51
|
Gonçalves TM, de Almeida Regitano LC, Koltes JE, Cesar ASM, da Silva Andrade SC, Mourão GB, Gasparin G, Moreira GCM, Fritz-Waters E, Reecy JM, Coutinho LL. Gene Co-expression Analysis Indicates Potential Pathways and Regulators of Beef Tenderness in Nellore Cattle. Front Genet 2018; 9:441. [PMID: 30344530 PMCID: PMC6182065 DOI: 10.3389/fgene.2018.00441] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022] Open
Abstract
Beef tenderness, a complex trait affected by many factors, is economically important to beef quality, industry, and consumer’s palatability. In this study, RNA-Seq was used in network analysis to better understand the biological processes that lead to differences in beef tenderness. Skeletal muscle transcriptional profiles from 24 Nellore steers, selected by extreme estimated breeding values (EBVs) for shear force after 14 days of aging, were analyzed and 22 differentially expressed transcripts were identified. Among these were genes encoding ribosomal proteins, glutathione transporter ATP-binding cassette, sub-family C (CFTR/MRP), member 4 (ABCC4), and synaptotagmin IV (SYT4). Complementary co-expression analyses using Partial Correlation with Information Theory (PCIT), Phenotypic Impact Factor (PIF) and the Regulatory Impact Factor (RIF) methods identified candidate regulators and related pathways. The PCIT analysis identified ubiquitin specific peptidase 2 (USP2), growth factor receptor-bound protein 10 (GBR10), anoctamin 1 (ANO1), and transmembrane BAX inhibitor motif containing 4 (TMBIM4) as the most differentially hubbed (DH) transcripts. The transcripts that had a significant correlation with USP2, GBR10, ANO1, and TMBIM4 enriched for proteasome KEGG pathway. RIF analysis identified microRNAs as candidate regulators of variation in tenderness, including bta-mir-133a-2 and bta-mir-22. Both microRNAs have target genes present in the calcium signaling pathway and apoptosis. PIF analysis identified myoglobin (MB), enolase 3 (ENO3), and carbonic anhydrase 3 (CA3) as potentially having fundamental roles in tenderness. Pathways identified in our study impacted in beef tenderness included: calcium signaling, apoptosis, and proteolysis. These findings underscore some of the complex molecular mechanisms that control beef tenderness in Nellore cattle.
Collapse
Affiliation(s)
| | | | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | - Sónia Cristina da Silva Andrade
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil.,Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | | | - Gustavo Gasparin
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil
| | | | - Elyn Fritz-Waters
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
52
|
Wang Y, Chang W, Zhang Y, Zhang L, Ding H, Qi H, Xue S, Yu H, Hu L, Liu D, Zhu W, Wang Y, Li P. Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. J Cell Physiol 2018; 234:4778-4786. [PMID: 30256407 DOI: 10.1002/jcp.27274] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/26/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS This study sought to evaluate the potential of circulating microRNAs (miRNAs) as novel indicators for acute myocardial infarction (AMI). METHODS Plasma samples were collected from each participant, and total RNA was extracted. Quantitative real-time polymerase chain reaction were used to investigate the expression of circulating miRNAs. We measured circulating levels of six individual miRNAs, which are known to be relevant to AMI, in the plasma samples from 66 AMI patients and 70 non-AMI healthy comparisons. RESULTS Five small RNAs were specifically expressed in AMI patients, plasma miR-122-5p levels is significantly elevated (p < 0.0001) in AMI patients, while plasma miR-22-5p ( p < 0.05) levels were significantly decreased. In addition, significant correlations between miR-22-5p and miR-122-5p ( R = 0.773), miR-122-5p and creatine kinase isoenzyme (CK-MB; R = 0.6296) were detected. Further, receiver operating characteristic (ROC) analysis indicated that miR-22-5p showed considerable diagnostic efficiency for predicting AMI (area under the curve [AUC] = 0.975). Combining miR-22-5p and miR-122-5p in a panel increased the sensitivity (98.6%) of distinguishing between patients with AMI and healthy comparisons. CONCLUSION Circulating miR-22-5p and miR-122-5p could be considered promising novel diagnostic biomarkers for AMI.
Collapse
Affiliation(s)
- Yu Wang
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Yuan Zhang
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Han Ding
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Hongzhao Qi
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Sheng Xue
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Hua Yu
- Department of Cardiovascular Medicine, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Longgang Hu
- Department of Cardiovascular Medicine, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Dacheng Liu
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjie Zhu
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, China.,Cardiovascular Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yin Wang
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Translational Medicine Center, Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
53
|
Liu G, Li SQ, Hu PP, Tong XY. Altered sarco(endo)plasmic reticulum calcium adenosine triphosphatase 2a content: Targets for heart failure therapy. Diab Vasc Dis Res 2018; 15:322-335. [PMID: 29762054 DOI: 10.1177/1479164118774313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.
Collapse
Affiliation(s)
- Gang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Si Qi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Ping Ping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiao Yong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
54
|
Affiliation(s)
- Zhan-Peng Huang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.-P.H.). .,Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (Z.-P.H., D.-Z.W.)
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115,Addresses for Correspondence: Zhan-Peng Huang, PhD, Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Rd, Guangzhou, Guangdong, 510080, China, Phone: +86-18718870362, . Da-Zhi Wang, PhD, Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, United State, Phone: +1-6179194768,
| |
Collapse
|
55
|
Role of miR-22 in intestinal mucosa tissues and peripheral blood CD4+ T cells of inflammatory bowel disease. Pathol Res Pract 2018; 214:1095-1104. [PMID: 29880327 DOI: 10.1016/j.prp.2018.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/30/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE miR-22 is known to be involved in the pathogenesis of several autoimmune diseases, but it remains unclear whether miR-22 is associated with inflammatory intestinal disease (IBD). METHODS The patients with ulcerative colitis (UC) and Crohn's disease (CD) were enrolled in this study. After the CD4+ T cells from healthy controls and active IBD patients were isolated and then transfected with miR-22 mimics/inhibitors, Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to measure expressions of miR-22, HDAC4, specific transcription factors in intestinal mucosa tissue and CD4+ T cells, while enzyme-linked immuno sorbent assay (ELISA) to detect expressions of inflammatory cytokines in PB. Antisense miR-22 was administered into mice during trinitrobenzene sulphoni cacid (TNBS)-induced colitis to determine its role in IBD. RESULTS A significant elevation of miR-22 but an evident decrease of HDAC4 was found in CD4+ T cells in PB and intestinal mucosa tissues from IBD patients. In addition, there was a great reduction in HDAC4 and a dramatic enhancement in Th17 cell specific transcription factor (RORC) and inflammatory cytokines (IL-17A, IL-6 and TNF-α) after overexpression miR-22, which was opposite to the effect of inhibition of miR-22. Furthermore, administration of antisense miR-22 in TNBS-induced mouse colitis model significantly decreased numbers of interleukin (IL)-17A+ CD4+ T cells and the expressions of IL-17A, RORC, IL-6 and TNF-α. CONCLUSION MiR-22 was up-regulated in CD4+ T cells in PB and intestinal mucosa tissues of IBD patients, which could promote Th17 cell differentiation via targeting HDAC4 to be involved in IBD progression.
Collapse
|
56
|
Biswas S, Thomas AA, Chakrabarti S. LncRNAs: Proverbial Genomic "Junk" or Key Epigenetic Regulators During Cardiac Fibrosis in Diabetes? Front Cardiovasc Med 2018; 5:28. [PMID: 29670886 PMCID: PMC5893820 DOI: 10.3389/fcvm.2018.00028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/15/2018] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators in a multitude of biological processes. Recent evidences demonstrate potential pathogenetic implications of lncRNAs in diabetic cardiomyopathy (DCM); however, the majority of lncRNAs have not been comprehensively characterized. While the precise molecular mechanisms underlying the functions of lncRNAs remain to be deciphered in DCM, emerging data in other pathophysiological conditions suggests that lncRNAs can have versatile features such as genomic imprinting, acting as guides for certain histone-modifying complexes, serving as scaffolds for specific molecules, or acting as molecular sponges. In an effort to better understand these features of lncRNAs in the context of DCM, our review will first summarize some of the key molecular alterations that occur during fibrosis in the diabetic heart (extracellular proteins and endothelial-to-mesenchymal transitioning), followed by a review of the current knowledge on the crosstalk between lncRNAs and major epigenetic mechanisms (histone methylation, histone acetylation, DNA methylation, and microRNAs) within this fibrotic process.
Collapse
Affiliation(s)
- Saumik Biswas
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Anu Alice Thomas
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| |
Collapse
|
57
|
Abstract
MicroRNAs (miRNAs) are ∼22 nt RNAs that direct posttranscriptional repression of mRNA targets in diverse eukaryotic lineages. In humans and other mammals, these small RNAs help sculpt the expression of most mRNAs. This article reviews advances in our understanding of the defining features of metazoan miRNAs and their biogenesis, genomics, and evolution. It then reviews how metazoan miRNAs are regulated, how they recognize and cause repression of their targets, and the biological functions of this repression, with a compilation of knockout phenotypes that shows that important biological functions have been identified for most of the broadly conserved miRNAs of mammals.
Collapse
Affiliation(s)
- David P Bartel
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
58
|
Wei W, Li B, Liu K, Jiang A, Dong C, Jia C, Chen J, Liu H, Wu W. Identification of key microRNAs affecting drip loss in porcine longissimus dorsi by RNA-Seq. Gene 2018; 647:276-282. [DOI: 10.1016/j.gene.2018.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/28/2017] [Accepted: 01/02/2018] [Indexed: 12/27/2022]
|
59
|
Tang Q, Len Q, Liu Z, Wang W. Overexpression of miR-22 attenuates oxidative stress injury in diabetic cardiomyopathy via Sirt 1. Cardiovasc Ther 2018; 36. [PMID: 29288528 DOI: 10.1111/1755-5922.12318] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/27/2017] [Accepted: 12/21/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND/AIMS Oxidative stress injury is believed to be important in diabetic cardiomyopathy. Recent evidence indicates that miR-22 plays an important role in various cardiovascular diseases, but the protective role of miR-22 in diabetic cardiomyopathy remains undetermined. METHODS Diabetes was induced in male C57BL/6 mice by intraperitoneal injection with streptozotocin combined with a high-fat diet, and miR-22 was overexpressed following transfection with adeno-associated virus. Cardiac function was assessed by echocardiography and a cardiac catheter system. In vitro study, H9c2 cells were treated with normal or high glucose (HG), and cell viability or apoptosis was detected using the Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Reactive oxygen species, malondialdehyde, and superoxide dismutase were also detected in diabetic mice and H9c2 cells. The expression level of miR-22 was detected by real-time PCR. The protein expression of Sirt 1, oxidative stress injury-related proteins (GRP78, CHOP, ATF 3), and apoptosis-related proteins Bax/Bcl-2, cl-casp-9/casp-9, and cl-casp-3/casp-3 were determined by Western blotting analysis. RESULTS HG-induced oxidative stress injury and apoptosis were observed in H9c2 cells, which were ameliorated by miR-22. Cardiac dysfunction and severely altered heart structure were also observed in diabetic mice and were dramatically reversed by overexpression of miR-22. The expression of Sirt 1 decreased significantly in diabetic mice and HG-treated H9c2 cells. Overexpression of miR-22 restored the level of Sirt 1. Bioinformatics analysis predicted that Sirt 1 was a potential target gene of miR-22. Luciferase reporter assay verified that miR-22 promoted Sirt 1 expression by direct binding to the Sirt 1 3'untranslated repeats. Upregulation of Sirt 1 could improve cell viability and attenuate oxidative stress injury and apoptosis in the HG-treated H9c2 cells, similar to the effect of miR-22. However, the protective effects of miR-22 against HG-induced oxidative stress injury and apoptosis were abrogated by knockdown of Sirt 1. CONCLUSIONS Overexpression of miR-22 can attenuate oxidative stress injury in diabetic cardiomyopathy by upregulation of Sirt 1 in vivo and in vitro.
Collapse
Affiliation(s)
- Qinghui Tang
- Department of Cardiology, Dongyang People's Hospital, Dongyang, China
| | - Qiang Len
- Department of Cardiology, Wuhan People's Hospital, Wuhan, China
| | - Zheng Liu
- Department of Cardiology, Wuhan People's Hospital, Wuhan, China
| | - WeiDong Wang
- Key Laboratory of Biochemistry, Wuhan People's Hospital, Wuhan, China
| |
Collapse
|
60
|
Meraviglia V, Bocchi L, Sacchetto R, Florio MC, Motta BM, Corti C, Weichenberger CX, Savi M, D'Elia Y, Rosato-Siri MD, Suffredini S, Piubelli C, Pompilio G, Pramstaller PP, Domingues FS, Stilli D, Rossini A. HDAC Inhibition Improves the Sarcoendoplasmic Reticulum Ca 2+-ATPase Activity in Cardiac Myocytes. Int J Mol Sci 2018; 19:ijms19020419. [PMID: 29385061 PMCID: PMC5855641 DOI: 10.3390/ijms19020419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
SERCA2a is the Ca2+ ATPase playing the major contribution in cardiomyocyte (CM) calcium removal. Its activity can be regulated by both modulatory proteins and several post-translational modifications. The aim of the present work was to investigate whether the function of SERCA2 can be modulated by treating CMs with the histone deacetylase (HDAC) inhibitor suberanilohydroxamic acid (SAHA). The incubation with SAHA (2.5 µM, 90 min) of CMs isolated from rat adult hearts resulted in an increase of SERCA2 acetylation level and improved ATPase activity. This was associated with a significant improvement of calcium transient recovery time and cell contractility. Previous reports have identified K464 as an acetylation site in human SERCA2. Mutants were generated where K464 was substituted with glutamine (Q) or arginine (R), mimicking constitutive acetylation or deacetylation, respectively. The K464Q mutation ameliorated ATPase activity and calcium transient recovery time, thus indicating that constitutive K464 acetylation has a positive impact on human SERCA2a (hSERCA2a) function. In conclusion, SAHA induced deacetylation inhibition had a positive impact on CM calcium handling, that, at least in part, was due to improved SERCA2 activity. This observation can provide the basis for the development of novel pharmacological approaches to ameliorate SERCA2 efficiency.
Collapse
Affiliation(s)
- Viviana Meraviglia
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro (Padova), Italy.
| | - Maria Cristina Florio
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Benedetta M Motta
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Christian X Weichenberger
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Yuri D'Elia
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Marcelo D Rosato-Siri
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Silvia Suffredini
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Chiara Piubelli
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, 20122 Milano, Italy.
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Francisco S Domingues
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| |
Collapse
|
61
|
Senthong V, Kirsop JL, Tang WHW. Clinical Phenotyping of Heart Failure with Biomarkers: Current and Future Perspectives. Curr Heart Fail Rep 2017; 14:106-116. [PMID: 28205040 DOI: 10.1007/s11897-017-0321-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Heart failure (HF) is a complex clinical syndrome with diverse risk factors and etiologies, differing underlying pathophysiology, and large phenotypic heterogeneity. RECENT FINDINGS Advances in imaging techniques coupled with clinical trials that targeted only in those with impaired left ventricular ejection fraction (LVEF) have largely shaped the current management strategy for HF that focuses predominantly in patients with systolic HF. In contrast, there are no effective treatments for HF with preserved ejection fraction (HFpEF). Instead of this "one-size-fits-all" approach to treatment, better precision to define HF phenotypic classifications may lead to more efficient and effective HF disease management. CONCLUSION Integrating variables-including clinical variables, HF biomarkers, imaging, genotypes, metabolomics, and proteomics-can identify different pathophysiologies, lead to more precise phenotypic classification, and warrant investigation in future clinical trials.
Collapse
Affiliation(s)
- Vichai Senthong
- Department of Cardiovascular Medicine, Heart and Vascular Institute, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44915, USA.,Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jennifer L Kirsop
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44915, USA. .,Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA. .,Center for Clinical Genomics, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
62
|
|
63
|
Yang F, Chen Q, He S, Yang M, Maguire EM, An W, Afzal TA, Luong LA, Zhang L, Xiao Q. miR-22 Is a Novel Mediator of Vascular Smooth Muscle Cell Phenotypic Modulation and Neointima Formation. Circulation 2017; 137:1824-1841. [PMID: 29246895 PMCID: PMC5916488 DOI: 10.1161/circulationaha.117.027799] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022]
Abstract
Supplemental Digital Content is available in the text. Background: MicroRNA-22 (miR-22) has recently been reported to play a regulatory role during vascular smooth muscle cell (VSMC) differentiation from stem cells, but little is known about its target genes and related pathways in mature VSMC phenotypic modulation or its clinical implication in neointima formation following vascular injury. Methods: We applied a wire-injury mouse model, and local delivery of AgomiR-22 or miR-22 inhibitor, as well, to explore the therapeutic potential of miR-22 in vascular diseases. Furthermore, normal and diseased human femoral arteries were harvested, and various in vivo, ex vivo, and in vitro models of VSMC phenotype switching were conducted to examine miR-22 expression during VSMC phenotype switching. Results: Expression of miR-22 was closely regulated during VSMC phenotypic modulation. miR-22 overexpression significantly increased expression of VSMC marker genes and inhibited VSMC proliferation and migration, whereas the opposite effect was observed when endogenous miR-22 was knocked down. As expected, 2 previously reported miR-22 target genes, MECP2 (methyl-CpG binding protein 2) and histone deacetylase 4, exhibited a regulatory role in VSMC phenotypic modulation. A transcriptional regulator and oncoprotein, EVI1 (ecotropic virus integration site 1 protein homolog), has been identified as a novel miR-22 target gene in VSMC phenotypic modulation. It is noteworthy that overexpression of miR-22 in the injured vessels significantly reduced the expression of its target genes, decreased VSMC proliferation, and inhibited neointima formation in wire-injured femoral arteries, whereas the opposite effect was observed with local application of a miR-22 inhibitor to injured arteries. We next examined the clinical relevance of miR-22 expression and its target genes in human femoral arteries. We found that miR-22 expression was significantly reduced, whereas MECP2 and EVI1 expression levels were dramatically increased, in diseased in comparison with healthy femoral human arteries. This inverse relationship between miR-22 and MECP2 and EVI1 was evident in both healthy and diseased human femoral arteries. Conclusions: Our data demonstrate that miR-22 and EVI1 are novel regulators of VSMC function, specifically during neointima hyperplasia, offering a novel therapeutic opportunity for treating vascular diseases.
Collapse
Affiliation(s)
- Feng Yang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., Q.C., M.Y., L.Z.).,Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (F.Y., S.H., E.M.M., W.A., T.A.A., L.A.L., Q.X.)
| | - Qishan Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., Q.C., M.Y., L.Z.)
| | - Shiping He
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (F.Y., S.H., E.M.M., W.A., T.A.A., L.A.L., Q.X.)
| | - Mei Yang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., Q.C., M.Y., L.Z.)
| | - Eithne Margaret Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (F.Y., S.H., E.M.M., W.A., T.A.A., L.A.L., Q.X.)
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (F.Y., S.H., E.M.M., W.A., T.A.A., L.A.L., Q.X.)
| | - Tayyab Adeel Afzal
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (F.Y., S.H., E.M.M., W.A., T.A.A., L.A.L., Q.X.)
| | - Le Anh Luong
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (F.Y., S.H., E.M.M., W.A., T.A.A., L.A.L., Q.X.)
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., Q.C., M.Y., L.Z.).
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (F.Y., S.H., E.M.M., W.A., T.A.A., L.A.L., Q.X.).,Key Laboratory of Cardiovascular Diseases, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, China (Q.X.).,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, China (Q.X.)
| |
Collapse
|
64
|
Lock MC, Botting KJ, Tellam RL, Brooks D, Morrison JL. Adverse Intrauterine Environment and Cardiac miRNA Expression. Int J Mol Sci 2017; 18:ijms18122628. [PMID: 29210999 PMCID: PMC5751231 DOI: 10.3390/ijms18122628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022] Open
Abstract
Placental insufficiency, high altitude pregnancies, maternal obesity/diabetes, maternal undernutrition and stress can result in a poor setting for growth of the developing fetus. These adverse intrauterine environments result in physiological changes to the developing heart that impact how the heart will function in postnatal life. The intrauterine environment plays a key role in the complex interplay between genes and the epigenetic mechanisms that regulate their expression. In this review we describe how an adverse intrauterine environment can influence the expression of miRNAs (a sub-set of non-coding RNAs) and how these changes may impact heart development. Potential consequences of altered miRNA expression in the fetal heart include; Hypoxia inducible factor (HIF) activation, dysregulation of angiogenesis, mitochondrial abnormalities and altered glucose and fatty acid transport/metabolism. It is important to understand how miRNAs are altered in these adverse environments to identify key pathways that can be targeted using miRNA mimics or inhibitors to condition an improved developmental response.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Ross L Tellam
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
- CSIRO Agriculture, 306 Carmody Rd, St. Lucia, QLD 4067, Australia.
| | - Doug Brooks
- Mechanisms in Cell Biology and Disease Research Group School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Janna L Morrison
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
65
|
Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy. Clin Sci (Lond) 2017; 131:2885-2900. [PMID: 29101298 DOI: 10.1042/cs20171368] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022]
Abstract
Obesity is associated with development of diverse diseases, including cardiovascular diseases and dyslipidemia. MiRNA-22 (miR-22) is a critical regulator of cardiac function and targets genes involved in metabolic processes. Previously, we generated miR-22 null mice and we showed that loss of miR-22 blunted cardiac hypertrophy induced by mechanohormornal stress. In the present study, we examined the role of miR-22 in the cardiac and metabolic alterations promoted by high-fat (HF) diet. We found that loss of miR-22 attenuated the gain of fat mass and prevented dyslipidemia induced by HF diet, although the body weight gain, or glucose intolerance and insulin resistance did not seem to be affected. Mechanistically, loss of miR-22 attenuated the increased expression of genes involved in lipogenesis and inflammation mediated by HF diet. Similarly, we found that miR-22 mediates metabolic alterations and inflammation induced by obesity in the liver. However, loss of miR-22 did not appear to alter HF diet induced cardiac hypertrophy or fibrosis in the heart. Our study therefore establishes miR-22 as an important regulator of dyslipidemia and suggests it may serve as a potential candidate in the treatment of dyslipidemia associated with obesity.
Collapse
|
66
|
Kadmon CS, Landers CT, Li HS, Watowich SS, Rodriguez A, King KY. MicroRNA-22 controls interferon alpha production and erythroid maturation in response to infectious stress in mice. Exp Hematol 2017; 56:7-15. [PMID: 28911907 PMCID: PMC5696003 DOI: 10.1016/j.exphem.2017.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 01/23/2023]
Abstract
MicroRNA-22 (miR-22) is a highly conserved microRNA that can regulate cell proliferation, oncogenesis, and cell maturation, especially during stress. In hematopoietic stem cells (HSCs), miR-22 has been reported to be involved in the regulation of key self-renewal factors, including Tet2. Recent work demonstrates that miR-22 also participates in regulation of the interferon (IFN) response, and expression profiling studies suggest that it is variably expressed at different stages in erythroid differentiation. We thus hypothesized that miR-22 regulates maturation of erythroid progenitors during stress hematopoiesis through its interaction with IFN. We compared the blood and bone marrow of wild-type (WT) and miR-22-deficient mice at baseline and upon infectious challenge with systemic lymphochoriomeningitis (LCMV) virus. miR-22-deficient mice maintained platelet counts better than WT mice during infection, but they showed significantly reduced red blood cells and hemoglobin. Analysis of bone marrow progenitors demonstrated better overall survival and improved HSC homeostasis in infected miR-22-null mice compared with WT, which was attributable to a blunted IFN response to LCMV challenge in the miR-22-null mice. We found that miR-22 was expressed exclusively in stage II erythroid precursors and downregulated upon infection in WT mice. Our results indicate that miR-22 promotes the IFN response to viral infection and that it functions at baseline as a brake to slow erythroid differentiation and maintain adequate erythroid potential. Impaired regulation of erythrogenesis in the absence of miR-22 can lead to anemia during infection.
Collapse
Affiliation(s)
- Claudine S Kadmon
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Cameron T Landers
- Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Haiyan S Li
- Department of Immunology, M.D. Anderson Cancer Center, Houston, Texas
| | | | - Antony Rodriguez
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Katherine Y King
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas; Centers for Biology of Inflammation, Stem Cells and Regenerative Medicine, and Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
67
|
Prathipati P, Nandi SS, Mishra PK. Stem Cell-Derived Exosomes, Autophagy, Extracellular Matrix Turnover, and miRNAs in Cardiac Regeneration during Stem Cell Therapy. Stem Cell Rev Rep 2017; 13:79-91. [PMID: 27807762 DOI: 10.1007/s12015-016-9696-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell therapy (SCT) raises the hope for cardiac regeneration in ischemic hearts. However, underlying molecular mechanisms for repair of dead myocardium by SCT in the ischemic heart is poorly understood. Growing evidences suggest that cardiac matrix stiffness and differential expressions of miRNAs play a crucial role in stem cell survival and differentiation. However, their roles on transplanted stem cells, for myocardial repair of the ischemic heart, remain unclear. Transplanted stem cells may act in an autocrine and/or paracrine manner to regenerate the dead myocardium. Paracrine mediators such as stem cell-derived exosomes are emerging as a novel therapeutic strategy to overcome some of the limitations of SCT. These exosomes carry microRNAs (miRNAs) that may regulate stem cell differentiation into a specific lineage. MicroRNAs may also contribute to stiffness of surrounding matrix by regulating extracellular matrix (ECM) turnover. The survival of transplanted stem cell depends on its autophagic process that maintains cellular homeostasis. Therefore, exosomes, miRNAs, extracellular matrix turnover, and autophagy may have an integral role in improving the efficacy of SCT. This review elaborates the specific roles of these regulatory components on cardiac regeneration in the ischemic heart during SCT.
Collapse
Affiliation(s)
- Priyanka Prathipati
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shyam Sundar Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
68
|
Abushouk AI, El-Husseny MWA, Bahbah EI, Elmaraezy A, Ali AA, Ashraf A, Abdel-Daim MM. Peroxisome proliferator-activated receptors as therapeutic targets for heart failure. Biomed Pharmacother 2017; 95:692-700. [PMID: 28886529 DOI: 10.1016/j.biopha.2017.08.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/05/2017] [Accepted: 08/23/2017] [Indexed: 01/06/2023] Open
Abstract
Heart failure (HF) is a common clinical syndrome that affects more than 23 million individuals worldwide. Despite the marked advances in its management, the mortality rates in HF patients have remained unacceptably high. Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription regulators, involved in the regulation of fatty acid and glucose metabolism. PPAR agonists are currently used for the treatment of type II diabetes mellitus and hyperlipidemia; however, their role as therapeutic agents for HF remains under investigation. Preclinical studies have shown that pharmacological modulation of PPARs can upregulate the expression of fatty acid oxidation genes in cardiomyocytes. Moreover, PPAR agonists were proven able to improve ventricular contractility and reduce cardiac remodelling in animal models through their anti-inflammatory, anti-oxidant, anti-fibrotic, and anti-apoptotic activities. Whether these effects can be replicated in humans is yet to be proven. This article reviews the interactions of PPARs with the pathophysiological mechanisms of HF and how the pharmacological modulation of these receptors can be of benefit for HF patients.
Collapse
Affiliation(s)
| | | | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Ahmed Elmaraezy
- NovaMed Medical Research Association, Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Aya Ashraf Ali
- Faculty of Medicine, Minia University, Minia, Egypt; Minia Medical Research Society, Minia University, Minia, Egypt
| | - Asmaa Ashraf
- Faculty of Medicine, Minia University, Minia, Egypt; Minia Medical Research Society, Minia University, Minia, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
69
|
Zhao B, Lucas KJ, Saha TT, Ha J, Ling L, Kokoza VA, Roy S, Raikhel AS. MicroRNA-275 targets sarco/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA) to control key functions in the mosquito gut. PLoS Genet 2017; 13:e1006943. [PMID: 28787446 PMCID: PMC5560755 DOI: 10.1371/journal.pgen.1006943] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/17/2017] [Accepted: 07/26/2017] [Indexed: 12/17/2022] Open
Abstract
The yellow fever mosquito Aedes aegypti is the major vector of arboviruses, causing numerous devastating human diseases, such as dengue and yellow fevers, Chikungunya and Zika. Female mosquitoes need vertebrate blood for egg development, and repeated cycles of blood feeding are tightly linked to pathogen transmission. The mosquito’s posterior midgut (gut) is involved in blood digestion and also serves as an entry point for pathogens. Thus, the mosquito gut is an important tissue to investigate. The miRNA aae-miR-275 (miR-275) has been shown to be required for normal blood digestion in the female mosquito; however, the mechanism of its action has remained unknown. Here, we demonstrate that miR-275 directly targets and positively regulates sarco/endoplasmic reticulum Ca2+adenosine triphosphatase, which is implicated in active transport of Ca2+ from the cytosol to the sarco/endoplasmic reticulum. We utilized a combination of the gut-specific yeast transcription activator protein Gal4/upstream activating sequence (Gal4/UAS) system and miRNA Tough Decoy technology to deplete the endogenous level of miR-275 in guts of transgenic mosquitoes. This gut-specific reduction of miR-275 post blood meal decreased SERCA mRNA and protein levels of the digestive enzyme late trypsin. It also resulted in a significant reduction of gut microbiota. Moreover, the decrease of miR-275 and SERCA correlated with defects in the Notch signaling pathway and assembly of the gut actin cytoskeleton. The adverse phenotypes caused by miR-275 silencing were rescued by injections of miR-275 mimic. Thus, we have discovered that miR-275 directly targets SERCA, and the maintenance of its level is critical for multiple gut functions in mosquitoes. Female mosquitoes transmit numerous devastating human diseases. The mosquito gut, in addition to its primary function as a site of blood digestion, represents the entry point for pathogen colonization in mosquito vectors. The conserved microRNA, miR-275, was shown to be required for blood digestion and egg development. In this study, we investigated the target of miR-275 contributing to the regulation of mosquito gut functions. We achieved spatiotemporal suppression of miR-275 using a transgenic Tough Decoy RNA approach in the A. aegypti female mosquito gut. Furthermore, we have uncovered that miR-275 targets sarco/endoplasmic reticulum Ca2+- adenosine triphosphatase (SERCA), affecting numerous gut functions including blood digestion, production of digestive proteases, and assembly of the gut actin cytoskeleton. SERCA is essential for maintenance of Ca2+ homeostasis, and its disturbance, in humans, leads to cardiac hypertrophy, heart failure and cancers. Therefore, the finding that the miRNA miR-275 targets SERCA not only contributes to the knowledge of mosquito gut regulation but also significantly adds to the general understanding of mechanisms governing this critical molecule.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Keira J Lucas
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Tusar T Saha
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Jisu Ha
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, California, United States of America
| | - Lin Ling
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Vladimir A Kokoza
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Sourav Roy
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Alexander S Raikhel
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
70
|
Huang F, Yi J, Zhou T, Gong X, Jiang H, Yao X. Toward Understanding Non-coding RNA Roles in Intracranial Aneurysms and Subarachnoid Hemorrhage. Transl Neurosci 2017; 8:54-64. [PMID: 28729919 PMCID: PMC5516590 DOI: 10.1515/tnsci-2017-0010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a common and frequently life-threatening cerebrovascular disease, which is mostly related with a ruptured intracranial aneurysm. Its complications include rebleeding, early brain injury, cerebral vasospasm, delayed cerebral ischemia, chronic hydrocephalus, and also non neurological problems. Non-coding RNAs (ncRNAs), comprising of microRNAs (miRNAs), small interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs), play an important role in intracranial aneurysms and SAH. Here, we review the non-coding RNAs expression profile and their related mechanisms in intracranial aneurysms and SAH. Moreover, we suggest that these non-coding RNAs function as novel molecular biomarkers to predict intracranial aneurysms and SAH, and may yield new therapies after SAH in the future.
Collapse
Affiliation(s)
- Fengzhen Huang
- Department of Neurology, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| | - Jiping Yi
- Department of Neurology, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| | - Tieqiao Zhou
- Department of Laboratory Medicine, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| | - Xiaoxiang Gong
- Pediatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011 P. R.China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R.China.,State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan, 410078, P. R.China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, P. R.China
| | - Xiaoxi Yao
- Department of Neurology, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| |
Collapse
|
71
|
Wang B, Yao Q, Xu D, Zhang JA. MicroRNA-22-3p as a novel regulator and therapeutic target for autoimmune diseases. Int Rev Immunol 2017; 36:176-181. [PMID: 28471251 DOI: 10.1080/08830185.2017.1281272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs and have emerged as critical regulators of gene expression. Some miRNAs play important roles in regulating the function of the immune system and are involved in the pathogenesis of autoimmune diseases. Recent studies suggested that microRNA-22-3p (miR-22-3p) was able to regulate the function of several types of immune cells and may be involved in the development of autoimmune diseases. We systematically reviewed relevant literatures to provide a comprehensive review of the possible roles of miR-22-3p in autoimmune diseases. Published studies suggest that miR-22-3p can act as a novel regulator of autoimmune diseases via several pathways. More studies are needed to further elucidate the exact roles of miR-22-3p in autoimmune diseases. Treatment strategy targeting miR-22-3p is also a promising therapy for autoimmune diseases.
Collapse
Affiliation(s)
- Bin Wang
- a Department of Endocrinology , Jinshan Hospital of Fudan University , Shanghai , China.,b Department of Rheumatology and Immunology , Jinshan Hospital of Fudan University , Shanghai , China
| | - Qiuming Yao
- a Department of Endocrinology , Jinshan Hospital of Fudan University , Shanghai , China.,b Department of Rheumatology and Immunology , Jinshan Hospital of Fudan University , Shanghai , China
| | - Donghua Xu
- c Department of Rheumatology and Immunology , The Affiliated Hospital of Weifang Medical University , Weifang , China
| | - Jin-An Zhang
- a Department of Endocrinology , Jinshan Hospital of Fudan University , Shanghai , China.,b Department of Rheumatology and Immunology , Jinshan Hospital of Fudan University , Shanghai , China
| |
Collapse
|
72
|
Zhou B, Liu J, Ren Z, Yao F, Ma J, Song J, Bennett B, Zhen Y, Wang L, Hu G, Hu S. Cnot3 enhances human embryonic cardiomyocyte proliferation by promoting cell cycle inhibitor mRNA degradation. Sci Rep 2017; 7:1500. [PMID: 28473716 PMCID: PMC5431451 DOI: 10.1038/s41598-017-01628-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/30/2017] [Indexed: 11/30/2022] Open
Abstract
Uncovering the molecular basis of mammalian cardiomyocyte proliferation may eventually lead to better approaches for heart regeneration. Compared to extensively-studied transcriptional regulation, the roles of posttranscriptional regulation in cardiac cell fate decisions remain largely unknown. Here, we identified Cnot3 as a critical regulator in cardiomyocyte proliferation at the late stage of cardiac differentiation from human ESCs. Cnot3 was highly expressed in cardiomyocytes with higher proliferation potential in both human and mouse, and its depletion resulted in significant reduction in the proliferative capacity of cells. Furthermore, Cnot3 overexpression greatly enhanced proliferation in both cultured human cardiomyocytes and infarcted murine hearts. Mechanistically, the Ccr4-Not complex preferentially interacted with anti-proliferation gene transcripts in a Cnot3-dependent manner, and promoted their degradation. Together, our study supported the model that Cnot3 enhances cardiomyocyte proliferation by promoting cell cycle inhibitor mRNA degradation. It revealed a previously unrecognized role of mRNA degradation in cardiomyocyte growth, and suggested a potential strategy to control cardiac cell fates in development and diseases.
Collapse
Affiliation(s)
- Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Junwei Liu
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430071, People's Republic of China
| | - Zongna Ren
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Fang Yao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Brian Bennett
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - Yisong Zhen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China.
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA.
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China.
| |
Collapse
|
73
|
Ottaviani L, da Costa Martins PA. Non-coding RNAs in cardiac hypertrophy. J Physiol 2017; 595:4037-4050. [PMID: 28233323 PMCID: PMC5471409 DOI: 10.1113/jp273129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/21/2017] [Indexed: 12/23/2022] Open
Abstract
Heart failure is one of the largest contributors to disease burden and healthcare outflow in the Western world. Despite significant progress in the treatment of heart failure, disease prognosis remains very poor, with the only curative therapy still being heart transplantation. To counteract the current situation, efforts have been made to better understand the underlying molecular pathways in the progression of cardiac disease towards heart failure, and to link the disease to novel therapeutic targets such as non‐coding RNAs. The non‐coding part of the genome has gained prominence over the last couple of decades, opening a completely new research field and establishing different non‐coding RNAs species as fundamental regulators of cellular functions. Not surprisingly, their dysregulation is increasingly being linked to pathology, including to cardiac disease. Pre‐clinically, non‐coding RNAs have been shown to be of great value as therapeutic targets in pathological cardiac remodelling and also as diagnostic/prognostic biomarkers for heart failure. Therefore, it is to be expected that non‐coding RNA‐based therapeutic strategies will reach the bedside in the future and provide new and more efficient treatments for heart failure. Here, we review recent discoveries linking the function and molecular interactions of non‐coding RNAs with the pathophysiology of cardiac hypertrophy and heart failure.
![]()
Collapse
Affiliation(s)
- Lara Ottaviani
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paula A da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
74
|
Verjans R, van Bilsen M, Schroen B. MiRNA Deregulation in Cardiac Aging and Associated Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:207-263. [PMID: 28838539 DOI: 10.1016/bs.ircmb.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of age-related diseases is increasing dramatically, among which cardiac disease represents the leading cause of death. Aging of the heart is characterized by various molecular and cellular hallmarks impairing both cardiomyocytes and noncardiomyocytes, and resulting in functional deteriorations of the cardiac system. The aging process includes desensitization of β-adrenergic receptor (βAR)-signaling and decreased calcium handling, altered growth signaling and cardiac hypertrophy, mitochondrial dysfunction and impaired autophagy, increased programmed cell death, low-grade inflammation of noncanonical inflammatory cells, and increased ECM deposition. MiRNAs play a fundamental role in regulating the processes underlying these detrimental changes in the cardiac system, indicating that MiRNAs are crucially involved in aging. Among others, MiR-34, MiR-146a, and members of the MiR-17-92 cluster, are deregulated during senescence and drive cardiac aging processes. It is therefore suggested that MiRNAs form possible therapeutic targets to stabilize the aged failing myocardium.
Collapse
Affiliation(s)
- Robin Verjans
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marc van Bilsen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Blanche Schroen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
75
|
Gao J, Xu W, Wang J, Wang K, Li P. The Role and Molecular Mechanism of Non-Coding RNAs in Pathological Cardiac Remodeling. Int J Mol Sci 2017; 18:608. [PMID: 28287427 PMCID: PMC5372624 DOI: 10.3390/ijms18030608] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not encode proteins. Studies show that ncRNAs are not only involved in cell proliferation, apoptosis, differentiation, metabolism and other physiological processes, but also involved in the pathogenesis of diseases. Cardiac remodeling is the main pathological basis of a variety of cardiovascular diseases. Many studies have shown that the occurrence and development of cardiac remodeling are closely related with the regulation of ncRNAs. Recent research of ncRNAs in heart disease has achieved rapid development. Thus, we summarize here the latest research progress and mainly the molecular mechanism of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), in cardiac remodeling, aiming to look for new targets for heart disease treatment.
Collapse
Affiliation(s)
- Jinning Gao
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| | - Wenhua Xu
- Department of Basic Medical College, Qingdao University Medical College, Ningxia Road 308, Qingdao 266071, China.
| | - Jianxun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| | - Kun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| | - Peifeng Li
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| |
Collapse
|
76
|
Sciarretta S, De Falco E, Frati G, Sadoshima J. How to be young at heart? miR-22 as a potential therapeutic target to boost autophagy and protect the old myocardium. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:52. [PMID: 28251131 DOI: 10.21037/atm.2017.01.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sebastiano Sciarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy;; Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Elena De Falco
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Giacomo Frati
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy;; Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
77
|
van Boven N, Akkerhuis KM, Anroedh SS, Rizopoulos D, Pinto Y, Battes LC, Hillege HL, Caliskan KC, Germans T, Manintveld OC, Cornel JH, Constantinescu AA, Boersma E, Umans VA, Kardys I. Serially measured circulating miR-22-3p is a biomarker for adverse clinical outcome in patients with chronic heart failure: The Bio-SHiFT study. Int J Cardiol 2017; 235:124-132. [PMID: 28274577 DOI: 10.1016/j.ijcard.2017.02.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/15/2017] [Accepted: 02/20/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Several studies have suggested circulating microRNAs (miRs) are associated with heart failure, but these studies were small, and limited to single miR measurements. We examined 7 miRs which were previously linked to heart failure, and tested whether their temporal expression level predicts prognosis in a prospective cohort of chronic heart failure (CHF) patients. METHODS AND RESULTS In 2011-2013, 263 CHF patients were included. At inclusion and subsequently every 3months, we measured 7miRs. The primary endpoint (PE) comprised heart failure hospitalization, cardiovascular mortality, cardiac transplantation and LVAD implantation. Associations between temporal miR patterns and the PE were investigated by joint modelling, which combines mixed models with Cox regression. Mean age was 67±13years, 72% were men and 27% NYHA classes III-IV. We obtained 873 blood samples (median 3 [IQR 2-5] per patient). The PE was reached in 41 patients (16%) during a median follow-up of 0.9 [0.6-1.4] years. The temporal pattern of miR-22-3p was independently associated with the PE (HR [95% CI] per doubling of level: 0.64 [0.47-0.77]). The instantaneous change in level (slope of the temporal miR pattern) of miR-22-3p was also independently associated with the PE (HR [95% CI] per doubling of slope: 0.33 [0.20-0.51]). These associations remained statistically significant after adjustment for temporal patterns of NT-proBNP, Troponin T and CRP. CONCLUSIONS The temporal pattern of circulating miR-22-3p contains important prognostic and independent information in CHF patients. This concept warrants further investigation in larger series with extended follow-up.
Collapse
Affiliation(s)
- Nick van Boven
- Cardiology, Medical Centre Alkmaar, Alkmaar, The Netherlands
| | | | | | | | - Yigal Pinto
- Cardiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Linda C Battes
- Cardiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Hans L Hillege
- Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Tjeerd Germans
- Cardiology, Medical Centre Alkmaar, Alkmaar, The Netherlands
| | | | - Jan-Hein Cornel
- Cardiology, Medical Centre Alkmaar, Alkmaar, The Netherlands
| | | | - Eric Boersma
- Cardiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Victor A Umans
- Cardiology, Medical Centre Alkmaar, Alkmaar, The Netherlands
| | - Isabella Kardys
- Cardiology, Erasmus Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
78
|
Xu D, Guo Y, Liu T, Li S, Sun Y. miR-22 contributes to endosulfan-induced endothelial dysfunction by targeting SRF in HUVECs. Toxicol Lett 2017; 269:33-40. [PMID: 28161397 DOI: 10.1016/j.toxlet.2017.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 01/08/2023]
Abstract
microRNAs (miRNAs) function in the posttranscriptional gene regulation, providing new insights into the epigenetic mechanism of toxicity induced by environmental pollutants. miR-22 was discovered to regulate cell proliferation and apoptosis in response to environmental toxicants. We have reported that endosulfan can cause endothelial toxicity in human umbilical vein endothelial cells (HUVECs). In the present study, we investigated the involvement of miR-22 in endosulfan-induced endothelial dysfunction. The expression level of miR-22 was increased in a dose-dependent manner by endosulfan exposure. Overexpression of miR-22 induced apoptosis and inflammation in HUVECs. Anti-miR-22 transfection significantly attenuated the increase in the percentage of apoptotic cells, caspase-3 activity and Interleukin (IL)-6, 8 mRNA levels in endosulfan-exposed HUVECs. Luciferase reporter assay confirmed that SRF and STAG2 were novel direct targets of miR-22. Endosulfan decreased mRNA expression of both SRF and STAG2, but only suppressed protein expression of SRF. Knockdown of SRF via siRNAs resulted in apoptosis and inflammation whereas STAG2 siRNAs only caused abnormal mitosis in HUVECs. Taken together, these findings will shed light on the role and mechanism of miR-22 in endosulfan-induced endothelial dysfunction via SRF in HUVECs.
Collapse
Affiliation(s)
- Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| | - Yubing Guo
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| | - Tong Liu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| | - Shuai Li
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| |
Collapse
|
79
|
de Gonzalo-Calvo D, Quezada M, Campuzano O, Perez-Serra A, Broncano J, Ayala R, Ramos M, Llorente-Cortes V, Blasco-Turrión S, Morales FJ, Gonzalez P, Brugada R, Mangas A, Toro R. Familial dilated cardiomyopathy: A multidisciplinary entity, from basic screening to novel circulating biomarkers. Int J Cardiol 2017; 228:870-880. [PMID: 27889554 DOI: 10.1016/j.ijcard.2016.11.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/23/2016] [Accepted: 11/05/2016] [Indexed: 12/11/2022]
Abstract
Idiopathic dilated cardiomyopathy has become one of the most prevalent inherited cardiomyopathies over the past decades. Genetic screening of first-degree relatives has revealed that 30-50% of the cases have a familial origin. Similar to other heart diseases, familial dilated cardiomyopathy is characterized by a high genetic heterogeneity that complicates family studies. Cli'nical screening, 12-lead electrocardiogram and transthoracic echocardiogram are recommended for patients and first-degree family members. Magnetic resonance also needs to be considered. Genetic technologies have become fundamental for the clinical management of this disease. New generation sequencing methods have made genetic testing feasible for extensive panels of genes related to the disease. Recently, new imaging modalities such as speckle-tracking, strain and strain rate or magnetic resonance, and circulating biomarkers such as non-coding RNAs, have emerged as potential strategies to help cardiologists in their clinical practice. Imaging, genetic and blood-based techniques should be considered together in the evaluation and testing of familial dilated cardiomyopathy. Here, we discuss the current procedures and novel approaches for the clinical management of familial dilated cardiomyopathy.
Collapse
Affiliation(s)
- D de Gonzalo-Calvo
- Cardiovascular Research Center, CSIC-ICCC, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - M Quezada
- Hospital Universitario de la Cruz Roja, Madrid, Spain
| | - O Campuzano
- Cardiovascular Genetics Center, IDIBGI, University of Girona, Girona, Spain; Medical Science Department, School of Medicine, Girona, Spain
| | - A Perez-Serra
- Cardiovascular Genetics Center, IDIBGI, University of Girona, Girona, Spain
| | - J Broncano
- Cardiothoracic Imaging Section, Hospital Cruz Roja, Hospital San Juan de Dios. Ressalta, Health Time Group, Córdoba, Spain
| | - R Ayala
- Hospital Universitario de la Cruz Roja, Madrid, Spain
| | - M Ramos
- Hospital Universitario de la Cruz Roja, Madrid, Spain
| | - V Llorente-Cortes
- Cardiovascular Research Center, CSIC-ICCC, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - S Blasco-Turrión
- Cardiology Department, Puerto Real Universitary Hospital, Cádiz, Spain
| | - F J Morales
- Cardiology Department, Puerto Real Universitary Hospital, Cádiz, Spain
| | - P Gonzalez
- Cardiology Department, Puerto Real Universitary Hospital, Cádiz, Spain
| | - R Brugada
- Cardiovascular Genetics Center, IDIBGI, University of Girona, Girona, Spain; Medical Science Department, School of Medicine, Girona, Spain; Cardiology Department, Hospital Josep Trueta, Girona, Spain
| | - A Mangas
- Medicine Department, School of Medicine, University of Cadiz, Cádiz, Spain
| | - R Toro
- Medicine Department, School of Medicine, University of Cadiz, Cádiz, Spain.
| |
Collapse
|
80
|
Abstract
PURPOSE OF REVIEW Noncoding RNAs regulate many aspects of cardiovascular biology and are potential therapy targets. In this review, we summarize and highlight current discoveries in the field of microRNAs, a class of noncoding RNAs. RECENT FINDINGS miRNAs regulate posttranscriptional gene expression and have been shown to control cardiac development, hypertrophy, fibrosis, and regeneration. Of note are the miRNAs that regulate cardiac contractility (for example, miR-25 and miR-22), cardiac regeneration (like miR-302-367 and miR99/100 families), and fibrosis (as miR-125b). Consistently with these roles of miRNAs, pharmacological intervention using anti-miRNA oligonucleotides (antagomirs or LNA-anti-miRs) has been shown to improve cardiac contractility and mitigate fibrosis, alleviating cardiac dysfunction in the setting of heart failure. SUMMARY miRNAs are crucial regulators of cardiac phenotype and have enthused both basic scientists and clinicians alike. With advancement of technology and better understanding of mechanisms governing miRNA deregulation, we are at the crossroads for deciphering miRNA function and modulating it for therapeutics.
Collapse
|
81
|
Hussein NAEM, Kholy ZAE, Anwar MM, Ahmad MA, Ahmad SM. Plasma miR-22-3p, miR-642b-3p and miR-885-5p as diagnostic biomarkers for pancreatic cancer. J Cancer Res Clin Oncol 2017; 143:83-93. [PMID: 27631726 DOI: 10.1007/s00432-016-2248-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Diagnosis of pancreatic cancer (PC) by using sensitive and specific biomarkers is considered necessary. MiRNAs are master regulators of gene expression and several biological processes, and they are dysregulated in various cancers, where they play a vital role in either cancer progression or suppression. So, this study was designed to investigate the role of plasma miR-22-3p, miR-642b-3p and miR-885-5p expression as possible diagnostic markers in PC patients as compared to serum CA19-9. In addition, the correlation of those miRNAs and CA19-9 with clinical characteristics of PC patients was analyzed. METHODS The expression levels of selected miRNAs and serum CA19-9 concentration were determined for 35 patients with PDAC and 15 healthy controls by quantitative real-time RT-PCR and electro-chemiluminescence immune assay, respectively. The sensitivities of miRNAs as biomarkers of PC were evaluated and compared with CA19-9 using a receiver operating characteristic analysis. RESULTS The levels of three miRNAs (miR-22-3p, miR-642b-3p and miR-885-5p) and CA19-9 were significantly higher in PC patients, even those with early-stage disease (IB and IIB), than in healthy control. Both miRNAs and CA19-9 were associated with tumor stage. The high sensitivities of the three selected miRNAs and CA19-9 were observed. CONCLUSION The measurement of miR-22-3p, miR-642b-3p and miR-885-5p may prove to have clinical utility in diagnosis of PC. Those miRNAs are ideal early biomarkers for PC diagnosis. So, they can effectively be used with serum CA19-9 for PC screening in early tumor stage.
Collapse
Affiliation(s)
| | - Zenat A El Kholy
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Medhat M Anwar
- Experimental and Clinical Surgery Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohamed A Ahmad
- Clinical Pathology Department, Medical Military Academy, Alexandria, Egypt
| | - Shaymaa M Ahmad
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
82
|
Soci UPR, Melo SFS, Gomes JLP, Silveira AC, Nóbrega C, de Oliveira EM. Exercise Training and Epigenetic Regulation: Multilevel Modification and Regulation of Gene Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1000:281-322. [PMID: 29098627 DOI: 10.1007/978-981-10-4304-8_16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exercise training elicits acute and adaptive long term changes in human physiology that mediate the improvement of performance and health state. The responses are integrative and orchestrated by several mechanisms, as gene expression. Gene expression is essential to construct the adaptation of the biological system to exercise training, since there are molecular processes mediating oxidative and non-oxidative metabolism, angiogenesis, cardiac and skeletal myofiber hypertrophy, and other processes that leads to a greater physiological status. Epigenetic is the field that studies about gene expression changes heritable by meiosis and mitosis, by changes in chromatin and DNA conformation, but not in DNA sequence, that studies the regulation on gene expression that is independent of genotype. The field approaches mechanisms of DNA and chromatin conformational changes that inhibit or increase gene expression and determine tissue specific pattern. The three major studied epigenetic mechanisms are DNA methylation, Histone modification, and regulation of noncoding RNA-associated genes. This review elucidates these mechanisms, focusing on the relationship between them and their relationship with exercise training, physical performance and the enhancement of health status. On this chapter, we clarified the relationship of epigenetic modulations and their intimal relationship with acute and chronic effect of exercise training, concentrating our effort on skeletal muscle, heart and vascular responses, that are the most responsive systems against to exercise training and play crucial role on physical performance and improvement of health state.
Collapse
Affiliation(s)
| | | | | | | | - Clara Nóbrega
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
83
|
Zeng Z, Wang K, Li Y, Xia N, Nie S, Lv B, Zhang M, Tu X, Li Q, Tang T, Cheng X. Down-regulation of microRNA-451a facilitates the activation and proliferation of CD4 + T cells by targeting Myc in patients with dilated cardiomyopathy. J Biol Chem 2016; 292:6004-6013. [PMID: 27974462 DOI: 10.1074/jbc.m116.765107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/06/2016] [Indexed: 11/06/2022] Open
Abstract
CD4+ T cells are abnormally activated in patients with dilated cardiomyopathy (DCM) and might be associated with the immunopathogenesis of the disease. However, the underlying mechanisms of CD4+ T cell activation remain largely undefined. Our aim was to investigate whether the dysregulation of microRNAs (miRNAs) was associated with CD4+ T cell activation in DCM. CD4+ T cells from DCM patients showed increased expression levels of CD25 and CD69 and enhanced proliferation in response to anti-CD3/28, indicating an activated state. miRNA profiling analysis of magnetically sorted CD4+ T cells revealed a distinct pattern of miRNA expression in CD4+ T cells from DCM patients compared with controls. The level of miRNA-451a (miR-451a) was significantly decreased in the CD4+ T cells of DCM patients compared with that of the controls. The transfection of T cells with an miR-451a mimic inhibited their activation and proliferation, whereas an miR-451a inhibitor produced the opposite effects. Myc was directly inhibited by miR-451a via interaction with its 3'-UTR, thus identifying it as an miR-451a target in T cells. The knockdown of Myc suppressed the activation and proliferation of T cells, and the expression of Myc was significantly up-regulated at the mRNA level in CD4+ T cells from patients with DCM. A strong inverse correlation was observed between the Myc mRNA expression and miR-451a transcription level. Our data suggest that the down-regulation of miR-451a contributes to the activation and proliferation of CD4+ T cells by targeting the transcription factor Myc in DCM patients and may contribute to the immunopathogenesis of DCM.
Collapse
Affiliation(s)
- Zhipeng Zeng
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Ke Wang
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Yuanyuan Li
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Ni Xia
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Shaofang Nie
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Bingjie Lv
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Min Zhang
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Xin Tu
- the Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Qianqian Li
- the Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Tingting Tang
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Xiang Cheng
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| |
Collapse
|
84
|
Alajbegovic A, Turczyńska KM, Hien TT, Cidad P, Swärd K, Hellstrand P, Della Corte A, Forte A, Albinsson S. Regulation of microRNA expression in vascular smooth muscle by MRTF-A and actin polymerization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:1088-1098. [PMID: 27939432 DOI: 10.1016/j.bbamcr.2016.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022]
Abstract
The dynamic properties of the actin cytoskeleton in smooth muscle cells play an important role in a number of cardiovascular disease states. The state of actin does not only mediate mechanical stability and contractile function but can also regulate gene expression via myocardin related transcription factors (MRTFs). These transcriptional co-activators regulate genes encoding contractile and cytoskeletal proteins in smooth muscle. Regulation of small non-coding microRNAs (miRNAs) by actin polymerization may mediate some of these effects. MiRNAs are short non-coding RNAs that modulate gene expression by post-transcriptional regulation of target messenger RNA. In this study we aimed to determine a profile of miRNAs that were 1) regulated by actin/MRTF-A, 2) associated with the contractile smooth muscle phenotype and 3) enriched in muscle cells. This analysis was performed using cardiovascular disease-focused miRNA arrays in both mouse and human cells. The potential clinical importance of actin polymerization in aortic aneurysm was evaluated using biopsies from mildly dilated human thoracic aorta in patients with stenotic tricuspid or bicuspid aortic valve. By integrating information from multiple qPCR based miRNA arrays we identified a group of five miRNAs (miR-1, miR-22, miR-143, miR-145 and miR-378a) that were sensitive to actin polymerization and MRTF-A overexpression in both mouse and human vascular smooth muscle. With the exception of miR-22, these miRNAs were also relatively enriched in striated and/or smooth muscle containing tissues. Actin polymerization was found to be dramatically reduced in the aorta from patients with mild aortic dilations. This was associated with a decrease in actin/MRTF-regulated miRNAs. In conclusion, the transcriptional co-activator MRTF-A and actin polymerization regulated a subset of miRNAs in vascular smooth muscle. Identification of novel miRNAs regulated by actin/MRTF-A may provide further insight into the mechanisms underlying vascular disease states, such as aortic aneurysm, as well as novel ideas regarding therapeutic strategies. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Azra Alajbegovic
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Tran Thi Hien
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Pilar Cidad
- Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Amalia Forte
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | | |
Collapse
|
85
|
Makhdoumi P, Roohbakhsh A, Karimi G. MicroRNAs regulate mitochondrial apoptotic pathway in myocardial ischemia-reperfusion-injury. Biomed Pharmacother 2016; 84:1635-1644. [DOI: 10.1016/j.biopha.2016.10.073] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/16/2016] [Accepted: 10/24/2016] [Indexed: 12/30/2022] Open
|
86
|
Almeida Silva LF, Engel T, Reschke CR, Conroy RM, Langa E, Henshall DC. Distinct behavioral and epileptic phenotype differences in 129/P mice compared to C57BL/6 mice subject to intraamygdala kainic acid-induced status epilepticus. Epilepsy Behav 2016; 64:186-194. [PMID: 27744244 DOI: 10.1016/j.yebeh.2016.09.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/12/2016] [Accepted: 09/16/2016] [Indexed: 12/31/2022]
Abstract
Animal models of status epilepticus are important tools to understand the pathogenesis of epileptic brain injury and evaluate potential seizure-suppressive, neuroprotective, and antiepileptogenic treatments. Focal elicitation of status epilepticus by intraamygdala kainic acid in mice produces unilateral hippocampal damage and the emergence of spontaneous recurrent seizures after a short latent period. The model has been characterized in C57BL/6, BALB/c, and SJL mice where strain-specific differences were found in the extent of hippocampal damage. 129/P mice are a common background strain for genetic models and may display unique characteristics in this model. We therefore compared responses to intraamygdala kainic acid between 129/P and C57BL/6 mice. Racine scale-scored convulsive behavior during status epilepticus was substantially lower in 129/P mice compared with that in C57BL/6 mice. Analysis of surface-recorded electroencephalogram (EEG) showed differences between strains in several frequency bands; EEG total power was greater during ictal episodes while duration of seizures was slightly shorter in 129/P mice. Histological analysis revealed similar hippocampal injury between strains, with neuronal death mainly confined to the ipsilateral CA3 subfield. Expression of genes associated with gliosis and neuroinflammatory responses was also similar between strains after seizures. Video-EEG telemetry recordings showed that 129/P mice first display spontaneous seizures within a few days of status epilepticus similar to C57BL/6 mice. However, high mortality in 129/P mice prevented a quantitative comparison of the epileptic seizure phenotypes between strains. This study defined behavioral, EEG, and histopathologic features of this mouse strain in a model increasingly useful for the study of the genetic contribution to acquired epilepsy. Intraamygdala kainic acid in 129/P mice could serve as a model of nonconvulsive status epilepticus, but long-term assessments will require model adjustment to mitigate the severity of the emergent epileptic phenotype.
Collapse
Affiliation(s)
- Luiz Fernando Almeida Silva
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | - Cristina R Reschke
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | - Ronan M Conroy
- Division of Population Health Sciences, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | - Elena Langa
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland.
| |
Collapse
|
87
|
Matkovich SJ, Dorn GW. Feed My Heart or Eat It. J Am Coll Cardiol 2016; 68:1572-4. [DOI: 10.1016/j.jacc.2016.07.740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022]
|
88
|
Preclinical Development of a MicroRNA-Based Therapy for Elderly Patients With Myocardial Infarction. J Am Coll Cardiol 2016; 68:1557-71. [DOI: 10.1016/j.jacc.2016.07.739] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/21/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022]
|
89
|
Shen C, Chen MT, Zhang XH, Yin XL, Ning HM, Su R, Lin HS, Song L, Wang F, Ma YN, Zhao HL, Yu J, Zhang JW. The PU.1-Modulated MicroRNA-22 Is a Regulator of Monocyte/Macrophage Differentiation and Acute Myeloid Leukemia. PLoS Genet 2016; 12:e1006259. [PMID: 27617961 PMCID: PMC5019412 DOI: 10.1371/journal.pgen.1006259] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-22 (miR-22) is emerging as a critical regulator in organ development and various cancers. However, its role in normal hematopoiesis and leukaemogenesis remains unclear. Here, we detected its increased expression during monocyte/macrophage differentiation of HL-60, THP1 cells and CD34+ hematopoietic stem/progenitor cells, and confirmed that PU.1, a key transcriptional factor for monocyte/macrophage differentiation, is responsible for transcriptional activation of miR-22 during the differentiation. By gain- and loss-of-function experiments, we demonstrated that miR-22 promoted monocyte/macrophage differentiation, and MECOM (EVI1) mRNA is a direct target of miR-22 and MECOM (EVI1) functions as a negative regulator in the differentiation. The miR-22-mediated MECOM degradation increased c-Jun but decreased GATA2 expression, which results in increased interaction between c-Jun and PU.1 via increasing c-Jun levels and relief of MECOM- and GATA2-mediated interference in the interaction, and thus promoting monocyte/macrophage differentiation. We also observed significantly down-regulation of PU.1 and miR-22 as well as significantly up-regulation of MECOM in acute myeloid leukemia (AML) patients. Reintroduction of miR-22 relieved the differentiation blockage and inhibited the growth of bone marrow blasts of AML patients. Our results revealed new function and mechanism of miR-22 in normal hematopoiesis and AML development and demonstrated its potential value in AML diagnosis and therapy. We found that miR-22 is transcriptionally activated by PU.1 during monocyte/macrophage differentiation and miR-22 promotes the differentiation via targeting MECOM (EVI1) mRNA and further increasing interaction between c-Jun and PU.1. We also show that miR-22 is a tumor repressor and that PU.1-miR-22-MECOM regulation is involved in AML development; moreover, we demonstrate that reintroduction of miR-22 relieves the differentiation blockage and inhibits the growth of AML bone marrow blasts.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Tai Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Hua Zhang
- Haematology Department, the 303 Hospital, Nanning, China
| | - Xiao-Lin Yin
- Haematology Department, the 303 Hospital, Nanning, China
| | - Hong-Mei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences (the 307 Hospital), Beijing, China
| | - Rui Su
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Shuang Lin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan-Ni Ma
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua-Lu Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Wu Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
90
|
Liu WH, Kang SG, Huang Z, Wu CJ, Jin HY, Maine CJ, Liu Y, Shepherd J, Sabouri-Ghomi M, Gonzalez-Martin A, Xu S, Hoffmann A, Zheng Y, Lu LF, Xiao N, Fu G, Xiao C. A miR-155-Peli1-c-Rel pathway controls the generation and function of T follicular helper cells. J Exp Med 2016; 213:1901-19. [PMID: 27481129 PMCID: PMC4995083 DOI: 10.1084/jem.20160204] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/01/2016] [Indexed: 01/05/2023] Open
Abstract
MicroRNA (miRNA) deficiency impairs the generation of T follicular helper (Tfh) cells, but the contribution of individual miRNAs to this phenotype remains poorly understood. In this study, we performed deep sequencing analysis of miRNAs expressed in Tfh cells and identified a five-miRNA signature. Analyses of mutant mice deficient of these miRNAs revealed that miR-22 and miR-183/96/182 are dispensable, but miR-155 is essential for the generation and function of Tfh cells. miR-155 deficiency led to decreased proliferation specifically at the late stage of Tfh cell differentiation and reduced CD40 ligand (CD40L) expression on antigen-specific CD4(+) T cells. Mechanistically, miR-155 repressed the expression of Peli1, a ubiquitin ligase that promotes the degradation of the NF-κB family transcription factor c-Rel, which controls cellular proliferation and CD40L expression. Therefore, our study identifies a novel miR-155-Peli1-c-Rel pathway that specifically regulates Tfh cell generation and function.
Collapse
Affiliation(s)
- Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Seung Goo Kang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037 Division of Biomedical Convergence/Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Zhe Huang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Cheng-Jang Wu
- Division of Biological Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Hyun Yong Jin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Christian J Maine
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Yi Liu
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jovan Shepherd
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Mohsen Sabouri-Ghomi
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Alicia Gonzalez-Martin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Shunbin Xu
- Department of Ophthalmology/Kresge Eye Institute, School of Medicine, Wayne State University, Detroit, MI 48202 Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, MI 48202
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ye Zheng
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Li-Fan Lu
- Division of Biological Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361005, China Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
91
|
Du JK, Cong BH, Yu Q, Wang H, Wang L, Wang CN, Tang XL, Lu JQ, Zhu XY, Ni X. Upregulation of microRNA-22 contributes to myocardial ischemia-reperfusion injury by interfering with the mitochondrial function. Free Radic Biol Med 2016; 96:406-17. [PMID: 27174562 DOI: 10.1016/j.freeradbiomed.2016.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 11/27/2022]
Abstract
Mitochondrial oxidative damage is critically involved in cardiac ischemia reperfusion (I/R) injury. MicroRNA-22 (miR-22) has been predicted to potentially target sirtuin-1 (Sirt1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), both of which are known to provide protection against mitochondrial oxidative injury. The present study aims to investigate whether miR-22 is involved in the regulation of cardiac I/R injury by regulation of mitochondrial function. We found that miR-22 level was significantly increased in rat hearts subjected to I/R injury, as compared with the sham group. Intra-myocardial injection of 20 ug miR-22 inhibitor reduced I/R injury as evidenced by significant decreases in cardiac infarct size, serum lactate dehydrogenase (LDH) and creatine kinase (CK) levels and the number of apoptotic cardiomyocytes. H9c2 cardiomyocytes exposed to hypoxia/reoxygenation (H/R) insult exhibited an increase in miR-22 expression, which was blocked by reactive oxygen species (ROS) scavenger and p53 inhibitor. In addition, miR-22 inhibitor attenuated, whereas miR-22 mimic aggravated H/R-induced injury in H9c2 cardiomyocytes. MiR-22 inhibitor per se had no significant effect on cardiac mitochondrial function. Mitochondria from rat receiving miR-22 inhibitor 48h before ischemia were found to have a significantly less mitochondrial superoxide production and greater mitochondrial membrane potential and ATP production as compared with rat receiving miR control. In H9c2 cardiomyocyte, it was found that miR-22 mimic aggravated, whilst miR-22 inhibitor significantly attenuated H/R-induced mitochondrial damage. By using real time PCR, western blot and dual-luciferase reporter gene analyses, we identified Sirt1 and PGC1α as miR-22 targets in cardiomyocytes. It was found that silencing of Sirt1 abolished the protective effect of miR-22 inhibitor against H/R-induced mitochondrial dysfunction and cell injury in cardiomyocytes. Taken together, our findings reveal a novel molecular mechanism for cardiac mitochondrial dysfunction during myocardial I/R injury at the miRNA level and demonstrate the therapeutic potential of miR-22 inhibition for acute myocardial I/R injury by maintaining cardiac mitochondrial function.
Collapse
Affiliation(s)
- Jian-Kui Du
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Bin-Hai Cong
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Qing Yu
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - He Wang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Long Wang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Chang-Nan Wang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Xiao-Lu Tang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Jian-Qiang Lu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Xiao-Yan Zhu
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China.
| | - Xin Ni
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
92
|
Wang S, Ding L, Ji H, Xu Z, Liu Q, Zheng Y. The Role of p38 MAPK in the Development of Diabetic Cardiomyopathy. Int J Mol Sci 2016; 17:ijms17071037. [PMID: 27376265 PMCID: PMC4964413 DOI: 10.3390/ijms17071037] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/20/2016] [Accepted: 06/24/2016] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major complication of diabetes that contributes to an increase in mortality. A number of mechanisms potentially explain the development of DCM including oxidative stress, inflammation and extracellular fibrosis. Mitogen-activated protein kinase (MAPK)-mediated signaling pathways are common among these pathogenic responses. Among the diverse array of kinases, extensive attention has been given to p38 MAPK due to its capacity for promoting or inhibiting the translation of target genes. Growing evidence has indicated that p38 MAPK is aberrantly expressed in the cardiovascular system, including the heart, under both experimental and clinical diabetic conditions and, furthermore, inhibition of p38 MAPK activation in transgenic animal model or with its pharmacologic inhibitor significantly prevents the development of DCM, implicating p38 MAPK as a novel diagnostic indicator and therapeutic target for DCM. This review summarizes our current knowledge base to provide an overview of the impact of p38 MAPK signaling in diabetes-induced cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Shudong Wang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Lijuan Ding
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Honglei Ji
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zheng Xu
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Quan Liu
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yang Zheng
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
93
|
Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 2016; 97:245-62. [PMID: 27262674 DOI: 10.1016/j.yjmcc.2016.06.001] [Citation(s) in RCA: 653] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 05/10/2016] [Accepted: 06/01/2016] [Indexed: 12/24/2022]
Abstract
The heart must continuously pump blood to supply the body with oxygen and nutrients. To maintain the high energy consumption required by this role, the heart is equipped with multiple complex biological systems that allow adaptation to changes of systemic demand. The processes of growth (hypertrophy), angiogenesis, and metabolic plasticity are critically involved in maintenance of cardiac homeostasis. Cardiac hypertrophy is classified as physiological when it is associated with normal cardiac function or as pathological when associated with cardiac dysfunction. Physiological hypertrophy of the heart occurs in response to normal growth of children or during pregnancy, as well as in athletes. In contrast, pathological hypertrophy is induced by factors such as prolonged and abnormal hemodynamic stress, due to hypertension, myocardial infarction etc. Pathological hypertrophy is associated with fibrosis, capillary rarefaction, increased production of pro-inflammatory cytokines, and cellular dysfunction (impairment of signaling, suppression of autophagy, and abnormal cardiomyocyte/non-cardiomyocyte interactions), as well as undesirable epigenetic changes, with these complex responses leading to maladaptive cardiac remodeling and heart failure. This review describes the key molecules and cellular responses involved in physiological/pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| |
Collapse
|
94
|
Sadiq S, Crowley TM, Charchar FJ, Sanigorski A, Lewandowski PA. MicroRNAs in a hypertrophic heart: from foetal life to adulthood. Biol Rev Camb Philos Soc 2016; 92:1314-1331. [DOI: 10.1111/brv.12283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Shahzad Sadiq
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| | - Tamsyn M. Crowley
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| | - Fadi J. Charchar
- School of Health Sciences; Faculty of Science and Technology, Federation University; Ballarat Victoria 3353 Australia
| | - Andrew Sanigorski
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| | - Paul A. Lewandowski
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| |
Collapse
|
95
|
Jiang X, Hu C, Arnovitz S, Bugno J, Yu M, Zuo Z, Chen P, Huang H, Ulrich B, Gurbuxani S, Weng H, Strong J, Wang Y, Li Y, Salat J, Li S, Elkahloun AG, Yang Y, Neilly MB, Larson RA, Le Beau MM, Herold T, Bohlander SK, Liu PP, Zhang J, Li Z, He C, Jin J, Hong S, Chen J. miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nat Commun 2016; 7:11452. [PMID: 27116251 PMCID: PMC5477496 DOI: 10.1038/ncomms11452] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/23/2016] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs are subject to precise regulation and have key roles in tumorigenesis. In contrast to the oncogenic role of miR-22 reported in myelodysplastic syndrome (MDS) and breast cancer, here we show that miR-22 is an essential anti-tumour gatekeeper in de novo acute myeloid leukaemia (AML) where it is significantly downregulated. Forced expression of miR-22 significantly suppresses leukaemic cell viability and growth in vitro, and substantially inhibits leukaemia development and maintenance in vivo. Mechanistically, miR-22 targets multiple oncogenes, including CRTC1, FLT3 and MYCBP, and thus represses the CREB and MYC pathways. The downregulation of miR-22 in AML is caused by TET1/GFI1/EZH2/SIN3A-mediated epigenetic repression and/or DNA copy-number loss. Furthermore, nanoparticles carrying miR-22 oligos significantly inhibit leukaemia progression in vivo. Together, our study uncovers a TET1/GFI1/EZH2/SIN3A/miR-22/CREB-MYC signalling circuit and thereby provides insights into epigenetic/genetic mechanisms underlying the pathogenesis of AML, and also highlights the clinical potential of miR-22-based AML therapy.
Collapse
Affiliation(s)
- Xi Jiang
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Chao Hu
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.,Department of Hematology, The First Affiliated Hospital Zhejiang University, Hangzhou, 310003 Zhejiang, China
| | - Stephen Arnovitz
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Jason Bugno
- Department of Biopharmaceutical Sciences College of Pharmacy, The University of Illinois, Chicago, Illinois 60612, USA
| | - Miao Yu
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Zhixiang Zuo
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China
| | - Ping Chen
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Hao Huang
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Bryan Ulrich
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Sandeep Gurbuxani
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA
| | - Hengyou Weng
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Jennifer Strong
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45219, USA
| | - Yungui Wang
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.,Department of Hematology, The First Affiliated Hospital Zhejiang University, Hangzhou, 310003 Zhejiang, China
| | - Yuanyuan Li
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Justin Salat
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Shenglai Li
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Abdel G Elkahloun
- Division of Intramural Research, National Human Genome Research Institute, NIH, Bethesda, Maryland 20892, USA
| | - Yang Yang
- Department of Biopharmaceutical Sciences College of Pharmacy, The University of Illinois, Chicago, Illinois 60612, USA
| | - Mary Beth Neilly
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Richard A Larson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Michelle M Le Beau
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Tobias Herold
- Department of Internal Medicine 3, University Hospital Grosshadern, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Paul P Liu
- Division of Intramural Research, National Human Genome Research Institute, NIH, Bethesda, Maryland 20892, USA
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | - Zejuan Li
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.,Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital Zhejiang University, Hangzhou, 310003 Zhejiang, China
| | - Seungpyo Hong
- Department of Biopharmaceutical Sciences College of Pharmacy, The University of Illinois, Chicago, Illinois 60612, USA.,Integrated Science and Engineering Division, Underwood International College, Yonsei University, Incheon 406-840, Korea
| | - Jianjun Chen
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
96
|
Rodrigues PG, Leite-Moreira AF, Falcão-Pires I. Myocardial reverse remodeling: how far can we rewind? Am J Physiol Heart Circ Physiol 2016; 310:H1402-22. [PMID: 26993225 DOI: 10.1152/ajpheart.00696.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
Heart failure (HF) is a systemic disease that can be divided into HF with reduced ejection fraction (HFrEF) and with preserved ejection fraction (HFpEF). HFpEF accounts for over 50% of all HF patients and is typically associated with high prevalence of several comorbidities, including hypertension, diabetes mellitus, pulmonary hypertension, obesity, and atrial fibrillation. Myocardial remodeling occurs both in HFrEF and HFpEF and it involves changes in cardiac structure, myocardial composition, and myocyte deformation and multiple biochemical and molecular alterations that impact heart function and its reserve capacity. Understanding the features of myocardial remodeling has become a major objective for limiting or reversing its progression, the latter known as reverse remodeling (RR). Research on HFrEF RR process is broader and has delivered effective therapeutic strategies, which have been employed for some decades. However, the RR process in HFpEF is less clear partly due to the lack of information on HFpEF pathophysiology and to the long list of failed standard HF therapeutics strategies in these patient's outcomes. Nevertheless, new proteins, protein-protein interactions, and signaling pathways are being explored as potential new targets for HFpEF remodeling and RR. Here, we review recent translational and clinical research in HFpEF myocardial remodeling to provide an overview on the most important features of RR, comparing HFpEF with HFrEF conditions.
Collapse
Affiliation(s)
- Patrícia G Rodrigues
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| |
Collapse
|
97
|
Bischof C, Krishnan J. Exploiting the hypoxia sensitive non-coding genome for organ-specific physiologic reprogramming. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1782-90. [PMID: 26851074 DOI: 10.1016/j.bbamcr.2016.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/11/2016] [Accepted: 01/28/2016] [Indexed: 12/22/2022]
Abstract
In this review we highlight the role of non-coding RNAs in the development and progression of cardiac pathology and explore the possibility of disease-associated RNAs serving as targets for cardiac-directed therapeutics. Contextually, we focus on the role of stress-induced hypoxia as a driver of disease development and progression through activation of hypoxia inducible factor 1α (HIF1α) and explore mechanisms underlying HIFα function as an enforcer of cardiac pathology through direct transcriptional coupling with the non-coding transcriptome. In the interest of clarity, we will confine our analysis to cardiac pathology and focus on three defining features of the diseased state, namely metabolic, growth and functional reprogramming. It is the aim of this review to explore possible mechanisms through which HIF1α regulation of the non-coding transcriptome connects to spatiotemporal control of gene expression to drive establishment of the diseased state, and to propose strategies for the exploitation of these unique RNAs as targets for clinical therapy. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Corinne Bischof
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jaya Krishnan
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
98
|
Melo SFS, Barauna VG, Neves VJ, Fernandes T, Lara LDS, Mazzotti DR, Oliveira EM. Exercise training restores the cardiac microRNA-1 and -214 levels regulating Ca2+ handling after myocardial infarction. BMC Cardiovasc Disord 2015; 15:166. [PMID: 26646371 PMCID: PMC4673865 DOI: 10.1186/s12872-015-0156-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Impaired cardiomyocyte contractility and calcium handling are hallmarks of left ventricular contractile dysfunction. Exercise training has been used as a remarkable strategy in the treatment of heart disease. The microRNA-1, which targets sodium/calcium exchanger 1 (NCX), and microRNA-214, which targets sarcoplasmic reticulum calcium ATPase-2a (Serca2a), are involved in cardiac function regulation. Thus, the aim of this study was to evaluate the effect of exercise training on cardiac microRNA-1 and -214 expression after myocardial infarction. METHODS Wistar rats were randomized into four groups: sedentary sham (S-SHAM), sedentary infarction (S-INF), trained sham (T-SHAM), and trained infarction (T-INF). Exercise training consisted of 60 min/days, 5 days/week for 10 weeks with 3 % of body weight as overload beginning four weeks after myocardial infarction. RESULTS MicroRNA-1 and -214 expressions were, respectively, decreased (52 %) and increased (54 %) in the S-INF compared to the S-SHAM, while exercise training normalized the expression of these microRNAs. The microRNA targets NCX and Serca-2a protein expression were, respectively, decreased (55 %) and increased (34 %) in the T-INF group compared to the S-INF group. CONCLUSIONS These results suggest that exercise training restores microRNA-1 and -214 expression levels and prevents change in both NCX and Serca-2a protein and gene expressions. Altogether, our data suggest a molecular mechanism to restore ventricular function after exercise training in myocardial infarction rats.
Collapse
Affiliation(s)
- Stéphano Freitas Soares Melo
- Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Av. Professor Mello Moraes, 65- Cidade Universitária, Sao Paulo, Brazil.
| | - Valério Garrone Barauna
- Laboratory of Molecular Physiology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil.
| | - Vander José Neves
- Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Av. Professor Mello Moraes, 65- Cidade Universitária, Sao Paulo, Brazil.
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Av. Professor Mello Moraes, 65- Cidade Universitária, Sao Paulo, Brazil.
| | - Lucienne da Silva Lara
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Diego Robles Mazzotti
- Department of Health Informatics, Federal University of São Paulo, Sao Paulo, Brazil.
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Av. Professor Mello Moraes, 65- Cidade Universitária, Sao Paulo, Brazil.
| |
Collapse
|
99
|
Laganà A, Veneziano D, Spata T, Tang R, Zhu H, Mohler PJ, Kilic A. Identification of General and Heart-Specific miRNAs in Sheep (Ovis aries). PLoS One 2015; 10:e0143313. [PMID: 26599010 PMCID: PMC4657999 DOI: 10.1371/journal.pone.0143313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/03/2015] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are small regulatory RNAs crucial for modulation of signaling pathways in multiple organs. While the link between miRNAs and heart disease has grown more readily apparent over the past three years, these data are primarily limited to small animal models or cell-based systems. Here, we performed a high-throughput RNA sequencing (RNAseq) analysis of left ventricle and other tissue from a pre-clinical ovine model. We identified 172 novel miRNA precursors encoding a total of 264 mature miRNAs. Notably, 84 precursors were detected in both the left ventricle and other tissues. However, 10 precursors, encoding 11 mature sequences, were specific to the left ventricle. Moreover, the total 168 novel miRNA precursors included 22 non-conserved ovine-specific sequences. Our data identify and characterize novel miRNAs in the left ventricle of sheep, providing fundamental new information for our understanding of protein regulation in heart and other tissues.
Collapse
Affiliation(s)
- Alessandro Laganà
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
- * E-mail: (AL); (AK)
| | - Dario Veneziano
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
| | - Tyler Spata
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
| | - Richard Tang
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
| | - Hua Zhu
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
| | - Peter J. Mohler
- The Davis Heart and Lung Research Institute, Departments of Physiology & Cell Biology and Internal Medicine, The Ohio State University Medical Center, Columbus, OH, United States of America
| | - Ahmet Kilic
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
- * E-mail: (AL); (AK)
| |
Collapse
|
100
|
Jin HY, Xiao C. MicroRNA Mechanisms of Action: What have We Learned from Mice? Front Genet 2015; 6:328. [PMID: 26635864 PMCID: PMC4644800 DOI: 10.3389/fgene.2015.00328] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hyun Yong Jin
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA ; Kellogg School of Science and Technology, The Scripps Research Institute La Jolla, CA, USA
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|