51
|
Carotenoids Inhibit Fructose-Induced Inflammatory Response in Human Endothelial Cells and Monocytes. Mediators Inflamm 2020; 2020:5373562. [PMID: 32410856 PMCID: PMC7204090 DOI: 10.1155/2020/5373562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
Objective This research is aimed at determining the vascular health characteristics of carotenoids by evaluating their effect on excessive inflammatory response in endothelial and monocyte cells, the main factors of atherosclerosis. Methods Human umbilical vein endothelial cells (HUVECs) or U937 monocytes were treated with escalating concentrations (0.1, 0.5, and 1 μM) of five most common carotenoids in human plasma, i.e., α-carotene, β-carotene, β-cryptoxanthin, lutein, and lycopene prior to stimulation with 2 mM fructose. We examined the monocyte adhesion to endothelial cells (ECs) and relevant endothelial adhesion molecules. Chemokine and proinflammatory cytokine production as well as intracellular oxidative stress were also assessed in fructose-stimulated ECs and monocytes. Results Carotenoids repressed monocyte adhesion to fructose-stimulated ECs dose dependently via decreasing primarily the expression of endothelial VCAM-1. In ECs and monocytes, three carotenoids, i.e., β-cryptoxanthin, lutein, and lycopene, suppressed the fructose-induced expression of chemokines MCP-1, M-CSF, and CXCL-10 and inflammatory cytokines TNF-α and IL-1β, with CXCL-10 being the most repressed inflammatory mediator. β-Cryptoxanthin, lutein, and lycopene dramatically downregulated the fructose-induced CXCL-10 expression in vascular cells. The reduction in the inflammatory response was associated with a slight but significant decrease of intracellular oxidative stress. Conclusions Our results show that carotenoids have a variety of anti-inflammatory and antiatherosclerosis activities, which can help prevent or reduce fructose-induced inflammatory vascular diseases.
Collapse
|
52
|
Yang Y, Delalio LJ, Best AK, Macal E, Milstein J, Donnelly I, Miller AM, McBride M, Shu X, Koval M, Isakson BE, Johnstone SR. Endothelial Pannexin 1 Channels Control Inflammation by Regulating Intracellular Calcium. THE JOURNAL OF IMMUNOLOGY 2020; 204:2995-3007. [PMID: 32312847 PMCID: PMC7336877 DOI: 10.4049/jimmunol.1901089] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/27/2020] [Indexed: 12/26/2022]
Abstract
The proinflammatory cytokine IL-1β is a significant risk factor in cardiovascular disease that can be targeted to reduce major cardiovascular events. IL-1β expression and release are tightly controlled by changes in intracellular Ca2+ ([Ca2+]i), which has been associated with ATP release and purinergic signaling. Despite this, the mechanisms that regulate these changes have not been identified. The pannexin 1 (Panx1) channels have canonically been implicated in ATP release, especially during inflammation. We examined Panx1 in human umbilical vein endothelial cells following treatment with the proinflammatory cytokine TNF-α. Analysis by whole transcriptome sequencing and immunoblot identified a dramatic increase in Panx1 mRNA and protein expression that is regulated in an NF-κB-dependent manner. Furthermore, genetic inhibition of Panx1 reduced the expression and release of IL-1β. We initially hypothesized that increased Panx1-mediated ATP release acted in a paracrine fashion to control cytokine expression. However, our data demonstrate that IL-1β expression was not altered after direct ATP stimulation in human umbilical vein endothelial cells. Because Panx1 forms a large pore channel, we hypothesized it may permit Ca2+ diffusion into the cell to regulate IL-1β. High-throughput flow cytometric analysis demonstrated that TNF-α treatments lead to elevated [Ca2+]i, corresponding with Panx1 membrane localization. Genetic or pharmacological inhibition of Panx1 reduced TNF-α-associated increases in [Ca2+]i, blocked phosphorylation of the NF-κB-p65 protein, and reduced IL-1β transcription. Taken together, the data in our study provide the first evidence, to our knowledge, that [Ca2+]i regulation via the Panx1 channel induces a feed-forward effect on NF-κB to regulate IL-1β synthesis and release in endothelium during inflammation.
Collapse
Affiliation(s)
- Yang Yang
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908.,Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Leon J Delalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Angela K Best
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Edgar Macal
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jenna Milstein
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Iona Donnelly
- British Heart Foundation Cardiovascular Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Ashley M Miller
- British Heart Foundation Cardiovascular Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Martin McBride
- British Heart Foundation Cardiovascular Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Xiaohong Shu
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908; .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Scott R Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908;
| |
Collapse
|
53
|
Scalia Carneiro AP, Algranti E, Chérot‐Kornobis N, Silva Bezerra F, Tibiriça Bon AM, Felicidade Tomaz Braz N, Soares Souza DM, Paula Costa G, Bussacos MA, Paula Alves Bezerra OM, Talvani A. Inflammatory and oxidative stress biomarkers induced by silica exposure in crystal craftsmen. Am J Ind Med 2020; 63:337-347. [PMID: 31953962 DOI: 10.1002/ajim.23088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Identification of biomarkers associated with the diagnosis and prognosis of silicosis would be highly advantageous in the clinical setting. The aim of this study is to evaluate inflammatory and oxidative stress biomarkers in subjects exposed to silica. METHODS A cross-sectional study of crystal craftsmen currently (n = 34) or formerly (n = 35) exposed and a group of nonexposed subjects (n = 12) was performed. Personal respirable dust samples were collected. Plasma inflammatory mediators (bone morphogenetic protein- BMP2 and chemokines CXCL16, and CCL5), oxidative stress enzymes (thiobarbituric acid reactive substances [TBARs] and superoxide dismutase [SOD]), and nitrite (NO2 - ) were analyzed in parallel with nitric oxide in exhaled breath (FeNO). RESULTS Being currently or formerly exposed to silica was related to increased levels of CXCL16 and TBARs. Currently, exposed subjects showed decreased levels of SOD. Thirty-seven craftsmen with silicosis (26 formerly and 11 currently exposed) showed higher levels of CXCL16, which was positively associated with the radiological severity of silicosis. Compared with the nonexposed, subjects with silicosis had higher levels of TBARs and those with complicated silicosis had lower levels of SOD. In multivariate analysis, higher levels of CXCL16 were associated with exposure status and radiological severity of silicosis. Smoking was not a confounder. FeNO did not distinguish between the exposure status and the presence of silicosis. CONCLUSION CXCL16 emerged as a potential biomarker that could distinguish both silica exposure and silicosis. TBARs were elevated in exposed individuals. However, their clinical applications demand further investigation in follow-up studies of representative samples.
Collapse
Affiliation(s)
- Ana Paula Scalia Carneiro
- Workers' Health Division of the Clinics Hospital of Federal University of Minas GeraisBelo Horizonte Brazil
| | | | | | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology/DECBIFederal University of Ouro PretoOuro Preto Minas Gerais Brazil
| | | | - Nayara Felicidade Tomaz Braz
- Interdisciplinary Laboratory for Medical Research, Department of Neuroscience, School of MedicineFederal University of Minas GeraisBelo Horizonte Brazil
| | | | - Guilherme Paula Costa
- Laboratory of Immunobiology of Inflammation/DECBIFederal University of Ouro PretoOuro Preto Brazil
| | | | - Olívia Maria Paula Alves Bezerra
- School of Medicine, Department of Family Medicine, Mental and Collective HealthFederal University of Ouro PretoOuro Preto Minas Gerais Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation/DECBIFederal University of Ouro PretoOuro Preto Brazil
| |
Collapse
|
54
|
Thompson G, Davison GW, Crawford J, Hughes CM. Exercise and inflammation in coronary artery disease: A systematic review and meta-analysis of randomised trials. J Sports Sci 2020; 38:814-826. [DOI: 10.1080/02640414.2020.1735684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gareth Thompson
- Institute of Nursing and Health Research, Ulster University, Jordanstown Campus, Newtownabbey, County Antrim
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, County Antrim
| | - Jacqui Crawford
- Institute of Nursing and Health Research, Ulster University, Jordanstown Campus, Newtownabbey, County Antrim
| | - Ciara M. Hughes
- Institute of Nursing and Health Research, Ulster University, Jordanstown Campus, Newtownabbey, County Antrim
| |
Collapse
|
55
|
Corrêa R, Silva LFF, Ribeiro DJS, Almeida RDN, Santos IDO, Corrêa LH, de Sant'Ana LP, Assunção LS, Bozza PT, Magalhães KG. Lysophosphatidylcholine Induces NLRP3 Inflammasome-Mediated Foam Cell Formation and Pyroptosis in Human Monocytes and Endothelial Cells. Front Immunol 2020; 10:2927. [PMID: 31998284 PMCID: PMC6962110 DOI: 10.3389/fimmu.2019.02927] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/28/2019] [Indexed: 12/04/2022] Open
Abstract
Foam cells are specialized lipid-loaded macrophages derived from monocytes and are a key pathological feature of atherosclerotic lesions. Lysophosphatidylcholine (LPC) is a major lipid component of the plasma membrane with a broad spectrum of proinflammatory activities and plays a key role in atherosclerosis. However, the role of LPC in lipid droplet (LD) biogenesis and the modulation of inflammasome activation is still poorly understood. In the present study, we investigated whether LPC can induce foam cell formation through an analysis of LD biogenesis and determined whether the cell signaling involved in this process is mediated by the inflammasome activation pathway in human endothelial cells and monocytes. Our results showed that LPC induced foam cell formation in both types of cells by increasing LD biogenesis via a NLRP3 inflammasome-dependent pathway. Furthermore, LPC induced pyroptosis in both cells and the activation of the inflammasome with IL-1β secretion, which was dependent on potassium efflux and lysosomal damage in human monocytes. The present study described the IL-1β secretion and foam cell formation triggered by LPC via an inflammasome-mediated pathway in human monocytes and endothelial cells. Our results will help improve our understanding of the relationships among LPC, LD biogenesis, and NLRP3 inflammasome activation in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Rafael Corrêa
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - Luís Felipe Fonseca Silva
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | | | - Raquel das Neves Almeida
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - Luís Henrique Corrêa
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - Lívia Pimentel de Sant'Ana
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | | | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Institute of Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasília, Brasilia, Brazil
| |
Collapse
|
56
|
Munjal A, Khandia R. Atherosclerosis: orchestrating cells and biomolecules involved in its activation and inhibition. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 120:85-122. [PMID: 32085889 DOI: 10.1016/bs.apcsb.2019.11.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The term atherosclerosis refers to the condition of deposition of lipids and other substances in and on the artery walls, called as plaque that restricts the normal blood flow. The plaque may be stable or unstable in nature. Unstable plaque can burst and trigger clot formation adding further adversities. The process of plaque formation involves various stages including fatty streak, intermediate or fibro-fatty lesion and advanced lesion. The cells participating in the formation of atherosclerotic plaque include endothelial cells, vascular smooth muscle cells (VSMC), monocytes, monocytes derived macrophages, macrophages and dendritic cells and regulatory T cells (TREG). The role of a variety of cytokines and chemokines have been studied which either help in progression of atherosclerotic plaque or vice versa. The cytokines involved in atherosclerotic plaque formation include IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, IL-18, IL-20, IL-25, IL-27, IL-33, IL-37, TNF-α, TGF-β and IFN-γ; whereas amongst the chemokines (family of small cytokines) are CCL2, CCL3, CXCL4, CCL5, CXCL1, CX3CL1, CCL17, CXCL8, CXCL10, CCL20, CCL19 and CCL21 and macrophage migration-inhibitory factor. These are involved in the atherosclerosis advancements, whereas the chemokine CXCL12 is play atheroprotective roles. Apart this, contradictory functions have been documented for few other chemokines such as CXCL16. Since the cytokines and chemokines are amongst the key molecules involved in orchestrating the atherosclerosis advancements, targeting them might be an effective strategy to encumber the atherosclerotic progression. Blockage of cytokines and chemokines via the means of broad-spectrum inhibitors, neutralizing antibodies, usage of decoy receptors or RNA interference have been proved to be useful intervention against atherosclerosis.
Collapse
Affiliation(s)
- Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, MP, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, MP, India
| |
Collapse
|
57
|
Repeated Porphyromonas gingivalis W83 exposure leads to release pro-inflammatory cytokynes and angiotensin II in coronary artery endothelial cells. Sci Rep 2019; 9:19379. [PMID: 31852912 PMCID: PMC6920421 DOI: 10.1038/s41598-019-54259-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The role of Porphyromonas gingivalis (P. gingivalis) or its virulence factors, including lipopolysaccharide (LPS) not only has been related with periodontitis but also with endothelial dysfunction, a key mechanism involved in the genesis of atherosclerosis and hypertension that involving systemic inflammatory markers as angiotensin II (Ang II) and cytokines. This study compares the effect of repeated and unique exposures of P. gingivalis W83 LPS and live bacteria on the production and expression of inflammatory mediators and vasoconstrictor molecules with Ang II. Human coronary artery endothelial cells (HCAEC) were stimulated with purified LPS of P. gingivalis (1.0, 3.5 or 7.0 μg/mL) or serial dilutions of live bacteria (MOI 1: 100 - 1:0,1) at a single or repeated exposure for a time of 24 h. mRNA expression levels of AGTR1, AGTR2, IL-8, IL-1β and MCP-1 were determined by RT-qPCR, and IL-6, MCP-1, IL-8, IL-1β and GM-CSF levels were measured by flow cytometry, ELISA determined Ang II levels. Live bacteria in a single dose increased mRNA levels of AGTR1, and repeated doses increased mRNA levels of IL-8 and IL-1β (p < 0.05). Repeated exposure of live-P. gingivalis induced significant production IL-6, MCP-1 and GM-CSF (p < 0.05). Moreover, these MCP-1, IL-6 and GM-CSF levels were greater than in cells treated with single exposure (p < 0.05), The expression of AGTR1 and production of Ang II induced by live-P. gingivalis W83 showed a vasomotor effect of whole bacteria in HCAEC more than LPS. In conclusion, the findings of this study suggest that repeated exposure of P. gingivalis in HCAEC induces the activation of proinflammatory and vasoconstrictor molecules that lead to endothelial dysfunction being a key mechanism of the onset and progression of arterial hypertension and atherosclerosis.
Collapse
|
58
|
Calabriso N, Massaro M, Scoditti E, Pasqualone A, Laddomada B, Carluccio MA. Phenolic extracts from whole wheat biofortified bread dampen overwhelming inflammatory response in human endothelial cells and monocytes: major role of VCAM-1 and CXCL-10. Eur J Nutr 2019; 59:2603-2615. [PMID: 31624866 DOI: 10.1007/s00394-019-02109-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of the study was to evaluate the vascular health properties of extracts from biofortified bread, obtained by adding different durum wheat milling by-products rich in phenolic compounds, by analyzing their effects on overwhelming inflammatory response in endothelial cells and monocytes, two main players of atherogenesis. METHODS Human umbilical vein endothelial cells or U937 monocytes were incubated with increasing concentrations (1, 5, 10 μg/mL) of biofortified bread polyphenol extracts or corresponding pure phenolic acids before stimulation with lipopolysaccharide (LPS). We analyzed the endothelial-monocyte adhesion and related endothelial adhesion molecules. The expression of chemokines and pro-inflammatory cytokines was also measured in LPS-stimulated endothelial cells and monocytes as well as intracellular oxidative stress. RESULTS Biofortified bread extracts inhibited monocyte adhesion to LPS-stimulated endothelial cells, in a concentration-dependent manner by reducing mainly endothelial VCAM-1 expression. Phenolic acid extracts contained in 10 mg biofortified bread downregulated the LPS-induced expression of chemokines MCP-1, M-CSF, and CXCL-10 as well as pro-inflammatory cytokines TNF-α and IL-1β, in endothelial cells and monocytes, with CXCL-10 as the most reduced inflammatory mediator. Among phenolic acids of biofortified bread, ferulic, sinapic, and p-coumaric acids significantly inhibited the LPS-stimulated CXCL-10 expression in vascular cells. The reduced pro-inflammatory response was related to a slightly but significant reduction of intracellular oxidative stress. CONCLUSIONS Our findings suggest the bread biofortified with selected durum wheat milling by-products as a source of phenolic acids with multiple anti-inflammatory and anti-atherosclerotic properties, which could help to counteract or prevent inflammatory vascular diseases.
Collapse
Affiliation(s)
- Nadia Calabriso
- Laboratory of Nutrigenomic and Vascular Biology, National Research Council, Institute of Clinical Physiology, Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Marika Massaro
- Laboratory of Nutrigenomic and Vascular Biology, National Research Council, Institute of Clinical Physiology, Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Egeria Scoditti
- Laboratory of Nutrigenomic and Vascular Biology, National Research Council, Institute of Clinical Physiology, Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Antonella Pasqualone
- Food Science and Technology Unit, Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Barbara Laddomada
- National Research Council, Institute of Sciences of Food Production, Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Maria Annunziata Carluccio
- Laboratory of Nutrigenomic and Vascular Biology, National Research Council, Institute of Clinical Physiology, Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
59
|
Linke B, Meyer Dos Santos S, Picard-Willems B, Keese M, Harder S, Geisslinger G, Scholich K. CXCL16/CXCR6-mediated adhesion of human peripheral blood mononuclear cells to inflamed endothelium. Cytokine 2019. [DOI: 10.1016/j.cyto.2017.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
60
|
Kim H, Conway EM. Platelets and Complement Cross-Talk in Early Atherogenesis. Front Cardiovasc Med 2019; 6:131. [PMID: 31555668 PMCID: PMC6742699 DOI: 10.3389/fcvm.2019.00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis remains a ubiquitous and serious threat to human health. The initial formation of the atherosclerotic lesion (atheroma) is driven by pro-inflammatory signaling involving monocytes and vascular endothelial cells; later stages of the disease involve rupture of well-established atherosclerotic plaques, thrombosis, and blood vessel occlusion. While the central role of platelets in thrombosis is undisputed, platelets exhibit pro-inflammatory activities, and contribute to early-stage atheroma formation. Platelets also engage components of the complement system, an essential element of innate immunity that contributes to vascular inflammation. Here we provide an overview of the complex interplay between platelets and the complement system, with a focus on how the crosstalk between them may impact on the initiation of atheroma formation.
Collapse
Affiliation(s)
- Hugh Kim
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
61
|
Chlamydia and Lipids Engage a Common Signaling Pathway That Promotes Atherogenesis. J Am Coll Cardiol 2019; 71:1553-1570. [PMID: 29622163 DOI: 10.1016/j.jacc.2018.01.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Recent studies indicate that Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) signaling promote the development of high fat diet-induced atherosclerosis in hypercholesterolemic mice. OBJECTIVES The authors investigated the role of TLR4/MyD88 signaling in hematopoietic and stromal cells in the development and infection-mediated acceleration of atherosclerosis. METHODS The authors generated bone marrow chimeras between wild-type and Tlr4-/- mice, as well as wild-type and Myd88-/- mice. All mice were on the Apoe-/- background and fed high fat diet. The authors infected the chimeric mice with C. pneumoniae (CP) and fed them high fat diet. RESULTS Aortic sinus plaques and lipid content were significantly reduced in Apoe-/- mice that received Tlr4-/-or Myd88-/- bone marrow compared with control animals despite similar cholesterol levels. Similarly, Tlr4 or Myd88 deficiency in stromal cells also led to a reduction in the lesion area and lipid in aortic sinus plaques. MyD88 expression only in CD11c+ dendritic cells (myeloid cells) in cells was sufficient in otherwise MyD88-deficient mice to induce CP infection-mediated acceleration of atherosclerosis, underlining the key role of MyD88 in CD11c+ dendritic cells (myeloid cells). Whereas CP infection markedly accelerated atherosclerosis in TLR4- or MyD88-positive chimeras, CP infection had a minimal effect on atherosclerosis in TLR4- or MyD88-deficient mice (either in the hematopoietic or stromal cell compartments). CONCLUSIONS The authors show that both CP infection and metabolic stress associated with dyslipidemia use the same innate immune response pathway, utilizing TLR4/MyD88 signaling, with similar relative contributions in bone marrow-derived hematopoietic cells and in stromal cells. Further studies are required to understand this intricate and complex cross talk among innate and adaptive immune systems in various conditions to more effectively design dendritic cell-mediated atheroprotective vaccines and other therapeutic strategies.
Collapse
|
62
|
MicroRNA 155 Contributes to Host Immunity against Leishmania donovani but Is Not Essential for Resolution of Infection. Infect Immun 2019; 87:IAI.00307-19. [PMID: 31182615 DOI: 10.1128/iai.00307-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
CD4+ T helper 1 (Th1) cells producing interferon gamma (IFN-γ) are critical for the resolution of visceral leishmaniasis (VL). MicroRNA 155 (miR155) promotes CD4+ Th1 responses and IFN-γ production by targeting suppressor of cytokine signaling-1 (SOCS1) and Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP-1) and therefore could play a role in the resolution of VL. To determine the role of miR155 in VL, we monitored the course of Leishmania donovani infection in miR155 knockout (miR155KO) and wild-type (WT) C57BL/6 mice. miR155KO mice displayed significantly higher liver and spleen parasite loads than WT controls and showed impaired hepatic granuloma formation. However, parasite growth eventually declined in miR155KO mice, suggesting the induction of a compensatory miR155-independent antileishmanial pathway. Leishmania antigen-stimulated splenocytes from miR155KO mice produced significantly lower levels of Th1-associated IFN-γ than controls. Interestingly, at later time points, levels of Th2-associated interleukin-4 (IL-4) and IL-10 were also lower in miR155KO splenocyte supernatants than in WT mice. On the other hand, miR155KO mice displayed significantly higher levels of IFN-γ, iNOS, and TNF-α gene transcripts in their livers than WT mice, indicating that distinct organ-specific antiparasitic mechanisms were involved in control of L. donovani infection in miR155KO mice. Throughout the course of infection, organs of miR155KO mice showed significantly more PDL1-expressing Ly6Chi inflammatory monocytes than WT mice. Conversely, blockade of Ly6Chi inflammatory monocyte recruitment in miR155KO mice significantly reduced parasitic loads, indicating that these cells contributed to disease susceptibility. In conclusion, we found that miR155 contributes to the control of L. donovani but is not essential for infection resolution.
Collapse
|
63
|
Advanced 2D/3D cell migration assay for faster evaluation of chemotaxis of slow-moving cells. PLoS One 2019; 14:e0219708. [PMID: 31314801 PMCID: PMC6636736 DOI: 10.1371/journal.pone.0219708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/28/2019] [Indexed: 11/19/2022] Open
Abstract
Considering the essential role of chemotaxis of adherent, slow-moving cells in processes such as tumor metastasis or wound healing, a detailed understanding of the mechanisms and cues that direct migration of cells through tissues is highly desirable. The state-of-the-art chemotaxis instruments (e.g. microfluidic-based devices, bridge assays) can generate well-defined, long-term stable chemical gradients, crucial for quantitative investigation of chemotaxis in slow-moving cells. However, the majority of chemotaxis tools are designed for the purpose of an in-depth, but labor-intensive analysis of migratory behavior of single cells. This is rather inefficient for applications requiring higher experimental throughput, as it is the case of e.g. clinical examinations, chemoattractant screening or studies of the chemotaxis-related signaling pathways based on subcellular perturbations. Here, we present an advanced migration assay for accelerated and facilitated evaluation of the chemotactic response of slow-moving cells. The revised chemotaxis chamber contains a hydrogel microstructure–the migration arena, designed to enable identification of chemotactic behavior of a cell population in respect to the end-point of the experiment. At the same time, the assay in form of a microscopy slide enables direct visualization of the cells in either 2D or 3D environment, and provides a stable and linear gradient of chemoattractant. We demonstrate the correctness of the assay on the model study of HT-1080 chemotaxis in 3D and on 2D surface. Finally, we apply the migration arena chemotaxis assay to screen for a chemoattractant of primary keratinocytes, cells that play a major role in wound healing, being responsible for skin re-epithelialization and a successful wound closure. In direction of new therapeutic strategies to promote wound repair, we identified the chemotactic activity of the epithelial growth factor receptor (EGFR) ligands EGF and TGFα (transforming growth factor α).
Collapse
|
64
|
Milic J, Tian Y, Bernhagen J. Role of the COP9 Signalosome (CSN) in Cardiovascular Diseases. Biomolecules 2019; 9:biom9060217. [PMID: 31195722 PMCID: PMC6628250 DOI: 10.3390/biom9060217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is an evolutionarily conserved multi-protein complex, consisting of eight subunits termed CSN1-CSN8. The main biochemical function of the CSN is the control of protein degradation via the ubiquitin-proteasome-system through regulation of cullin-RING E3-ligase (CRL) activity by deNEDDylation of cullins, but the CSN also serves as a docking platform for signaling proteins. The catalytic deNEDDylase (isopeptidase) activity of the complex is executed by CSN5, but only efficiently occurs in the three-dimensional architectural context of the complex. Due to its positioning in a central cellular pathway connected to cell responses such as cell-cycle, proliferation, and signaling, the CSN has been implicated in several human diseases, with most evidence available for a role in cancer. However, emerging evidence also suggests that the CSN is involved in inflammation and cardiovascular diseases. This is both due to its role in controlling CRLs, regulating components of key inflammatory pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and complex-independent interactions of subunits such as CSN5 with inflammatory proteins. In this case, we summarize and discuss studies suggesting that the CSN may have a key role in cardiovascular diseases such as atherosclerosis and heart failure. We discuss the implicated molecular mechanisms ranging from inflammatory NF-κB signaling to proteotoxicity and necrosis, covering disease-relevant cell types such as myeloid and endothelial cells or cardiomyocytes. While the CSN is considered to be disease-exacerbating in most cancer entities, the cardiovascular studies suggest potent protective activities in the vasculature and heart. The underlying mechanisms and potential therapeutic avenues will be critically discussed.
Collapse
Affiliation(s)
- Jelena Milic
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany.
| | - Yuan Tian
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany.
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany.
- Munich Heart Alliance, 80802 Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
65
|
Gao JH, Yu XH, Tang CK. CXC chemokine ligand 12 (CXCL12) in atherosclerosis: An underlying therapeutic target. Clin Chim Acta 2019; 495:538-544. [PMID: 31145896 DOI: 10.1016/j.cca.2019.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022]
Abstract
CXC chemokine ligand 12 (CXCL12) is a specific chemokine ligand and plays a significant role in cell chemotaxis. Upon binding to CXC chemokine receptor 4 (CXCR4) or CXCR7, CXCL12 can activate different signaling cascades to regulate cell proliferation, migration, and metabolism. CXCL12 exerts a pro-atherogenic action by aggravating multiple pathogenesis of atherogenesis, including dyslipidemia, inflammation, neointima hyperplasia, angiogenesis, and insulin resistance. Serum CXCL12 levels are also markedly increased in patients with atherosclerosis-associated disease. The present review focuses on recent advances in CXCL12 research in the pathogenesis of atherosclerosis together with its clinical values. This may provide insight into potential novel therapies for atherosclerosis.
Collapse
Affiliation(s)
- Jia-Hui Gao
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
66
|
Yang H, Qiu B, Chen S, Xun Y, Pan Y, Chen M, Li WX, Liao W, El-Ashram S, Yang A, Liu F. Soluble CXCL16 promotes TNF-α-induced apoptosis in DLBCL via the AMAD10-NF-κB regulatory feedback loop. Cell Biol Int 2019; 43:863-874. [PMID: 31033093 DOI: 10.1002/cbin.11154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022]
Abstract
We had previously identified that the co-expression of transmembrane CXCL16 (TM-CXCL16) and its receptor CXCR6 is an independent risk factor for poor survival in patients with diffuse large B-cell lymphoma (DLBCL). However, the impact of the soluble form of CXCL16 (sCXCL16) on the pathogenesis of DLBCL remains unknown. In the present study, the synergistic effect of sCXCL16 and tumor necrosis factor α (TNF-α) on apoptosis in DLBCL cell lines (OCI-LY8 and OCI-LY10) was investigated in vitro. sCXCL16 reinforced TNF-α-mediated inhibition of DLBCL cell proliferation, as determined by the cell counting kit-8 assay. The results of annexin V staining showed that sCXCL16 enhanced TNF-α-induced apoptosis in OCI-LY8 and OCI-LY10 cells through a death receptor-caspase signaling pathway. The results of gene microarray suggested a significant upregulation of differentially expressed genes in the TNF signaling pathway. sCXCL16 increased the concentration of extracellular TNF-α by binding to CXCR6 to activate the nuclear factor-κB (NF-κB) signaling pathway. TNF-α also induced the secretion of sCXCL16 by increasing the expression of ADAM10, which is known to cleave TM-CXCL16 to yield sCXCL16. Moreover, bioinformatics analysis revealed that elevated TNF-α and ADAM10 expression levels in tumor tissues predicted better survival in patients with DLBCL. Thus, our study suggests that sCXCL16 enhances TNF-α-induced apoptosis of DLBCL cells, which may involve a positive feedback loop consisting of TNF-α, ADAM10, sCXCL16, and members of the NF-κB pathway. sCXCL16 and TNF-α may be used as prognostic markers in the clinic, and their combinational use is a promising approach in the context of DLBCL therapy.
Collapse
Affiliation(s)
- Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Bo Qiu
- The Medical college of Jiaying University, Meizhou, Guangdong, China
| | - Shaoying Chen
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Yu Pan
- The Stomatology Medical Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Minmin Chen
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Wen-Xing Li
- The Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wanqin Liao
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Saeed El-Ashram
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China.,Faculty of Science, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Anping Yang
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Fang Liu
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
67
|
Vila-Caballer M, González-Granado JM, Zorita V, Abu Nabah YN, Silvestre-Roig C, Del Monte-Monge A, Molina-Sánchez P, Ait-Oufella H, Andrés-Manzano MJ, Sanz MJ, Weber C, Kremer L, Gutiérrez J, Mallat Z, Andrés V. Disruption of the CCL1-CCR8 axis inhibits vascular Treg recruitment and function and promotes atherosclerosis in mice. J Mol Cell Cardiol 2019; 132:154-163. [PMID: 31121182 DOI: 10.1016/j.yjmcc.2019.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/12/2019] [Indexed: 12/23/2022]
Abstract
The CC chemokine 1 (CCL1, also called I-309 or TCA3) is a potent chemoattractant for leukocytes that plays an important role in inflammatory processes and diseases through binding to its receptor CCR8. Here, we investigated the role of the CCL1-CCR8 axis in atherosclerosis. We found increased expression of CCL1 in the aortas of atherosclerosis-prone fat-fed apolipoprotein E (Apoe)-null mice; moreover, in vitro flow chamber assays and in vivo intravital microscopy demonstrated an essential role for CCL1 in leukocyte recruitment. Mice doubly deficient for CCL1 and Apoe exhibited enhanced atherosclerosis in aorta, which was associated with reduced plasma levels of the anti-inflammatory interleukin 10, an increased splenocyte Th1/Th2 ratio, and a reduced regulatory T cell (Treg) content in aorta and spleen. Reduced Treg recruitment and aggravated atherosclerosis were also detected in the aortas of fat-fed low-density lipoprotein receptor-null mice treated with CCR8 blocking antibodies. These findings demonstrate that disruption of the CCL1-CCR8 axis promotes atherosclerosis by inhibiting interleukin 10 production and Treg recruitment and function.
Collapse
Affiliation(s)
- Marian Vila-Caballer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain; Universidad Cardenal Herrera-CEU (CEU Universities), Valencia, Spain
| | - José M González-Granado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain; LamImSys Laboratory, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Yafa N Abu Nabah
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Carlos Silvestre-Roig
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Alberto Del Monte-Monge
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
| | | | - Hafid Ait-Oufella
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Paris, France
| | - María J Andrés-Manzano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
| | - María J Sanz
- Departamento de Farmacología, Universidad de Valencia and Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Leonor Kremer
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Julio Gutiérrez
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Ziad Mallat
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Paris, France; Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain.
| |
Collapse
|
68
|
Hendrickx JO, van Gastel J, Leysen H, Santos-Otte P, Premont RT, Martin B, Maudsley S. GRK5 - A Functional Bridge Between Cardiovascular and Neurodegenerative Disorders. Front Pharmacol 2018; 9:1484. [PMID: 30618771 PMCID: PMC6304357 DOI: 10.3389/fphar.2018.01484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
Complex aging-triggered disorders are multifactorial programs that comprise a myriad of alterations in interconnected protein networks over a broad range of tissues. It is evident that rather than being randomly organized events, pathophysiologies that possess a strong aging component such as cardiovascular diseases (hypertensions, atherosclerosis, and vascular stiffening) and neurodegenerative conditions (dementia, Alzheimer's disease, mild cognitive impairment, Parkinson's disease), in essence represent a subtly modified version of the intricate molecular programs already in place for normal aging. To control such multidimensional activities there are layers of trophic protein control across these networks mediated by so-called "keystone" proteins. We propose that these "keystones" coordinate and interconnect multiple signaling pathways to control whole somatic activities such as aging-related disease etiology. Given its ability to control multiple receptor sensitivities and its broad protein-protein interactomic nature, we propose that G protein coupled receptor kinase 5 (GRK5) represents one of these key network controllers. Considerable data has emerged, suggesting that GRK5 acts as a bridging factor, allowing signaling regulation in pathophysiological settings to control the connectivity between both the cardiovascular and neurophysiological complications of aging.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Jaana van Gastel
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Hanne Leysen
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt-Universitat zu Berlin, Berlin, Germany
| | - Richard T. Premont
- Harrington Discovery Institute, Case Western Reserve University, Cleveland, GA, United States
| | - Bronwen Martin
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| |
Collapse
|
69
|
Liu X, Chen L, Zhang Y, Wu X, Zhao Y, Wu X, Chen W, Wu C, Chen Y. Associations between polymorphisms of the CXCL12 and CNNM2 gene and hypertension risk: A case-control study. Gene 2018; 675:185-190. [DOI: 10.1016/j.gene.2018.06.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/13/2018] [Accepted: 06/29/2018] [Indexed: 11/30/2022]
|
70
|
The overweight increases circulating inflammatory mediators commonly associated with obesity in young individuals. Cytokine 2018; 110:169-173. [DOI: 10.1016/j.cyto.2018.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 12/29/2022]
|
71
|
Szentes V, Gazdag M, Szokodi I, Dézsi CA. The Role of CXCR3 and Associated Chemokines in the Development of Atherosclerosis and During Myocardial Infarction. Front Immunol 2018; 9:1932. [PMID: 30210493 PMCID: PMC6119714 DOI: 10.3389/fimmu.2018.01932] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The chemokine receptor CXCR3 and associated CXC chemokines have been extensively investigated in several inflammatory and autoimmune diseases as well as in tumor development. Recent studies have indicated the role of these chemokines also in cardiovascular diseases. We aimed to present current knowledge regarding the role of CXCR3-binding chemokines in the pathogenesis of atherosclerosis and during acute myocardial infarction.
Collapse
Affiliation(s)
- Veronika Szentes
- Department of Cardiology, Petz Aladár County Teaching Hospital, Győr, Hungary
| | | | - István Szokodi
- Heart Institute, Medical School, and Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Csaba A Dézsi
- Department of Cardiology, Petz Aladár County Teaching Hospital, Győr, Hungary
| |
Collapse
|
72
|
Lazaro I, Lopez-Sanz L, Bernal S, Oguiza A, Recio C, Melgar A, Jimenez-Castilla L, Egido J, Madrigal-Matute J, Gomez-Guerrero C. Nrf2 Activation Provides Atheroprotection in Diabetic Mice Through Concerted Upregulation of Antioxidant, Anti-inflammatory, and Autophagy Mechanisms. Front Pharmacol 2018; 9:819. [PMID: 30108504 PMCID: PMC6080546 DOI: 10.3389/fphar.2018.00819] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Interactive relationships between metabolism, inflammation, oxidative stress, and autophagy in the vascular system play a key role in the pathogenesis of diabetic cardiovascular disease. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a stress-sensitive guarantor of cellular homeostasis, which cytoprotective contributions extend beyond the antioxidant defense. We investigated the beneficial effects and underlying mechanisms of the Nrf2 inducer tert-butyl hydroquinone (tBHQ) on diabetes-driven atherosclerosis. In the experimental model of streptozotocin-induced diabetes in apolipoprotein E-deficient mice, treatment with tBHQ increased Nrf2 activity in macrophages and vascular smooth muscle cells within atherosclerotic lesions. Moreover, tBHQ significantly decreased the size, extension and lipid content of atheroma plaques, and attenuated inflammation by reducing lesional macrophages (total number and M1/M2 phenotype balance), foam cell size and chemokine expression. Atheroprotection was accompanied by both systemic and local antioxidant effects, characterized by lower levels of superoxide anion and oxidative DNA marker 8-hydroxy-2'-deoxyguanosine, reduced expression of NADPH oxidase subunits, and increased antioxidant capacity. Interestingly, tBHQ treatment upregulated the gene and protein expression of autophagy-related molecules and also enhanced autophagic flux in diabetic mouse aorta. In vitro, Nrf2 activation by tBHQ suppressed cytokine-induced expression of pro-inflammatory and oxidative stress genes, altered macrophage phenotypes, and promoted autophagic activity. Our results reinforce pharmacological Nrf2 activation as a promising atheroprotective approach in diabetes, according to the plethora of cytoprotective mechanisms involved in the resolution of inflammation and oxidative stress, and restoring autophagy.
Collapse
Affiliation(s)
- Iolanda Lazaro
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Laura Lopez-Sanz
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Susana Bernal
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Ainhoa Oguiza
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Carlota Recio
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Ana Melgar
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Luna Jimenez-Castilla
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Julio Madrigal-Matute
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York City, NY, United States
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| |
Collapse
|
73
|
Blood CSF1 and CXCL12 as Causal Mediators of Coronary Artery Disease. J Am Coll Cardiol 2018; 72:300-310. [DOI: 10.1016/j.jacc.2018.04.067] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 11/21/2022]
|
74
|
LPS-mediated cell surface expression of CD74 promotes the proliferation of B cells in response to MIF. Cell Signal 2018; 46:32-42. [PMID: 29476963 DOI: 10.1016/j.cellsig.2018.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 01/21/2023]
|
75
|
CD271+, CXCR7+, CXCR4+, and CD133+ Stem/Progenitor Cells and Clinical Characteristics of Acute Ischemic Stroke Patients. Neuromolecular Med 2018; 20:301-311. [PMID: 29744773 PMCID: PMC6097064 DOI: 10.1007/s12017-018-8494-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Ischemic stroke causes mobilization of various groups of progenitor cells from bone marrow to bloodstream and this correlates with the neurological status of stroke patients. The goal of our study was to identify the activity of chosen progenitor/stem cells in the peripheral blood of acute ischemic stroke patients in the first 7 days after the incident, through associations between the levels of the cells and clinical features of the patients. Thirty-three acute ischemic stroke patients and 15 non-stroke control subjects had their venous blood collected repeatedly in order to assess the levels of the CD45–CD34 + CD271+, the CD45–CD34 + CXCR4+, the CD45–CD34 + CXCR7+, and the CD45–CD34 + CD133+ stem/progenitor cells by means of flow cytometry. The patients underwent repeated neurological and clinical assessments, pulse wave velocity (PWV) assessment on day 5, and MRI on day 1 and 5 ± 2. The levels of the CD45–CD34 + CXCR7+ and the CD45–CD34 + CD271+ cells were lower in the stroke patients compared with the control subjects. Only the CD45–CD34 + CD271+ cells correlated positively with lesion volume in the second MRI. The levels of the CD45–CD34 + CD133+ cells on day 2 correlated negatively with PWV and NIHSS score on day 9. The patients whose PWV was above 10 m/s had significantly higher levels of the CD45–CD34 + CXCR4+ and the CD45–CD34 + CXCR7+ cells on day 1 than those with PWV below 10 m/s. This study discovers possible activity of the CD45–CD34 + CD271+ progenitor/stem cells during the first 7 days after ischemic stroke, suggests associations of the CD45–CD34 + CD133+ cells with the neurological status of stroke patients, and some activity of the CD45–CD34 + CD133+, the CD45–CD34 + CXCR4+, and the CD45–CD34 + CXCR7+ progenitor/stem cells in the process of arterial remodeling.
Collapse
|
76
|
Tian L, Lu L, Feng J, Melancon MP. Radiopaque nano and polymeric materials for atherosclerosis imaging, embolization and other catheterization procedures. Acta Pharm Sin B 2018; 8:360-370. [PMID: 29881675 PMCID: PMC5990339 DOI: 10.1016/j.apsb.2018.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/18/2018] [Accepted: 02/08/2018] [Indexed: 12/18/2022] Open
Abstract
A review of radiopaque nano and polymeric materials for atherosclerosis imaging and catheterization procedures is presented in this paper. Cardiovascular diseases (CVDs) are the leading cause of death in the US with atherosclerosis as a significant contributor for mortality and morbidity. In this review paper, we discussed the physics of radiopacity and X-ray/CT, clinically used contrast agents, and the recent progress in the development of radiopaque imaging agents and devices for the diagnosis and treatment of CVDs. We focused on radiopaque imaging agents for atherosclerosis, radiopaque embolic agents and drug eluting beads, and other radiopaque medical devices related to catheterization procedures to treat CVDs. Common strategies of introducing radiopacity in the polymers, together with examples of their applications in imaging and medical devices, are also presented.
Collapse
Affiliation(s)
- Li Tian
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Linfeng Lu
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Marites P Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
77
|
Li X, Heber D, Leike T, Beitzke D, Lu X, Zhang X, Wei Y, Mitterhauser M, Wadsak W, Kropf S, Wester HJ, Loewe C, Hacker M, Haug AR. [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. Eur J Nucl Med Mol Imaging 2018; 45:558-566. [PMID: 28932900 PMCID: PMC5829117 DOI: 10.1007/s00259-017-3831-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/04/2017] [Indexed: 11/02/2022]
Abstract
PURPOSE The expression of chemokine receptor type 4 (CXCR4) was found co-localized with macrophages on the atherosclerotic vessel wall and participated in the initial emigration of leukocytes. Gallium-68 [68Ga]Pentixafor has recently been introduced for the imaging of atherosclerosis by targeting CXCR4. We sought to evaluate human atherosclerotic lesions using [68Ga]Pentixafor PET/MRI. METHODS Thirty-eight oncology patients underwent [68Ga]Pentixafor PET/MR imaging at baseline. Maximum standardized uptake values (SUVmax) were derived from hot lesions in seven arterial segments and target-to-blood ratios (TBR) were calculated. ANOVA post-hoc and paired t test were performed for statistical comparison, Spearman's correlation coefficient between uptake ratios and cardiovascular risk factors were assessed. The reproducibility of [68Ga]Pentixafor PET/MRI was assessed in seven patients with a follow-up exanimation by Pearson's regression and Bland-Altman plots analysis. RESULTS Thirty-four of 38 patients showed 611 focal [68Ga]Pentixafor uptake that followed the contours of the large arteries. Both prevalence and mean TBRmax were highest in the descending aorta. There were significantly higher TBR values found in men (1.9 ± 0.3) as compared to women (1.7 ± 0.2; p < 0.05). Patients with mean TBRmax > 1.7 showed a significantly higher incidence of diabetes, hypertension hypercholesterolemia and history of cardiovascular disease than patients with mean TBRmax ≤ 1.7. [68Ga]Pentixafor uptake showed a good reproducibility (r = 0.6, p < 0.01), and there was no difference between the mean TBRmax values of plaque lesions (TBRbaseline1.8 ± 0.3 vs TBRfollow-up1.8 ± 0.3) (p = 0.9). CONCLUSION Patients with high arterial uptake showed increased incidence of cardiovascular risk factors, suggesting a potential role of [68Ga]Pentixafor in characterization of atherosclerosis.
Collapse
Affiliation(s)
- Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Daniel Heber
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Tatjana Leike
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Dietrich Beitzke
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Xia Lu
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Zhang
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Wei
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | | | - Hans J Wester
- Department of Radiopharmaceutical Chemistry, Technische Universität München, Garching, Germany
| | - Christian Loewe
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Alexander R Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
78
|
Goikuria H, Vandenbroeck K, Alloza I. Inflammation in human carotid atheroma plaques. Cytokine Growth Factor Rev 2018; 39:62-70. [PMID: 29396056 DOI: 10.1016/j.cytogfr.2018.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022]
Abstract
Inflammation in carotid atherosclerotic plaque is linked to plaque rupture and cerebrovascular accidents. The balance between pro- and anti-inflammatory mediators governs development of the plaque, and may mediate enhancement of lesion broadening or, on the contrary, delay progression. In addition to macrophages and endothelial cells, smooth muscle cells (SMCs), which are the dominant cell subset in advanced plaques, are crucial players in carotid atherosclerosis development given their ability to differentiate into distinct phenotypes in reponse to specific signals received from the environment of the lesion. Carotid atheroma SMCs actively contribute to the inflammation in the lesion because of their acquired capacity to produce inflammatory mediators. We review the successive stages of carotid atheroma plaque formation via fatty streak early-stage toward more advanced rupture-prone lesions and document involvement of cytokines and chemokines and their cellular sources and targets in plaque progression and rupture.
Collapse
Affiliation(s)
- Haize Goikuria
- Neurogenomiks, Neuroscience Department, Faculty of Medicine and Odontology, Basque Country University (UPV/EHU), 48940 Leioa, Spain; ACHUCARRO, Basque Centre for Neuroscience, Science Park of the Basque Country University (UPV/EHU), SEDE Building, 3rd, 48940 Leioa, Spain
| | - Koen Vandenbroeck
- Neurogenomiks, Neuroscience Department, Faculty of Medicine and Odontology, Basque Country University (UPV/EHU), 48940 Leioa, Spain; ACHUCARRO, Basque Centre for Neuroscience, Science Park of the Basque Country University (UPV/EHU), SEDE Building, 3rd, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Iraide Alloza
- Neurogenomiks, Neuroscience Department, Faculty of Medicine and Odontology, Basque Country University (UPV/EHU), 48940 Leioa, Spain; ACHUCARRO, Basque Centre for Neuroscience, Science Park of the Basque Country University (UPV/EHU), SEDE Building, 3rd, 48940 Leioa, Spain.
| |
Collapse
|
79
|
Sanmarco LM, Eberhardt N, Ponce NE, Cano RC, Bonacci G, Aoki MP. New Insights into the Immunobiology of Mononuclear Phagocytic Cells and Their Relevance to the Pathogenesis of Cardiovascular Diseases. Front Immunol 2018; 8:1921. [PMID: 29375564 PMCID: PMC5767236 DOI: 10.3389/fimmu.2017.01921] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects of different mediators could modulate the magnitude and quality of the immune response. The knowledge of the effects triggered by diverse mediators would serve to identify new therapeutic targets in different cardiovascular pathologies.
Collapse
Affiliation(s)
- Liliana Maria Sanmarco
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Nicolás Eric Ponce
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Laboratorio de Neuropatología Experimental, Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Roxana Carolina Cano
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Católica de Córdoba, Unidad Asociada Área Ciencias Agrarias, Ingeniería, Ciencias Biológicas y de la Salud, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Gustavo Bonacci
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Maria Pilar Aoki
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| |
Collapse
|
80
|
Ye Y, Yang X, Long B, Pang H, Zhu Y, Zhang S. Association Between a CCL17 Genetic Variant and Risk of Coronary Artery Disease in a Chinese Han Population. Circ J 2017; 82:224-231. [PMID: 28794385 DOI: 10.1253/circj.cj-17-0190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
BACKGROUND In the present study we investigated the effects of genetic variations in the C-C motif chemokine ligand 17 (CCL17) gene on serum CCL17 levels and risk of coronary artery disease (CAD). METHODS AND RESULTS A case-control study was conducted to determine causal inferences amongCCL17single-nucleotide polymorphisms (SNPs), serum CCL17 levels, and risk of CAD. Luciferase assays, electrophoretic mobility shift assays (EMSA), and allele-specific quantitative chromatin immunoprecipitation (ChIP) assays were used to assess the function of the SNPs. In all, 947 participants (794 with CAD, 153 without CAD) were included in the study. The T allele in rs223828, located in intron of theCCL17gene, was associated with increased serum CCL17 levels as well as increased CAD risk. A causal inference test using mediation analysis suggested that rs223828 had a significant indirect casual effect on the increased risk of CAD mediated via serum CCL17 levels. Luciferase assays confirmed that the rs223828T allele enhancesCCL17promoter activity. Protein-DNA binding studies using EMSA and allele-specific quantitative ChIP assays indicated preferential activator protein-1 (AP-1) complex formation and recruitment with the rs223828 T allele compared with the C allele. CONCLUSIONS We propose that theCCL17SNP rs223828 is associated with increased risk of CAD, and that this site may be a potential AP-1 binding site.
Collapse
Affiliation(s)
- Yicong Ye
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences
| | - Xinglin Yang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences
| | - Bo Long
- Department of Central Research Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences
| | - Haiyu Pang
- Department of Central Research Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences
| | - Yicheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences
| |
Collapse
|
81
|
Döring Y, Megens R, Soehnlein O, Drechsler M. Neutrophilic granulocytes – promiscuous accelerators of atherosclerosis. Thromb Haemost 2017; 106:839-48. [DOI: 10.1160/th11-07-0501] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/28/2011] [Indexed: 12/23/2022]
Abstract
SummaryNeutrophils, as part of the innate immune system, are classically described to be main actors during the onset of inflammation enforcing rapid neutralisation and clearance of pathogens. Besides their wellstudied role in acute inflammatory processes, recent advances strongly indicate a so far underappreciated importance of neutrophils in initiation and development of atherosclerosis. This review focuses on current findings on the role of neutrophils in atherosclerosis. As pro-inflammatory mechanisms of neutrophils have primarily been studied in the microvascular environment; we here aim at translating these into the context of macrovascular inflammation in atherosclerosis. Since much of the pro-inflammatory activities of neutrophils stem from instructing neighbouring cell types, we highlight the promiscuous interplay between neutrophils and platelets, monocytes, T lymphocytes, and dendritic cells and its possible relevance to atherosclerosis.
Collapse
|
82
|
Manthey H, Zernecke A. Dendritic cells in atherosclerosis: Functions in immune regulation and beyond. Thromb Haemost 2017; 106:772-8. [DOI: 10.1160/th11-05-0296] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/02/2011] [Indexed: 12/15/2022]
Abstract
SummaryChronic inflammation drives the development of atherosclerosis. Dendritic cells (DCs) are known as central mediators of adaptive immune responses and the development of immunological memory and tolerance. DCs are present in non-diseased arteries, and accumulate within atherosclerotic lesions where they can be localised in close vicinity to T cells. Recent work has revealed important functions of DCs in regulating immune mechanisms in atherogenesis, and vaccination strategies using DCs have been explored for treatment of disease. However, in line with a phenotypical and functional overlap with plaque macrophages vascular DCs were also identified to engulf lipids, thus contributing to lipid burden in the vessel wall and initiation of lesion growth. Furthermore, a function of DCs in regulating cholesterol homeostasis has been revealed. Finally, phenotypically distinct plasmacytoid dendritic cells (pDCs) have been identified within atherosclerotic lesions. This review will dissect the multifaceted contribution of DCs and pDCs to the initiation and progression of atherosclerosis and the experimental approaches utilising DCs in therapeutic vaccination strategies.
Collapse
|
83
|
Rowinska Z, Gorressen S, Merx MW, Koeppel TA, Zernecke A, Liehn EA. Using the Sleeve Technique in a Mouse Model of Aortic Transplantation - An Instructional Video. J Vis Exp 2017. [PMID: 29155702 PMCID: PMC5755186 DOI: 10.3791/54915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Orthotopic aortic transplantation using the sleeve technique reduces injury to the aorta with failure rate of only 10-20%. The time to anastomose the aorta in mice using the sleeve method was short and easy averaging 20 min, permitting studies of iso/allo grafts. The following article describes the aortic transplantation procedure used in our laboratory. The mice were anesthetized with a mixture of 1.5% volume isoflurane and 100% oxygen through a face mask. At this point, the segment of the aorta between the renal arteries and its bifurcation was separated from the vena cava, freely prepared and clampedat the proximal and distal segments with a single silk suture. Prior to the removal of the aorta, a saline solution containing heparin was injected into the inferior vena cava. Then the aorta was cut between the clamps and a saline heparin solution was used to flush the lumen. The sleeve technique with monofilament sutures was used in order to transplant the abdominal aorta in the orthotopic position.
Collapse
Affiliation(s)
- Zuzanna Rowinska
- Department of Vascular Surgery and Interdisciplinary Vein Center, St. Josef-Hospital, Ruhr- University Bochum; Institute of Molecular Cardiovascular Research, University Hospital, RWTH Aachen University Department of Medicine;
| | - Simone Gorressen
- Institute of Pharmacology and Clinical Pharmacology, Düsseldorf University Hospital
| | - Marc W Merx
- Department of Cardiology, Vascular Medicine and Intensive Care Medicine, Hospital Robert Koch Gehrden
| | | | - Alma Zernecke
- Institute of Experimental Biomedicine, Würzburg University
| | - Elisa A Liehn
- Institute of Molecular Cardiovascular Research, University Hospital, RWTH Aachen University Department of Medicine
| |
Collapse
|
84
|
Yan LJ, Yang HT, Duan HY, Wu JT, Qian P, Fan XW, Wang S. Myricitrin inhibits vascular adhesion molecule expression in TNF-α-stimulated vascular smooth muscle cells. Mol Med Rep 2017; 16:6354-6359. [DOI: 10.3892/mmr.2017.7321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/20/2017] [Indexed: 11/06/2022] Open
|
85
|
Gil-Pulido J, Cochain C, Lippert MA, Schneider N, Butt E, Amézaga N, Zernecke A. Deletion of Batf3-dependent antigen-presenting cells does not affect atherosclerotic lesion formation in mice. PLoS One 2017; 12:e0181947. [PMID: 28771609 PMCID: PMC5542449 DOI: 10.1371/journal.pone.0181947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/10/2017] [Indexed: 02/02/2023] Open
Abstract
Atherosclerosis is the main underlying cause for cardiovascular events such as myocardial infarction and stroke and its development might be influenced by immune cells. Dendritic cells (DCs) bridge innate and adaptive immune responses by presenting antigens to T cells and releasing a variety of cytokines. Several subsets of DCs can be discriminated that engage specific transcriptional pathways for their development. Basic leucine zipper transcription factor ATF-like 3 (Batf3) is required for the development of classical CD8α+ and CD103+ DCs. By crossing mice deficient in Batf3 with atherosclerosis-prone low density lipoprotein receptor (Ldlr-/-)-deficient mice we here aimed to further address the contribution of Batf3-dependent CD8α+ and CD103+ antigen-presenting cells to atherosclerosis. We demonstrate that deficiency in Batf3 entailed mild effects on the immune response in the spleen but did not alter atherosclerotic lesion formation in the aorta or aortic root, nor affected plaque phenotype in low density lipoprotein receptor-deficient mice fed a high fat diet. We thus provide evidence that Batf3-dependent antigen-presenting cells do not have a prominent role in atherosclerosis.
Collapse
Affiliation(s)
- Jesus Gil-Pulido
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Clement Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Malte A. Lippert
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Nicole Schneider
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Elke Butt
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Núria Amézaga
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
86
|
Yamamoto M, Umebashi K, Tokito A, Imamura J, Jougasaki M. Interleukin-33 induces growth-regulated oncogene-α expression and secretion in human umbilical vein endothelial cells. Am J Physiol Regul Integr Comp Physiol 2017. [PMID: 28637660 DOI: 10.1152/ajpregu.00435.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although interleukin-33 (IL-33), a member of the IL-1 cytokine family, plays proinflammatory roles in immune cells as an "alarmin," little is known regarding the biological actions of IL-33 on vascular endothelial cells. To investigate the effects of IL-33 on vascular endothelial cells, we first screened the IL-33-regulated proteins in human umbilical vein endothelial cells (HUVECs) using a dot blot array and observed that IL-33 markedly increased growth-regulated oncogene-α (GRO-α), a chemokine that is also known as chemokine (C-X-C motif) ligand 1 (CXCL1). Real-time reverse transcription PCR and ELISA demonstrated that IL-33 induced GRO-α expression and secretion in HUVECs in a dose- and a time-dependent manner. Western immunoblot assay revealed that IL-33 activated the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH2-terminal kinase (JNK). In addition, translocation of nuclear factor-κB (NF-κB) p65 to the nucleus of HUVECs was observed by IL-33 stimulation. Furthermore, treatment with pharmacological inhibitors against ERK1/2 (PD98059), JNK (SP600125), or NF-κB (BAY11-7085) significantly suppressed IL-33-induced GRO-α gene expression and secretion from HUVECs. Moreover, immunohistochemical staining demonstrated that IL-33 and GRO-α coexpressed in the endothelium of human carotid atherosclerotic plaque. Taken together, the present study indicates that IL-33 localized in the human atherosclerotic plaque increases GRO-α mRNA expression and protein secretion via activation of ERK1/2, JNK, and NF-κB in HUVECs, suggesting that IL-33 plays an important role in the pathophysiology and development of atherosclerosis.
Collapse
Affiliation(s)
- Masayoshi Yamamoto
- Institute for Clinical Research, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan; and.,Neurohumoral Biology, Cooperative Department of Innovative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Katsuyuki Umebashi
- Institute for Clinical Research, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan; and.,Neurohumoral Biology, Cooperative Department of Innovative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akinori Tokito
- Institute for Clinical Research, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan; and
| | - Junichi Imamura
- Institute for Clinical Research, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan; and
| | - Michihisa Jougasaki
- Institute for Clinical Research, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan; and .,Neurohumoral Biology, Cooperative Department of Innovative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
87
|
Serum concentrations of MCP-1 and IL-6 in combination predict the presence of coronary artery disease and mortality in subjects undergoing coronary angiography. Mol Cell Biochem 2017; 435:37-45. [PMID: 28534120 DOI: 10.1007/s11010-017-3054-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/24/2017] [Indexed: 01/04/2023]
Abstract
Cytokines play a key role in the pathogenesis of coronary artery disease (CAD). The aim of current study was to investigate the relationship between the serum concentrations of 12 cytokines with mortality and extent of CAD in individuals undergoing angiography and healthy controls. 342 CAD patients were recruited and divided into 2 groups: those with ≥50% occlusion in at least one coronary artery [Angiography (+)] or <50% obstruction in coronary arteries [Angiography (-)]. Also 120 healthy subjects were enrolled as control group. Lipid profile, fasting blood glucose, body mass index, and blood pressure were evaluated in all the subjects. An Evidence Investigator® was used for measuring 12 cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, TNF-α, MCP-1, IFN-γ, EGF, VEGF) using sandwich chemiluminescent assays. Univariate analysis, multivariate regression models, ROC, and Kaplan-Meier survival curves were used for exploring the candidate markers in CAD patients. Serum level of IFN-γ, IL-4, MCP-1, EGF, IL-6, and IL-8 were markedly higher in angiogram-positive patients, while VEGF concentrations were significantly (P < 0.05) lower, compared to control group. ROC analysis for MCP-1 showed that a cut-off of 61.95 pg/mL had 91% sensitivity and 91% specificity for predicting CAD patients. Moreover, >2.16 pg/mL IL-6 had a > 94% sensitivity and 70% specificity in predicting 2 years mortality in the subjects with a serum MCP-1 > 61.95 pg/ mL, and patients having IL-6/MCP-1 combination had a shorter survival.Our findings demonstrate that CAD patients with serum MCP-1 and IL-6 levels of >61.95 and >2.16 pg/mL had a higher mortality with 94.1% sensitivity and 70.5% specificity for predicting mortality in CAD patients.
Collapse
|
88
|
Kyaw T, Tipping P, Toh BH, Bobik A. Killer cells in atherosclerosis. Eur J Pharmacol 2017; 816:67-75. [PMID: 28483458 DOI: 10.1016/j.ejphar.2017.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/03/2017] [Accepted: 05/04/2017] [Indexed: 01/15/2023]
Abstract
Cytotoxic lymphocytes (killer cells) play a critical role in host defence mechanisms, protecting against infections and in tumour surveillance. They can also exert detrimental effects in chronic inflammatory disorders and in autoimmune diseases. Tissue cell death and necrosis are prominent features of advanced atherosclerotic lesions including vulnerable/unstable lesions which are largely responsible for most heart attacks and strokes. Evidence for accumulation of killer cells in both human and mouse lesions together with their cytotoxic potential strongly suggest that these cells contribute to cell death and necrosis in lesions leading to vulnerable plaque development and potentially plaque rupture. Killer cells can be divided into two groups, adaptive and innate immune cells depending on whether they require antigen presentation for activation. Activated killer cells detect damaged or stressed cells and kill by cytotoxic mechanisms that include perforin, granzymes, TRAIL or FasL and in some cases TNF-α. In this review, we examine current knowledge on killer cells in atherosclerosis, including CD8 T cells, CD28- CD4 T cells, natural killer cells and γδ-T cells, mechanisms responsible for their activation, their migration to developing lesions and effector functions. We also discuss pharmacological strategies to prevent their deleterious vascular effects by preventing/limiting their cytotoxic effects within atherosclerotic lesions as well as potential immunomodulatory therapies that might better target lesion-resident killer cells, to minimise any compromise of the immune system, which could result in increased susceptibility to infections and reductions in tumour surveillance.
Collapse
Affiliation(s)
- Tin Kyaw
- Baker Heart and Diabetes Institute, Melbourne, Australia; Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Australia.
| | - Peter Tipping
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Australia
| | - Alex Bobik
- Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Immunology, Monash University, Melbourne, Australia
| |
Collapse
|
89
|
Nowak WN, Deng J, Ruan XZ, Xu Q. Reactive Oxygen Species Generation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:e41-e52. [DOI: 10.1161/atvbaha.117.309228] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Witold N. Nowak
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Jiacheng Deng
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Xiong Z. Ruan
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Qingbo Xu
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| |
Collapse
|
90
|
Rowinska Z, Koeppel TA, Sanati M, Schelzig H, Jankowski J, Weber C, Zernecke A, Liehn EA. Role of the CX3C chemokine receptor CX3CR1 in the pathogenesis of atherosclerosis after aortic transplantation. PLoS One 2017; 12:e0170644. [PMID: 28234900 PMCID: PMC5325192 DOI: 10.1371/journal.pone.0170644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The CX3C chemokine receptor CX3CR1 is expressed on monocytes as well as tissue resident cells, such as smooth muscle cells (SMCs). Its role in atherosclerotic tissue remodeling of the aorta after transplantation has not been investigated. METHODS We here have orthotopically transplanted infrarenal Cx3cr1-/-Apoe-/- and Cx3cr1+/+Apoe-/- aortic segments into Apoe-/-mice, as well as Apoe-/- aortic segments into Cx3cr1-/-Apoe-/- mice. The intimal plaque size and cellular plaque composition of the transplanted aortic segment were analyzed after four weeks of atherogenic diet. RESULTS Transplantation of Cx3cr-/-Apoe-/- aortic segments into Apoe-/- mice resulted in reduced atherosclerotic plaque formation compared to plaque size in Apoe-/- or Cx3cr1-/-Apoe-/- mice after transplantation of Apoe-/- aortas. This reduction in lesion formation was associated with reduced numbers of lesional SMCs but not macrophages within the transplanted Cx3cr-/- Apoe-/- aortic segment. No differences in frequencies of proliferating and apoptotic cells could be observed. CONCLUSION These results indicate that CX3CR1 on resident vessel wall cells plays a key role in atherosclerotic plaque formation in transplanted aortic grafts. Targeting of vascular CX3CL1/CX3CR1 may therefore be explored as a therapeutic option in vascular transplantation procedures.
Collapse
Affiliation(s)
- Zuzanna Rowinska
- Department of Vascular Surgery and Interdisciplinary Vein Center, St. Josef-Hospital, Ruhr- University Bochum, Bochum, Germany
- Institute of Molecular Cardiovascular Research, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Thomas A. Koeppel
- Division of Vascular Surgery, Hospital Asklepios St. Georg Hamburg, Hamburg, Germany
| | - Maryam Sanati
- Institute of Molecular Cardiovascular Research, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Hubert Schelzig
- Department of Vascular and Endovascular Surgery, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, University Hospital, RWTH Aachen University, Aachen, Germany
- School for Cardiovascular Diseases (CARIM), University of Maastricht, Maastricht, The Netherlands
| | - Christian Weber
- Institut for Prevention and Epidemiology of Cardiovascular Disease, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Elisa A. Liehn
- Institute of Molecular Cardiovascular Research, University Hospital, RWTH Aachen University, Aachen, Germany
- Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania
| |
Collapse
|
91
|
Hasanov Z, Ruckdeschel T, König C, Mogler C, Kapel SS, Korn C, Spegg C, Eichwald V, Wieland M, Appak S, Augustin HG. Endosialin Promotes Atherosclerosis Through Phenotypic Remodeling of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2017; 37:495-505. [PMID: 28126825 DOI: 10.1161/atvbaha.116.308455] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/11/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular smooth muscle cells (VSMC) play a key role in the pathogenesis of atherosclerosis, the globally leading cause of death. The transmembrane orphan receptor endosialin (CD248) has been characterized as an activation marker of cells of the mesenchymal lineage including tumor-associated pericytes, stromal myofibroblasts, and activated VSMC. We, therefore, hypothesized that VSMC-expressed endosialin may display functional involvement in the pathogenesis of atherosclerosis. APPROACH AND RESULTS Expression of endosialin was upregulated during atherosclerosis in apolipoprotein E (ApoE)-null mice and human atherosclerotic samples analyzed by quantitative real-time polymerase chain reaction and immunohistochemistry. Atherosclerosis, assessed by Oil Red O staining of the descending aorta, was significantly reduced in ApoE/endosialin-deficient mice on Western-type diet. Marker analysis of VSMC in lesions induced by shear stress-modifying cast implantation around the right carotid artery identified a more pronounced contractile VSMC phenotype in the absence of endosialin. Moreover, in addition to contributing to neointima formation, endosialin also potentially regulated the proinflammatory phenotype of VSMC as evidenced in surrogate cornea pocket assay experiments in vivo and corresponding flow cytometry and ELISA analyses in vitro. CONCLUSIONS The experiments identify endosialin as a potential regulator of phenotypic remodeling of VSMC contributing to atherosclerosis. The association of endosialin with atherosclerosis and its absent expression in nonatherosclerotic samples warrant further consideration of endosialin as a therapeutic target and biomarker.
Collapse
Affiliation(s)
- Zulfiyya Hasanov
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Tina Ruckdeschel
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Courtney König
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Carolin Mogler
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Stephanie S Kapel
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Claudia Korn
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Carleen Spegg
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Viktoria Eichwald
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Matthias Wieland
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Sila Appak
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Hellmut G Augustin
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.).
| |
Collapse
|
92
|
Huang WY, Huang CC, Chang CC, Kor CT, Chen TY, Wu HM. Associations of Self-Reported Sleep Quality with Circulating Interferon Gamma-Inducible Protein 10, Interleukin 6, and High-Sensitivity C-Reactive Protein in Healthy Menopausal Women. PLoS One 2017; 12:e0169216. [PMID: 28060925 PMCID: PMC5218483 DOI: 10.1371/journal.pone.0169216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023] Open
Abstract
Introduction Sleep disturbance is very common in menopausal women and poor sleep quality has been linked to systemic inflammation. However, the impact of poor sleep quality on health outcomes of menopausal women remains unclear. This study evaluated the relationships between sleep quality and inflammation in menopausal women. Participants and design This cross-sectional study enrolled 281 healthy women aged 45 to 60 years. The Pittsburgh Sleep Quality Index (PSQI) was used to measure quality of sleep. Multiplex assays were used to measure the levels of 9 cytokines in morning fasting plasma samples. Other variables measured in this study included clinical characteristics and high-sensitivity C-reactive protein (hs-CRP). Setting The study was performed at a medical center. Results The 281 participants comprised 79 (28%) perimenopausal women and 202 (72%) postmenopausal women. Global PSQI scores were positively correlated with plasma hs-CRP levels (P = 0.012) and were marginally associated with interferon gamma-inducible protein-10 (IP10), interleukin 6 (IL6), and macrophage inflammatory protein-1beta (MIP-1β) levels. After adjusting for age, body mass index, menopause duration, and follicle stimulating hormone, multiple linear regression analysis revealed that high PSQI scores and sleep efficiency < 65% were associated with elevated plasma levels of hs-CRP, IP10, and IL6. In addition, sleep duration < 5 hours was associated with high hs-CRP levels. Conclusion Our data show that poor sleep quality and low sleep efficiency are associated with elevated levels of circulating inflammatory factors IP10, IL6 and hs-CRP and that short sleep duration is associated with high levels of hs-CRP in menopausal women. These findings provide novel evidence that poor sleep quality is linked to low-grade systemic inflammation in menopausal women.
Collapse
Affiliation(s)
- Wan-Yu Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Cheng Huang
- Department of Obstetrics & Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Chu Chang
- Department of Nephrology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chew-Teng Kor
- Division of statistics, Internal Medicine Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ting-Yu Chen
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hung-Ming Wu
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
93
|
Malard B, Florens N, Lambert C, Juillard L. Adsorption as a Contributor for Inflammatory Mediators Removal by Different Hemofiltration Membranes: A Pilot Study. Artif Organs 2016; 41:545-555. [DOI: 10.1111/aor.12785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/21/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
Affiliation(s)
| | - Nans Florens
- Nephrology Department; Hospices Civils De Lyon
- Inserm CARMEN U1060; University of Lyon1; Lyon France
| | | | - Laurent Juillard
- Nephrology Department; Hospices Civils De Lyon
- Inserm CARMEN U1060; University of Lyon1; Lyon France
| |
Collapse
|
94
|
Kong F, Ye B, Cao J, Cai X, Lin L, Huang S, Huang W, Huang Z. Curcumin Represses NLRP3 Inflammasome Activation via TLR4/MyD88/NF-κB and P2X7R Signaling in PMA-Induced Macrophages. Front Pharmacol 2016; 7:369. [PMID: 27777559 PMCID: PMC5056188 DOI: 10.3389/fphar.2016.00369] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022] Open
Abstract
Aims: In the NOD-like receptor (NLR) family, the pyrin domain containing 3 (NLRP3) inflammasome is closely related to the progression of atherosclerosis. This study aimed to assess the effects of curcumin on NLRP3 inflammasome in phorbol 12-myristate 13-acetate (PMA)-induced macrophages and explore its underlying mechanism. Methods: Human monocytic THP-1 cells were pretreated with curcumin for 1 h and subsequently induced with PMA for 48 h. Total protein was collected for Western blot analysis. Cytokine interleukin (IL)-1β release and nuclear factor kappa B (NF-κB) p65 translocation were detected by ELISA assay and cellular NF-κB translocation kit, respectively. Results: Curcumin significantly reduced the expression of NLRP3 and cleavage of caspase-1 and IL-1β secretion in PMA-induced macrophages. Moreover, Bay (a NF-κB inhibitor) treatment considerably suppressed the expression of NLRP3 inflammasome in PMA-induced THP-1 cells. Curcumin also markedly inhibited the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylation level of IκB-α, and activation of NF-κB in PMA-induced macrophages. In addition, purinergic 2X7 receptor (P2X7R) siRNA was administered, and it significantly decreased NLRP3 inflammasome expression in PMA-induced macrophages. Furthermore, curcumin reversed PMA-stimulated P2X7R activation, which further reduced the expression of NLRP3 and cleavage of caspase-1 and IL-1β secretion. Silencing of P2X7R using siRNA also suppressed the activation of NF-κB pathway in PMA-induced macrophages, but P2X7R-silenced cells did not significantly decrease the expression of TLR4 and MyD88. Conclusion: Curcumin inhibited NLRP3 inflammasome through suppressing TLR4/MyD88/NF-κB and P2X7R pathways in PMA-induced macrophages.
Collapse
Affiliation(s)
- Fanqi Kong
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Bozhi Ye
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Jiatian Cao
- Division of Cardiology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Xueli Cai
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Lu Lin
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Shanjun Huang
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Weijian Huang
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Zhouqing Huang
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| |
Collapse
|
95
|
Schiopu A, Bengtsson E, Gonçalves I, Nilsson J, Fredrikson GN, Björkbacka H. Associations Between Macrophage Colony-Stimulating Factor and Monocyte Chemotactic Protein 1 in Plasma and First-Time Coronary Events: A Nested Case-Control Study. J Am Heart Assoc 2016; 5:JAHA.115.002851. [PMID: 27625345 PMCID: PMC5079003 DOI: 10.1161/jaha.115.002851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Myeloid cells play a central role in atherosclerosis. We investigated the associations between the plasma levels of growth factors and chemokines that regulate myeloid cell homeostasis and function and the risk of first-time acute coronary events in middle-aged persons. METHODS AND RESULTS We measured baseline plasma levels of macrophage colony-stimulating factor; monocyte chemotactic protein 1; C-C motif chemokine ligands 3, 4, and 20; C-X-C motif chemokine ligands 1, 6, and 16; and C-X3-C motif chemokine ligand 1 in 292 participants who had a coronary event during follow-up and 366 controls matched for age, sex, and time of inclusion who remained event free. Study participants were recruited from the Malmö Diet and Cancer Study population cohort and had no previous history of coronary artery disease. We found a strong independent negative association between macrophage colony-stimulating factor and incident coronary events in a forward stepwise Cox proportional hazards model including all biomarkers alongside the classic Framingham risk factors (age, sex, smoking, total cholesterol, high-density lipoprotein cholesterol, systolic blood pressure), diabetes mellitus, and medication. Conversely, monocyte chemotactic protein 1 had the strongest independent positive association with the outcome. The addition of macrophage colony-stimulating factor and monocyte chemotactic protein 1 significantly improved the predictive ability of a model including traditional risk factors alone (C statistic 0.81 [95% CI 0.78-0.84] versus 0.67 [95% CI 0.63-0.71]; net reclassification index 0.52 [0.42-0.62]; P<0.001). The combined model led to a 54% net downclassification of participants who did not have a coronary event during follow-up and was particularly effective in the intermediate-risk group. CONCLUSIONS High levels of macrophage colony-stimulating factor and low levels of monocyte chemotactic protein 1 in plasma characterize middle-aged persons at low risk to develop clinically manifested coronary artery disease.
Collapse
Affiliation(s)
- Alexandru Schiopu
- Department of Clinical Sciences Malmö, Lund University, Sweden Cardiology Unit, Skane University Hospital, Malmö, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Sweden Cardiology Unit, Skane University Hospital, Malmö, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | | | | |
Collapse
|
96
|
Čejková S, Králová Lesná I, Poledne R. Monocyte adhesion to the endothelium is an initial stage of atherosclerosis development. COR ET VASA 2016. [DOI: 10.1016/j.crvasa.2015.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
97
|
Czepluch FS, Meier J, Binder C, Hasenfuss G, Schäfer K. CCL5 deficiency reduces neointima formation following arterial injury and thrombosis in apolipoprotein E-deficient mice. Thromb Res 2016; 144:136-43. [DOI: 10.1016/j.thromres.2016.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 01/21/2023]
|
98
|
Luehmann HP, Detering L, Fors BP, Pressly ED, Woodard PK, Randolph GJ, Gropler RJ, Hawker CJ, Liu Y. PET/CT Imaging of Chemokine Receptors in Inflammatory Atherosclerosis Using Targeted Nanoparticles. J Nucl Med 2016; 57:1124-9. [PMID: 26795285 PMCID: PMC5088780 DOI: 10.2967/jnumed.115.166751] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Atherosclerosis is inherently an inflammatory process that is strongly affected by the chemokine-chemokine receptor axes regulating the trafficking of inflammatory cells at all stages of the disease. Of the chemokine receptor family, some specifically upregulated on macrophages play a critical role in plaque development and may have the potential to track plaque progression. However, the diagnostic potential of these chemokine receptors has not been fully realized. On the basis of our previous work using a broad-spectrum peptide antagonist imaging 8 chemokine receptors together, the purpose of this study was to develop a targeted nanoparticle for sensitive and specific detection of these chemokine receptors in both a mouse vascular injury model and a spontaneously developed mouse atherosclerosis model. METHODS The viral macrophage inflammatory protein-II (vMIP-II) was conjugated to a biocompatible poly(methyl methacrylate)-core/polyethylene glycol-shell amphiphilic comblike nanoparticle through controlled conjugation and polymerization before radiolabeling with (64)Cu for PET imaging in an apolipoprotein E-deficient (ApoE(-/-)) mouse vascular injury model and a spontaneous ApoE(-/-) mouse atherosclerosis model. Histology, immunohistochemistry, and real-time reverse transcription polymerase chain reaction were performed to assess the plaque progression and upregulation of chemokine receptors. RESULTS The chemokine receptor-targeted (64)Cu-vMIP-II-comb showed extended blood retention and improved biodistribution. PET imaging showed specific tracer accumulation at plaques in ApoE(-/-) mice, confirmed by competitive receptor blocking studies and assessment in wild-type mice. Histopathologic characterization showed the progression of plaque including size and macrophage population, corresponding to the elevated concentration of chemokine receptors and more importantly increased PET signals. CONCLUSION This work provides a useful nanoplatform for sensitive and specific detection of chemokine receptors to assess plaque progression in mouse atherosclerosis models.
Collapse
Affiliation(s)
- Hannah P. Luehmann
- Department of Radiology, Washington University, Campus Box 8225, 510
S. Kingshighway Blvd., St. Louis, MO 63110
| | - Lisa Detering
- Department of Radiology, Washington University, Campus Box 8225, 510
S. Kingshighway Blvd., St. Louis, MO 63110
| | - Brett P. Fors
- Department of Materials, Chemistry and Biochemistry, University of
California, Santa Barbara, California
| | - Eric D. Pressly
- Department of Materials, Chemistry and Biochemistry, University of
California, Santa Barbara, California
| | - Pamela K. Woodard
- Department of Radiology, Washington University, Campus Box 8225, 510
S. Kingshighway Blvd., St. Louis, MO 63110
| | | | - Robert J. Gropler
- Department of Radiology, Washington University, Campus Box 8225, 510
S. Kingshighway Blvd., St. Louis, MO 63110
| | - Craig J. Hawker
- Department of Materials, Chemistry and Biochemistry, University of
California, Santa Barbara, California
| | - Yongjian Liu
- Department of Radiology, Washington University, Campus Box 8225, 510
S. Kingshighway Blvd., St. Louis, MO 63110
| |
Collapse
|
99
|
Bagci B, Bagci G, Huzmeli C, Sezgin I, Ozdemir O. Associations of fractalkine receptor (CX3CR1) and CCR5 gene variants with hypertension, diabetes and atherosclerosis in chronic renal failure patients undergoing hemodialysis. Int Urol Nephrol 2016; 48:1163-70. [PMID: 27118566 DOI: 10.1007/s11255-016-1293-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/11/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE We aimed to investigate the associations of fractalkine receptor (CX3CR1) V249I, T280M and CCR5-59029 A/G gene polymorphisms in chronic renal failure (CRF) subjects undergoing hemodialysis and to evaluate possible associations of these polymorphisms with hypertension (HT), diabetes mellitus (DM) and atherosclerosis (AS). METHODS A total of 225 CRF subjects undergoing hemodialysis and 201 healthy controls were enrolled in the study. CRF subjects were divided into three major subgroups according to comorbidities including HT (n = 127), DM (n = 65) and AS (n = 33). Genotyping was done using polymerase chain reaction-restriction fragment length polymorphism method. RESULTS The II genotype and I allele frequencies of CX3CR1 V249I polymorphism were found significantly more frequent in CRF subjects, CRF subjects with DM and CRF subjects with AS compared with controls (p < 0.05 for all comparisons). G allele frequency of CCR5 polymorphism was found significantly more prevalent in CRF subjects with DM than that of controls. Further, GG genotype and G allele frequencies of CCR5 polymorphism were significantly more prevalent in CRF subjects with AS compared with controls (p < 0.05). We also explored these polymorphisms among CRF subjects with and without following comorbidities: HT, DM, AS. We found significant association between CRF subjects with HT and without HT in terms of genotype and allele frequencies of V249I polymorphism (p < 0.05). CX3CR1 T280M polymorphism was not found significantly different in none of the comparisons. CONCLUSION These data demonstrate possible associations between CX3CR1 V249I and CCR5-59029 A/G polymorphisms and/or HT, DM and AS in CRF subjects.
Collapse
Affiliation(s)
- Binnur Bagci
- Department of Nutrition and Dietetics, School of Health Sciences, Cumhuriyet University, 58140, Sivas, Turkey.
- Advanced Technology Research Center, Cumhuriyet University, Sivas, Turkey.
| | - Gokhan Bagci
- Department of Medical Genetics, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Can Huzmeli
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ilhan Sezgin
- Department of Medical Genetics, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ozturk Ozdemir
- Department of Medical Genetics, School of Medicine, Canakkale On Sekiz Mart University, Canakkale, Turkey
| |
Collapse
|
100
|
Harris DP, Chandrasekharan UM, Bandyopadhyay S, Willard B, DiCorleto PE. PRMT5-Mediated Methylation of NF-κB p65 at Arg174 Is Required for Endothelial CXCL11 Gene Induction in Response to TNF-α and IFN-γ Costimulation. PLoS One 2016; 11:e0148905. [PMID: 26901772 PMCID: PMC4768879 DOI: 10.1371/journal.pone.0148905] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/24/2016] [Indexed: 12/24/2022] Open
Abstract
Inflammatory agonists differentially activate gene expression of the chemokine family of proteins in endothelial cells (EC). TNF is a weak inducer of the chemokine CXCL11, while TNF and IFN-γ costimulation results in potent CXCL11 induction. The molecular mechanisms underlying TNF plus IFN-γ-mediated CXCL11 induction are not fully understood. We have previously reported that the protein arginine methyltransferase PRMT5 catalyzes symmetrical dimethylation of the NF-κB subunit p65 in EC at multiple arginine residues. Methylation of Arg30 and Arg35 on p65 is critical for TNF induction of CXCL10 in EC. Here we show that PRMT5-mediated methylation of p65 at Arg174 is required for induction of CXCL11 when EC are costimulated with TNF and IFN-γ. Knockdown of PRMT5 by RNAi reduced CXCL11 mRNA and protein levels in costimulated cells. Reconstitution of p65 Arg174Ala or Arg174Lys mutants into EC that were depleted of endogenous p65 blunted TNF plus IFN-γ-mediated CXCL11 induction. Mass spectrometric analyses showed that p65 Arg174 arginine methylation is enhanced by TNF plus IFN-γ costimulation, and is catalyzed by PRMT5. Chromatin immunoprecipitation assays (ChIP) demonstrated that PRMT5 is necessary for p65 association with the CXCL11 promoter in response to TNF plus IFN-γ. Further, reconstitution of p65 Arg174Lys mutant in EC abrogated this p65 association with the CXCL11 promoter. Finally, ChIP and Re-ChIP assays revealed that symmetrical dimethylarginine-containing proteins complexed with the CXCL11 promoter were diminished in p65 Arg174Lys-reconstituted EC stimulated with TNF and IFN-γ. In total, these results indicate that PRMT5-mediated p65 methylation at Arg174 is essential for TNF plus IFN-γ-mediated CXCL11 gene induction. We therefore suggest that the use of recently developed small molecule inhibitors of PRMT5 may present a therapeutic approach to moderating chronic inflammatory pathologies.
Collapse
Affiliation(s)
- Daniel P. Harris
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Unnikrishnan M. Chandrasekharan
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Smarajit Bandyopadhyay
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Belinda Willard
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Paul E. DiCorleto
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|