51
|
Blaser MC, Wei K, Adams RLE, Zhou YQ, Caruso LL, Mirzaei Z, Lam AYL, Tam RKK, Zhang H, Heximer SP, Henkelman RM, Simmons CA. Deficiency of Natriuretic Peptide Receptor 2 Promotes Bicuspid Aortic Valves, Aortic Valve Disease, Left Ventricular Dysfunction, and Ascending Aortic Dilatations in Mice. Circ Res 2017; 122:405-416. [PMID: 29273600 DOI: 10.1161/circresaha.117.311194] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/25/2023]
Abstract
RATIONALE Aortic valve disease is a cell-mediated process without effective pharmacotherapy. CNP (C-type natriuretic peptide) inhibits myofibrogenesis and osteogenesis of cultured valve interstitial cells and is downregulated in stenotic aortic valves. However, it is unknown whether CNP signaling regulates aortic valve health in vivo. OBJECTIVE The aim of this study is to determine whether a deficient CNP signaling axis in mice causes accelerated progression of aortic valve disease. METHODS AND RESULTS In cultured porcine valve interstitial cells, CNP inhibited pathological differentiation via the guanylate cyclase NPR2 (natriuretic peptide receptor 2) and not the G-protein-coupled clearance receptor NPR3 (natriuretic peptide receptor 3). We used Npr2+/- and Npr2+/-;Ldlr-/- mice and wild-type littermate controls to examine the valvular effects of deficient CNP/NPR2 signaling in vivo, in the context of both moderate and advanced aortic valve disease. Myofibrogenesis in cultured Npr2+/- fibroblasts was insensitive to CNP treatment, whereas aged Npr2+/- and Npr2+/-;Ldlr-/- mice developed cardiac dysfunction and ventricular fibrosis. Aortic valve function was significantly impaired in Npr2+/- and Npr2+/-;Ldlr-/- mice versus wild-type littermates, with increased valve thickening, myofibrogenesis, osteogenesis, proteoglycan synthesis, collagen accumulation, and calcification. 9.4% of mice heterozygous for Npr2 had congenital bicuspid aortic valves, with worse aortic valve function, fibrosis, and calcification than those Npr2+/- with typical tricuspid aortic valves or all wild-type littermate controls. Moreover, cGK (cGMP-dependent protein kinase) activity was downregulated in Npr2+/- valves, and CNP triggered synthesis of cGMP and activation of cGK1 (cGMP-dependent protein kinase 1) in cultured porcine valve interstitial cells. Finally, aged Npr2+/-;Ldlr-/- mice developed dilatation of the ascending aortic, with greater aneurysmal progression in Npr2+/- mice with bicuspid aortic valves than those with tricuspid valves. CONCLUSIONS Our data establish CNP/NPR2 signaling as a novel regulator of aortic valve development and disease and elucidate the therapeutic potential of targeting this pathway to arrest disease progression.
Collapse
Affiliation(s)
- Mark C Blaser
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Kuiru Wei
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Rachel L E Adams
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Yu-Qing Zhou
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Laura-Lee Caruso
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Zahra Mirzaei
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Alan Y-L Lam
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Richard K K Tam
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Hangjun Zhang
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Scott P Heximer
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - R Mark Henkelman
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Craig A Simmons
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.).
| |
Collapse
|
52
|
Lu L, Guo J, Hua Y, Huang K, Magaye R, Cornell J, Kelly DJ, Reid C, Liew D, Zhou Y, Chen A, Xiao W, Fu Q, Wang BH. Cardiac fibrosis in the ageing heart: Contributors and mechanisms. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:55-63. [PMID: 28316086 DOI: 10.1111/1440-1681.12753] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/09/2017] [Accepted: 03/12/2017] [Indexed: 01/30/2023]
Abstract
Cardiac fibrosis refers to an excessive deposition of extracellular matrix (ECM) in cardiac tissue. Fibrotic tissue is stiffer and less compliant, resulting in subsequent cardiac dysfunction and heart failure. Cardiac fibrosis in the ageing heart may involve activation of fibrogenic signalling and inhibition of anti-fibrotic signalling, leading to an imbalance of ECM turnover. Excessive accumulation of ECM such as collagen in older patients contributes to progressive ventricular dysfunction. Overexpression of collagen is derived from various sources, including higher levels of fibrogenic growth factors, proliferation of fibroblasts and cellular transdifferentiation. These may be triggered by factors, such as oxidative stress, inflammation, hypertension, cellular senescence and cell death, contributing to age-related fibrotic cardiac remodelling. In this review, we will discuss the fibrogenic contributors in age-related cardiac fibrosis, and the potential mechanisms by which fibrogenic processes can be interrupted for therapeutic intent.
Collapse
Affiliation(s)
- Lu Lu
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingbin Guo
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Hua
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kevin Huang
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Ruth Magaye
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Jake Cornell
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Darren J Kelly
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Melbourne, Vic., Australia
| | - Christopher Reid
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,NHMRC Cardiovascular Centre of Research Excellence, School of Public Health, Curtin University, Perth, WA, Australia
| | - Danny Liew
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Xiao
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Qiang Fu
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bing Hui Wang
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
53
|
Lipphardt M, Song JW, Matsumoto K, Dadafarin S, Dihazi H, Müller G, Goligorsky MS. The third path of tubulointerstitial fibrosis: aberrant endothelial secretome. Kidney Int 2017; 92:558-568. [PMID: 28476555 PMCID: PMC5557669 DOI: 10.1016/j.kint.2017.02.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 02/08/2023]
Abstract
The secretome, defined as a portion of proteins secreted by specific cells to the extracellular space, secures a proper microenvironmental niche not only for the donor cells, but also for the neighboring cells, thus maintaining tissue homeostasis. Communication via secretory products exists between endothelial cells and fibroblasts, and this local mechanism maintains the viability and density of each compartment. Endothelial dysfunction, apart from obvious cell-autonomous defects, leads to the aberrant secretome, which predisposes fibroblasts to acquire a myofibroblastic fibrogenic phenotype. In our recent profiling of the secretome of such dysfunctional profibrogenic renal microvascular endothelial cells, we identified unique profibrogenic signatures, among which we detected ligands of Notch and Wnt-β-catenin pathways. Here, we stress the role of reprogramming cues in the immediate microenvironment of (myo)fibroblasts and the contribution of the endothelial secretome to the panoply of instructive signals in the vicinity of fibroblasts. We hope that this brief overview of endothelial-fibroblast communication in health and disease will lead to eventual unbiased proteomic mapping of individual secretomes of glomerular and tubular epithelial cells, pericytes, and podocytes through reductionist approaches to allow for the synthetic creation of a complex network of secretomic signals acting as reprogramming factors on individual cell types in the kidney. Knowledge of profibrogenic and antifibrogenic signatures in the secretome may garner future therapeutic efforts.
Collapse
Affiliation(s)
- Mark Lipphardt
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, New York, USA; Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Jong W Song
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, New York, USA; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Kei Matsumoto
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, New York, USA; Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Sina Dadafarin
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, New York, USA
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Gerhard Müller
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Michael S Goligorsky
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, New York, USA.
| |
Collapse
|
54
|
Chen C, Yun XJ, Liu LZ, Guo H, Liu LF, Chen XL. Exogenous nitric oxide enhances the prophylactic effect of aminoguanidine, a preferred iNOS inhibitor, on bleomycin-induced fibrosis in the lung: Implications for the direct roles of the NO molecule in vivo. Nitric Oxide 2017; 70:31-41. [PMID: 28757441 DOI: 10.1016/j.niox.2017.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/12/2017] [Accepted: 07/25/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Inducible nitric oxide synthase (iNOS) aggravates and endothelial nitric oxide synthase (eNOS) ameliorates fibrosis in the lung. Our previous study demonstrated that aminoguanidine (AG), a preferred iNOS inhibitor, prevents bleomycin-induced injury and fibrosis in the lung. The diethylenetriamine nitric oxide adduct (DETA/NO) is a slow-release NO donor. Here, to clarify the exact role of the nitric oxide (NO) molecule in the pathogenesis of pulmonary fibrosis in vivo, we observed the effects of inhalation of aerosolized DETA/NO on fibrosis in the lungs of bleomycin-exposed rats with AG treatment, including the effects on the myofibroblast number, collagen deposition, peroxynitrite anion (ONOO-) formation, and injury in the lung. DESIGN AND METHODS Rats received a single intratracheal instillation of bleomycin or normal saline (NS) on day 0, followed by a daily intraperitoneal injection of AG or NS from day 1 to day 13. Each group was additionally given a daily inhalation of DETA/NO or placebo from day 1 to day 13. On day 14, half of the rats in each group was euthanized, and plasma nitrite and nitrate (NOx), myofibroblasts, type I collagen, ONOO- and injury in the lung were estimated by the Griess reaction, western blotting, immunohistochemical staining, sirius red staining, and hematoxylin and eosin (HE) staining, respectively. On day 28, the other half of the rats in each group was euthanized, and the total collagen of the lung was evaluated by hydroxyproline assay. RESULTS ① At the day 14 time point, AG reduced the plasma NOx level in bleomycin rats, while this drug had no significant effect on sham rats. Inhalation of aerosolized DETA/NO increased the plasma NOx level of bleomycin + AG rats, sham rats and sham + AG rats. However, due to large areas of airspace obliteration in the lungs of bleomycin rats, DETA/NO inhalation had no significant effect on the plasma NOx level in these rats. ② At the day 14 time point, AG reduced ONOO- formation (marked by nitrotyrosine, NT), injury, myofibroblast number, and type I collagen deposition in the lungs of bleomycin rats, while this drug had no significant impact on the above parameters in the lungs of sham rats. Interestingly, DETA/NO inhalation enhanced the preventive effects afforded by AG on myofibroblast number and type I collagen deposition, but had no significant impact on ONOO- and injury in lung. ③ At the day 28 time point, because rats were not exposed to DETA/NO after day 13, there was no significant difference of the plasma NOx level in sham rats, sham + AG rats, bleomycin rats, and bleomycin + AG rats between DETA/NO inhalation and placebo inhalation. Interestingly, rats administered both DETA/NO and AG still showed a reduction in total collagen of the entire lung compared to rats administered AG alone at this time point. CONCLUSIONS Exogenous NO enhances the prophylactic effect afforded by AG on the myofibroblast number and collagen deposition in the lungs of bleomycin-treated rats in vivo. These results suggest that NO has a direct antifibrotic effect in lungs, except for the formation of ONOO- in the development of pulmonary fibrosis in vivo.
Collapse
Affiliation(s)
- Chao Chen
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China; Department of Cardiology, Cangzhou Central Hospital, Cangzhou, Hebei, 061014, PR China
| | - Xiao-Jing Yun
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Li-Ze Liu
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Hong Guo
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Lian-Feng Liu
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Xiao-Ling Chen
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China.
| |
Collapse
|
55
|
Zhou HT, Yu XF, Zhou GM. Diosgenin inhibits angiotensin II-induced extracellular matrix remodeling in cardiac fibroblasts through regulating the TGF-β1/Smad3 signaling pathway. Mol Med Rep 2017; 15:2823-2828. [DOI: 10.3892/mmr.2017.6280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 11/15/2016] [Indexed: 11/05/2022] Open
|
56
|
Cao ZP, Zhang Y, Mi L, Luo XY, Tian MH, Zhu BL. The Expression of B-Type Natriuretic Peptide After CaCl2-Induced Arrhythmias in Rats. Am J Forensic Med Pathol 2017; 37:133-40. [PMID: 27258852 DOI: 10.1097/paf.0000000000000193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate the patterns of B-type natriuretic peptide (BNP) expression after arrhythmia, BNP was assessed at different time points (0 minute, 10 minutes, 30 minutes, 1 hour, 3 hours, and 6 hours) in CaCl2-induced arrhythmia in rats through various methods such as immunohistochemistry, Western blotting, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. Immunohistochemistry results showed that the expression of BNP in the endocardium was higher than that in the epicardium in rats undergoing sustained arrhythmias. The BNP-to-GAPDH (glyceraldehyde-3-phosphate dehydrogenase) ratios determined by Western blotting analysis revealed no change at 0 minute but increased at 10 minutes and reached the first peak (0.48 [0.03]) at 30 minutes. After a brief decline, the second peak was observed at 6 hours (0.54 [0.03]). Similar patterns of BNP messenger RNA expression were also observed by quantitative real-time polymerase chain reaction. The plasma BNP concentrations did not change after initial bouts of cardiac arrhythmias but significantly increased 30 minutes after CaCl2 injections. The results demonstrate that arrhythmia causes an elevation of BNP in the myocardium and blood, and BNP messenger RNA increases in initial arrhythmia while its protein in myocardium and plasma does not; however, both of them were elevated after sustained arrhythmia. Such an elevated BNP expression, which is directly related to the severity and duration of the arrhythmias, may suggest the existence of fatal arrhythmia in sudden cardiac death.
Collapse
Affiliation(s)
- Zhi-Peng Cao
- From the Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
57
|
Abstract
Notch3 and TGF-β1 signaling play a key role in the pathogenesis and progression of chronic cardiovascular disease. However, whether Notch3 protects against myocardial infarction (MI) and the underlying mechanisms remains unknown. C57BL/6 mice were randomized to be treated with Notch3 siRNA (siNotch3) or lentivirus carrying Notch3 cDNA (Notch3) before coronary artery ligation. Four weeks after constructing MI model, cardiac function and fibrosis were compared between groups. The cardiac fibroblast cells (CFs) were isolated from newborn C57BL/6 mice (1-3 days old) and transfected with lentivirus carrying Notch3 cDNA. TGF-β1 (5 ng/ml), a well-known pro-fibrotic factor, was administered 72 h after Notch3 cDNA administration in CFs. The related proteins of fibrosis such as a-smooth muscle actin (a-SMA), Type I collagen, metalloprotease (MMP)-9 and the tissue inhibitor of metalloproteinases (TIMP)-2 were examined by western blot analysis. Notch3 cDNA treatment attenuated cardiac damage and inhibited fibrosis in mice with MI. Meanwhile, Notch3 siRNA administration aggravated cardiac function damage and markedly enhanced cardiac fibrosis in mice with MI. Overexpression of Notch3 inhibited TGF-β1-induced fibroblast-myofibroblast transition of mouse cardiac fibroblast cells, as evidenced by down-regulating a-SMA and Type I collagen expression. Notch3 cDNA treatment also increased MMP-9 expression and decreased TIMP-2 expression in the TGF-β1-stimulated cells. This study indicates that Notch3 is an important protective factor for cardiac fibrosis in a MI model, and the protective effect of Notch3 is attributable to its action on TGF-β1/Smad3 signaling.
Collapse
|
58
|
Ichiki T, Burnett Jr JC. Atrial Natriuretic Peptide ― Old But New Therapeutic in Cardiovascular Diseases ―. Circ J 2017; 81:913-919. [DOI: 10.1253/circj.cj-17-0499] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic
| | - John C. Burnett Jr
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic
| |
Collapse
|
59
|
Diallyl sulfide attenuates transforming growth factor-β-stimulated pulmonary fibrosis through Nrf2 activation in lung MRC-5 fibroblast. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
60
|
O'Connell TD, Block RC, Huang SP, Shearer GC. ω3-Polyunsaturated fatty acids for heart failure: Effects of dose on efficacy and novel signaling through free fatty acid receptor 4. J Mol Cell Cardiol 2016; 103:74-92. [PMID: 27986444 DOI: 10.1016/j.yjmcc.2016.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/22/2016] [Accepted: 12/09/2016] [Indexed: 12/28/2022]
Abstract
Heart failure (HF) affects 5.7 million in the U.S., and despite well-established pharmacologic therapy, the 5-year mortality rate remains near 50%. Furthermore, the mortality rate for HF has not declined in years, highlighting the need for new therapeutic options. Omega-3 polyunsaturated fatty acids (ω3-PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are important regulators of cardiovascular health. However, questions of efficacy and mechanism of action have made the use of ω3-PUFAs in all cardiovascular disease (CVD) controversial. Here, we review recent studies in animal models of HF indicating that ω3-PUFAs, particularly EPA, are cardioprotective, with the results indicating a threshold for efficacy. We also examine clinical studies suggesting that ω3-PUFAs improve outcomes in patients with HF. Due to the relatively small number of clinical studies of ω3-PUFAs in HF, we discuss EPA concentration-dependency on outcomes in clinical trials of CVD to gain insight into the perceived questionable efficacy of ω3-PUFAs clinically, with the results again indicating a threshold for efficacy. Ultimately, we suggest that the main failing of ω3-PUFAs in clinical trials might be a failure to reach a therapeutically effective concentration. We also examine mechanistic studies suggesting that ω3-PUFAs signal through free fatty acid receptor 4 (Ffar4), a G-protein coupled receptor (GPR) for long-chain fatty acids (FA), thereby identifying an entirely novel mechanism of action for ω3-PUFA mediated cardioprotection. Finally, based on mechanistic animal studies suggesting that EPA prevents interstitial fibrosis and diastolic dysfunction, we speculate about a potential benefit for EPA-Ffar4 signaling in heart failure preserved with ejection fraction.
Collapse
Affiliation(s)
- Timothy D O'Connell
- Department of Integrative Biology and Physiology, The University of Minnesota, United States.
| | - Robert C Block
- Department of Public Health Sciences and Cardiology Division, Department of Medicine, University of Rochester, United States
| | - Shue P Huang
- Department of Nutritional Sciences, The Pennsylvania State University, United States
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, United States.
| |
Collapse
|
61
|
Chacar S, Farès N, Bois P, Faivre JF. Basic Signaling in Cardiac Fibroblasts. J Cell Physiol 2016; 232:725-730. [DOI: 10.1002/jcp.25624] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Stéphanie Chacar
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM); Université de Poitiers; CNRS; Poitiers France
- Laboratoire de recherche en Physiologie et Physiopathologie (LRPP); pôle technologie santé; Faculté de Médecine; Université Saint Joseph; Beyrouth Liban
| | - Nassim Farès
- Laboratoire de recherche en Physiologie et Physiopathologie (LRPP); pôle technologie santé; Faculté de Médecine; Université Saint Joseph; Beyrouth Liban
| | - Patrick Bois
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM); Université de Poitiers; CNRS; Poitiers France
| | - Jean-François Faivre
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM); Université de Poitiers; CNRS; Poitiers France
| |
Collapse
|
62
|
Kokkonen K, Kass DA. Nanodomain Regulation of Cardiac Cyclic Nucleotide Signaling by Phosphodiesterases. Annu Rev Pharmacol Toxicol 2016; 57:455-479. [PMID: 27732797 DOI: 10.1146/annurev-pharmtox-010716-104756] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) form an 11-member superfamily comprising 100 different isoforms that regulate the second messengers cyclic adenosine or guanosine 3',5'-monophosphate (cAMP or cGMP). These PDE isoforms differ with respect to substrate selectivity and their localized control of cAMP and cGMP within nanodomains that target specific cellular pools and synthesis pathways for the cyclic nucleotides. Seven PDE family members are physiologically relevant to regulating cardiac function, disease remodeling of the heart, or both: PDE1 and PDE2, both dual-substrate (cAMP and cGMP) esterases; PDE3, PDE4, and PDE8, which principally hydrolyze cAMP; and PDE5A and PDE9A, which target cGMP. New insights regarding the different roles of PDEs in health and disease and their local signaling control are broadening the potential therapeutic utility for PDE-selective inhibitors. In this review, we discuss these PDEs, focusing on the different mechanisms by which they control cardiac function in health and disease by regulating intracellular nanodomains.
Collapse
Affiliation(s)
- Kristen Kokkonen
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; .,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
63
|
Matsumoto K, Xavier S, Chen J, Kida Y, Lipphardt M, Ikeda R, Gevertz A, Caviris M, Hatzopoulos AK, Kalajzic I, Dutton J, Ratliff BB, Zhao H, Darzynkiewicz Z, Rose‐John S, Goligorsky MS. Instructive Role of the Microenvironment in Preventing Renal Fibrosis. Stem Cells Transl Med 2016; 6:992-1005. [PMID: 28297566 PMCID: PMC5442777 DOI: 10.5966/sctm.2016-0095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022] Open
Abstract
Accumulation of myofibroblasts is a hallmark of renal fibrosis. A significant proportion of myofibroblasts has been reported to originate via endothelial‐mesenchymal transition. We initially hypothesized that exposing myofibroblasts to the extract of endothelial progenitor cells (EPCs) could reverse this transition. Indeed, in vitro treatment of transforming growth factor‐β1 (TGF‐β1)‐activated fibroblasts with EPC extract prevented expression of α‐smooth muscle actin (α‐SMA); however, it did not enhance expression of endothelial markers. In two distinct models of renal fibrosis—unilateral ureteral obstruction and chronic phase of folic acid‐induced nephropathy—subcapsular injection of EPC extract to the kidney prevented and reversed accumulation of α‐SMA‐positive myofibroblasts and reduced fibrosis. Screening the composition of EPC extract for cytokines revealed that it is enriched in leukemia inhibitory factor (LIF) and vascular endothelial growth factor. Only LIF was capable of reducing fibroblast‐to‐myofibroblast transition of TGF‐β1‐activated fibroblasts. In vivo subcapsular administration of LIF reduced the number of myofibroblasts and improved the density of peritubular capillaries; however, it did not reduce the degree of fibrosis. A receptor‐independent ligand for the gp130/STAT3 pathway, hyper‐interleukin‐6 (hyper‐IL‐6), not only induced a robust downstream increase in pluripotency factors Nanog and c‐Myc but also exhibited a powerful antifibrotic effect. In conclusion, EPC extract prevented and reversed fibroblast‐to‐myofibroblast transition and renal fibrosis. The component of EPC extract, LIF, was capable of preventing development of the contractile phenotype of activated fibroblasts but did not eliminate TGF‐β1‐induced collagen synthesis in cultured fibroblasts and models of renal fibrosis, whereas a receptor‐independent gp130/STAT3 agonist, hyper‐IL‐6, prevented fibrosis. In summary, these studies, through the evolution from EPC extract to LIF and then to hyper‐IL‐6, demonstrate the instructive role of microenvironmental cues and may provide in the future a facile strategy to prevent and reverse renal fibrosis. Stem Cells Translational Medicine2017;6:992–1005
Collapse
Affiliation(s)
- Kei Matsumoto
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
- Showa University, Tokyo, Japan
| | - Sandhya Xavier
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Jun Chen
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Yujiro Kida
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Mark Lipphardt
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Reina Ikeda
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
- Okayama University, Okayama, Japan
| | - Annie Gevertz
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Mario Caviris
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | | | - Ivo Kalajzic
- University of Connecticut Health Center, Farmington, Connecticut, USA
| | - James Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian B. Ratliff
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Hong Zhao
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Zbygniew Darzynkiewicz
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Stefan Rose‐John
- Institute of Biochemistry, Christian‐Albrechts University, Kiel, Germany
| | - Michael S. Goligorsky
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
64
|
Liu X, Liang E, Song X, Du Z, Zhang Y, Zhao Y. Inhibition of Pin1 alleviates myocardial fibrosis and dysfunction in STZ-induced diabetic mice. Biochem Biophys Res Commun 2016; 479:109-15. [PMID: 27634219 DOI: 10.1016/j.bbrc.2016.09.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 09/11/2016] [Indexed: 01/25/2023]
Abstract
Therapeutic management of diabetic myocardial fibrosis remains an unsolved clinical problem. Pin1, a peptidyl-prolyl isomerase, impacts diverse cellular processes and plays a pivotal role in regulating cardiac pathophysiology. Here we investigate the potential mechanism of action of Pin1 and its role in diabetes-induced myocardial fibrosis and dysfunction in mice. Cardiac Pin1, transforming growth factor β1 (TGF-β1), α-smooth muscle actin (α-SMA) and extracellular matrix deposits (collagen I and III) are found to be increased in diabetic mice, which are effectively prevented by Pin1 inhibition by juglone. Pin1 inhibition alleviates cardiac fibrosis and dysfunction. In vitro, high glucose increases Pin1 expression with an accompanying increase in phospho-Akt (Ser 473), p-Smad2, p-Smad3, TGF-β1, and α-SMA in cardiac fibroblasts (CFs). These increases are effectively prevented by the inhibition of Pin1 by juglone. Furthermore, Pin1 inhibition inhibits HG-induced CF proliferation and migration. Our results indicate that Pin1 inhibition attenuates cardiac extracellular matrix deposition by regulating the phosphorylation of Akt, TGF-β1/Smads, MMP activities, and α-SMA expression in diabetic mice.
Collapse
Affiliation(s)
- Xue Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China; Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Ershun Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Xiuhui Song
- The People's Hospital of JimoCity, Qingdao, Shandong 266200, China
| | - Zhanhui Du
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Yuxia Zhao
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
65
|
Partial inhibition of activin receptor-like kinase 4 attenuates pressure overload-induced cardiac fibrosis and improves cardiac function. J Hypertens 2016; 34:1766-77. [DOI: 10.1097/hjh.0000000000001020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
66
|
Abstract
Heart failure affects ≈5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, β-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the US Food and Drug Administration approved the first of a new class of drugs for the treatment of heart failure: Valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses 2 of the pathophysiological mechanisms of heart failure: activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared with enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacological properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension.
Collapse
Affiliation(s)
- Scott A Hubers
- From Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.
| | - Nancy J Brown
- From Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
67
|
Shen K, Johnson DW, Gobe GC. The role of cGMP and its signaling pathways in kidney disease. Am J Physiol Renal Physiol 2016; 311:F671-F681. [PMID: 27413196 DOI: 10.1152/ajprenal.00042.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/10/2016] [Indexed: 01/20/2023] Open
Abstract
Cyclic nucleotide signal transduction pathways are an emerging research field in kidney disease. Activated cell surface receptors transduce their signals via intracellular second messengers such as cAMP and cGMP. There is increasing evidence that regulation of the cGMP-cGMP-dependent protein kinase 1-phosphodiesterase (cGMP-cGK1-PDE) signaling pathway may be renoprotective. Selective PDE5 inhibitors have shown potential in treating kidney fibrosis in patients with chronic kidney disease (CKD), via their downstream signaling, and these inhibitors also have known activity as antithrombotic and anticancer agents. This review gives an outline of the cGMP-cGK1-PDE signaling pathways and details the downstream signaling and regulatory functions that are modulated by cGK1 and PDE inhibitors with regard to antifibrotic, antithrombotic, and antitumor activity. Current evidence that supports the renoprotective effects of regulating cGMP-cGK1-PDE signaling is also summarized. Finally, the effects of icariin, a natural plant extract with PDE5 inhibitory function, are discussed. We conclude that regulation of cGMP-cGK1-PDE signaling might provide novel, therapeutic strategies for the worsening global public health problem of CKD.
Collapse
Affiliation(s)
- Kunyu Shen
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia; Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China; and
| | - David W Johnson
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia; Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia;
| |
Collapse
|
68
|
Bielecka-Dabrowa A, Sakowicz A, Misztal M, von Haehling S, Ahmed A, Pietrucha T, Rysz J, Banach M. Differences in biochemical and genetic biomarkers in patients with heart failure of various etiologies. Int J Cardiol 2016; 221:1073-80. [PMID: 27448535 DOI: 10.1016/j.ijcard.2016.07.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES To evaluate whether biomarkers reflecting pathophysiological pathways and selected single nucleotide polymorphisms differ between patients (pts) with heart failure (HF). METHODS 110 pts with were involved, including HF pts with preserved ejection fraction (HFpEF, n=51) with hypertensive origin, HF pts with reduced ejection fraction (HFrEF) with ischemic aetiology (ICM) (n=32) and HFrEF with dilated cardiomyopathy (DCM) (n=27). We assessed selected HF biomarkers, echocardiographic examinations and functional polymorphisms selected from six candidate genes: CYP27B1, NOS3, IL-6, TGF beta, TNF alpha, and PPAR gamma. RESULTS Higher concentrations of TNF alpha were observed in pts with hypertensive HFpEF compared to pts with DCM (p=0.008). Pts with HFpEF had higher concentrations of TGF beta 1 compared to DCM and ICM (p=0.0001 and p=0.0003, respectively). For the NOS3 -786 C/T rs2070744 polymorphism in DCM there were significantly more CT heterozygotes than in ICM and HFpEF. In multivariate analysis TGF beta 1 (p=0.001) and syndecan 4 (p=0.001) were the only factors distinguishing HFrEF pts with DCM vs HFpEF and also TGF beta 1 (p=0.001) and syndecan 4 (p=0.023) were the only factors distinguishing HFrEF pts with ICM vs HFpEF pts. CONCLUSIONS Inflammation mediated through TNF alpha and TGF beta 1 may represent an important component of an inflammatory response that partially drives the pathophysiology of HFpEF. NOS3 -786 C/T rs2070744 polymorphism in DCM may serve as a marker for more rapid progression of heart failure. The only biomarkers independently distinguishing HFpEF and HFrEF are syndecan 4 and TGF beta 1.
Collapse
Affiliation(s)
- Agata Bielecka-Dabrowa
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland.
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Poland
| | - Małgorzata Misztal
- Chair of Statistical Methods, Faculty of Economics and Sociology, University of Lodz, Poland
| | - Stephan von Haehling
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medicine Göttingen (UMG), Göttingen, Germany
| | - Ali Ahmed
- Department of Medicine Division of Gerontology, Geriatrics and Palliative Care, University of Washington, USA
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland
| |
Collapse
|
69
|
Subramanian U, Kumar P, Mani I, Chen D, Kessler I, Periyasamy R, Raghavaraju G, Pandey KN. Retinoic acid and sodium butyrate suppress the cardiac expression of hypertrophic markers and proinflammatory mediators in Npr1 gene-disrupted haplotype mice. Physiol Genomics 2016; 48:477-90. [PMID: 27199456 PMCID: PMC4967220 DOI: 10.1152/physiolgenomics.00073.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 04/12/2016] [Indexed: 01/15/2023] Open
Abstract
The objective of the present study was to examine the genetically determined differences in the natriuretic peptide receptor-A (NPRA) gene (Npr1) copies affecting the expression of cardiac hypertrophic markers, proinflammatory mediators, and matrix metalloproteinases (MMPs) in a gene-dose-dependent manner. We determined whether stimulation of Npr1 by all-trans retinoic acid (RA) and histone deacetylase (HDAC) inhibitor sodium butyric acid (SB) suppress the expression of cardiac disease markers. In the present study, we utilized Npr1 gene-disrupted heterozygous (Npr1(+/-), 1-copy), wild-type (Npr1(+/+), 2-copy), gene-duplicated (Npr1(++/+), 3-copy) mice, which were treated intraperitoneally with RA, SB, and a combination of RA/SB, a hybrid drug (HB) for 2 wk. Untreated 1-copy mice showed significantly increased heart weight-body weight (HW/BW) ratio, blood pressure, hypertrophic markers, including beta-myosin heavy chain (β-MHC) and proto-oncogenes (c-fos and c-jun), proinflammatory mediator nuclear factor kappa B (NF-κB), and MMPs (MMP-2, MMP-9) compared with 2-copy and 3-copy mice. The heterozygous (haplotype) 1-copy mice treated with RA, SB, or HB, exhibited significant reduction in the expression of β-MHC, c-fos, c-jun, NF-κB, MMP-2, and MMP-9. In drug-treated animals, the activity and expression levels of HDAC were significantly reduced and histone acetyltransferase activity and expression levels were increased. The drug treatments significantly increased the fractional shortening and reduced the systolic and diastolic parameters of the Npr1(+/-) mice hearts. Together, the present results demonstrate that a decreased Npr1 copy number enhanced the expression of hypertrophic markers, proinflammatory mediators, and MMPs, whereas an increased Npr1 repressed the cardiac disease markers in a gene-dose-dependent manner.
Collapse
Affiliation(s)
- Umadevi Subramanian
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Prerna Kumar
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Indra Mani
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - David Chen
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Isaac Kessler
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Ramu Periyasamy
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Giri Raghavaraju
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| |
Collapse
|
70
|
Fibulin-2 is essential for angiotensin II-induced myocardial fibrosis mediated by transforming growth factor (TGF)-β. J Transl Med 2016; 96:773-83. [PMID: 27111286 PMCID: PMC4920723 DOI: 10.1038/labinvest.2016.52] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/14/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022] Open
Abstract
Fibrosis is an ominous pathological process in failing myocardium, but its pathogenesis is poorly understood. We recently reported that loss of an extracellular matrix (ECM) protein, fibulin-2, protected against ventricular dysfunction after myocardial infarction (MI) in association with absence of activation of transforming growth factor (TGF)-β signaling and suppressed upregulation of ECM protein expression during myocardial remodeling. Here we investigated the role of fibulin-2 in the development of myocardial hypertrophy and fibrosis induced by continuous pressor-dosage of angiotensin II (Ang II) infusion. Both wild type (WT) and fibulin-2 null (Fbln2KO) mice developed comparable hypertension and myocardial hypertrophy by Ang II infusion. However, myocardial fibrosis with significant upregulation of collagen type I and III mRNA was only seen in WT but not in Fbln2KO mice.Transforming growth factor (TGF)-β1 mRNA and its downstream signal, Smad2, were significantly upregulated in WT by Ang II, whereas there were no Ang II-induced changes in Flbn2KO, suggesting fibulin-2 is necessary for Ang II-induced TGF-β signaling that induces myocardial fibrosis. To test whether fibulin-2 is sufficient for Ang II-induced TGF-β upregulation, isolated Flbn2KO cardiac fibroblasts were treated with Ang II after transfecting with fibulin-2 expression vector or pretreating with recombinant fibulin-2 protein. Ang II-induced TGF-β signaling in Fbln2KO cells was partially rescued by exogenous fibulin-2, suggesting that fibulin-2 is required and probably sufficient for Ang II-induced TGF-β activation. Smad2 phosphorylation was induced just by adding recombinant fibulin-2 to KO cells, suggesting that extracellular interaction between fibulin-2 and latent TGF-β triggered initial TGF-β activation. Our study indicates that Ang II cannot induce TGF-β activation without fibulin-2 and that fibulin-2 has an essential role in Ang II-induced TGF-β signaling and subsequent myocardial fibrosis. Fibulin-2 can be considered as a critical regulator of TGF-β that induces myocardial fibrosis.
Collapse
|
71
|
Cui L, Wang Y, Yu R, Li B, Xie S, Gao Y, Wang X, Zhu M. Jia-Shen decoction-medicated serum inhibits angiotensin-II induced cardiac fibroblast proliferation via the TGF-β1/Smad signaling pathway. Mol Med Rep 2016; 14:1610-6. [PMID: 27315199 PMCID: PMC4940101 DOI: 10.3892/mmr.2016.5405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 05/27/2016] [Indexed: 11/05/2022] Open
Abstract
Jia-Shen decoction (JSD) is a traditional Chinese medicine, which is used widely to treat chronic heart failure. However, the underlying mechanism remains to be elucidated. The present study aimed to investigate the mechanism underlying the effects of JSD on cardiac fibroblast (CF) proliferation and differentiation. The CFs were obtained from the hearts of neonatal (1‑3‑day old) Sprague‑Dawley rats and treated with JSD-medicated serum (JSDS) with or without angiotensin II (Ang II). Cell proliferation was assessed using Cell Counting Kit‑8 reagent. In addition, the mRNA expression levels of transforming growth factor‑β1 (TGF‑β1) and phosphorylated small mothers against decapentaplegic (p‑Smad)2/3 and their protein expression levels were analyzed. CF proliferation was significantly increased in the Ang II‑treated group, compared with the control group (P<0.05). The expression levels of collagen, α‑smooth muscle actin, TGF‑β1 and p‑Smad2/3 were also increased in the Ang II‑treated group (P<0.05). Following JSDS treatment, the increased levels of collagen and cell proliferation were inhibited, and the increased expression levels of p‑Smad2 and p‑Smad3 were also inhibited (P<0.05). These data suggested that JSDS may inhibit CF proliferation via attenuating the TGF‑β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Lin Cui
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Youping Wang
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Rui Yu
- Department of Internal Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Bin Li
- Division of Cardiology, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Shiyang Xie
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Yuan Gao
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Xiaoxiao Wang
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Mingjun Zhu
- Division of Cardiology, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
72
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
73
|
Rainer PP, Kass DA. Old dog, new tricks: novel cardiac targets and stress regulation by protein kinase G. Cardiovasc Res 2016; 111:154-62. [PMID: 27297890 DOI: 10.1093/cvr/cvw107] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022] Open
Abstract
The second messenger cyclic guanosine 3'5' monophosphate (cGMP) and its downstream effector protein kinase G (PKG) have been discovered more than 40 years ago. In vessels, PKG1 induces smooth muscle relaxation in response to nitric oxide signalling and thus lowers systemic and pulmonary blood pressure. In platelets, PKG1 stimulation by cGMP inhibits activation and aggregation, and in experimental models of heart failure (HF), PKG1 activation by inhibiting cGMP degradation is protective. The net effect of the above-mentioned signalling is cardiovascular protection. Yet, while modulation of cGMP-PKG has entered clinical practice for treating pulmonary hypertension or erectile dysfunction, translation of promising studies in experimental HF to clinical success has failed thus far. With the advent of new technologies, novel mechanisms of PKG regulation, including mechanosensing, redox regulation, protein quality control, and cGMP degradation, have been discovered. These novel, non-canonical roles of PKG1 may help understand why clinical translation has disappointed thus far. Addressing them appears to be a requisite for future, successful translation of experimental studies to the clinical arena.
Collapse
Affiliation(s)
- Peter P Rainer
- Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - David A Kass
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
74
|
Sen A, Kumar P, Garg R, Lindsey SH, Katakam PVG, Bloodworth M, Pandey KN. Transforming growth factor β1 antagonizes the transcription, expression and vascular signaling of guanylyl cyclase/natriuretic peptide receptor A - role of δEF1. FEBS J 2016; 283:1767-81. [PMID: 26934489 DOI: 10.1111/febs.13701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/20/2016] [Accepted: 02/29/2016] [Indexed: 12/19/2022]
Abstract
The objective of this study was to determine the role of transforming growth factor β1 (TGF-β1) in transcriptional regulation and function of the guanylyl cyclase A/natriuretic peptide receptor A gene (Npr1) and whether cross-talk exists between these two hormonal systems in target cells. After treatment of primary cultured rat thoracic aortic vascular smooth muscle cells and mouse mesangial cells with TGF-β1, the Npr1 promoter construct containing a δ-crystallin enhancer binding factor 1 (δEF1) site showed 85% reduction in luciferase activity in a time- and dose-dependent manner. TGF-β1 also significantly attenuated luciferase activity of the Npr1 promoter by 62%, and decreased atrial natriuretic peptide-mediated relaxation of mouse denuded aortic rings ex vivo. Treatment of cells with TGF-β1 increased the protein levels of δEF1 by 2.4-2.8-fold, and also significantly enhanced the phosphorylation of Smad 2/3, but markedly reduced Npr1 mRNA and receptor protein levels. Over-expression of δEF1 showed a reduction in Npr1 promoter activity by 75%, while deletion or site-directed mutagenesis of δEF1 sites in the Npr1 promoter eliminated the TGF-β1-mediated repression of Npr1 transcription. TGF-β1 significantly increased the expression of α-smooth muscle actin and collagen type I α2 in rat thoracic aortic vascular smooth muscle cells, which was markedly attenuated by atrial natriuretic peptide in cells over-expressing natriuretic peptide receptor A. Together, the present results suggest that an antagonistic cascade exists between the TGF-β1/Smad/δEF1 pathways and Npr1 expression and receptor signaling that is relevant to renal and vascular remodeling, and may be critical in the regulation of blood pressure and cardiovascular homeostasis.
Collapse
Affiliation(s)
- Anagha Sen
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Prerna Kumar
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Renu Garg
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Meaghan Bloodworth
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| |
Collapse
|
75
|
Kimura T, Nojiri T, Hino J, Hosoda H, Miura K, Shintani Y, Inoue M, Zenitani M, Takabatake H, Miyazato M, Okumura M, Kangawa K. C-type natriuretic peptide ameliorates pulmonary fibrosis by acting on lung fibroblasts in mice. Respir Res 2016; 17:19. [PMID: 26895702 PMCID: PMC4761143 DOI: 10.1186/s12931-016-0335-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/13/2016] [Indexed: 12/31/2022] Open
Abstract
Background Pulmonary fibrosis has high rates of mortality and morbidity; however, no effective pharmacological therapy has been established. C-type natriuretic peptide (CNP), a member of the natriuretic peptide family, selectively binds to the transmembrane guanylyl cyclase (GC)-B receptor and exerts anti-inflammatory and anti-fibrotic effects in various organs through vascular endothelial cells and fibroblasts that have a cell-surface GC-B receptor. Given the pathophysiological importance of fibroblast activation in pulmonary fibrosis, we hypothesized that the anti-fibrotic and anti-inflammatory effects of exogenous CNP against bleomycin (BLM)-induced pulmonary fibrosis were exerted in part by the effect of CNP on pulmonary fibroblasts. Methods C57BL/6 mice were divided into two groups, CNP-treated (2.5 μg/kg/min) and vehicle, to evaluate BLM-induced (1 mg/kg) pulmonary fibrosis and inflammation. A periostin-CNP transgenic mouse model exhibiting CNP overexpression in fibroblasts was generated and examined for the anti-inflammatory and anti-fibrotic effects of CNP via fibroblasts in vivo. Additionally, we assessed CNP attenuation of TGF-β-induced differentiation into myofibroblasts by using immortalized human lung fibroblasts stably expressing GC-B receptors. Furthermore, to investigate whether CNP acts on human lung fibroblasts in a clinical setting, we obtained primary-cultured fibroblasts from surgically resected lungs of patients with lung cancer and analyzed levels of GC-B mRNA transcription. Results CNP reduced mRNA levels of the profibrotic cytokines interleukin (IL)-1β and IL-6, as well as collagen deposition and the fibrotic area in lungs of mice with bleomycin-induced pulmonary fibrosis. Furthermore, similar CNP effects were observed in transgenic mice exhibiting fibroblast-specific CNP overexpression. In cultured-lung fibroblasts, CNP treatment attenuated TGF-β–induced phosphorylation of Smad2 and increased mRNA and protein expression of α-smooth muscle actin and SM22α, indicating that CNP suppresses fibroblast differentiation into myofibroblasts. Furthermore, human lung fibroblasts from patients with or without interstitial lung disease substantially expressed GC-B receptor mRNA. Conclusions These data suggest that CNP ameliorates bleomycin-induced pulmonary fibrosis by suppressing TGF-β signaling and myofibroblastic differentiation in lung fibroblasts. Therefore, we propose consideration of CNP for clinical application to pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Toru Kimura
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan. .,Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Takashi Nojiri
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan. .,Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| | - Hiroshi Hosoda
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita-City, Osaka, Japan.
| | - Koichi Miura
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Masayoshi Inoue
- Department of General Thoracic Surgery, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan.
| | - Masahiro Zenitani
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| | - Hiroyuki Takabatake
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan. .,Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| | - Meinoshin Okumura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| |
Collapse
|
76
|
Kirk JA, Holewinski RJ, Crowgey EL, Van Eyk JE. Protein kinase G signaling in cardiac pathophysiology: Impact of proteomics on clinical trials. Proteomics 2016; 16:894-905. [PMID: 26670943 DOI: 10.1002/pmic.201500401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/16/2015] [Accepted: 12/09/2015] [Indexed: 01/09/2023]
Abstract
The protective role of cyclic guanosine monophosphate (cGMP)-stimulated protein kinase G (PKG) in the heart makes it an attractive target for therapeutic drug development to treat a variety of cardiac diseases. Phosphodiesterases degrade cGMP, thus phosphodiesterase inhibitors that can increase PKG are of translational interest and the subject of ongoing human trials. PKG signaling is complex, however, and understanding its downstream phosphorylation targets and upstream regulation are necessary steps toward safe and efficacious drug development. Proteomic technologies have paved the way for assays that allow us to peer broadly into signaling minutia, including protein quantity changes and phosphorylation events. However, there are persistent challenges to the proteomic study of PKG, such as the impact of the expression of different PKG isoforms, changes in its localization within the cell, and alterations caused by oxidative stress. PKG signaling is also dependent upon sex and potentially the genetic and epigenetic background of the individual. Thus, the rigorous application of proteomics to the field will be necessary to address how these effectors can alter PKG signaling and interfere with pharmacological interventions. This review will summarize PKG signaling, how it is being targeted clinically, and the proteomic challenges and techniques that are being used to study it.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Maywood, IL, USA
| | - Ronald J Holewinski
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erin L Crowgey
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
77
|
Sangaralingham SJ, Wang BH, Huang L, Kumfu S, Ichiki T, Krum H, Burnett JC. Cardiorenal fibrosis and dysfunction in aging: Imbalance in mediators and regulators of collagen. Peptides 2016; 76:108-14. [PMID: 26774586 PMCID: PMC4754975 DOI: 10.1016/j.peptides.2016.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/19/2015] [Accepted: 01/08/2016] [Indexed: 01/01/2023]
Abstract
Cardiorenal fibrosis is a biological process that increases with age and contributes to dysfunction of the heart and kidney. While numerous circulating and tissue hormones, cytokines and enzymes have been identified in the development of cardiorenal fibrosis, several reports have suggested that the anti-fibrotic natriuretic peptide system (NPS), pro-fibrotic renin-angiotensin-aldosterone system (RAAS), transforming growth factor-beta 1 (TGF-β1), matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) are fundamental regulators and mediators of this process. However, the simultaneous assessment of these components in the development of age-mediated cardiorenal fibrotic remodeling is not completely understood. Thus, we assessed cardiorenal structure and function, the circulating NPS and RAAS and the cardiorenal tissue gene expression of collagen (Col) I, Col III, TGF-β1, MMP-9 and TIMP-1 in 2 and 20 month old Fischer rats. Our studies determined that aging was characterized by an increase in cardiorenal fibrosis that was accompanied with cardiorenal dysfunction. These alterations were associated with lower circulating atrial and C-type natriuretic peptides and higher angiotensin II and aldosterone levels in the aged rats. Moreover, we observed a decrease in Col I and III and an increase in TIMP- mRNA expressions in the aged heart and kidney, while TGF-β1 expression increased and MMP-9 decreased only in the aged kidney. We conclude that the age-mediated alterations in these fibrotic regulator and mediator profiles favors collagen accumulation due to an imbalance between the NPS and RAAS as well as a decline in the degradative pathway, thus suggesting a therapeutic opportunity to target these components.
Collapse
Affiliation(s)
- S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| | - Bing H Wang
- Centre of Cardiovascular Research and Education in Therapeutics, School of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Li Huang
- Centre of Cardiovascular Research and Education in Therapeutics, School of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Sirinart Kumfu
- Centre of Cardiovascular Research and Education in Therapeutics, School of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Tomoko Ichiki
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Henry Krum
- Centre of Cardiovascular Research and Education in Therapeutics, School of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - John C Burnett
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
78
|
Parvin Nejad S, Blaser MC, Santerre JP, Caldarone CA, Simmons CA. Biomechanical conditioning of tissue engineered heart valves: Too much of a good thing? Adv Drug Deliv Rev 2016; 96:161-75. [PMID: 26555371 DOI: 10.1016/j.addr.2015.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022]
Abstract
Surgical replacement of dysfunctional valves is the primary option for the treatment of valvular disease and congenital defects. Existing mechanical and bioprosthetic replacement valves are far from ideal, requiring concomitant anticoagulation therapy or having limited durability, thus necessitating further surgical intervention. Heart valve tissue engineering (HVTE) is a promising alternative to existing replacement options, with the potential to synthesize mechanically robust tissue capable of growth, repair, and remodeling. The clinical realization of a bioengineered valve relies on the appropriate combination of cells, biomaterials, and/or bioreactor conditioning. Biomechanical conditioning of valves in vitro promotes differentiation of progenitor cells to tissue-synthesizing myofibroblasts and prepares the construct to withstand the complex hemodynamic environment of the native valve. While this is a crucial step in most HVTE strategies, it also may contribute to fibrosis, the primary limitation of engineered valves, through sustained myofibrogenesis. In this review, we examine the progress of HVTE and the role of mechanical conditioning in the synthesis of mechanically robust tissue, and suggest approaches to achieve myofibroblast quiescence and prevent fibrosis.
Collapse
|
79
|
Yoshioka K, Otani H, Shimazu T, Fujita M, Iwasaka T, Shiojima I. Sepiapterin prevents left ventricular hypertrophy and dilatory remodeling induced by pressure overload in rats. Am J Physiol Heart Circ Physiol 2015; 309:H1782-91. [PMID: 26408540 DOI: 10.1152/ajpheart.00417.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/22/2015] [Indexed: 01/01/2023]
Abstract
Uncoupling of nitric oxide (NO) synthase (NOS) has been implicated in left ventricular (LV) hypertrophy (LVH) and dilatory remodeling induced by pressure overload. We investigated whether administration of sepiapterin, a substrate of the salvage pathway of tetrahydrobiopterin synthesis, prevents LVH and dilatory LV remodeling by inhibiting NOS uncoupling and increasing bioavailable NO. Pressure overload was induced in rats by transverse aortic constriction (TAC). Concentric LVH developed during 8 wk after TAC, and dilatory LV remodeling and dysfunction developed between 8 and 16 wk after TAC associated with a decrease in capillary density. Oral administration of sepiapterin or the superoxide/peroxynitrite scavenger N-(2-mercaptopropionyl)-glycine for 8 wk after TAC inhibited oxidative stress, but only sepiapterin increased bioavailable NO and inhibited cardiomyocyte hypertrophy associated with a further increase in capillary density. When sepiapterin was administered between 8 and 16 wk after TAC, cardiomyocyte hypertrophy was regressed and capillary density was restored. This was associated with the inhibition of interstitial fibrosis and dilatory LV remodeling. N-nitro-l-arginine methyl ester abrogated all the beneficial effects of sepiapterin in rats with TAC. These results suggest that sepiapterin prevents concentric LVH and dilatory remodeling after TAC primarily by increasing the bioavailability of NO.
Collapse
MESH Headings
- Animals
- Aorta/surgery
- Biopterins/analogs & derivatives
- Biopterins/biosynthesis
- Capillaries/pathology
- Cell Size
- Constriction
- Dilatation, Pathologic/diagnostic imaging
- Dilatation, Pathologic/metabolism
- Enzyme Inhibitors/pharmacology
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Heart/drug effects
- Hypertrophy, Left Ventricular/diagnostic imaging
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Male
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/drug effects
- Nitric Oxide Synthase/metabolism
- Organ Size
- Oxidative Stress/drug effects
- Pressure
- Pterins/pharmacology
- Rats
- Rats, Sprague-Dawley
- Sulfhydryl Compounds/pharmacology
- Ultrasonography
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Kei Yoshioka
- Department of Internal Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Hajime Otani
- Department of Internal Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Takayuki Shimazu
- Department of Internal Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Masanori Fujita
- Department of Internal Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Toshiji Iwasaka
- Department of Internal Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Ichiro Shiojima
- Department of Internal Medicine II, Kansai Medical University, Moriguchi City, Japan
| |
Collapse
|
80
|
Kerkelä R, Ulvila J, Magga J. Natriuretic Peptides in the Regulation of Cardiovascular Physiology and Metabolic Events. J Am Heart Assoc 2015; 4:e002423. [PMID: 26508744 PMCID: PMC4845118 DOI: 10.1161/jaha.115.002423] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Risto Kerkelä
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.) Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland (R.K.)
| | - Johanna Ulvila
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.)
| | - Johanna Magga
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.)
| |
Collapse
|
81
|
Novel association of polymorphic genetic variants with predictors of outcome of catheter ablation in atrial fibrillation: new directions from a prospective study (DECAF). J Interv Card Electrophysiol 2015; 45:7-17. [DOI: 10.1007/s10840-015-0069-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
|
82
|
Schleede J, Blair SS. The Gyc76C Receptor Guanylyl Cyclase and the Foraging cGMP-Dependent Kinase Regulate Extracellular Matrix Organization and BMP Signaling in the Developing Wing of Drosophila melanogaster. PLoS Genet 2015; 11:e1005576. [PMID: 26440503 PMCID: PMC4595086 DOI: 10.1371/journal.pgen.1005576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/16/2015] [Indexed: 12/30/2022] Open
Abstract
The developing crossveins of the wing of Drosophila melanogaster are specified by long-range BMP signaling and are especially sensitive to loss of extracellular modulators of BMP signaling such as the Chordin homolog Short gastrulation (Sog). However, the role of the extracellular matrix in BMP signaling and Sog activity in the crossveins has been poorly explored. Using a genetic mosaic screen for mutations that disrupt BMP signaling and posterior crossvein development, we identify Gyc76C, a member of the receptor guanylyl cyclase family that includes mammalian natriuretic peptide receptors. We show that Gyc76C and the soluble cGMP-dependent kinase Foraging, likely linked by cGMP, are necessary for normal refinement and maintenance of long-range BMP signaling in the posterior crossvein. This does not occur through cell-autonomous crosstalk between cGMP and BMP signal transduction, but likely through altered extracellular activity of Sog. We identify a novel pathway leading from Gyc76C to the organization of the wing extracellular matrix by matrix metalloproteinases, and show that both the extracellular matrix and BMP signaling effects are largely mediated by changes in the activity of matrix metalloproteinases. We discuss parallels and differences between this pathway and other examples of cGMP activity in both Drosophila melanogaster and mammalian cells and tissues. Signaling between cells regulates many processes, including the choices cells make between different fates during development and regeneration, and misregulation of such signaling underlies many human pathologies. To understand how such signals control developmental decisions, it is necessary to elucidate both how cells regulate and respond to different levels of signaling, and how different types of signals combine and regulate each other. We have used genetic screening in the fruitfly Drosophila melanogaster to identify mutations that reduce or eliminate signals carried by Bone Morphogenetic Proteins (BMPs), and show that BMP signaling is sensitive Gyc76C, a peptide receptor that stimulates the production of cGMP in cells. We identify downstream intracellular effectors of this cGMP activity, but provide evidence that the effects on the BMP pathway are not mediated at the intracellular level, but rather through cGMP’s effects upon the extracellular matrix and matrix-remodeling proteinases, which in turn affects the activity of extracellular BMP-binding proteins. We discuss differences and parallels with other examples of cGMP activity in Drosophila melanogaster and mammals.
Collapse
Affiliation(s)
- Justin Schleede
- Department of Zoology, University of Wisconsin, Madison, Wisconsin, United States of America
- Genetics Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Seth S. Blair
- Department of Zoology, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
83
|
Zhang H, Song Y, Li Z, Zhang T, Zeng L, Li W, Bian Y. Evaluation of ligustrazine on the prevention of experimentally induced abdominal adhesions in rats. Int J Surg 2015; 21:115-21. [DOI: 10.1016/j.ijsu.2015.06.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/23/2015] [Accepted: 06/28/2015] [Indexed: 11/29/2022]
|
84
|
Tschöpe C, Van Linthout S. New insights in (inter)cellular mechanisms by heart failure with preserved ejection fraction. Curr Heart Fail Rep 2015; 11:436-44. [PMID: 25189801 PMCID: PMC4221658 DOI: 10.1007/s11897-014-0219-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recently, a new paradigm for the development of heart failure with preserved ejection fraction (HFpEF) has been proposed, which identifies a systemic pro-inflammatory state induced by comorbidities as the origin of microvascular endothelial cell inflammation and subsequent concentric cardiac remodeling and dysfunction. This review further discusses the pivotal role of the inflamed endothelium in the pathogenesis of HFpEF-specific cardiac remodeling. The potential importance of reciprocal interactions of the endothelium with cardiac fibroblasts and cardiomyocytes and with the cardiac neurohumoral response in this cardiac remodeling process is outlined.
Collapse
Affiliation(s)
- Carsten Tschöpe
- Department of Cardiology and Pneumology, Charité, University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany,
| | | |
Collapse
|
85
|
Abstract
Natriuretic peptides are cardiac-derived hormones with a range of protective functions, including natriuresis, diuresis, vasodilation, lusitropy, lipolysis, weight loss, and improved insulin sensitivity. Their actions are mediated through membrane-bound guanylyl cyclases that lead to production of the intracellular second-messenger cyclic guanosine monophosphate. A growing body of evidence demonstrates that genetic and acquired deficiencies of the natriuretic peptide system can promote hypertension, cardiac hypertrophy, obesity, diabetes mellitus, the metabolic syndrome, and heart failure. Clinically, natriuretic peptides are robust diagnostic and prognostic markers, and augmenting natriuretic peptides is a target for therapeutic strategies in cardiometabolic disease. This review will summarize current understanding and highlight novel aspects of natriuretic peptide biology.
Collapse
Affiliation(s)
- Deepak K Gupta
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine
| | | |
Collapse
|
86
|
Bielecka-Dabrowa A, Gluba-Brzózka A, Michalska-Kasiczak M, Misztal M, Rysz J, Banach M. The multi-biomarker approach for heart failure in patients with hypertension. Int J Mol Sci 2015; 16:10715-33. [PMID: 25984599 PMCID: PMC4463672 DOI: 10.3390/ijms160510715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/06/2023] Open
Abstract
We assessed the predictive ability of selected biomarkers using N-terminal pro-brain natriuretic peptide (NT-proBNP) as the benchmark and tried to establish a multi-biomarker approach to heart failure (HF) in hypertensive patients. In 120 hypertensive patients with or without overt heart failure, the incremental predictive value of the following biomarkers was investigated: Collagen III N-terminal propeptide (PIIINP), cystatin C (CysC), lipocalin-2/NGAL, syndecan-4, tumor necrosis factor-α (TNF-α), interleukin 1 receptor type I (IL1R1), galectin-3, cardiotrophin-1 (CT-1), transforming growth factor β (TGF-β) and N-terminal pro-brain natriuretic peptide (NT-proBNP). The highest discriminative value for HF was observed for NT-proBNP (area under the receiver operating characteristic curve (AUC) = 0.873) and TGF-β (AUC = 0.878). On the basis of ROC curve analysis we found that CT-1 > 152 pg/mL, TGF-β < 7.7 ng/mL, syndecan > 2.3 ng/mL, NT-proBNP > 332.5 pg/mL, CysC > 1 mg/L and NGAL > 39.9 ng/mL were significant predictors of overt HF. There was only a small improvement in predictive ability of the multi-biomarker panel including the four biomarkers with the best performance in the detection of HF—NT-proBNP, TGF-β, CT-1, CysC—compared to the panel with NT-proBNP, TGF-β and CT-1 only. Biomarkers with different pathophysiological backgrounds (NT-proBNP, TGF-β, CT-1, CysC) give additive prognostic value for incident HF in hypertensive patients compared to NT-proBNP alone.
Collapse
Affiliation(s)
| | - Anna Gluba-Brzózka
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland.
| | | | - Małgorzata Misztal
- Department of Nephrology, Hypertension and Family Medicine, Chair of Nephrology and Hypertension, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland.
| | - Jacek Rysz
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland.
| | | |
Collapse
|
87
|
Kralova E, Doka G, Pivackova L, Srankova J, Kuracinova K, Janega P, Babal P, Klimas J, Krenek P. l-Arginine Attenuates Cardiac Dysfunction, But Further Down-Regulates α-Myosin Heavy Chain Expression in Isoproterenol-Induced Cardiomyopathy. Basic Clin Pharmacol Toxicol 2015; 117:251-60. [DOI: 10.1111/bcpt.12405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/26/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Eva Kralova
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
| | - Gabriel Doka
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
| | - Lenka Pivackova
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
| | - Jasna Srankova
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
| | - Kristina Kuracinova
- Department of Pathology; Faculty of Medicine; Comenius University in Bratislava; Bratislava Slovak Republic
| | - Pavol Janega
- Department of Pathology; Faculty of Medicine; Comenius University in Bratislava; Bratislava Slovak Republic
- Slovak Academy of Sciences; Institute of Normal and Pathological Anatomy; Bratislava Slovak Republic
| | - Pavel Babal
- Department of Pathology; Faculty of Medicine; Comenius University in Bratislava; Bratislava Slovak Republic
| | - Jan Klimas
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
| | - Peter Krenek
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
| |
Collapse
|
88
|
Baliga RS, Scotton CJ, Trinder SL, Chambers RC, MacAllister RJ, Hobbs AJ. Intrinsic defence capacity and therapeutic potential of natriuretic peptides in pulmonary hypertension associated with lung fibrosis. Br J Pharmacol 2015; 171:3463-75. [PMID: 24641440 PMCID: PMC4105933 DOI: 10.1111/bph.12694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Idiopathic pulmonary fibrosis (IPF) is a progressive fibro-proliferative disorder refractory to current therapy commonly complicated by the development of pulmonary hypertension (PH); the associated morbidity and mortality are substantial. Natriuretic peptides possess vasodilator and anti-fibrotic actions, and pharmacological augmentation of their bioactivity ameliorates renal and myocardial fibrosis. Here, we investigated whether natriuretic peptides possess an intrinsic cytoprotective function preventing the development of pulmonary fibrosis and associated PH, and whether therapeutics targeting natriuretic peptide signalling demonstrate efficacy in this life-threatening disorder. EXPERIMENTAL APPROACH Pulmonary haemodynamics, right ventricular function and markers of lung fibrosis were determined in wild-type (WT) and natriuretic peptide receptor (NPR)-A knockout (KO) mice exposed to bleomycin (1 mg·kg−1). Human myofibroblast differentiation was studied in vitro. KEY RESULTS Exacerbated cardiac, vascular and fibrotic pathology was observed in NPR-A KO animals, compared with WT mice, exposed to bleomycin. Treatment with a drug combination that raised circulating natriuretic peptide levels (ecadotril) and potentiated natriuretic peptide-dependent signalling (sildenafil) reduced indices of disease progression, whether administered prophylactically or to animals with established lung disease. This positive pharmacodynamic effect was diminished in NPR-A KO mice. Atrial natriuretic peptide and sildenafil synergistically reduced TGFβ-induced human myofibroblast differentiation, a key driver of remodelling in IPF patients. CONCLUSIONS AND IMPLICATIONS These data highlight an endogenous host-defence capacity of natriuretic peptides in lung fibrosis and PH. A combination of ecadotril and sildenafil reversed the pulmonary haemodynamic aberrations and remodelling that characterize the disease, advocating therapeutic manipulation of natriuretic peptide bioactivity in patients with IPF.
Collapse
Affiliation(s)
- R S Baliga
- William Harvey Research Institute, Barts & The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| | | | | | | | | | | |
Collapse
|
89
|
Roche PL, Filomeno KL, Bagchi RA, Czubryt MP. Intracellular Signaling of Cardiac Fibroblasts. Compr Physiol 2015; 5:721-60. [DOI: 10.1002/cphy.c140044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
90
|
Dostal D, Glaser S, Baudino TA. Cardiac Fibroblast Physiology and Pathology. Compr Physiol 2015; 5:887-909. [DOI: 10.1002/cphy.c140053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
91
|
Cyclic nucleotide signalling in kidney fibrosis. Int J Mol Sci 2015; 16:2320-51. [PMID: 25622251 PMCID: PMC4346839 DOI: 10.3390/ijms16022320] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/14/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022] Open
Abstract
Kidney fibrosis is an important factor for the progression of kidney diseases, e.g., diabetes mellitus induced kidney failure, glomerulosclerosis and nephritis resulting in chronic kidney disease or end-stage renal disease. Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were implicated to suppress several of the above mentioned renal diseases. In this review article, identified effects and mechanisms of cGMP and cAMP regarding renal fibrosis are summarized. These mechanisms include several signalling pathways of nitric oxide/ANP/guanylyl cyclases/cGMP-dependent protein kinase and cAMP/Epac/adenylyl cyclases/cAMP-dependent protein kinase. Furthermore, diverse possible drugs activating these pathways are discussed. From these diverse mechanisms it is expected that new pharmacological treatments will evolve for the therapy or even prevention of kidney failure.
Collapse
|
92
|
Sun L, Jin H, Sun L, Chen S, Huang Y, Liu J, Li Z, Zhao M, Sun Y, Tang C, Zhao B, Du J. Hydrogen sulfide alleviates myocardial collagen remodeling in association with inhibition of TGF-β/Smad signaling pathway in spontaneously hypertensive rats. Mol Med 2015; 20:503-15. [PMID: 25222913 DOI: 10.2119/molmed.2013.00096] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/09/2014] [Indexed: 11/06/2022] Open
Abstract
The study was designed to explore the role and possible mechanisms of hydrogen sulfide (H2S) in the regulation of myocardial collagen remodeling in spontaneously hypertensive rats (SHRs). We treated nine-week-old male SHRs and age- and sex-matched Wistar-Kyoto rats (WKYs) with NaHS (90 μmol/kg(-1)·day(-1)) for 9 wks. At 18 wks, plasma H2S, tail arterial pressure, morphology of the heart, myocardial ultrastructure and collagen volume fraction (CVF), myocardial expressions of collagen I and III protein and procollagen I and III mRNA, transforming growth factor-β1 (TGF-β1), TGF-β type I receptor (TβR-I), type II receptor (TβR-II), p-Smad2 and 3, matrix metalloproteinase (MMP)-13 and tissue inhibitors of MMP (TIMP)-1 proteins were determined. TGF-β1-stimulated cultured cardiac fibroblasts (CFs) were used to further study the mechanisms. The results showed that compared with WKYs, SHRs showed a reduced plasma H2S, elevated tail artery pressure and increased myocardial collagen, TGF-β1, TβR-II, p-Smad2 and p-Smad3 expressions. However, NaHS markedly decreased tail artery pressure and inhibited myocardial collagen, TGF-β1, TβR-II, p-Smad2 and p-Smad3 protein expressions, but H2S had no effect on the expressions of MMP-13 and TIMP-1. Hydralazine reduced blood pressure but had no effect on myocardial collagen, MMP-13 and TIMP-1 expressions and TGF-β1/Smad signaling pathway. H2S prevented activation of the TGF-β1/Smad signaling pathway and abnormal collagen synthesis in CFs. In conclusion, the results suggested that H2S could prevent myocardial collagen remodeling in SHR. The mechanism might be associated with inhibition of collagen synthesis via TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Lili Sun
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Lujing Sun
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Siyao Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jia Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhenzhen Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Manman Zhao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Bin Zhao
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
93
|
Egom EE, Vella K, Hua R, Jansen HJ, Moghtadaei M, Polina I, Bogachev O, Hurnik R, Mackasey M, Rafferty S, Ray G, Rose RA. Impaired sinoatrial node function and increased susceptibility to atrial fibrillation in mice lacking natriuretic peptide receptor C. J Physiol 2015; 593:1127-46. [PMID: 25641115 DOI: 10.1113/jphysiol.2014.283135] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/06/2014] [Indexed: 12/17/2022] Open
Abstract
Natriuretic peptides (NPs) are critical regulators of the cardiovascular system that are currently viewed as possible therapeutic targets for the treatment of heart disease. Recent work demonstrates potent NP effects on cardiac electrophysiology, including in the sinoatrial node (SAN) and atria. NPs elicit their effects via three NP receptors (NPR-A, NPR-B and NPR-C). Among these receptors, NPR-C is poorly understood. Accordingly, the goal of this study was to determine the effects of NPR-C ablation on cardiac structure and arrhythmogenesis. Cardiac structure and function were assessed in wild-type (NPR-C(+/+)) and NPR-C knockout (NPR-C(-/-)) mice using echocardiography, intracardiac programmed stimulation, patch clamping, high-resolution optical mapping, quantitative polymerase chain reaction and histology. These studies demonstrate that NPR-C(-/-) mice display SAN dysfunction, as indicated by a prolongation (30%) of corrected SAN recovery time, as well as an increased susceptibility to atrial fibrillation (6% in NPR-C(+/+) vs. 47% in NPR-C(-/-)). There were no differences in SAN or atrial action potential morphology in NPR-C(-/-) mice; however, increased atrial arrhythmogenesis in NPR-C(-/-) mice was associated with reductions in SAN (20%) and atrial (15%) conduction velocity, as well as increases in expression and deposition of collagen in the atrial myocardium. No differences were seen in ventricular arrhythmogenesis or fibrosis in NPR-C(-/-) mice. This study demonstrates that loss of NPR-C results in SAN dysfunction and increased susceptibility to atrial arrhythmias in association with structural remodelling and fibrosis in the atrial myocardium. These findings indicate a critical protective role for NPR-C in the heart.
Collapse
Affiliation(s)
- Emmanuel E Egom
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Murine cardiac growth, TRPC channels, and cGMP kinase I. Pflugers Arch 2014; 467:2229-34. [DOI: 10.1007/s00424-014-1682-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 01/14/2023]
|
95
|
Chen J, Roberts JD. cGMP-dependent protein kinase I gamma encodes a nuclear localization signal that regulates nuclear compartmentation and function. Cell Signal 2014; 26:2633-44. [PMID: 25172423 PMCID: PMC4254301 DOI: 10.1016/j.cellsig.2014.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
Abstract
cGMP-dependent protein kinase I (PKGI) plays an important role in regulating how cGMP specifies vascular smooth muscle cell (SMC) phenotype. Although studies indicate that PKGI nuclear localization controls how cGMP regulates gene expression in SMC, information about the mechanisms that regulate PKGI nuclear compartmentation and its role in directly regulating cell phenotype is limited. Here we characterize a nuclear localization signal sequence (NLS) in PKGIγ, a proteolytically cleaved PKGI kinase fragment that translocates to the nucleus of SMC. Immuno-localization studies using cells expressing native and NLS-mutant PKGIγ, and treated with a small molecule nuclear transport inhibitor, indicated that PKGIγ encodes a constitutively active NLS that requires importin α and β for regulation of its compartmentation. Moreover, studies utilizing a genetically encoded nuclear phospho-CREB biosensor probe and fluorescence lifetime imaging microscopy demonstrated that this NLS controls PKGIγ nuclear function. In addition, although cytosolic PKGIγ-activity was observed to stimulate MAPK/ERK-mediated nuclear CREB signaling in SMC, NLS-mediated PKGIγ nuclear activity alone was determined to increase the expression of differentiation marker proteins in these cells. These results indicate that NLS-mediated nuclear PKGIγ localization plays an important role in how PKGI regulates vascular SMC phenotype.
Collapse
Affiliation(s)
- Jingsi Chen
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Cambridge, MA, USA
| | - Jesse D Roberts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Cambridge, MA, USA; Departments of Anesthesia, Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
96
|
Gong W, Yan M, Chen J, Chaugai S, Chen C, Wang D. Chronic inhibition of cyclic guanosine monophosphate-specific phosphodiesterase 5 prevented cardiac fibrosis through inhibition of transforming growth factor β-induced Smad signaling. Front Med 2014; 8:445-55. [PMID: 25416030 DOI: 10.1007/s11684-014-0378-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 09/25/2014] [Indexed: 12/20/2022]
Abstract
Recent evidences suggested that cyclic guanosine monophosphate-specific phosphodiesterase 5 (PDE5) inhibitor represents an important therapeutic target for cardiovascular diseases. Whether and how it ameliorates cardiac fibrosis, a major cause of diastolic dysfunction and heart failure, is unknown. The purpose of this study was to investigate the effects of PDE5 inhibitor on cardiac fibrosis. We assessed cardiac fibrosis and pathology in mice subjected to transverse aortic constriction (TAC). Oral sildenafil, a PDE5 inhibitor, was administered in the therapy group. In control mice, 4 weeks of TAC induced significant cardiac dysfunction, cardiac fibrosis, and cardiac fibroblast activation (proliferation and transformation to myofibroblasts). Sildenafil treatment markedly prevented TAC-induced cardiac dysfunction, cardiac fibrosis and cardiac fibroblast activation but did not block TAC-induced transforming growth factor-β1 (TGF-β1) production and phosphorylation of Smad2/3. In isolated cardiac fibroblasts, sildenafil blocked TGF-β1-induced cardiac fibroblast transformation, proliferation and collagen synthesis. Furthermore, we found that sildenafil induced phosphorylated cAMP response element binding protein (CREB) and reduced CREB-binding protein 1 (CBP1) recruitment to Smad transcriptional complexes. PDE5 inhibition prevents cardiac fibrosis by reducing CBP1 recruitment to Smad transcriptional complexes through CREB activation in cardiac fibroblasts.
Collapse
Affiliation(s)
- Wei Gong
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | | | | | | | | | | |
Collapse
|
97
|
Roles of cGMP-dependent protein kinase I (cGKI) and PDE5 in the regulation of Ang II-induced cardiac hypertrophy and fibrosis. Proc Natl Acad Sci U S A 2014; 111:12925-9. [PMID: 25139994 DOI: 10.1073/pnas.1414364111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Conflicting results have been reported for the roles of cGMP and cGMP-dependent protein kinase I (cGKI) in various pathological conditions leading to cardiac hypertrophy and fibrosis. A cardioprotective effect of cGMP/cGKI has been reported in whole animals and isolated cardiomyocytes, but recent evidence from a mouse model expressing cGKIβ only in smooth muscle (βRM) but not in cardiomyocytes, endothelial cells, or fibroblasts has forced a reevaluation of the requirement for cGKI activity in the cardiomyocyte antihypertrophic effects of cGMP. In particular, βRM mice developed the same hypertrophy as WT controls when subjected to thoracic aortic constriction or isoproterenol infusion. Here, we challenged βRM and WT (Ctr) littermate control mice with angiotensin II (AII) infusion (7 d; 2 mg ⋅ kg(-1) ⋅ d(-1)) to induce hypertrophy. Both genotypes developed cardiac hypertrophy, which was more pronounced in Ctr animals. Cardiomyocyte size and interstitial fibrosis were increased equally in both genotypes. Addition of sildenafil, a phosphodiesterase 5 (PDE5) inhibitor, in the drinking water had a small effect in reducing myocyte hypertrophy in WT mice and no effect in βRM mice. However, sildenafil substantially blocked the increase in collagen I, fibronectin 1, TGFβ, and CTGF mRNA in Ctr but not in βRM hearts. These data indicate that, for the initial phase of AII-induced cardiac hypertrophy, lack of cardiomyocyte cGKI activity does not worsen hypertrophic growth. However, expression of cGKI in one or more cell types other than smooth muscle is necessary to allow the antifibrotic effect of sildenafil.
Collapse
|
98
|
Volpe M. Natriuretic peptides and cardio-renal disease. Int J Cardiol 2014; 176:630-9. [PMID: 25213572 DOI: 10.1016/j.ijcard.2014.08.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022]
Abstract
The natriuretic peptide (NP) system is an important endocrine, autocrine and paracrine system, consisting of a family of peptides which provide cardiac, renal and vascular effects that, through their beneficial physiological actions, play a key role in maintaining overall cardiovascular health. Traditionally, the pathophysiological origins of cardio-renal disease have been viewed as the domain of the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS), with inappropriate activation of both systems leading to deleterious changes in cardio-renal function and structure. Therapies designed to suppress the RAAS and the SNS have been routinely employed to address the consequences of cardio-renal disease. However, it is now becoming increasingly apparent that enhancing the beneficial physiological effects of the NP system may represent an attractive alternative therapeutic approach to counter the pathophysiological effects of disease. In particular, innovative therapeutic strategies aimed at enhancing the physiological benefits afforded by NPs while simultaneously suppressing the RAAS are generating increasing interest as potential treatment options for the management of cardio-renal disease.
Collapse
Affiliation(s)
- Massimo Volpe
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome Sapienza, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
99
|
Hypoxia preconditioned mesenchymal stem cells prevent cardiac fibroblast activation and collagen production via leptin. PLoS One 2014; 9:e103587. [PMID: 25116394 PMCID: PMC4130526 DOI: 10.1371/journal.pone.0103587] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/29/2014] [Indexed: 12/21/2022] Open
Abstract
AIMS Activation of cardiac fibroblasts into myofibroblasts constitutes a key step in cardiac remodeling after myocardial infarction (MI), due to interstitial fibrosis. Mesenchymal stem cells (MSCs) have been shown to improve post-MI remodeling an effect that is enhanced by hypoxia preconditioning (HPC). Leptin has been shown to promote cardiac fibrosis. The expression of leptin is significantly increased in MSCs after HPC but it is unknown whether leptin contributes to MSC therapy or the fibrosis process. The objective of this study was to determine whether leptin secreted from MSCs modulates cardiac fibrosis. METHODS Cardiac fibroblast (CF) activation was induced by hypoxia (0.5% O2). The effects of MSCs on fibroblast activation were analyzed by co-culturing MSCs with CFs, and detecting the expression of α-SMA, SM22α, and collagen IαI in CFs by western blot, immunofluorescence and Sirius red staining. In vivo MSCs antifibrotic effects on left ventricular remodeling were investigated using an acute MI model involving permanent ligation of the left anterior descending coronary artery. RESULTS Co-cultured MSCs decreased fibroblast activation and HPC enhanced the effects. Leptin deficit MSCs from Ob/Ob mice did not decrease fibroblast activation. Consistent with this, H-MSCs significantly inhibited cardiac fibrosis after MI and mediated decreased expression of TGF-β/Smad2 and MRTF-A in CFs. These effects were again absent in leptin-deficient MSCs. CONCLUSION Our data demonstrate that activation of cardiac fibroblast was inhibited by MSCs in a manner that was leptin-dependent. The mechanism may involve blocking TGF-β/Smad2 and MRTF-A signal pathways.
Collapse
|
100
|
Heme oxygenase suppresses markers of heart failure and ameliorates cardiomyopathy in L-NAME-induced hypertension. Eur J Pharmacol 2014; 734:23-34. [PMID: 24726875 DOI: 10.1016/j.ejphar.2014.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 03/11/2014] [Accepted: 03/20/2014] [Indexed: 01/08/2023]
Abstract
Heart failure and related cardiac complications remains a great health challenge. We investigated the effects of upregulating heme-oxygenase (HO) on myocardial histo-pathological lesions, proinflammatory cytokines/chemokines, oxidative mediators and important markers of heart failure such as osteopontin and osteoprotergerin in N(ω)-nitro-l-arginine methyl ester (L-NAME)-induced hypertension. Treatment with the HO-inducer, heme-arginate improved myocardial morphology in L-NAME hypertensive rats by attenuating subendocardial injury, interstitial fibrosis, mononuclear-cell infiltration and cardiomyocyte hypertrophy. These were associated with the reduction of several inflammatory/oxidative mediators including chemokines/cytokines such as macrophage inflammatory protein-1 alpha (MIP-1α), macrophage chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1β, endothelin-1, 8-isoprostane, nitrotyrosine, and aldosterone. Similarly, heme-arginate abated the elevated levels of extracellular matrix/remodeling proteins including transforming-growth factor beta (TGF-β1) and collagen-IV in the myocardium. These were accompanied by significant reduction of proteins of heart failure such as osteopontin and osteoprotegerin. Interestingly, the cardio-protective effects of heme-arginate were associated with the potentiation of adiponectin, atrial-natriuretic peptide (ANP), HO-1, HO-activity, cyclic gnanosine monophosphate (cGMP) and the total-anti-oxidant capacity, whereas the HO-inhibitor, chromium-mesoporphyrin nullified the effects of heme-arginate, exacerbating inflammatory injury and oxidative insults. We conclude that heme-arginate therapy protects myocardial damage by potentiating the HO-adiponectin-ANP axis, which in turn suppressed the elevated levels of aldosterone, pro-inflammatory chemokines/cytokines, mononuclear-cell infiltration and oxidative stress, with concomitant reduction of extracellular matrix/remodeling proteins and heart failure proteins. These data suggest a cardio-protective role of the HO system against L-NAME-induced hypertension that could be explored in the design of novel strategies against cardiomyopathy.
Collapse
|