECs. Treatment with LPS (100, 500, 1000 ng/mL) induced EPSTI1 expression in HUVECs at both mRNA and protein levels in a dose- and time-dependent manner. Knockdown of EPSTI1 significantly inhibited LPS-induced monocyte-endothelial cell adhesion via downregulation of VCAM-1 and ICAM-1. Moreover, we revealed that LPS induced EPSTI1 expression through p65 nuclear translocation. Thus, we conclude that EPSTI1 promotes THP-1 cell adhesion to endothelial cells by upregulating VCAM-1 and ICAM-1 expression, implying its potential role in the development of atherosclerosis.
Collapse
Affiliation(s)
- Yan-Rou Bei
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shun-Chi Zhang
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, 510620, China
| | - Yu Song
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Mao-Lin Tang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Ke-Lan Zhang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Min Jiang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Run-Chao He
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Shao-Guo Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, 510620, China
| | - Xue-Hui Liu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, 510620, China
| | - Li-Mei Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, 510620, China
| | - Xiao-Yan Dai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China.
| |
Collapse
|
68
|
Sagris M, Theofilis P, Antonopoulos AS, Oikonomou E, Simantiris S, Papaioannou S, Tsioufis C, Tousoulis D. Adhesion Molecules as Prognostic Biomarkers in Coronary Artery Disease. Curr Top Med Chem 2023; 23:481-490. [PMID: 36600626 DOI: 10.2174/1568026623666230104125104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/03/2022] [Accepted: 11/12/2022] [Indexed: 01/06/2023]
Abstract
Atherosclerosis is a progressive disease, culminating in the production of atherosclerotic plaques in arteries through intricate pathophysiological processes. The progression of this disorder is based on the effect of triggering factors -mainly hyperlipidemia, diabetes mellitus, arterial hypertension, and smoking- on the endothelium. Coronary artery disease (CAD) is an atherosclerotic disease with a higher prevalence among individuals. Pro- and anti-inflammatory cytokines are the main contributors to atherosclerotic plaque formation. CAD and its manifestations multifactorial affect patients' quality of life, burdening the global healthcare system. Recently, the role of adhesion molecules in CAD progression has been recognized. Physicians delve into the pathophysiologic basis of CAD progression, focusing on the effect of adhesion molecules. They are proteins that mediate cell-cell and cell-extracellular matrix interaction and adhesion, driving the formation of atherosclerotic plaques. Several studies have assessed their role in atherosclerotic disease in small cohorts and in experimental animal models as well. Furthermore, several agents, such as nanoparticles, have been introduced modifying the main atherosclerotic risk factors as well as targeting the endothelial inflammatory response and atherosclerotic plaque stabilization. In this review, we discuss the role of adhesion molecules in atherosclerosis and CAD progression, as well as the potential to be used as targeting moieties for individualized treatment.
Collapse
Affiliation(s)
- Marios Sagris
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Panagiotis Theofilis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, "Sotiria" Chest Disease Hospital, University of Athens Medical School, Athens, Greece
| | - Spiros Simantiris
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | | | - Constantinos Tsioufis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
69
|
Cimmino G, Conte S, Marra L, Morello A, Morello M, De Rosa G, Pepe M, Sugraliyev A, Golino P, Cirillo P. Uric Acid Induces a Proatherothrombotic Phenotype in Human Endothelial Cells by Imbalancing the Tissue Factor/Tissue Factor Pathway Inhibitor Pathway. Thromb Haemost 2023; 123:64-75. [PMID: 36126947 DOI: 10.1055/a-1947-7716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Several evidence show that elevated plasma levels of uric acid (UA) are associated with the increased risk of developing atherothrombotic cardiovascular events. Hyperuricemia is a risk factor for endothelial dysfunction (ED). ED is involved in the pathophysiology of atherothrombosis since dysfunctional cells lose their physiological, antithrombotic properties. We have investigated whether UA might promote ED by modulating the tissue factor (TF)/TF pathway inhibitor (TFPI) balance by finally changing the antithrombotic characteristics of endothelial cells. METHODS Human umbilical vein endothelial cells were incubated with increasing doses of UA (up to 9 mg/dL). TF gene and protein expressions were evaluated by real-time polymerase chain reaction (PCR) and Western blot. Surface expression and procoagulant activity were assessed by FACS (fluorescence activated cell sorting) analysis and coagulation assay. The mRNA and protein levels of TFPI were measured by real-time PCR and Western blot. The roles of inflammasome and nuclear factor-κB (NF-κB) as possible mechanism(s) of action of the UA on TF/TFPI balance were also investigated. RESULTS UA significantly increased TF gene and protein levels, surface expression, and procoagulant activity. In parallel, TFPI levels were significantly reduced. The NF-κB pathways appeared to be involved in modulating these phenomena. Additionally, inflammasome might also play a role. CONCLUSION The present in vitro study shows that one of the mechanisms by which high levels of UA contribute to ED might be the imbalance between TF/TFPI levels in endothelial cells, shifting them to a nonphysiological, prothrombotic phenotype. These UA effects might hypothetically explain, at least in part, the relationship observed between elevated plasma levels of UA and cardiovascular events.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Section of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Stefano Conte
- Section of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Laura Marra
- SC Cell Biology and Biotherapy, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Andrea Morello
- Biochemical Unit, Azienda Sanitaria Regionale Molise, Antonio Cardarelli Hospital, Campobasso, Italy
| | - Mariarosaria Morello
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples "Federico II," Naples, Italy
| | - Gennaro De Rosa
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples "Federico II," Naples, Italy
| | - Martino Pepe
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
| | - Akhmetzhan Sugraliyev
- Department of Internal Disease, Kazakh National Medical University, Almaty, Kazakhstan
| | - Paolo Golino
- Section of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Plinio Cirillo
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples "Federico II," Naples, Italy
| |
Collapse
|
70
|
Elliott PS, Kharaty SS, Phillips CM. Plant-Based Diets and Lipid, Lipoprotein, and Inflammatory Biomarkers of Cardiovascular Disease: A Review of Observational and Interventional Studies. Nutrients 2022; 14:5371. [PMID: 36558530 PMCID: PMC9787709 DOI: 10.3390/nu14245371] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Plant-based diets (PBDs) are becoming increasingly popular. Thus far, the literature has focused on their association with lipid profiles, with less investigation of lipoprotein and inflammatory profiles. Because pro-atherogenic lipid, lipoprotein, and inflammatory processes may facilitate the development of atherosclerosis, understanding the relation between PBDs and these processes is important to inform risk mitigation strategies. Therefore, the objective of this paper was to review the literature on PBDs and lipid, lipoprotein, and inflammatory biomarkers of cardiovascular disease (CVD). A structured literature search was performed, retrieving 752 records, of which 43 articles were included. Plant-based diets generally associated with favourable lipid and lipoprotein profiles, characterised by decreased total cholesterol, low-density lipoprotein cholesterol, and apolipoprotein B concentrations, and less low-grade inflammation, characterised by decreased C-reactive protein concentrations. Effect sizes from PBD interventions were greatest compared to habitual dietary patterns, and for non-low-fat vegan and tightly controlled dietary interventions. Associations between PBD indices and the reviewed biomarkers were less consistent. Findings are discussed with reference to the literature on PBDs and PBD indices and CVD risk, the associations between specific plant food groups and CVD outcomes and the reviewed biomarker outcomes, and the potential mechanisms underpinning associations between PBDs and reduced CVD risk.
Collapse
Affiliation(s)
- Patrick S. Elliott
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, 4 Dublin, Ireland
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Soraeya S. Kharaty
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Catherine M. Phillips
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, 4 Dublin, Ireland
| |
Collapse
|
71
|
Kaur R, Singh V, Kumari P, Singh R, Chopra H. Novel insights on the role of VCAM-1 and ICAM-1: Potential biomarkers for cardiovascular diseases. Ann Med Surg (Lond) 2022; 84:104802. [PMID: 36408439 PMCID: PMC9672401 DOI: 10.1016/j.amsu.2022.104802] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/23/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
72
|
Feng S, Lu Y, Sun L, Hao S, Liu Z, Yang F, Zhang L, Wang T, Jiang L, Zhang J, Liu S, Pang H, Wang Z, Wang H. MiR-95-3p acts as a prognostic marker and promotes cervical cancer progression by targeting VCAM1. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1171. [PMID: 36467343 PMCID: PMC9708496 DOI: 10.21037/atm-22-5184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 06/19/2024]
Abstract
BACKGROUND Cervical cancer patients have a high risk of metastasis and a poor prognosis with shorter disease-free survival. Thus, novel biomarkers and feasible therapies urgently need to be discovered. Previous studies have shown that miR-95-3p plays crucial roles in several cancer types. However, the roles of miR-95-3p in cervical cancer remain unknown. METHODS The micro ribonucleic acid (miRNA) expression data and clinical characteristics of cervical cancer samples were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate and multivariate Cox regression analyses were conducted to identify the prognostic-related miRNAs. The potential target genes of miR-95-3p were predicted by the TargetScan database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to explore the target gene of miR-95-3p. The effects of miR-95-3p inhibition and overexpression on cell proliferation were inspected by cell counting kit-8 (CCK-8) assays and cell colony formation assays. Wound-healing assays and transwell assays were also used to examine cell migration ability in HeLa and SiHa cells. RESULTS MiR-95-3p was the only miRNA significantly associated with the poor prognosis of cervical squamous cell carcinoma. A further analysis suggested that vascular cell adhesion molecule 1 (VCAM1) is a target gene of miR-95-3p in cervical cancer, and miR-95-3p promotes the malignant behavior of cervical cancer cells by inhibiting the expression of VCAM1. The CCK-8 and cell colony assays showed that miR-95-3p downregulation significantly suppressed cell proliferation in the HeLa and SiHa cells. The transwell and wound-healing assays showed that miR-95-3p inhibition suppressed cell migration in the HeLa and SiHa cells. Further the Western blot analysis and the quantitative real-time-polymerase chain reaction (qRT-PCR) showed that the knockdown of miR-95-3p in HeLa cells resulted in increased VCAM1 expression. And VCAM1 was highly expressed in the paired adjacent normal cervical epithelium tissue samples, but lowly expressed in the cervical tumor tissue samples. CONCLUSIONS Our study was the first to show that miR-95-3p could serve as a prognostic biomarker of cervical cancer. Mechanistically, we discovered that miR-95-3p inhibited the expression of the cell adhesion molecule VCAM1 and thus promoted further tumor progression.
Collapse
Affiliation(s)
- Sijie Feng
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
| | - Yunkun Lu
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lisha Sun
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
- Department of Gynecologic Oncology, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
| | - Shuangying Hao
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Zhiqiang Liu
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Fangyuan Yang
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
- Department of Gynecologic Oncology, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
| | - Lin Zhang
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
- Department of Gynecologic Oncology, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
| | - Ting Wang
- Medical Center Laboratory, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
| | - Lihong Jiang
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
- Department of Gynecologic Oncology, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
| | - Juan Zhang
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
- Department of Gynecologic Oncology, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
| | - Shuyan Liu
- Medical Center Laboratory, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
| | - Hui Pang
- Medical Center Laboratory, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
| | - Zhenhui Wang
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
| | - Hong Wang
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
- Department of Gynecologic Oncology, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
- Medical Center Laboratory, The First Affiliated Hospital of Henan Polytechnic University (The Second People’s Hospital of Jiaozuo), Jiaozuo, China
| |
Collapse
|
73
|
Tan L, Lu J, Zhang C, Meng L, Zhu Q. The proatherosclerotic function of BCAT1 in atherosclerosis development of aged-apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2022; 631:93-101. [DOI: 10.1016/j.bbrc.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022]
|
74
|
Serum Bilirubin and Markers of Oxidative Stress and Inflammation in a Healthy Population and in Patients with Various Forms of Atherosclerosis. Antioxidants (Basel) 2022; 11:antiox11112118. [PMID: 36358491 PMCID: PMC9686784 DOI: 10.3390/antiox11112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress and inflammation contribute significantly to atherogenesis. We and others have demonstrated that mildly elevated serum bilirubin levels protect against coronary and peripheral atherosclerosis, most likely due to the antioxidant and anti-inflammatory activities of bilirubin. The aim of the present study was to assess serum bilirubin and the markers of oxidative stress and inflammation in both healthy subjects and patients with various forms of atherosclerosis. The study was performed in patients with premature myocardial infarction (n = 129), chronic ischemic heart disease (n = 43), peripheral artery disease (PAD, n = 69), and healthy subjects (n = 225). In all subjects, standard serum biochemistry, UGT1A1 genotypes, total antioxidant status (TAS), and concentrations of various pro- and anti-inflammatory chemokines were determined. Compared to controls, all atherosclerotic groups had significantly lower serum bilirubin and TAS, while having much higher serum high-sensitivity C-reactive protein (hsCRP) and most of the analyzed proinflammatory cytokines (p < 0.05 for all comparisons). Surprisingly, the highest inflammation, and the lowest antioxidant status, together with the lowest serum bilirubin, was observed in PAD patients, and not in premature atherosclerosis. In conclusion, elevated serum bilirubin is positively correlated with TAS, and negatively related to inflammatory markers. Compared to healthy subjects, patients with atherosclerosis have a much higher degree of oxidative stress and inflammation.
Collapse
|
75
|
Inflammatory and Prothrombotic Biomarkers, DNA Polymorphisms, MicroRNAs and Personalized Medicine for Patients with Peripheral Arterial Disease. Int J Mol Sci 2022; 23:ijms231912054. [PMID: 36233355 PMCID: PMC9569699 DOI: 10.3390/ijms231912054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022] Open
Abstract
Classical risk factors play a major role in the initiation and development of atherosclerosis. However, the estimation of risk for cardiovascular events based only on risk factors is often insufficient. Efforts have been made to identify biomarkers that indicate ongoing atherosclerosis. Among important circulating biomarkers associated with peripheral arterial disease (PAD) are inflammatory markers which are determined by the expression of different genes and epigenetic processes. Among these proinflammatory molecules, interleukin-6, C-reactive protein, several adhesion molecules, CD40 ligand, osteoprotegerin and others are associated with the presence and progression of PAD. Additionally, several circulating prothrombotic markers have a predictive value in PAD. Genetic polymorphisms significantly, albeit moderately, affect risk factors for PAD via altered lipoprotein metabolism, diabetes, arterial hypertension, smoking, inflammation and thrombosis. However, most of the risk variants for PAD are located in noncoding regions of the genome and their influence on gene expression remains to be explored. MicroRNAs (miRNAs) are single-stranded, noncoding RNAs that modulate gene expression at the post-transcriptional level. Patterns of miRNA expression, to some extent, vary in different atherosclerotic cardiovascular diseases. miRNAs appear to be useful in the detection of PAD and the prediction of progression and revascularization outcomes. In conclusion, taking into account one’s predisposition to PAD, i.e., DNA polymorphisms and miRNAs, together with circulating inflammatory and coagulation markers, holds promise for more accurate prediction models and personalized therapeutic options.
Collapse
|
76
|
Liu WP, Li P, Zhan X, Qu LH, Xiong T, Hou FX, Wang JK, Wei N, Liu FQ. Identification of molecular subtypes of coronary artery disease based on ferroptosis- and necroptosis-related genes. Front Genet 2022; 13:870222. [PMID: 36204316 PMCID: PMC9531137 DOI: 10.3389/fgene.2022.870222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: Coronary artery disease (CAD) is a heterogeneous disorder with high morbidity, mortality, and healthcare costs, representing a major burden on public health. Here, we aimed to improve our understanding of the genetic drivers of ferroptosis and necroptosis and the clustering of gene expression in CAD in order to develop novel personalized therapies to slow disease progression.Methods: CAD datasets were obtained from the Gene Expression Omnibus. The identification of ferroptosis- and necroptosis-related differentially expressed genes (DEGs) and the consensus clustering method including the classification algorithm used km and distance used spearman were performed to differentiate individuals with CAD into two clusters (cluster A and cluster B) based expression matrix of DEGs. Next, we identified four subgroup-specific genes of significant difference between cluster A and B and again divided individuals with CAD into gene cluster A and gene cluster B with same methods. Additionally, we compared differences in clinical information between the subtypes separately. Finally, principal component analysis algorithms were constructed to calculate the cluster-specific gene score for each sample for quantification of the two clusters.Results: In total, 25 ferroptosis- and necroptosis-related DEGs were screened. The genes in cluster A were mostly related to the neutrophil pathway, whereas those in cluster B were mostly related to the B-cell receptor signaling pathway. Moreover, the subgroup-specific gene scores and CAD indices were higher in cluster A and gene cluster A than in cluster B and gene cluster B. We also identified and validated two genes showing upregulation between clusters A and B in a validation dataset.Conclusion: High expression of CBS and TLR4 was related to more severe disease in patients with CAD, whereas LONP1 and HSPB1 expression was associated with delayed CAD progression. The identification of genetic subgroups of patients with CAD may improve clinician knowledge of disease pathogenesis and facilitate the development of methods for disease diagnosis, classification, and prognosis.
Collapse
Affiliation(s)
- Wen-Pan Liu
- Cardiovascular Department, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Department of Cardiothoracic Surgery, The First People’s Hospital of Kunming City and Ganmei Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Peng Li
- Department of Surgery, Nanzhao County People’s Hospital, Nanyang, Henan, China
| | - Xu Zhan
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lai-Hao Qu
- Department of Cardiothoracic Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tao Xiong
- Department of Cardiothoracic Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fang-Xia Hou
- Cardiovascular Department, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Jun-Kui Wang
- Cardiovascular Department, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Na Wei
- Cardiovascular Department, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- *Correspondence: Na Wei, ; Fu-Qiang Liu,
| | - Fu-Qiang Liu
- Cardiovascular Department, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- *Correspondence: Na Wei, ; Fu-Qiang Liu,
| |
Collapse
|
77
|
Hamid AA, Aminuddin A, Anuar NNM, Mansor NI, Ahmad MF, Saleh MSM, Mokhtar MH, Ugusman A. Persicaria minor (Huds.) Opiz Prevents In Vitro Atherogenesis by Attenuating Tumor Necrosis Factor-α-Induced Monocyte Adhesion to Human Umbilical Vein Endothelial Cells. Life (Basel) 2022; 12:life12101462. [PMID: 36294897 PMCID: PMC9605558 DOI: 10.3390/life12101462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Persicaria minor (Huds.) Opiz is an herb with anti-inflammatory, antioxidant, and anti-atherosclerosis effects. Nevertheless, the mechanism underlying its anti-atherosclerosis effect is poorly comprehended. This in vitro study assessed the protective effects of standardized aqueous extract of P. minor leaves (PM) on tumor necrosis factor-α (TNF-α)-induced monocyte adhesion to human umbilical vein endothelial cells (HUVEC), which is one of the pivotal early steps in atherogenesis. The results showed that PM decreased the mRNA and protein expression of cellular adhesion molecules, vascular adhesion molecule-1 and intercellular adhesion molecule-1, resulting in reduced adhesion of monocytes to HUVEC. Additionally, PM inhibited nuclear factor kappaB (NF-κB) activation as indicated by reduced NF-κB p65 levels in TNF-α-induced HUVEC. Overall, PM could prevent in vitro atherogenesis by inhibiting NF-κB activation and adhesion of monocytes to HUVEC. The effects of PM are probably mediated by its bioactive compound, quercetin-3-O-glucuronide. The findings may provide a rationale for the in vivo anti-atherosclerosis effect of PM, and support its potential use in atherosclerosis.
Collapse
Affiliation(s)
- Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nur Izzati Mansor
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohd Faizal Ahmad
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohammed S. M. Saleh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence:
| |
Collapse
|
78
|
Xu J, Wang J, Chen Y, Hou Y, Hu J, Wang G. Recent advances of natural and bioengineered extracellular vesicles and their application in vascular regeneration. Regen Biomater 2022; 9:rbac064. [PMID: 36176713 PMCID: PMC9514852 DOI: 10.1093/rb/rbac064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
The progression of cardiovascular diseases such as atherosclerosis and myocardial infarction leads to serious vascular injury, highlighting the urgent need for targeted regenerative therapy. Extracellular vesicles (EVs) composed of a lipid bilayer containing nuclear and cytosolic materials are relevant to the progression of cardiovascular diseases. Moreover, EVs can deliver bioactive cargo in pathological cardiovascular and regulate the biological function of recipient cells, such as inflammation, proliferation, angiogenesis and polarization. However, because the targeting and bioactivity of natural EVs are subject to several limitations, bioengineered EVs have achieved wide advancements in biomedicine. Bioengineered EVs involve three main ways to acquire including (i) modification of the EVs after isolation; (ii) modification of producer cells before EVs’ isolation; (iii) synthesize EVs using natural or modified cell membranes, and encapsulating drugs or bioactive molecules into EVs. In this review, we first summarize the cardiovascular injury-related disease and describe the role of different cells and EVs in vascular regeneration. We also discuss the application of bioengineered EVs from different producer cells to cardiovascular diseases. Finally, we summarize the surface modification on EVs which can specifically target abnormal cells in injured vascular.
Collapse
Affiliation(s)
| | | | - Yidan Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Yuanfang Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Jianjun Hu
- Correspondence address. E-mail: (G.W.); (J.H.)
| | - Guixue Wang
- Correspondence address. E-mail: (G.W.); (J.H.)
| |
Collapse
|
79
|
Adhesion Molecules and Vulnerable Plaques – Promoters of Acute Coronary Syndromes. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2022. [DOI: 10.2478/jce-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Abstract
Biological factors that characterize extrinsic plaque vulnerability include various pro- and anti-inflammatory cytokines that contribute to the development and progression of atherosclerosis. Adhesion molecules are among the initiators of the atherosclerotic process, by mediation of endothelial inflammation. The soluble forms of these adhesion molecules have been identified in the circulatory blood, with an increased level in case of subjects with atherosclerotic lesions and higher levels in patients with acute coronary syndromes or vulnerable plaques. In addition, several authors have found a significant predictive capacity of these molecules in case of patients presenting with acute coronary and cerebrovascular events. The aim of this manuscript is to provide a short description of the role of adhesion molecules in the development and progression of atherosclerotic lesions towards acute coronary syndromes, as well as their capacity for predicting major adverse cardiovascular events in vulnerable cardiovascular patients.
Collapse
|
80
|
Pharmacologic modulation of intracellular Na
+
concentration with ranolazine impacts inflammatory response in humans and mice. Proc Natl Acad Sci U S A 2022; 119:e2207020119. [PMID: 35858345 PMCID: PMC9303949 DOI: 10.1073/pnas.2207020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation is a key process accompanying cardiovascular disease. Reducing inflammation is therefore an important therapeutic option. We provide evidence, that Na+ and Ca2+ modulation regulate the inflammatory response. Reducing intracellular Na+ pharmacologically using the drug ranolazine reduced the influx of Ca2+ during inflammation and thereby reduced the cellular production of inflammatory mediators. Similarly, reduction of extracellular Na+ and knockdown of a Na+–Ca2+ exchanger led to reduced inflammation. Our in vitro finding translated to in vivo experiments as ranolazine treatment led to reduced atherosclerotic plaque growth, increased plaque stability, and diminished inflammation in a mouse model. Finally, we were able to observe the antiinflammatory effect of Na+ modulation in human patients, demonstrating that inflammation was reduced after treatment with ranolazine. Changes in Ca2+ influx during proinflammatory stimulation modulates cellular responses, including the subsequent activation of inflammation. Whereas the involvement of Ca2+ has been widely acknowledged, little is known about the role of Na+. Ranolazine, a piperazine derivative and established antianginal drug, is known to reduce intracellular Na+ as well as Ca2+ levels. In stable coronary artery disease patients (n = 51) we observed reduced levels of high-sensitive C-reactive protein (CRP) 3 mo after the start of ranolazine treatment (n = 25) as compared to the control group. Furthermore, we found that in 3,808 acute coronary syndrome patients of the MERLIN‐TIMI 36 trial, individuals treated with ranolazine (1,934 patients) showed reduced CRP values compared to placebo-treated patients. The antiinflammatory effects of sodium modulation were further confirmed in an atherosclerotic mouse model. LDL−/− mice on a high-fat diet were treated with ranolazine, resulting in a reduced atherosclerotic plaque burden, increased plaque stability, and reduced activation of the immune system. Pharmacological Na+ inhibition by ranolazine led to reduced express of adhesion molecules and proinflammatory cytokines and reduced adhesion of leukocytes to activated endothelium both in vitro and in vivo. We demonstrate that functional Na+ shuttling is required for a full cellular response to inflammation and that inhibition of Na+ influx results in an attenuated inflammatory reaction. In conclusion, we demonstrate that inhibition of Na+–Ca2+ exchange during inflammation reduces the inflammatory response in human endothelial cells in vitro, in a mouse atherosclerotic disease model, and in human patients.
Collapse
|
81
|
Lee HW, Gu MJ, Yoo G, Choi IW, Lee SH, Kim Y, Ha SK. Glycolaldehyde induces synergistic effects on vascular inflammation in TNF-α-stimulated vascular smooth muscle cells. PLoS One 2022; 17:e0270249. [PMID: 35788200 PMCID: PMC9255721 DOI: 10.1371/journal.pone.0270249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that contributes to disease progression is associated with the expression of adhesion molecules in vascular smooth muscle cells (VSMCs). Glycolaldehyde (GA) has been shown to impair cellular function in various disorders, including diabetes, and renal diseases. This study investigated the effect of GA on the expression of adhesion molecules in the mouse VSMC line, MOVAS-1. Co-incubation of VSMCs with GA (25–50 μM) dose-dependently increased the protein and mRNA level of Vcam-1 and ICAM-1. Additionally, GA upregulated intracellular ROS production and phosphorylation of MAPK and NK-κB. GA also elevated TNF-α-induced PI3K-AKT activation. Furthermore, GA enhanced TNF-α-activated IκBα kinase activation, subsequent IκBα degradation, and nuclear translocation of NF-κB. These findings suggest that GA stumulated VSMC adhesive capacity and the induction of VCAM-1 and ICAM-1 in VSMCs through inhibition of MAPK and NF-κB signaling pathways, providing insights into the effect of GA to induce inflammation within atherosclerotic lesions.
Collapse
Affiliation(s)
- Hee-Weon Lee
- Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Min Ji Gu
- Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Guijae Yoo
- Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - In-Wook Choi
- Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Sang-Hoon Lee
- Korea Food Research Institute, Wanju-gun, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Yoonsook Kim
- Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Sang Keun Ha
- Korea Food Research Institute, Wanju-gun, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea
- * E-mail:
| |
Collapse
|
82
|
Desai C, Koupenova M, Machlus KR, Sen Gupta A. Beyond the thrombus: Platelet-inspired nanomedicine approaches in inflammation, immune response, and cancer. J Thromb Haemost 2022; 20:1523-1534. [PMID: 35441793 PMCID: PMC9321119 DOI: 10.1111/jth.15733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022]
Abstract
The traditional role of platelets is in the formation of blood clots for physiologic (e.g., in hemostasis) or pathologic (e.g., in thrombosis) functions. The cellular and subcellular mechanisms and signaling in platelets involved in these functions have been extensively elucidated and new knowledge continues to emerge, resulting in various therapeutic developments in this area for the management of hemorrhagic or thrombotic events. Nanomedicine, a field involving design of nanoparticles with unique biointeractive surface modifications and payload encapsulation for disease-targeted drug delivery, has become an important component of such therapeutic development. Beyond their traditional role in blood clotting, platelets have been implicated to play crucial mechanistic roles in other diseases including inflammation, immune response, and cancer, via direct cellular interactions, as well as secretion of soluble factors that aid in the disease microenvironment. To date, the development of nanomedicine systems that leverage these broader roles of platelets has been limited. Additionally, another exciting area of research that has emerged in recent years is that of platelet-derived extracellular vesicles (PEVs) that can directly and indirectly influence physiological and pathological processes. This makes PEVs a unique paradigm for platelet-inspired therapeutic design. This review aims to provide mechanistic insight into the involvement of platelets and PEVs beyond hemostasis and thrombosis, and to discuss the current state of the art in the development of platelet-inspired therapeutic technologies in these areas, with an emphasis on future opportunities.
Collapse
Affiliation(s)
- Cian Desai
- Department of PharmacologyCase Western Reserve UniversityClevelandOhioUSA
| | - Milka Koupenova
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Kellie R. Machlus
- Department of SurgeryVascular Biology ProgramBoston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Anirban Sen Gupta
- Department of PharmacologyCase Western Reserve UniversityClevelandOhioUSA
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
83
|
Sun H, Lagarrigue F, Ginsberg MH. The Connection Between Rap1 and Talin1 in the Activation of Integrins in Blood Cells. Front Cell Dev Biol 2022; 10:908622. [PMID: 35721481 PMCID: PMC9198492 DOI: 10.3389/fcell.2022.908622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023] Open
Abstract
Integrins regulate the adhesion and migration of blood cells to ensure the proper positioning of these cells in the environment. Integrins detect physical and chemical stimuli in the extracellular matrix and regulate signaling pathways in blood cells that mediate their functions. Integrins are usually in a resting state in blood cells until agonist stimulation results in a high-affinity conformation ("integrin activation"), which is central to integrins' contribution to blood cells' trafficking and functions. In this review, we summarize the mechanisms of integrin activation in blood cells with a focus on recent advances understanding of mechanisms whereby Rap1 regulates talin1-integrin interaction to trigger integrin activation in lymphocytes, platelets, and neutrophils.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Frederic Lagarrigue
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Mark H. Ginsberg
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
84
|
Lin Z, Huang X, Ji X, Tian N, Gan Y, Ke L. Analysis of multiple databases identifies crucial genes correlated with prognosis of hepatocellular carcinoma. Sci Rep 2022; 12:9002. [PMID: 35637248 PMCID: PMC9151754 DOI: 10.1038/s41598-022-13159-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Despite advancements made in the therapeutic strategies on hepatocellular carcinoma (HCC), the survival rate of HCC patient is not satisfactory enough. Therefore, there is an urgent need for the valuable prognostic biomarkers in HCC therapy. In this study, we aimed to screen hub genes correlated with prognosis of HCC via multiple databases. 117 HCC-related genes were obtained from the intersection of the four databases. We subsequently identify 10 hub genes (JUN, IL10, CD34, MTOR, PTGS2, PTPRC, SELE, CSF1, APOB, MUC1) from PPI network by Cytoscape software analysis. Significant differential expression of hub genes between HCC tissues and adjacent tissues were observed in UALCAN, HCCDB and HPA databases. These hub genes were significantly associated with immune cell infiltrations and immune checkpoints. The hub genes were correlated with clinical parameters and survival probability of HCC patients. 147 potential targeted therapeutic drugs for HCC were identified through the DGIdb database. These hub genes could be used as novel prognostic biomarkers for HCC therapy.
Collapse
Affiliation(s)
- Zhifeng Lin
- Guangdong Province Key Laboratory of Major Obstetric Diseases, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xuqiong Huang
- Medical Administration Division, Affiliated Huadu Hospital, Southern Medical University (People's Hospiatl of Huadu District), Guangzhou, 510800, China
| | - Xiaohui Ji
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Nana Tian
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yu Gan
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Li Ke
- Guangdong Province Key Laboratory of Major Obstetric Diseases, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
85
|
Puspitasari YM, Ministrini S, Schwarz L, Karch C, Liberale L, Camici GG. Modern Concepts in Cardiovascular Disease: Inflamm-Aging. Front Cell Dev Biol 2022; 10:882211. [PMID: 35663390 PMCID: PMC9158480 DOI: 10.3389/fcell.2022.882211] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
The improvements in healthcare services and quality of life result in a longer life expectancy and a higher number of aged individuals, who are inevitably affected by age-associated cardiovascular (CV) diseases. This challenging demographic shift calls for a greater effort to unravel the molecular mechanisms underlying age-related CV diseases to identify new therapeutic targets to cope with the ongoing aging "pandemic". Essential for protection against external pathogens and intrinsic degenerative processes, the inflammatory response becomes dysregulated with aging, leading to a persistent state of low-grade inflammation known as inflamm-aging. Of interest, inflammation has been recently recognized as a key factor in the pathogenesis of CV diseases, suggesting inflamm-aging as a possible driver of age-related CV afflictions and a plausible therapeutic target in this context. This review discusses the molecular pathways underlying inflamm-aging and their involvement in CV disease. Moreover, the potential of several anti-inflammatory approaches in this context is also reviewed.
Collapse
Affiliation(s)
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lena Schwarz
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Caroline Karch
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni G. Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
86
|
Gu X, Weng R, Hou J, Liu S. Endothelial miR-199a-3p regulating cell adhesion molecules by targeting mTOR signaling during inflammation. Eur J Pharmacol 2022; 925:174984. [PMID: 35489420 DOI: 10.1016/j.ejphar.2022.174984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Adherence of monocytes to endothelial cells is the initial stage for development of coronary artery disease (CAD). MiRNAs have been reported to participate in this process by regulating the expression of cell adhesion molecules. This study aimed to explore the function of miR-199a-3p in endothelial inflammation and adhesion. METHODS We assessed the expression of miR-199a-3p in CAD patients and ApoE-/- mice. The relationship between miR-199a-3p level and endothelial inflammation and adhesion was examined. ELISA was used to test the level of IL-6 and IL-8. Dual luciferase reporter assay was used to evaluate the binding between miR-199a-3p and mTOR. RESULTS A decreased expression of miR-199a-3p was observed in the PBMCs and plasma of CAD patients, aorta of ApoE-/- mice and inflammatory HUVECs. MiR-199a-3p significantly suppressed the expression levels of pro-inflammatory cytokine (IL-6, IL-8), endothelial adhesion molecules (ICAM-1, VCAM-1) and monocyte-endothelial cells interaction. MiR-199a-3p directly targeted and repressed mTOR, and its suppression effect on ICAM-1 and VCAM-1 was abolished by mTOR inhibitor rapamycin, and rescued by mTOR activator MHY1485. Overexpression of miR-199a-3p promoted autophagy in HUVECs and inhibiting autophagy by chloroquine attenuated the effect of miR-199a-3p on ICAM-1 and VCAM-1 expression. Inhibition of autophagy promoted endothelial adhesion molecule expression and monocyte-EC interaction. CONCLUSIONS Our results suggested that miR-199a-3p suppressed endothelial inflammation and adhesion by targeting mTOR signaling and increasing autophagy. Our findings point to an important role for miR-199a-3p in the early stage of cardiovascular disease.
Collapse
Affiliation(s)
- Xiaodong Gu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, 514031, PR China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, 514031, PR China
| | - Ruiqiang Weng
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, 514031, PR China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, 514031, PR China
| | - Jingyuan Hou
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, 514031, PR China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, 514031, PR China.
| | - Sudong Liu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, 514031, PR China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, 514031, PR China.
| |
Collapse
|
87
|
Xiong T, Xiao B, Wu Y, Liu Y, Li Q. Upregulation of the Long Non-coding RNA LINC01480 Is Associated With Immune Infiltration in Coronary Artery Disease Based on an Immune-Related lncRNA-mRNA Co-expression Network. Front Cardiovasc Med 2022; 9:724262. [PMID: 35557532 PMCID: PMC9086407 DOI: 10.3389/fcvm.2022.724262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 03/18/2022] [Indexed: 12/03/2022] Open
Abstract
Coronary artery disease (CAD) is considered one of the leading causes of death worldwide. Although dysregulation of long non-coding RNAs (lncRNAs) has been reported to be associated with the initiation and progression of CAD, the knowledge regarding their specific functions as well their physiological/pathological significance in CAD is very limited. In this study, we aimed to systematically analyze immune-related lncRNAs in CAD and explore the relationship between key immune-related lncRNAs and the immune cell infiltration process. Based on differential expression analysis of mRNAs and lncRNAs, an immune-related lncRNA-mRNA weighted gene co-expression network containing 377 lncRNAs and 119 mRNAs was constructed. LINC01480 and AL359237.1 were identified as the hub immune-related lncRNAs in CAD using the random forest-recursive feature elimination and least absolute shrinkage and selection operator logistic regression. Furthermore, 93 CAD samples were divided into two subgroups according to the expression values of LINC01480 and AL359237.1 by consensus clustering analysis. By performing gene set enrichment analysis, we found that cluster 2 enriched more cardiovascular risk pathways than cluster 1. The immune cell infiltration analysis of ischemic cardiomyopathy (ICM; an advanced stage of CAD) samples revealed that the proportion of macrophage M2 was upregulated in the LINC01480 highly expressed samples, thus suggesting that LINC01480 plays a protective role in the progression of ICM. Based on the findings of this study, lncRNA LINC01480 may be used as a novel biomarker and therapeutic target for CAD.
Collapse
Affiliation(s)
- Ting Xiong
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Botao Xiao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Yueheng Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangzhou, China
| | - Yunfeng Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Quhuan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
- *Correspondence: Quhuan Li,
| |
Collapse
|
88
|
Abu Helal R, Muturi HT, Lee AD, Li W, Ghadieh HE, Najjar SM. Aortic Fibrosis in Insulin-Sensitive Mice with Endothelial Cell-Specific Deletion of Ceacam1 Gene. Int J Mol Sci 2022; 23:4335. [PMID: 35457157 PMCID: PMC9027102 DOI: 10.3390/ijms23084335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Mice with global Ceacam1 deletion developed plaque-like aortic lesions even on C57BL/6J background in the presence of increased endothelial cell permeability and insulin resistance. Loss of endothelial Ceacam1 gene caused endothelial dysfunction and reduced vascular integrity without affecting systemic insulin sensitivity. Because endothelial cell injury precedes atherosclerosis, we herein investigated whether the loss of endothelial Ceacam1 initiates atheroma formation in the absence of insulin resistance. (2) Methods: Endothelial cell-specific Ceacam1 null mice on C57BL/6J.Ldlr-/- background (Ldlr-/-VECadCre+Cc1fl/fl) were fed an atherogenic diet for 3-5 months before metabolic, histopathological, and en-face analysis of aortae were compared to their control littermates. Sirius Red stain was also performed on liver sections to analyze hepatic fibrosis. (3) Results: These mice displayed insulin sensitivity without significant fat deposition on aortic walls despite hypercholesterolemia. They also displayed increased inflammation and fibrosis. Deleting Ceacam1 in endothelial cells caused hyperactivation of VEGFR2/Shc/NF-κB pathway with resultant transcriptional induction of NF-κB targets. These include IL-6 that activates STAT3 inflammatory pathways, in addition to endothelin-1 and PDGF-B profibrogenic effectors. It also induced the association between SHP2 phosphatase and VEGFR2, downregulating the Akt/eNOS pathway and reducing nitric oxide production, a characteristic feature of endothelial dysfunction. Similarly, hepatic inflammation and fibrosis developed in Ldlr-/-VECadCre+Cc1fl/fl mice without an increase in hepatic steatosis. (4) Conclusions: Deleting endothelial cell Ceacam1 caused hepatic and aortic inflammation and fibrosis with increased endothelial dysfunction and oxidative stress in the presence of hypercholesterolemia. However, this did not progress into frank atheroma formation. Because these mice remained insulin sensitive, the study provides an in vivo demonstration that insulin resistance plays a critical role in the pathogenesis of frank atherosclerosis.
Collapse
Affiliation(s)
- Raghd Abu Helal
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (R.A.H.); (H.T.M.); (H.E.G.)
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (R.A.H.); (H.T.M.); (H.E.G.)
| | - Abraham D. Lee
- Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43606, USA;
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH 43606, USA
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA;
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (R.A.H.); (H.T.M.); (H.E.G.)
- Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43606, USA;
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura P.O. Box 100, Lebanon
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (R.A.H.); (H.T.M.); (H.E.G.)
- Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43606, USA;
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
89
|
Borges BC, Do Amaral PA, Soldi LR, Costa Silva VL, Carvalho De Souza F, Cordeiro Da Luz FA, Agenor De Araújo R, Barbosa Silva MJ. Undetected αKlotho in serum is associated with the most aggressive phenotype of breast cancer. Mol Clin Oncol 2022; 16:93. [PMID: 35350405 PMCID: PMC8943645 DOI: 10.3892/mco.2022.2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/09/2021] [Indexed: 11/06/2022] Open
Abstract
Klotho, a cellular anti-senescence protein, is related to antitumor actions, growth regulation, proliferation and invasiveness in several types of tumor, including breast cancer. The present study aimed to analyze the serum levels of αKlotho in patients with breast cancer according to histopathological and immunohistochemical variables. A total of 74 patients and 60 healthy controls were recruited. Peripheral blood samples were collected and serum levels were assessed by sandwich ELISA. Clinical and diagnostic data were obtained from medical records and databases of the Clinical Hospital of the Federal University of Uberlândia (Uberlândia, Brazil). The results indicated no difference in the levels of αKlotho between patients and controls (P=0.068); however, the number of patients with breast cancer with undetectable αKlotho was high (n=52). Thus, the variables that were associated with the lowest survival rates were analyzed, relating them to undetectable αKlotho. Among cases of metastatic tumors or tumors with poor differentiation, positive lymph node status and triple-negative status, patients with undetectable αKlotho predominated and had unfavorable overall survival. Due to the significant results obtained in triple-negative patients, an in vitro analysis was performed to determine whether estrogen receptors (ERs) have a role in αKlotho production. Treatment of MCF-7 cells with ER agonists, estradiol (E2) and diarylpropionitrile (DPN), resulted in increases in αKlotho expression and supernatant levels of both agonists, demonstrating a direct association between the ER and Klotho production; of note, the ERβ-specific agonist DPN tripled αKlotho expression when compared to E2 (P=0.078). These data suggested that undetectable αKlotho in the serum of patients with breast cancer is related to unfavorable histopathological variables and poor prognosis and ERs possibly have an important role in maintaining adequate quantities of αKlotho.
Collapse
Affiliation(s)
- Bruna Cristina Borges
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Pedro Augusto Do Amaral
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Luiz Ricardo Soldi
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Victor Luigi Costa Silva
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Fernanda Carvalho De Souza
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Felipe Andrés Cordeiro Da Luz
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
- Núcleo de Prevenção, Pesquisa e Projeto de Câncer, Hospital do Câncer, Uberlândia, MG 38400-902, Brazil
| | - Rogério Agenor De Araújo
- Núcleo de Prevenção, Pesquisa e Projeto de Câncer, Hospital do Câncer, Uberlândia, MG 38400-902, Brazil
| | - Marcelo José Barbosa Silva
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| |
Collapse
|
90
|
Lagarrigue F, Tan B, Du Q, Fan Z, Lopez-Ramirez MA, Gingras AR, Wang H, Qi W, Sun H. Direct Binding of Rap1 to Talin1 and to MRL Proteins Promotes Integrin Activation in CD4 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1378-1388. [PMID: 35197328 PMCID: PMC9644409 DOI: 10.4049/jimmunol.2100843] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/27/2021] [Indexed: 12/26/2022]
Abstract
Agonist-induced Rap1 GTP loading results in integrin activation involved in T cell trafficking and functions. MRL proteins Rap1-interacting adapter molecule (RIAM) and lamellipodin (LPD) are Rap1 effectors that can recruit talin1 to integrins, resulting in integrin activation. Recent work also implicates direct Rap1-talin1 interaction in integrin activation. Here, we analyze in mice the connections between Rap1 and talin1 that support integrin activation in conventional CD4+ T (Tconv) and CD25HiFoxp3+CD4+ regulatory T (Treg) cells. Talin1(R35E, R118E) mutation that disrupts both Rap1 binding sites results in a partial defect in αLβ2, α4β1, and α4β7 integrin activation in both Tconv and Treg cells with resulting defects in T cell homing. Talin1(R35E,R118E) Tconv manifested reduced capacity to induce colitis in an adoptive transfer mouse model. Loss of RIAM exacerbates the defects in Treg cell function caused by the talin1(R35E,R118E) mutation, and deleting both MRL proteins in combination with talin1(R35E,R118E) phenocopy the complete lack of integrin activation observed in Rap1a/b-null Treg cells. In sum, these data reveal the functionally significant connections between Rap1 and talin1 that enable αLβ2, α4β1, and α4β7 integrin activation in CD4+ T cells.
Collapse
Affiliation(s)
- Frederic Lagarrigue
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Boyang Tan
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| | - Qinyi Du
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| | - Zhichao Fan
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, Farmington, CT
| | | | - Alexandre R Gingras
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| | - Hsin Wang
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| | - Weiwei Qi
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| |
Collapse
|
91
|
Zhang DD, Cao Y, Mu JY, Liu YM, Gao F, Han F, Zhai FF, Zhou LX, Ni J, Yao M, Li ML, Jin ZY, Zhang SY, Cui LY, Shen Y, Zhu YC. Inflammatory biomarkers and cerebral small vessel disease: a community-based cohort study. Stroke Vasc Neurol 2022; 7:302-309. [PMID: 35260438 PMCID: PMC9453831 DOI: 10.1136/svn-2021-001102] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/20/2022] [Indexed: 11/08/2022] Open
Abstract
Background and purpose Although inflammation has been proposed to be a candidate risk factor for cerebral small vessel disease (CSVD), previous findings remain largely inconclusive and vary according to disease status and study designs. The present study aimed to investigate possible associations between inflammatory biomarkers and MRI markers of CSVD. Methods A group of 15 serum inflammatory biomarkers representing a variety of those putatively involved in the inflammatory cascade was grouped and assessed in a cross-sectional study involving 960 stroke-free subjects. The biomarker panel was grouped as follows: systemic inflammation (high-sensitivity C reactive protein (hsCRP), interleukin 6 and tumour necrosis factor α), endothelial-related inflammation (E-selectin, P-selectin, intercellular adhesion molecule 1, vascular cell adhesion molecule 1 (VCAM-1), CD40 ligand, lipoprotein-associated phospholipase A2, chitinase-3-like-1 protein and total homocysteine (tHCY)) and media-related inflammation (matrix metalloproteinases 2, 3 and 9, and osteopontin). The association(s) between different inflammatory groups and white matter hyperintensity (WMH), lacunes, cerebral microbleeds (CMBs), enlarged perivascular space (PVS) and the number of deep medullary veins (DMVs) were investigated. Results High levels of serum endothelial-related inflammatory biomarkers were associated with both increased WMH volume (R2=0.435, p=0.015) and the presence of lacunes (R2=0.254, p=0.027). Backward stepwise elimination of individual inflammatory biomarkers for endothelial-related biomarkers revealed that VCAM-1 was significant for WMH (β=0.063, p=0.005) and tHCY was significant for lacunes (β=0.069, p<0.001). There was no association between any group of inflammatory biomarkers and CMBs or PVS. Systemic inflammatory biomarkers were associated with fewer DMVs (R2=0.032, p=0.006), and backward stepwise elimination of individual systemic-related inflammatory biomarkers revealed that hsCRP (β=−0.162, p=0.007) was significant. Conclusion WMH and lacunes were associated with endothelial-related inflammatory biomarkers, and fewer DMVs were associated with systemic inflammation, thus suggesting different underlying inflammatory processes and mechanisms.
Collapse
Affiliation(s)
- Ding-Ding Zhang
- Central Research Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Cao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Yu Mu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Ming Liu
- Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Fei Han
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei-Fei Zhai
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Xin Zhou
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Ni
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Yao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Li Li
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng-Yu Jin
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Yang Zhang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Ying Cui
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Shen
- Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Yi-Cheng Zhu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
92
|
Cao Y, Zhang DD, Mu JY, Liu YM, Gao F, Han F, Zhai FF, Zhou LX, Ni J, Yao M, Li ML, Jin ZY, Zhang SY, Cui LY, Shen Y, Zhu YC. Different Types of Circulatory Inflammatory Biomarkers Associated with Cerebral Arterial Atherosclerosis and Dolichoectasia. Cerebrovasc Dis 2022; 51:655-662. [PMID: 35259750 DOI: 10.1159/000522439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/26/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although inflammation is found to be related to arteriopathy pathogenesis, it is yet to be determined the distinct correlations of specific inflammatory biomarker types contributing to different cerebral large vessel diseases. We aimed to investigate the association between multiple inflammatory biomarkers and cerebral atherosclerosis and dolichoectasia in a community-based sample. METHODS A total of 960 participants of the Shunyi study were included. A panel of 14 circulatory inflammatory biomarkers was assessed and then grouped in three sets as systemic, endothelial-related, and media-related inflammation, based on underlying different inflammatory cascades. Intracranial atherosclerotic stenosis (ICAS), dolichoectasia estimated by magnetic resonance angiography, and carotid plaques estimated by ultrasound were also performed. RESULTS Endothelial-related inflammatory group was related to the presence of ICAS (R2 = 0.215, p = 0.024) and carotid plaques (R2 = 0.342, p = 0.013). Backward stepwise elimination showed that E-selectin was prominent (β = 0.67, 95% CI: 0.54-0.85, p = 0.001; β = 0.79, 95% CI: 0.68-0.93, p = 0.005). Systemic inflammatory group was associated with an increased basilar artery diameter (R2 = 0.051, p < 0.001), and backward stepwise elimination showed that IL-6 was prominent (β = 0.07, 95% CI: 0.03-0.11, p < 0.001). CONCLUSION Different types of inflammatory biomarkers were associated with atherosclerosis and dolichoectasia, respectively, implying dissimilar inflammatory processes. Further confirming of their distinct anti-inflammatory roles as potential therapeutic targets is warrant.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,
| | - Ding-Ding Zhang
- Central Research Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Yu Mu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Ming Liu
- Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Fei Han
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei-Fei Zhai
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Xin Zhou
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Ni
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Yao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Li Li
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng-Yu Jin
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Yang Zhang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Ying Cui
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Shen
- Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Yi-Cheng Zhu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
93
|
Fondjo LA, Amoah B, Annan JJ, Adu-Gyamfi EA, Asamaoh EA. Hematobiochemical variability and predictors of new-onset and persistent postpartum preeclampsia. Sci Rep 2022; 12:3583. [PMID: 35246569 PMCID: PMC8897402 DOI: 10.1038/s41598-022-07509-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/21/2022] [Indexed: 12/30/2022] Open
Abstract
Preeclampsia (PE) can occur antepartum or postpartum. When it develops de novo after childbirth, it is termed new-onset postpartum PE (NOPPE). Often, antepartum PE disappears after childbirth; however, in some women it persists after childbirth. This form of PE is termed persistent PE (PPE). Thus, there are two forms of postpartum PE: NOPPE and PPE. The pathogenesis and pathophysiology of these diseases have not been fully characterized, and whether NOPPE and PPE are different or similar pathological conditions remains unexplored. Thus, we aimed to compare the haematological and biochemical characteristics of NOPPE and PPE, predict the occurrence of new-onset PE and identify lifestyles that predispose women to postpartum PE. A total of 130 women comprising 65 normotensive postpartum women, 33 NOPPE and 32 PPE women were recruited for this hospital-based case-control study. The socio-demographic and lifestyle characteristics of the participants were obtained through well-structured questionnaires. Haematological and biochemical indices were measured using automated analysers and ELISA. The prevalence of postpartum PE was 11.9%. Dyslipidaemia (p = < 0.0001), hypomagnesaemia (p = < 0.001), elevated serum levels of ALT, AST (p = < 0.0001), sVCAM-1 (p = < 0.0001) and sFlt-1 (p = < 0.0001) were more prevalent and severe in the PPE than in the NOPPE. Sedentary lifestyle was common among both groups of hypertensive women. Elevated ALT and AST were significant predictors of NOPPE. These findings indicate that preeclampsia exists after childbirth in a high percentage of women. NOPPE and PPE are different pathological conditions that require different clinical management. Combined glucose, lipid and liver assessment could be useful in predicting postpartum PE.
Collapse
Affiliation(s)
| | - Beatrice Amoah
- Department of Molecular Medicine, SMD, KNUST, Kumasi, Ghana
| | - John Jude Annan
- Department of Obstetrics and Gynaecology, SMD/KATH, Kumasi, Ghana
| | | | | |
Collapse
|
94
|
Atherosclerotic Lesion of the Carotid Artery in Indonesian Cynomolgus Monkeys Receiving a Locally Sourced Atherogenic Diet. Vet Sci 2022; 9:vetsci9030105. [PMID: 35324833 PMCID: PMC8954025 DOI: 10.3390/vetsci9030105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The atherosclerotic lesion is a principal hallmark of atherosclerotic animal models. This study aimed to assess lesions of the carotid artery in Indonesian cynomolgus monkeys exposed to an IPB-1 atherogenic diet. A total of 20 adult male cynomolgus monkeys received the local IPB-1 diet for two years. Blood lipid profiles, morphology, and carotid ultrasound of monkeys were measured. Nine of them were euthanized to confirm atherosclerotic lesions. Common carotid arteries (CCA) and carotid bifurcation (BIF) samples were collected and stained using Verhoef-van Giessen and CD68 immunohistochemistry. The results reveal the presence of severe atherosclerosis plaques in six out of nine animals (66.7%) corresponding to intermediately and hyper-responsive groups. The hyper-responsive group displayed the highest response in the developing intimal area (IA) at the CCA (0.821 mm2), whereas the hyporesponsive group had the smallest IA (0.045 mm2) (p = 0.0001). At the BIF, the hyporesponsive group showed the smallest IA (p = 0.001), but there was no difference between the intermediately and hyper-responsive groups (p = 0.312). The macrophage marker CD68 was also expressed on the cartotid of the intermediately and hyper-responsive groups. These results indicate that severe atherosclerotic lesions with high infiltration of macrophages were formed in the carotid arteries of intermediately and hyper-responsive Indonesian cynomolgus monkeys fed with the local atherogenic diet IPB-1 over two years, thus confirming atherosclerosis in a nonhuman primate model.
Collapse
|
95
|
Shaikhnia F, Ghasempour G, Mohammadi A, Shabani M, Najafi M. miR-27a inhibits molecular adhesion between monocytes and human umbilical vein endothelial cells; systemic approach. BMC Res Notes 2022; 15:31. [PMID: 35144666 PMCID: PMC8830077 DOI: 10.1186/s13104-022-05920-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The endothelial cells overexpress the adhesion molecules in the leukocyte diapedesis pathway, developing vessel subendothelial molecular events. In this study, miR-194 and miR-27a were predicted and investigated on the expression of adhesion molecules in HUVEC cells. The SELE, SELP, and JAM-B adhesion molecules involved in the leukocyte tethering were predicted on the GO-enriched gene network. Following transfection of PEI-miRNA particles into HUVEC cells, the SELE, SELP, and JAM-B gene expression levels were evaluated by real-time qPCR. Furthermore, the monocyte-endothelial adhesion was performed using adhesion assay kit. RESULTS In agreement with the prediction results, the cellular data showed that miR-27a and miR-194 decrease significantly the SELP and JAM-B expression levels in HUVECs (P < 0.05). Moreover, both the miRNAs suppressed the monocyte adhesion to endothelial cells. Since the miR-27a inhibited significantly the monocyte-endothelial adhesion (P = 0.0001) through the suppression of SELP and JAM-B thus it might relate to the leukocyte diapedesis pathway.
Collapse
Affiliation(s)
- Farhad Shaikhnia
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghasempour
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Asghar Mohammadi
- Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Shabani
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
96
|
Li N, Liu H, Xue Y, Chen J, Kong X, Zhang Y. Upregulation of Neogenin-1 by a CREB1-BAF47 Complex in Vascular Endothelial Cells is Implicated in Atherogenesis. Front Cell Dev Biol 2022; 10:803029. [PMID: 35186922 PMCID: PMC8851423 DOI: 10.3389/fcell.2022.803029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis is generally considered a human pathology of chronic inflammation, to which endothelial dysfunction plays an important role. Here we investigated the role of neogenin 1 (Neo-1) in oxidized low-density lipoprotein (oxLDL) induced endothelial dysfunction focusing on its transcriptional regulation. We report that Neo-1 expression was upregulated by oxLDL in both immortalized vascular endothelial cells and primary aortic endothelial cells. Neo-1 knockdown attenuated whereas Neo-1 over-expression enhanced oxLDL-induced leukocyte adhesion to endothelial cells. Neo-1 regulated endothelial-leukocyte interaction by modulating nuclear factor kappa B (NF-κB) activity to alter the expression of adhesion molecules. Neo-1 blockade with a blocking antibody ameliorated atherogenesis in Apoe−/− mice fed a Western diet. Ingenuity pathway analysis combined with validation assays confirmed that cAMP response element binding protein 1 (CREB1) and Brg1-associated factor 47 (BAF47) mediated oxLDL induced Neo-1 upregulation. CREB1 interacted with BAF47 and recruited BAF47 to the proximal Neo-1 promoter leading to Neo-1 trans-activation. In conclusion, our data delineate a novel transcriptional mechanism underlying Neo-1 activation in vascular endothelial cells that might contribute to endothelial dysfunction and atherosclerosis.
Collapse
Affiliation(s)
- Nan Li
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hong Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Junliang Chen
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Xiaocen Kong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Institute of Biomedical Research, Liaocheng Univeristy, Liaocheng, China
- *Correspondence: Xiaocen Kong, ; Yuanyuan Zhang,
| | - Yuanyuan Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- *Correspondence: Xiaocen Kong, ; Yuanyuan Zhang,
| |
Collapse
|
97
|
Chakravarty D, Ray AG, Chander V, Mabalirajan U, Mondal PC, Siddiqui KN, Sinha BP, Konar A, Bandyopadhyay A. Systemic deficiency of vitronectin is associated with aortic inflammation and plaque progression in ApoE-Knockout mice. FASEB Bioadv 2022; 4:121-137. [PMID: 35141476 PMCID: PMC8814562 DOI: 10.1096/fba.2021-00108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
Optimal cell spreading and interplay of vascular smooth muscle cells (VSMC), inflammatory cells, and cell adhesion molecules (CAM) are critical for progressive atherosclerosis and cardiovascular complications. The role of vitronectin (VTN), a major cell attachment glycoprotein, in the pathogenesis of atherosclerosis remains elusive. In this study, we attempt to examine the pathological role of VTN in arterial plaque progression and inflammation. We found that, relative expression analysis of VTN from the liver of Apolipoprotein E (ApoE) Knockout mice revealed that atherosclerotic progression induced by feeding mice with high cholesterol diet (HCD) causes a significant downregulation of VTN mRNA as well as protein after 60 days. Promoter assay confirmed that cholesterol modulates the expression of VTN by influencing its promoter. Mimicking VTN reduction with siRNA in HCD fed ApoE Knockout mice, accelerated athero-inflammation with an increase in NF-kB, ICAM-1, and VCAM-1 at the site of the plaque along with upregulation of inflammatory proteins like MCP-1 and IL-1β in the plasma. Also, matrix metalloprotease (MMP)-9 and MMP-12 expression were increased and collagen content was decreased in the plaque, in VTN deficient condition. This might pose a challenge to plaque integrity. Human subjects with acute coronary syndrome or having risk factors of atherosclerosis have lower levels of VTN compared to healthy controls suggesting a clinical significance of plasma VTN in the pathophysiology of coronary artery disease. We establish that, VTN plays a pivotal role in cholesterol-driven atherosclerosis and aortic inflammation and might be a useful indicator for atherosclerotic plaque burden and stability.
Collapse
Affiliation(s)
- Devasmita Chakravarty
- Department of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Aleepta Guha Ray
- Department of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Vivek Chander
- Department of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Ulaganathan Mabalirajan
- Department of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | | | | | - Bishnu Prasad Sinha
- Department of Cancer Biology and Inflammatory DisorderCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Aditya Konar
- Department of Laboratory Animal FacilityCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Arun Bandyopadhyay
- Department of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
- Department of Cancer Biology and Inflammatory DisorderCSIR‐Indian Institute of Chemical BiologyKolkataIndia
- Department of Laboratory Animal FacilityCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| |
Collapse
|
98
|
Chan JM, Park SJ, Ng M, Chen WC, Garnell J, Bhakoo K. Predictive mouse model reflects distinct stages of human atheroma in a single carotid artery. Transl Res 2022; 240:33-49. [PMID: 34478893 DOI: 10.1016/j.trsl.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Identification of patients with high-risk asymptomatic atherosclerotic plaques remains an elusive but essential step in preventing stroke. However, there is a lack of animal model that provides a reproducible method to predict where, when and what types of plaque formation, which fulfils the American Heart Association (AHA) histological classification of human plaques. We have developed a predictive mouse model that reflects different stages of human plaques in a single carotid artery by means of shear-stress modifying cuff. Validated with over 30000 histological sections, the model generates a specific pattern of plaques with different risk levels along the same artery depending on their position relative to the cuff. The further upstream of the cuff-implanted artery, the lower the magnitude of shear stress, the more unstable the plaques of higher grade according to AHA classification; with characteristics including greater degree of vascular remodeling, plaque size, plaque vulnerability and inflammation, resulting in higher risk plaques. By weeks 20 and 30, this model achieved 80% and near 100% accuracy respectively, in predicting precisely where, when and what stages/AHA types of plaques develop along the same carotid artery. This model can generate clinically-relevant plaques with varying phenotypes fulfilling AHA classification and risk levels, in specific locations of the single artery with near 100% accuracy of prediction. The model offers a promising tool for development of diagnostic tools to target high-risk plaques, increasing accuracy in predicting which individual patients may require surgical intervention to prevent stroke, paving the way for personalized management of carotid atherosclerotic disease.
Collapse
Affiliation(s)
- Joyce Ms Chan
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Sung-Jin Park
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Michael Ng
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Joanne Garnell
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kishore Bhakoo
- Translational Imaging Laboratory, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
99
|
Cimmino G, Conte S, Morello M, Pellegrino G, Marra L, Morello A, Nicoletti G, De Rosa G, Golino P, Cirillo P. Vitamin D Inhibits IL-6 Pro-Atherothrombotic Effects in Human Endothelial Cells: A Potential Mechanism for Protection against COVID-19 Infection? J Cardiovasc Dev Dis 2022; 9:27. [PMID: 35050236 PMCID: PMC8781542 DOI: 10.3390/jcdd9010027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Thrombosis with cardiovascular involvement is a crucial complication in COVID-19 infection. COVID-19 infects the host by the angiotensin converting enzyme-2 receptor (ACE2r), which is expressed in endothelial cells too. Thus, COVID-related thrombotic events might be due to endothelial dysfunction. IL-6 is one of the main cytokines involved in the COVID-19 inflammatory storm. Some evidence indicates that Vitamin D (VitD) has a protective role in COVID-19 patients, but the molecular mechanisms involved are still debated. Thus, we investigated the effect of VitD on Tissue Factor and adhesion molecules (CAMs) in IL-6-stimulated endothelial cells (HUVEC). Moreover, we evaluated levels of the ACE2r gene and proteins. Finally, we studied the modulation of NF-kB and STAT3 pathways. METHODS HUVEC cultivated in VitD-enriched medium were stimulated with IL-6 (0.5 ng/mL). The TF gene (RT-PCR), protein (Western blot), surface expression (FACS) and procoagulant activity (FXa generation assay) were measured. Similarly, CAMs soluble values (ELISA) and ACE2r (RT-PCR and Western blot) levels were assessed. NF-kB and STAT3 modulation (Western blot) were also investigated. RESULTS VitD significantly reduced TF expression at both gene and protein levels as well as TF-procoagulant activity in IL-6-treated HUVEC. Similar effects were observed for CAMs and ACE2r expression. IL-6 modulates these effects by regulating NF-κB and STAT3 pathways. CONCLUSIONS IL-6 induces endothelial dysfunction with TF and CAMs expression via upregulation of ACE2r. VitD prevented these IL-6 deleterious effects. Thus, it might be speculated that this is one of the hypothetical mechanism(s) by which VitD exerts its beneficial effects in COVID-19 infection.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.C.); (P.G.)
| | - Stefano Conte
- Department of Translational Medical Sciences, Section of Lung Disease, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Mariarosaria Morello
- Department of Advanced Biomedical Sciences, Section of Cardiology, University of Naples “Federico II”, 80131 Naples, Italy; (M.M.); (G.N.); (G.D.R.)
| | - Grazia Pellegrino
- Department of Woman, Child and General and Specialized Surgery, Section of Anesthesiology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Laura Marra
- Department of Cell Biology and Biotherapy Research, Istituto Nazionale Tumori IRCCS—Fondazione G. Pascale, 80131 Naples, Italy;
| | - Andrea Morello
- Biochemical Unit, A. S. Re. M. (Azienda Sanitaria Regionale del Molise), Antonio Cardarelli Hospital, 86100 Campobasso, Italy;
| | - Giuseppe Nicoletti
- Department of Advanced Biomedical Sciences, Section of Cardiology, University of Naples “Federico II”, 80131 Naples, Italy; (M.M.); (G.N.); (G.D.R.)
| | - Gennaro De Rosa
- Department of Advanced Biomedical Sciences, Section of Cardiology, University of Naples “Federico II”, 80131 Naples, Italy; (M.M.); (G.N.); (G.D.R.)
| | - Paolo Golino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.C.); (P.G.)
| | - Plinio Cirillo
- Department of Advanced Biomedical Sciences, Section of Cardiology, University of Naples “Federico II”, 80131 Naples, Italy; (M.M.); (G.N.); (G.D.R.)
| |
Collapse
|
100
|
Udaya R, Sivakanesan R. Synopsis of Biomarkers of Atheromatous Plaque Formation, Rupture and Thrombosis in the Diagnosis of Acute Coronary Syndromes. Curr Cardiol Rev 2022; 18:53-62. [PMID: 35410616 PMCID: PMC9896418 DOI: 10.2174/1573403x18666220411113450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/08/2021] [Accepted: 01/15/2022] [Indexed: 11/22/2022] Open
Abstract
Acute coronary syndrome is the main cause of mortality and morbidity worldwide and early diagnosis is a challenge for clinicians. Though cardiac Troponin, the most commonly used biomarker, is the gold standard for myocardial necrosis, it is blind for ischemia without necrosis. Therefore, ideal biomarkers are essential in the care of patients presenting with symptoms suggestive of cardiac ischemia. The ideal biomarker or group of biomarkers of atheromatous plaque formation, rupture and thrombosis for timely and accurate diagnosis of acute coronary syndrome is a current need. Therefore, we discuss the existing understanding and future of biomarkers of atheromatous plaque formation, rupture and thrombosis of acute coronary syndrome in this review. Keywords were searched from Medline, ISI, IBSS and Google Scholar databases. Further, the authors conducted a manual search of other relevant journals and reference lists of primary articles. The development of high-sensitivity troponin assays facilitates earlier exclusion of acute coronary syndrome, contributing to a reduced length of stay at the emergency department, and earlier treatment resulting in better outcomes. Although researchers have investigated biomarkers of atheromatous plaque formation, rupture and thrombosis to help early diagnosis of cardiac ischemia, most of them necessitate validation from further analysis. Among these biomarkers, pregnancy-associated plasma protein-A, intercellular adhesion molecule-1, and endothelial cell-specific molecule- 1(endocan) have shown promising results in the early diagnosis of acute coronary syndrome but need further evaluation. However, the use of a combination of biomarkers representing varying pathophysiological mechanisms of cardiac ischemia will support risk assessment, diagnosis and prognosis in these patients and this is the way forward.
Collapse
Affiliation(s)
- Ralapanawa Udaya
- Address correspondence to this author at the Department of Medicine, University of Peradeniya, Galaha Rd, 20400, Sri Lanka; Tel: 0718495682; E-mail:
| | | |
Collapse
|