51
|
Abstract
The circadian clock plays an integral role in the regulation of physiological processes, including the regulation of blood pressure. However, deregulation of the clock can lead to pathophysiological states including hypertension. Recent work has implicated the circadian clock genes in the regulation of processes in the heart, kidney, vasculature, and the metabolic organs, which are all critical in the regulation of the blood pressure. The goal of this review is to provide an introduction and general overview into the role of circadian clock genes in the regulation of blood pressure with a focus on their deregulation in the etiology of hypertension. This review will focus on the core circadian clock genes CLOCK, BMAL1, Per, and Cry.
Collapse
|
52
|
Obayashi K, Saeki K, Kurumatani N. Relationship between asymmetric dimethylarginine and nocturia in the general elderly population: The HEIJO-KYO cohort. Neurourol Urodyn 2014; 34:769-73. [PMID: 25066965 DOI: 10.1002/nau.22647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/30/2014] [Indexed: 11/08/2022]
Abstract
AIMS To evaluate the relationship between asymmetric dimethylarginine (ADMA) and nocturia. METHODS A total of 862 community-based elderly individuals were examined in this cross-sectional study (mean age, 72.1 years). We measured nocturnal void frequency and serum ADMA levels. Nocturia was ascertained for a frequency of two or more nocturnal voids. RESULTS Nocturia was observed in 262 (30.4%) participants. Univariate logistic regression models revealed a significant association between prevalent nocturia and ADMA levels (crude odds ratio [OR], 1.556 [2nd vs. 1st tertile]; 95% confidence interval [CI], 1.066-2.270; P = 0.022; crude OR, 2.114 [3rd vs. 1st tertile]; 95% CI, 1.453-3.072; P < 0.001). Univariate logistic regression models also revealed marginal to significant associations between prevalent nocturia and age, gender, calcium channel blocker use, nitric oxide-related drug use, diabetes, estimated glomerular filtration rate, insomnia, benign prostatic hyperplasia, overnight urine volume, and endogenous melatonin levels. In the multivariate model simultaneously adjusted for the former variables, higher ADMA levels were significantly associated with higher OR for nocturia (adjusted OR, 1.556 [3rd vs. 1st tertiles]; 95% CI, 1.010-2.397; P = 0.045). CONCLUSION Serum ADMA levels, an endogenous inhibitor of nitric oxide synthase, are significantly associated with prevalent nocturia in the general elderly population.
Collapse
Affiliation(s)
- Kenji Obayashi
- Department of Community Health and Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Keigo Saeki
- Department of Community Health and Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Norio Kurumatani
- Department of Community Health and Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| |
Collapse
|
53
|
Jensen LD, Gyllenhaal C, Block K. Circadian angiogenesis. Biomol Concepts 2014; 5:245-56. [DOI: 10.1515/bmc-2014-0009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/08/2014] [Indexed: 12/25/2022] Open
Abstract
AbstractDaily rhythms of light/darkness, activity/rest and feeding/fasting are important in human physiology and their disruption (for example by frequent changes between day and night shifts) increases the risk of disease. Many of the diseases found to be associated with such disrupted circadian lifestyles, including cancer, cardiovascular diseases, metabolic disorders and neurological diseases, depend on pathological de-regulation of angiogenesis, suggesting that disrupting the circadian clock will impair the physiological regulation of angiogenesis leading to development and progression of these diseases. Today there is little known regarding circadian regulation of pathological angiogenesis but there is some evidence that supports both direct and indirect regulation of angiogenic factors by the cellular circadian clock machinery, as well as by circulating circadian factors, important for coordinating circadian rhythms in the organism. Through highlighting recent advances both in pre-clinical and clinical research on various diseases including cancer, cardiovascular disorders and obesity, we will here present an overview of the available knowledge on the importance of circadian regulation of angiogenesis and discuss how the circadian clock may provide alternative targets for pro- or anti-angiogenic therapy in the future.
Collapse
Affiliation(s)
| | | | - Keith Block
- 3The Block Center for Integrative Cancer Treatment, 60077 Skokie, IL, USA
| |
Collapse
|
54
|
Affiliation(s)
- Michelle L Gumz
- Division of Nephrology, Hypertension, and Renal Transplantation, Departments of Medicine and Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
55
|
Richards J, Ko B, All S, Cheng KY, Hoover RS, Gumz ML. A role for the circadian clock protein Per1 in the regulation of the NaCl co-transporter (NCC) and the with-no-lysine kinase (WNK) cascade in mouse distal convoluted tubule cells. J Biol Chem 2014; 289:11791-11806. [PMID: 24610784 DOI: 10.1074/jbc.m113.531095] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been well established that blood pressure and renal function undergo circadian fluctuations. We have demonstrated that the circadian protein Per1 regulates multiple genes involved in sodium transport in the collecting duct of the kidney. However, the role of Per1 in other parts of the nephron has not been investigated. The distal convoluted tubule (DCT) plays a critical role in renal sodium reabsorption. Sodium is reabsorbed in this segment through the actions of the NaCl co-transporter (NCC), which is regulated by the with-no-lysine kinases (WNKs). The goal of this study was to test if Per1 regulates sodium transport in the DCT through modulation of NCC and the WNK kinases, WNK1 and WNK4. Pharmacological blockade of nuclear Per1 entry resulted in decreased mRNA expression of NCC and WNK1 but increased expression of WNK4 in the renal cortex of mice. These findings were confirmed by using Per1 siRNA and pharmacological blockade of Per1 nuclear entry in mDCT15 cells, a model of the mouse distal convoluted tubule. Transcriptional regulation was demonstrated by changes in short lived heterogeneous nuclear RNA. Chromatin immunoprecipitation experiments demonstrated interaction of Per1 and CLOCK with the promoters of NCC, WNK1, and WNK4. This interaction was modulated by blockade of Per1 nuclear entry. Importantly, NCC protein expression and NCC activity, as measured by thiazide-sensitive, chloride-dependent (22)Na uptake, were decreased upon pharmacological inhibition of Per1 nuclear entry. Taken together, these data demonstrate a role for Per1 in the transcriptional regulation of NCC, WNK1, and WNK4.
Collapse
Affiliation(s)
- Jacob Richards
- Departments of Medicine, University of Florida, Gainesville, Florida 32610; Departments of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Benjamin Ko
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Sean All
- Departments of Medicine, University of Florida, Gainesville, Florida 32610
| | - Kit-Yan Cheng
- Departments of Medicine, University of Florida, Gainesville, Florida 32610
| | - Robert S Hoover
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia 30322; Research Service, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia 30033
| | - Michelle L Gumz
- Departments of Medicine, University of Florida, Gainesville, Florida 32610; Departments of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610.
| |
Collapse
|
56
|
Favero G, Paganelli C, Buffoli B, Rodella LF, Rezzani R. Endothelium and its alterations in cardiovascular diseases: life style intervention. BIOMED RESEARCH INTERNATIONAL 2014; 2014:801896. [PMID: 24719887 PMCID: PMC3955677 DOI: 10.1155/2014/801896] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/11/2014] [Indexed: 01/07/2023]
Abstract
The endothelium, which forms the inner cellular lining of blood vessels and lymphatics, is a highly metabolically active organ that is involved in many physiopathological processes, including the control of vasomotor tone, barrier function, leukocyte adhesion, and trafficking and inflammation. In this review, we summarized and described the following: (i) endothelial cell function in physiological conditions and (ii) endothelial cell activation and dysfunction in the main cardiovascular diseases (such as atherosclerosis, and hypertension) and to diabetes, cigarette smoking, and aging physiological process. Finally, we presented the currently available evidence that supports the beneficial effects of physical activity and various dietary compounds on endothelial functions.
Collapse
Affiliation(s)
- Gaia Favero
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Corrado Paganelli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Barbara Buffoli
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luigi Fabrizio Rodella
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Rita Rezzani
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
57
|
Clock upregulates intercellular adhesion molecule-1 expression and promotes mononuclear cells adhesion to endothelial cells. Biochem Biophys Res Commun 2013; 443:586-91. [PMID: 24333415 DOI: 10.1016/j.bbrc.2013.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/03/2013] [Indexed: 12/16/2022]
Abstract
Clock is a basic helix-loop-helix (bHLH) transcription factor that plays important role in circadian rhythms of various physiological functions. Previous study showed that the expression of intercellular adhesion molecule-1 (ICAM-1) was reduced in the liver tissues of Clock mutant mice. However, how Clock regulates ICAM-1 expression and whether Clock affects cell adhesion function remain unknown. In the present study, we found that exogenous expression of Clock upregulated the gene expressions of ICAM-1 and other adhesion-related genes including VCAM1 and CCL-2, and increased the transcriptional activity of ICAM-1 in mouse brain microvascular endothelial cell lines. In contrast, loss of Clock decreased these gene expressions and ICAM-1 transcriptional activity. Chromatin immunoprecipitation (ChIP) assay revealed that Clock binds to the E-box-like enhancer of ICAM-1 gene. ICAM-1 gene showed rhythmic expression in endothelial cells after serum shock in vitro, suggesting ICAM-1 may be a Clock-controlled gene. Clock regulates the adhesion of mononuclear cells to endothelial cells via ICAM-1. Together, our findings show that Clock is a positive regulator of ICAM-1, and promotes the adhesion of mononuclear cells to endothelial cells.
Collapse
|
58
|
Richards J, Cheng KY, All S, Skopis G, Jeffers L, Lynch IJ, Wingo CS, Gumz ML. A role for the circadian clock protein Per1 in the regulation of aldosterone levels and renal Na+ retention. Am J Physiol Renal Physiol 2013; 305:F1697-704. [PMID: 24154698 DOI: 10.1152/ajprenal.00472.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The circadian clock plays an important role in the regulation of physiological processes, including renal function and blood pressure. We have previously shown that the circadian protein period (Per)1 regulates the expression of multiple Na(+) transport genes in the collecting duct, including the α-subunit of the renal epithelial Na(+) channel. Consistent with this finding, Per1 knockout mice exhibit dramatically lower blood pressure than wild-type mice. We have also recently demonstrated the potential opposing actions of cryptochrome (Cry)2 on Per1 target genes. Recent work by others has demonstrated that Cry1/2 regulates aldosterone production through increased expression of the adrenal gland-specific rate-limiting enzyme 3β-dehydrogenase isomerase (3β-HSD). Therefore, we tested the hypothesis that Per1 plays a role in the regulation of aldosterone levels and renal Na(+) retention. Using RNA silencing and pharmacological blockade of Per1 nuclear entry in the NCI-H295R human adrenal cell line, we showed that Per1 regulates 3β-HSD expression in vitro. These results were confirmed in vivo: mice with reduced levels of Per1 had decreased levels of plasma aldosterone and decreased mRNA expression of 3β-HSD. We postulated that mice with reduced Per1 would have a renal Na(+)-retaining defect. Indeed, metabolic cage experiments demonstrated that Per1 heterozygotes excreted more urinary Na(+) compared with wild-type mice. Taken together, these data support the hypothesis that Per1 regulates aldosterone levels and that Per1 plays an integral role in the regulation of Na(+) retention.
Collapse
|
59
|
Ko ML, Shi L, Huang CCY, Grushin K, Park SY, Ko GYP. Circadian phase-dependent effect of nitric oxide on L-type voltage-gated calcium channels in avian cone photoreceptors. J Neurochem 2013; 127:314-28. [PMID: 23895452 DOI: 10.1111/jnc.12384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) plays an important role in phase-shifting of circadian neuronal activities in the suprachiasmatic nucleus and circadian behavior activity rhythms. In the retina, NO production is increased in a light-dependent manner. While endogenous circadian oscillators in retinal photoreceptors regulate their physiological states, it is not clear whether NO also participates in the circadian regulation of photoreceptors. In this study, we demonstrate that NO is involved in the circadian phase-dependent regulation of L-type voltage-gated calcium channels (L-VGCCs). In chick cone photoreceptors, the L-VGCCα1 subunit expression and the maximal L-VGCC currents are higher at night, and both Ras-mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (Erk) and Ras-phosphatidylinositol 3 kinase (PI3K)-protein kinase B (Akt) are part of the circadian output pathways regulating L-VGCCs. The NO-cGMP-protein kinase G (PKG) pathway decreases L-VGCCα1 subunit expression and L-VGCC currents at night, but not during the day, and exogenous NO donor or cGMP decreases the phosphorylation of Erk and Akt at night. The protein expression of neural NO synthase (nNOS) is also under circadian control, with both nNOS and NO production being higher during the day. Taken together, NO/cGMP/PKG signaling is involved as part of the circadian output pathway to regulate L-VGCCs in cone photoreceptors. In cone photoreceptors, the protein expression of neural nitric oxide synthase (nNOS) and NO production are under circadian control. NO-cGMP-protein kinase G (PKG) signaling serves in the circadian output pathway to regulate the circadian rhythms of L-type voltage-gated calcium channels (L-VGCCs) in part through regulating the phosphorylation states of extracellular-signal-regulated kinase (Erk) and protein kinase B (Akt).
Collapse
Affiliation(s)
- Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | | | | | | | | |
Collapse
|
60
|
Katayama T, Sueta D, Kataoka K, Hasegawa Y, Koibuchi N, Toyama K, Uekawa K, Mingjie M, Nakagawa T, Maeda M, Ogawa H, Kim-Mitsuyama S. Long-term renal denervation normalizes disrupted blood pressure circadian rhythm and ameliorates cardiovascular injury in a rat model of metabolic syndrome. J Am Heart Assoc 2013; 2:e000197. [PMID: 23974905 PMCID: PMC3828797 DOI: 10.1161/jaha.113.000197] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Although renal denervation significantly reduces blood pressure in patients with resistant hypertension, the role of the renal nerve in hypertension with metabolic syndrome is unknown. We investigated the impact of long‐term renal denervation on SHR/NDmcr‐cp(+/+) (SHRcp) rats, a useful rat model of metabolic syndrome, to determine the role of the renal nerve in hypertension with metabolic syndrome. Methods and Results SHRcp rats were divided into (1) a renal denervation (RD) group and (2) a sham operation group (control) to examine the effects of long‐term RD on blood pressure circadian rhythm, renal sodium retention‐related molecules, the renin‐angiotensin‐aldosterone system, metabolic disorders, and organ injury. RD in SHRcp rats not only significantly reduced blood pressure but also normalized blood pressure circadian rhythm from the nondipper to the dipper type, and this improvement was associated with an increase in urinary sodium excretion and the suppression of renal Na+‐Cl− cotransporter upregulation. RD significantly reduced plasma renin activity. RD significantly prevented cardiovascular remodeling and impairment of vascular endothelial function and attenuated cardiovascular oxidative stress. However, RD failed to ameliorate obesity, metabolic disorders, and renal injury and failed to reduce systemic sympathetic activity in SHRcp rats. Conclusions By including the upregulation of the Na+‐Cl− cotransporter, the renal sympathetic nerve is involved in the disruption of blood pressure circadian rhythm as well as hypertension in metabolic syndrome. Thus, RD seems to be a useful therapeutic strategy for hypertension with metabolic syndrome.
Collapse
Affiliation(s)
- Tetsuji Katayama
- Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Methods for detection and characterization of protein S-nitrosylation. Methods 2013; 62:138-50. [PMID: 23628946 DOI: 10.1016/j.ymeth.2013.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 11/24/2022] Open
Abstract
Reversible protein S-nitrosylation, defined as the covalent addition of a nitroso moiety to the reactive thiol group on a cysteine residue, has received increasing recognition as a critical post-translational modification that exerts ubiquitous influence in a wide range of cellular pathways and physiological processes. Due to the lability of the S-NO bond, which is a dynamic modification, and the low abundance of endogenously S-nitrosylated proteins in vivo, unambiguous identification of S-nitrosylated proteins and S-nitrosylation sites remains methodologically challenging. In this review, we summarize recent advancements and the use of state-of-art approaches for the enrichment, systematic identification and quantitation of S-nitrosylation protein targets and their modification sites at the S-nitrosoproteome scale. These advancements have facilitated the global identification of >3000 S-nitrosylated proteins that are associated with wide range of human diseases. These strategies hold promise to site-specifically unravel potential molecular targets and to change S-nitrosylation-based pathophysiology, which may further the understanding of the potential role of S-nitrosylation in diseases.
Collapse
|
62
|
Richards J, Gumz ML. Mechanism of the circadian clock in physiology. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1053-64. [PMID: 23576606 DOI: 10.1152/ajpregu.00066.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It has been well established that the circadian clock plays a crucial role in the regulation of almost every physiological process. It also plays a critical role in pathophysiological states including those of obesity and diabetes. Recent evidence has highlighted the potential for targeting the circadian clock as a potential drug target. New studies have also demonstrated the existence of "clock-independent effects" of the circadian proteins, leading to exciting new avenues of research in the circadian clock field in physiology. The goal of this review is to provide an introduction to and overview of the circadian clock in physiology, including mechanisms, targets, and role in disease states. The role of the circadian clocks in the regulation of the cardiovascular system, renal function, metabolism, the endocrine system, immune, and reproductive systems will be discussed.
Collapse
Affiliation(s)
- Jacob Richards
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
63
|
Chernysheva MP, Romanova IV, Mikhrina AL. Effect of retinol on interaction of the protein period1, oxytocin, and GABA at the prenatal period of formation of the circadian clock-mechanism in rats. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s002209301301012x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
64
|
Anea CB, Cheng B, Sharma S, Kumar S, Caldwell RW, Yao L, Ali MI, Merloiu AM, Stepp DW, Black SM, Fulton DJR, Rudic RD. Increased superoxide and endothelial NO synthase uncoupling in blood vessels of Bmal1-knockout mice. Circ Res 2012; 111:1157-65. [PMID: 22912383 PMCID: PMC3740771 DOI: 10.1161/circresaha.111.261750] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE Disruption of the circadian clock in mice produces vascular dysfunction as evidenced by impairments in endothelium-dependent signaling, vasomotion, and blood vessel remodeling. Although the altered function of endothelial NO synthase and the overproduction of reactive oxygen species are central to dysfunction of the endothelium, to date, the impact of the circadian clock on endothelial NO synthase coupling and vascular reactive oxygen species production is not known. OBJECTIVE The goals of the present study were to determine whether deletion of a critical component of the circadian clock, Bmal1, can influence endothelial NO synthase coupling and reactive oxygen species levels in arteries from Bmal1-knockout (KO) mice. METHODS AND RESULTS Endothelial function was reduced in aortae from Bmal1-KO mice and improved by scavenging reactive oxygen species with polyethylene glycol-superoxide dismutase and nonselectively inhibiting cyclooxygenase isoforms with indomethacin. Aortae from Bmal1-KO mice exhibited enhanced superoxide levels as determined by electron paramagnetic resonance spectroscopy and dihydroethidium fluorescence, an elevation that was abrogated by administration of nitro-l-arginine methyl ester. High-performance liquid chromatography analysis revealed a reduction in tetrahydrobiopterin and an increase in dihydrobiopterin levels in the lung and aorta of Bmal1-KO mice, whereas supplementation with tetrahydrobiopterin improved endothelial function in the circadian clock KO mice. Furthermore, levels of tetrahydrobiopterin, dihydrobiopterin, and the key enzymes that regulate biopterin bioavailability, GTP cyclohydrolase and dihydrofolate reductase exhibited a circadian expression pattern. CONCLUSIONS Having an established influence in the metabolic control of glucose and lipids, herein, we describe a novel role for the circadian clock in metabolism of biopterins, with a significant impact in the vasculature, to regulate coupling of endothelial NO synthase, production of superoxide, and maintenance of endothelial function.
Collapse
Affiliation(s)
- Ciprian B Anea
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Arese M, Magnifico MC, Mastronicola D, Altieri F, Grillo C, Blanck TJJ, Sarti P. Nanomolar melatonin enhances nNOS expression and controls HaCaT-cells bioenergetics. IUBMB Life 2012; 64:251-8. [PMID: 22271455 DOI: 10.1002/iub.603] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/12/2011] [Indexed: 01/08/2023]
Abstract
A novel role of melatonin was unveiled, using immortalized human keratinocyte cells (HaCaT) as a model system. Within a time window compatible with its circadian rhythm, melatonin at nanomolar concentration raised both the expression level of the neuronal nitric oxide synthase mRNA and the nitric oxide oxidation products, nitrite and nitrate. On the same time scale, a depression of the mitochondrial membrane potential was detected together with a decrease of the oxidative phosphorylation efficiency, compensated by glycolysis as testified by an increased production of lactate. The melatonin concentration, ∼ nmolar, inducing the bioenergetic effects and their time dependence, both suggest that the observed nitric oxide-induced mitochondrial changes might play a role in the metabolic pathways characterizing the circadian melatonin chemistry.
Collapse
Affiliation(s)
- Marzia Arese
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
66
|
Hemmeryckx B, Van Hove CE, Fransen P, Emmerechts J, Kauskot A, Bult H, Lijnen HR, Hoylaerts MF. Progression of the prothrombotic state in aging Bmal1-deficient mice. Arterioscler Thromb Vasc Biol 2011; 31:2552-9. [PMID: 21799179 DOI: 10.1161/atvbaha.111.229062] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The goal of this study was to examine the functional relationship between aging endothelium and thrombogenicity in a mouse model of premature aging. METHODS AND RESULTS Coagulation tests and factors, blood cell counts, aorta endothelial function, aorta gene expression, and FeCl(3)-induced thrombosis in mesenteric blood vessels were analyzed in 10- to 30-week-old brain and muscle ARNT-like protein-1 (Bmal1)-deficient (knockout [KO]) mice and wild-type littermates. Ten-week-old KO mice manifested shortened prothrombin times (9.7 versus 11.3 seconds in wild-type) and elevated plasma fibrinogen (264 versus 172 mg/dL). At 30 weeks, factor VII (198% versus 149%), and platelet counts (2049 versus 1354 K/μL) were increased in KO mice. Gene deficiency reduced the vasoactive nitric oxide production at 10 and 30 weeks and tended to reduce and increase the protein expression of thrombomodulin and von Willebrand factor, respectively, with aging. Shortened venular and arteriolar occlusion times on FeCl(3)-induced injury in 10-week-old KO mice confirmed higher thrombogenicity, culminating in priapism, observed in 60% of 25- to 30-week-old KO males. CONCLUSION Endothelial dysfunction and a hypercoagulable state cause early arterial and venous thrombogenicity in Bmal1 KO mice. With aging, progressive endothelial dysfunction, rising platelet counts, and high factor VII further enhance thrombogenicity, provoking priapism.
Collapse
Affiliation(s)
- Bianca Hemmeryckx
- Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Oishi K, Koyanagi S, Ohkura N. Circadian mRNA expression of coagulation and fibrinolytic factors is organ-dependently disrupted in aged mice. Exp Gerontol 2011; 46:994-9. [PMID: 21963655 DOI: 10.1016/j.exger.2011.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/28/2011] [Accepted: 09/13/2011] [Indexed: 11/29/2022]
Abstract
To evaluate the effects of aging on the circadian gene expression of coagulation and fibrinolytic factors in the mouse tissues, we examined temporal mRNA expression profiles of plasminogen activator inhibitor-1 (PAI-1), tissue-type plasminogen activator (tPA), tissue factor (TF), and thrombomodulin (TM) genes together with circadian clock genes in the brains, hearts and livers of young (5weeks old) and aged (15months old) mice. Cardiac mRNA expression of β-myosin heavy chain (β-MHC), a molecular marker of cardiac hypertrophy, was obviously increased in the aged mice. Rhythmic expression of the clock genes mPer2 and BMAL1 in these organs was almost identical between young and aged mice, whereas that of PAI-1, TF and TM mRNAs and of clock-controlled genes such as DBP and Dec1 were damped to low levels in the livers of aged mice. Expression levels of tPA mRNA were significantly decreased and those of TF were significantly elevated throughout the day in the brain of aged mice. Expression levels of PAI-1 in the heart of aged mice were continuously elevated over 2-fold the peak levels of young mice throughout the day. However, day/night fluctuations in plasma PAI-1 levels were unaffected by aging. Aging tissue- and time-dependently affects the mRNA expression of coagulation and fibrinolytic factors. Aging-dependent constitutive PAI-1 induction in the heart might be a risk factor for cardiovascular diseases that is independent of plasma PAI-1 levels.
Collapse
Affiliation(s)
- Katsutaka Oishi
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
68
|
Marozkina NV, Gaston B. S-Nitrosylation signaling regulates cellular protein interactions. Biochim Biophys Acta Gen Subj 2011; 1820:722-9. [PMID: 21745537 DOI: 10.1016/j.bbagen.2011.06.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/13/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND S-Nitrosothiols are made by nitric oxide synthases and other metalloproteins. Unlike nitric oxide, S-nitrosothiols are involved in localized, covalent signaling reactions in specific cellular compartments. These reactions are enzymatically regulated. SCOPE S-Nitrosylation affects interactions involved in virtually every aspect of normal cell biology. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation. MAJOR CONCLUSIONS AND SIGNIFICANCE S-Nitrosylation is a regulated signaling reaction.
Collapse
Affiliation(s)
- Nadzeya V Marozkina
- University of Virginia School of Medicine, Division of Pediatric Respiratory Medicine, PO Box 800386, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
69
|
Abstract
Advancing age is the major risk factor for the development of CVD (cardiovascular diseases). This is attributable, in part, to the development of vascular endothelial dysfunction, as indicated by reduced peripheral artery EDD (endothelium-dependent dilation) in response to chemical [typically ACh (acetylcholine)] or mechanical (intravascular shear) stimuli. Reduced bioavailability of the endothelium-synthesized dilating molecule NO (nitric oxide) as a result of oxidative stress is the key mechanism mediating reduced EDD with aging. Vascular oxidative stress increases with age as a consequence of greater production of reactive oxygen species (e.g. superoxide) without a compensatory increase in antioxidant defences. Sources of increased superoxide production include up-regulation of the oxidant enzyme NADPH oxidase, uncoupling of the normally NO-producing enzyme, eNOS (endothelial NO synthase) (due to reduced availability of the cofactor tetrahydrobiopterin) and increased mitochondrial synthesis during oxidative phosphorylation. Increased bioactivity of the potent endothelial-derived constricting factor ET-1 (endothelin-1), reduced endothelial production of/responsiveness to dilatory prostaglandins, the development of vascular inflammation, formation of AGEs (advanced glycation end-products), an increased rate of endothelial apoptosis and reduced expression of oestrogen receptor α (in postmenopausal females) also probably contribute to impaired EDD with aging. Several lifestyle and biological factors modulate vascular endothelial function with aging, including regular aerobic exercise, dietary factors (e.g. processed compared with non-processed foods), body weight/fatness, vitamin D status, menopause/oestrogen deficiency and a number of conventional and non-conventional risk factors for CVD. Given the number of older adults now and in the future, more information is needed on effective strategies for the prevention and treatment of vascular endothelial aging.
Collapse
|
70
|
Brown SA, Pagani L, Cajochen C, Eckert A. Systemic and cellular reflections on ageing and the circadian oscillator: a mini-review. Gerontology 2010; 57:427-34. [PMID: 20980722 DOI: 10.1159/000320673] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 08/26/2010] [Indexed: 11/19/2022] Open
Abstract
From circulation to digestion to excretion, a circadian clock synchronizes most aspects of mammalian physiology with the solar day. During normal ageing, this daily coordination gradually erodes, and during pathological ageing such erosion is exacerbated. Recent experiments suggest that therapies aimed at sustaining circadian function increase quality of life in elderly patients. Hence, a better understanding of the interactions between the circadian clock and ageing - at both cellular and systemic levels - could lead to direct benefits for aged individuals.
Collapse
Affiliation(s)
- Steven A Brown
- Department of Pharmacology and Toxicology, University of Zurich, Switzerland. steven.brown @ pharma.uzh.ch
| | | | | | | |
Collapse
|
71
|
Takeda N, Maemura K. Cardiovascular disease, chronopharmacotherapy, and the molecular clock. Adv Drug Deliv Rev 2010; 62:956-66. [PMID: 20451570 DOI: 10.1016/j.addr.2010.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/10/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
Abstract
Cardiovascular functions such as heart rate and blood pressure show 24h variation. The incidence of cardiovascular diseases including acute myocardial infarction and arrhythmia also exhibits diurnal variation. The center of this circadian clock is located in the suprachiasmatic nucleus in the hypothalamus. However, recent findings revealed that each organ, including cardiovascular tissues, has its own internal clock, which has been termed a peripheral clock. The functional roles played by peripheral clocks have been reported recently. Since the peripheral clock is considered to play considerable roles in the processes of cardiac tissues, the identification of genes specifically regulated by this clock will provide insights into its role in the pathogenesis of cardiovascular disorders. In addition, the discovery of small compounds that modulate the peripheral clock will help to establish chronotherapeutic approaches. Understanding the biological relevance of the peripheral clock will provide novel approaches to the prevention and treatment of cardiovascular diseases.
Collapse
|
72
|
Maio R, Perticone M, Sciacqua A, Tassone EJ, Naccarato P, Bagnato C, Iannopollo G, Sesti G, Perticone F. Oxidative Stress Impairs Endothelial Function in Nondipper Hypertensive Patients. Cardiovasc Ther 2010; 30:85-92. [DOI: 10.1111/j.1755-5922.2010.00183.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
73
|
Abstract
The circadian clock regulates many aspects of physiology, including cardiovascular function. Internal oscillators exist in endothelial, smooth muscle cells, and fibroblasts of the vasculature. Vascular tone and thrombus formation, 2 key elements of vascular function with regard to adverse cardiovascular events, exhibit diurnal rhythmicity. In this review, we describe changes in vascular function that result from genetic disruption of discrete elements of the circadian clock.
Collapse
Affiliation(s)
- Georgios K Paschos
- Department of Pharmacology, 153 Johnson Pavilion, 3620 Hamilton Walk, Philadelphia, PA 19104-6084.
| | | |
Collapse
|
74
|
Herrera MD, Mingorance C, Rodríguez-Rodríguez R, Alvarez de Sotomayor M. Endothelial dysfunction and aging: an update. Ageing Res Rev 2010; 9:142-52. [PMID: 19619671 DOI: 10.1016/j.arr.2009.07.002] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 12/19/2022]
Abstract
Aging is an important risk factor for the development of many cardiovascular diseases as atherosclerosis and hypertension with a common underlying circumstance: the progressive decline of endothelial function. Vascular endothelial dysfunction occurs during the human aging process and is accompanied by deterioration in the balance between vasodilator and vasoconstriction substances produced by the endothelium. This imbalance is mainly characterized by a progressive reduction of the bioavailability of nitric oxide (NO) and an increase in the production of cyclooxygenase (COX)-derived vasoconstrictor factors. Both circumstances are in turn related to an increased production of reactive oxygen and nitrogen species. The aim of this review is to describe the pathophysiological mechanisms involved in the endothelial function declination that accompanies the multifactorial aging process, including alterations related to oxidative stress and pro-inflammatory cytokines, senescence of endothelial cells and genetic factors.
Collapse
Affiliation(s)
- María Dolores Herrera
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/Profesor García González 2, 41012 Seville, Spain.
| | | | | | | |
Collapse
|
75
|
Abstract
Well over 2 decades have passed since the endothelium-derived relaxation factor was reported to be the gaseous molecule nitric oxide (NO). Although soluble guanylyl cyclase (which generates cyclic guanosine monophosphate, cGMP) was the first identified receptor for NO, it has become increasingly clear that NO exerts a ubiquitous influence in a cGMP-independent manner. In particular, many, if not most, effects of NO are mediated by S-nitrosylation, the covalent modification of a protein cysteine thiol by an NO group to generate an S-nitrosothiol (SNO). Moreover, within the current framework of NO biology, endothelium-derived relaxation factor activity (ie, G protein-coupled receptor-mediated, or shear-induced endothelium-derived NO bioactivity) is understood to involve a central role for SNOs, acting both as second messengers and signal effectors. Furthermore, essential roles for S-nitrosylation have been implicated in virtually all major functions of NO in the cardiovascular system. Here, we review the basic biochemistry of S-nitrosylation (and denitrosylation), discuss the role of S-nitrosylation in the vascular and cardiac functions of NO, and identify current and potential clinical applications.
Collapse
Affiliation(s)
- Brian Lima
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | | |
Collapse
|
76
|
Circadian control of mouse heart rate and blood pressure by the suprachiasmatic nuclei: behavioral effects are more significant than direct outputs. PLoS One 2010; 5:e9783. [PMID: 20339544 PMCID: PMC2842429 DOI: 10.1371/journal.pone.0009783] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 02/25/2010] [Indexed: 11/19/2022] Open
Abstract
Background Diurnal variations in the incidence of events such as heart attack and stroke suggest a role for circadian rhythms in the etiology of cardiovascular disease. The aim of this study was to assess the influence of the suprachiasmatic nucleus (SCN) circadian clock on cardiovascular function. Methodology/Principal Findings Heart rate (HR), blood pressure (BP) and locomotor activity (LA) were measured in circadian mutant (Vipr2−/−) mice and wild type littermates, using implanted radio-telemetry devices. Sleep and wakefulness were studied in similar mice implanted with electroencephalograph (EEG) electrodes. There was less diurnal variation in the frequency and duration of bouts of rest/activity and sleep/wake in Vipr2−/− mice than in wild type (WT) and short “ultradian” episodes of arousal were more prominent, especially in constant conditions (DD). Activity was an important determinant of circadian variation in BP and HR in animals of both genotypes; altered timing of episodes of activity and rest (as well as sleep and wakefulness) across the day accounted for most of the difference between Vipr2−/− mice and WT. However, there was also a modest circadian rhythm of resting HR and BP that was independent of LA. Conclusions/Significance If appropriate methods of analysis are used that take into account sleep and locomotor activity level, mice are a good model for understanding the contribution of circadian timing to cardiovascular function. Future studies of the influence of sleep and wakefulness on cardiovascular physiology may help to explain accumulating evidence linking disrupted sleep with cardiovascular disease in man.
Collapse
|
77
|
Abstract
In mammals, many physiological processes present diurnal variations, and most of these rhythms persist even in absence of environmental timing cues. These endogenous circadian rhythms are generated by intracellular timing mechanisms termed circadian clocks. In mammals, the master clock is located in the suprachiasmatic nuclei (SCN), but other brain regions and most peripheral tissues contain circadian clocks. These clocks are responsive to environmental cues, in particular light/dark and feeding/fasting cycles. In the last few years, tissue-specific knock-out and transgenic mouse models have helped to define the physiological roles of specific clocks. Recent reports indicate that the clock-physiology connection is bi-directional, and physiological cues, in particular the energetic status of the cell, can feed into the clockwork. This effect was discovered unexpectedly in molecular analyses of clock protein modifications. Beyond the positive and negative transcription/translation feedback loops of the molecular oscillator lies another level of complexity. Post-translational modifications of clock proteins are both critical for the timing of the clock feedback mechanism and to provide regulatory fine-tuning. This review summarizes recent advances in our understanding of the roles of peripheral clocks and of post-translational modifications occurring on clock proteins. These two matters are at the intersection of physiology, metabolism, and the circadian system.
Collapse
Affiliation(s)
- David Duguay
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, 6875 LaSalle Blvd., Montreal, QC, Canada
| | | |
Collapse
|
78
|
Zhang F, Sun AS, Yu LM, Wu Q, Gong QH. Effects of isorhynchophylline on angiotensin II-induced proliferation in rat vascular smooth muscle cells. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.60.12.0014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) is a crucial event in cardiovascular diseases. Isorhynchophylline, an alkaloid from a traditional Chinese medicine Gambirplant, has been used to treat cardiovascular diseases. The aim of this study was to investigate the effects of isorhynchophylline on angiotensin II (Ang II)-induced proliferation of rat VSMCs. VSMCs were isolated from rat artery and cultured for 14 days before experimentation. The effect of isorhynchophylline on Ang II-induced proliferation was evaluated by cell number, MTT assay and flow cytometry, and nitric oxide (NO) content and activity of NO synthase (NOS) were measured. The expression of proto-oncogene c-fos, osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) mRNAs was measured by real-time RT-PCR. VSMC cultures were verified by morphology and immunostaining with α-smooth muscle actin. Isorhynchophylline (0.1–10.0 μM) was not toxic to VSMCs, but markedly decreased Ang II (1.0 μm)-enhanced cell number and MTT intensity, and blocked cell transition from G0/G1 to S phase. Furthermore, isorhynchophylline increased the NO content and NOS activity, and suppressed Ang II-induced over-expression of c-fos, OPN and PCNA. Thus, isorhynchophylline was effective against Ang-II induced cell proliferation, an effect that appears to be due, at least in part, to increased NO production, regulation of the cell cycle, and depressed expression of c-fos, OPN and PCNA related to VMSC proliferation.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacology, Zunyi Medical College, Zunyi, 563000, China
| | - An-Sheng Sun
- Department of Pharmacology, Zunyi Medical College, Zunyi, 563000, China
| | - Li-Mei Yu
- Department of Pharmacology, Zunyi Medical College, Zunyi, 563000, China
| | - Qin Wu
- Department of Pharmacology, Zunyi Medical College, Zunyi, 563000, China
| | - Qi-Hai Gong
- Department of Pharmacology, Zunyi Medical College, Zunyi, 563000, China
| |
Collapse
|
79
|
Abstract
The circadian clock is an evolutionarily conserved time-keeping system that coordinates the physiology of the organism with daily changes in the environment. A growing body of evidence gradually leads to the conception that virtually all aspects of the biochemical, physiological, and behavioral functions of the animal are linked to circadian regulation. Moreover, proper synchronization of various processes through the activity of circadian components is important for the well-being of many organisms, including humans. The focus of this review is the circadian control of an organism's response to genotoxic stress, which is a major contributor to life-threatening human pathologies such as cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Marina P Antoch
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm & Carlton St, Buffalo, NY 14263, USA.
| | | |
Collapse
|
80
|
Ando H, Ushijima K, Kumazaki M, Takamura T, Yokota N, Saito T, Irie S, Kaneko S, Fujimura A. Influence of age on clock gene expression in peripheral blood cells of healthy women. J Gerontol A Biol Sci Med Sci 2010; 65:9-13. [PMID: 19861640 DOI: 10.1093/gerona/glp160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Recent studies have demonstrated a close relationship between circadian clock function and the development of obesity and various age-related diseases. In this study, we investigated whether messenger RNA (mRNA) levels of clock genes are associated with age, body mass index, blood pressures, fasting plasma glucose, or shift work. Peripheral blood cells were obtained from 70 healthy women, including 25 shift workers, at approximately 9:00 AM. Transcript levels of clock genes (CLOCK, BMAL1, PER1, and PER3) were determined by real-time quantitative polymerase chain reaction. Stepwise multiple regression analysis demonstrated that BMAL1 mRNA levels were correlated only with age (beta = -.50, p < .001). In contrast, PER3 levels were correlated with fasting plasma glucose (beta = -.29, p < .05) and shift work (beta = .31, p < .05). These results suggest that increased age, glucose intolerance, and irregular hours independently affect the intracellular clock in humans.
Collapse
Affiliation(s)
- Hitoshi Ando
- Department of Pharmacology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Affiliation(s)
- R Daniel Rudic
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
82
|
Abstract
Hypertension is a major risk factor for cardiovascular disease and death. The "silent" rise of blood pressure that occurs over time is largely asymptomatic. However, its impact is deafening-causing and exacerbating cardiovascular disease, end-organ damage, and death. The present article addresses recent observations from human and animal studies that provide new insights into how the circadian clock regulates blood pressure, contributes to hypertension, and ultimately evolves vascular disease. Further, the molecular components of the circadian clock and their relationship with locomotor activity, metabolic control, fluid balance, and vascular resistance are discussed with an emphasis on how these novel, circadian clock-controlled mechanisms contribute to hypertension.
Collapse
Affiliation(s)
- R Daniel Rudic
- Department of Pharmacology and Toxicology, 1120 15th St., Medical College of Georgia, Augusta, GA 30912, USA.
| | | |
Collapse
|
83
|
Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 2009; 89:481-534. [PMID: 19342613 DOI: 10.1152/physrev.00042.2007] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide production in response to flow-dependent shear forces applied on the surface of endothelial cells is a fundamental mechanism of regulation of vascular tone, peripheral resistance, and tissue perfusion. This implicates the concerted action of multiple upstream "mechanosensing" molecules reversibly assembled in signalosomes recruiting endothelial nitric oxide synthase (eNOS) in specific subcellular locales, e.g., plasmalemmal caveolae. Subsequent short- and long-term increases in activity and expression of eNOS translate this mechanical stimulus into enhanced NO production and bioactivity through a complex transcriptional and posttranslational regulation of the enzyme, including by shear-stress responsive transcription factors, oxidant stress-dependent regulation of transcript stability, eNOS regulatory phosphorylations, and protein-protein interactions. Notably, eNOS expressed in cardiac myocytes is amenable to a similar regulation in response to stretching of cardiac muscle cells and in part mediates the length-dependent increase in cardiac contraction force. In addition to short-term regulation of contractile tone, eNOS mediates key aspects of cardiac and vascular remodeling, e.g., by orchestrating the mobilization, recruitment, migration, and differentiation of cardiac and vascular progenitor cells, in part by regulating the stabilization and transcriptional activity of hypoxia inducible factor in normoxia and hypoxia. The continuum of the influence of eNOS in cardiovascular biology explains its growing implication in mechanosensitive aspects of integrated physiology, such as the control of blood pressure variability or the modulation of cardiac remodeling in situations of hemodynamic overload.
Collapse
Affiliation(s)
- J-L Balligand
- Unit of Pharmacology and Therapeutics, Université catholique de Louvain, Brussels, Belgium.
| | | | | |
Collapse
|
84
|
|
85
|
Langmesser S, Franken P, Feil S, Emmenegger Y, Albrecht U, Feil R. cGMP-dependent protein kinase type I is implicated in the regulation of the timing and quality of sleep and wakefulness. PLoS One 2009; 4:e4238. [PMID: 19156199 PMCID: PMC2617781 DOI: 10.1371/journal.pone.0004238] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 12/10/2008] [Indexed: 11/21/2022] Open
Abstract
Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3′,5′-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1–4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.
Collapse
Affiliation(s)
- Sonja Langmesser
- Division of Biochemistry, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Urs Albrecht
- Division of Biochemistry, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| | - Robert Feil
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
86
|
Mecanismos implicados en la disfunción endotelial asociada al envejecimiento. Med Clin (Barc) 2009; 132:62-9. [DOI: 10.1016/j.medcli.2008.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 09/17/2008] [Indexed: 11/21/2022]
|