51
|
Ischemia challenged epicardial adipose tissue stem cells-derived extracellular vesicles alter the gene expression of cardiac fibroblasts to cardiomyocyte like phenotype. Transl Res 2023; 254:54-67. [PMID: 36273744 DOI: 10.1016/j.trsl.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The present study hypothesizes that the ischemic insults activate epicardial adipose tissue-derived stem cells (EATDS) to secrete extracellular vesicles (EVs) packed with regenerative mediators to alter the gene expression in cardiac fibroblasts (CF). EATDS and CF were isolated from hyperlipidemic microswine and EVs were harvested from control, simulated ischemia (ISC) and ischemia-reperfusion (ISC/R) groups. The in vitro interaction between ISC-EVs and CF resulted in the upregulation of cardiomyocyte-specific transcription factors including GATA4, Nkx2.5, IRX4, and TBX5 in CF and the healing marker αSMA and the downregulation of fibroblast biomarkers such as vimentin, FSP1, and podoplanin and the cardiac biomarkers such as troponin-I and connexin-43. These results suggest a cardiomyocyte-like phenotype as confirmed by immunostaining and Western blot. The LC-MS/MS analysis of ISC-EVs LGALS1, PRDX2, and CCL2 to be the potent protein mediators which are intimately involved in versatile regenerative processes and connected with a diverse array of regenerative genes. Moreover, the LGALS1+, PRDX2+, and CCL2+ EATDS phenotypes were deciphered at single cell resolution revealing corresponding sub-populations with superior healing potential. Overall, the findings unveiled the healing potential of EATDS-derived EVs and sub-populations of regenerative EATDS promising novel translational opportunities in improved cardiac healing following ischemic injury.
Collapse
|
52
|
Shakked A, Petrover Z, Aharonov A, Ghiringhelli M, Umansky KB, Kain D, Elkahal J, Divinsky Y, Nguyen PD, Miyara S, Friedlander G, Savidor A, Zhang L, Perez DE, Sarig R, Lendengolts D, Bueno-Levy H, Kastan N, Levin Y, Bakkers J, Gepstein L, Tzahor E. Redifferentiated cardiomyocytes retain residual dedifferentiation signatures and are protected against ischemic injury. NATURE CARDIOVASCULAR RESEARCH 2023; 2:383-398. [PMID: 37974970 PMCID: PMC10653068 DOI: 10.1038/s44161-023-00250-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/09/2023] [Indexed: 11/19/2023]
Abstract
Cardiomyocyte proliferation and dedifferentiation have fueled the field of regenerative cardiology in recent years, whereas the reverse process of redifferentiation remains largely unexplored. Redifferentiation is characterized by the restoration of function lost during dedifferentiation. Previously, we showed that ERBB2-mediated heart regeneration has these two distinct phases: transient dedifferentiation and redifferentiation. Here we survey the temporal transcriptomic and proteomic landscape of dedifferentiation-redifferentiation in adult mouse hearts and reveal that well-characterized dedifferentiation features largely return to normal, although elements of residual dedifferentiation remain, even after the contractile function is restored. These hearts appear rejuvenated and show robust resistance to ischemic injury, even 5 months after redifferentiation initiation. Cardiomyocyte redifferentiation is driven by negative feedback signaling and requires LATS1/2 Hippo pathway activity. Our data reveal the importance of cardiomyocyte redifferentiation in functional restoration during regeneration but also protection against future insult, in what could lead to a potential prophylactic treatment against ischemic heart disease for at-risk patients.
Collapse
Affiliation(s)
- Avraham Shakked
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zachary Petrover
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alla Aharonov
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Matteo Ghiringhelli
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Kfir-Baruch Umansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Kain
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Elkahal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yalin Divinsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Phong Dang Nguyen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Shoval Miyara
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gilgi Friedlander
- Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Lingling Zhang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dahlia E. Perez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rachel Sarig
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Lendengolts
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hanna Bueno-Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nathaniel Kastan
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | - Yishai Levin
- De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lior Gepstein
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
53
|
Dimasi CG, Darby JRT, Morrison JL. A change of heart: understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth. J Physiol 2023; 601:1319-1341. [PMID: 36872609 PMCID: PMC10952280 DOI: 10.1113/jp284137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
Mammalian cardiomyocytes undergo major maturational changes in preparation for birth and postnatal life. Immature cardiomyocytes contribute to cardiac growth via proliferation and thus the heart has the capacity to regenerate. To prepare for postnatal life, structural and metabolic changes associated with increased cardiac output and function must occur. This includes exit from the cell cycle, hypertrophic growth, mitochondrial maturation and sarcomeric protein isoform switching. However, these changes come at a price: the loss of cardiac regenerative capacity such that damage to the heart in postnatal life is permanent. This is a significant barrier to the development of new treatments for cardiac repair and contributes to heart failure. The transitional period of cardiomyocyte growth is a complex and multifaceted event. In this review, we focus on studies that have investigated this critical transition period as well as novel factors that may regulate and drive this process. We also discuss the potential use of new biomarkers for the detection of myocardial infarction and, in the broader sense, cardiovascular disease.
Collapse
Affiliation(s)
- Catherine G. Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
54
|
Mongelli A, Panunzi S, Nesta M, Gottardi Zamperla M, Atlante S, Barbi V, Mongiardini V, Ferraro F, De Martino S, Cis L, Re A, Maltese S, Bachetti T, La Rovere MT, Martelli F, Pesce M, Nanni S, Massetti M, Pontecorvi A, Farsetti A, Gaetano C. Distinguishable DNA methylation defines a cardiac-specific epigenetic clock. Clin Epigenetics 2023; 15:53. [PMID: 36991505 PMCID: PMC10053964 DOI: 10.1186/s13148-023-01467-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/18/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The present study investigates whether epigenetic differences emerge in the heart of patients undergoing cardiac surgery for an aortic valvular replacement (AVR) or coronary artery bypass graft (CABG). An algorithm is also established to determine how the pathophysiological condition might influence the human biological cardiac age. RESULTS Blood samples and cardiac auricles were collected from patients who underwent cardiac procedures: 94 AVR and 289 CABG. The CpGs from three independent blood-derived biological clocks were selected to design a new blood- and the first cardiac-specific clocks. Specifically, 31 CpGs from six age-related genes, ELOVL2, EDARADD, ITGA2B, ASPA, PDE4C, and FHL2, were used to construct the tissue-tailored clocks. The best-fitting variables were combined to define new cardiac- and blood-tailored clocks validated through neural network analysis and elastic regression. In addition, telomere length (TL) was measured by qPCR. These new methods revealed a similarity between chronological and biological age in the blood and heart; the average TL was significantly higher in the heart than in the blood. In addition, the cardiac clock discriminated well between AVR and CABG and was sensitive to cardiovascular risk factors such as obesity and smoking. Moreover, the cardiac-specific clock identified an AVR patient's subgroup whose accelerated bioage correlated with the altered ventricular parameters, including left ventricular diastolic and systolic volume. CONCLUSION This study reports on applying a method to evaluate the cardiac biological age revealing epigenetic features that separate subgroups of AVR and CABG.
Collapse
Affiliation(s)
- A Mongelli
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy
- Center for Translational and Experimental Cardiology (CTEC), University of Zurich, 8952, Schlieren, Switzerland
| | - S Panunzi
- National Research Council (CNR)-IASI, 00185, Rome, Italy
| | - M Nesta
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - M Gottardi Zamperla
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy
| | - S Atlante
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy
| | - V Barbi
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy
| | - V Mongiardini
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy
- Molecular Medicine, Istituto Italiano di Tecnologia, Genoa, Italy
| | - F Ferraro
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - S De Martino
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - L Cis
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - A Re
- National Research Council (CNR)-IASI, 00185, Rome, Italy
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - S Maltese
- National Research Council (CNR)-IRIB, 90146, Palermo, Italy
| | - T Bachetti
- Direzione Scientifica Centrale ICS Maugeri IRCCS, Pavia, Italy
| | - M T La Rovere
- Dipartimento di Cardiologia ICS Maugeri and Direzione Scientifica ICS Maugeri Montescano IRCCS, Pavia, Italy
| | - F Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - M Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - S Nanni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - M Massetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - A Pontecorvi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - A Farsetti
- National Research Council (CNR)-IASI, 00185, Rome, Italy.
| | - C Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
55
|
The Role of ncRNAs in Cardiac Infarction and Regeneration. J Cardiovasc Dev Dis 2023; 10:jcdd10030123. [PMID: 36975887 PMCID: PMC10052289 DOI: 10.3390/jcdd10030123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Myocardial infarction is the most prevalent cardiovascular disease worldwide, and it is defined as cardiomyocyte cell death due to a lack of oxygen supply. Such a temporary absence of oxygen supply, or ischemia, leads to extensive cardiomyocyte cell death in the affected myocardium. Notably, reactive oxygen species are generated during the reperfusion process, driving a novel wave of cell death. Consequently, the inflammatory process starts, followed by fibrotic scar formation. Limiting inflammation and resolving the fibrotic scar are essential biological processes with respect to providing a favorable environment for cardiac regeneration that is only achieved in a limited number of species. Distinct inductive signals and transcriptional regulatory factors are key components that modulate cardiac injury and regeneration. Over the last decade, the impact of non-coding RNAs has begun to be addressed in many cellular and pathological processes including myocardial infarction and regeneration. Herein, we provide a state-of-the-art review of the current functional role of diverse non-coding RNAs, particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in different biological processes involved in cardiac injury as well as in distinct experimental models of cardiac regeneration.
Collapse
|
56
|
Aslan GS, Jaé N, Manavski Y, Fouani Y, Shumliakivska M, Kettenhausen L, Kirchhof L, Günther S, Fischer A, Luxán G, Dimmeler S. Malat1 deficiency prevents neonatal heart regeneration by inducing cardiomyocyte binucleation. JCI Insight 2023; 8:162124. [PMID: 36883566 PMCID: PMC10077484 DOI: 10.1172/jci.insight.162124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/01/2023] [Indexed: 03/09/2023] Open
Abstract
The adult mammalian heart has limited regenerative capacity, while the neonatal heart fully regenerates during the first week of life. Postnatal regeneration is mainly driven by proliferation of preexisting cardiomyocytes and supported by proregenerative macrophages and angiogenesis. Although the process of regeneration has been well studied in the neonatal mouse, the molecular mechanisms that define the switch between regenerative and nonregenerative cardiomyocytes are not well understood. Here, using in vivo and in vitro approaches, we identified the lncRNA Malat1 as a key player in postnatal cardiac regeneration. Malat1 deletion prevented heart regeneration in mice after myocardial infarction on postnatal day 3 associated with a decline in cardiomyocyte proliferation and reparative angiogenesis. Interestingly, Malat1 deficiency increased cardiomyocyte binucleation even in the absence of cardiac injury. Cardiomyocyte-specific deletion of Malat1 was sufficient to block regeneration, supporting a critical role of Malat1 in regulating cardiomyocyte proliferation and binucleation, a landmark of mature nonregenerative cardiomyocytes. In vitro, Malat1 deficiency induced binucleation and the expression of a maturation gene program. Finally, the loss of hnRNP U, an interaction partner of Malat1, induced similar features in vitro, suggesting that Malat1 regulates cardiomyocyte proliferation and binucleation by hnRNP U to control the regenerative window in the heart.
Collapse
Affiliation(s)
- Galip S Aslan
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,Faculty of Biological Sciences, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany.,Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Nicolas Jaé
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany
| | - Yosif Manavski
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany.,Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Youssef Fouani
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,Faculty of Biological Sciences, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany
| | - Mariana Shumliakivska
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany.,Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Lisa Kettenhausen
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Luisa Kirchhof
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,Faculty of Biological Sciences, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany
| | - Stefan Günther
- German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany.,Cardiopulmonary Institute, Goethe University, Frankfurt, Germany.,Max Planck Institute for Heart and Lung Research, Bioinformatics and Deep Sequencing Platform, Bad Nauheim, Germany
| | - Ariane Fischer
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and
| | - Guillermo Luxán
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany.,Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,Faculty of Biological Sciences, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany.,Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
57
|
Wang T, Zhou LY, Li XM, Liu F, Liang L, Chen XZ, Ju J, Ponnusamy M, Wang K, Liu CY, Yan KW, Wang K. ABRO1 arrests cardiomyocyte proliferation and myocardial repair by suppressing PSPH. Mol Ther 2023; 31:847-865. [PMID: 36639869 PMCID: PMC10014284 DOI: 10.1016/j.ymthe.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The role of Abraxas 2 (ABRO1 or KIAA0157), a component of the lysine63-linked deubiquitinating system, in the cardiomyocyte proliferation and myocardial regeneration is unknown. Here, we found that ABRO1 regulates cardiomyocyte proliferation and cardiac regeneration in the postnatal heart by targeting METTL3-mediated m6A methylation of Psph mRNA. The deletion of ABRO1 increased cardiomyocyte proliferation in hearts and restored the heart function after myocardial injury. On the contrary, ABRO1 overexpression significantly inhibited the neonatal cardiomyocyte proliferation and cardiac regeneration in mouse hearts. The mechanism by which ABRO1 regulates cardiomyocyte proliferation mainly involved METTL3-mediated Psph mRNA methylation and CDK2 phosphorylation. In the early postnatal period, METTL3-dependent m6A methylation promotes cardiomyocyte proliferation by hypermethylation of Psph mRNA and upregulating PSPH expression. PSPH dephosphorylates cyclin-dependent kinase 2 (CDK2), a positive regulator of cell cycle, at Thr14/Tyr15 and increases its activity. Upregulation of ABRO1 restricts METTL3 activity and halts the cardiomyocyte proliferation in the postnatal hearts. Thus, our study reveals that ABRO1 is an essential contributor in the cell cycle withdrawal and attenuation of proliferative response in the postnatal cardiomyocytes and could act as a potential target to accelerate cardiomyocyte proliferation and cardiac repair in the adult heart.
Collapse
Affiliation(s)
- Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Lu-Yu Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xin-Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Fang Liu
- Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Anatomy, Guilin Medical University, Guilin 541004, China
| | - Lin Liang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Xin-Zhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cui-Yun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Kao-Wen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| |
Collapse
|
58
|
Bock-Marquette I, Maar K, Maar S, Lippai B, Faskerti G, Gallyas F, Olson EN, Srivastava D. Thymosin beta-4 denotes new directions towards developing prosperous anti-aging regenerative therapies. Int Immunopharmacol 2023; 116:109741. [PMID: 36709593 DOI: 10.1016/j.intimp.2023.109741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
Our dream of defeating the processes of organ damage and aging remains a challenge scientists pursued for hundreds of years. Although the goal is to successfully treat the body as a whole, steps towards regenerating individual organs are even considered significant. Since initial approaches utilizing only progenitor cells appear limited, we propose interconnecting our collective knowledge regarding aging and embryonic development may lead to the discovery of molecules which provide alternatives to effectively reverse cellular damage. In this review, we introduce and summarize our results regarding Thymosin beta-4 (TB4) to support our hypothesis using the heart as model system. Accordingly, we investigated the developmental expression of TB4 in mouse embryos and determined the impact of the molecule in adult animals by systemically injecting the peptide following acute cardiac infarction or with no injury. Our results proved, TB4 is expressed in the developing heart and promotes cardiac cell migration and survival. In adults, the peptide enhances myocyte survival and improves cardiac function after coronary artery ligation. Moreover, intravenous injections of TB4 alter the morphology of the adult epicardium, and the changes resemble the characteristics of the embryo. Reactivation of the embryonic program became equally reflected by the increased number of cardiac vessels and by the alteration of the gene expression profile typical of the embryonic state. Moreover, we discovered TB4 is capable of epicardial progenitor activation, and revealed the effect is independent of hypoxic injury. By observing the above results, we believe, further discoveries and consequential postnatal administration of developmentally relevant candidate molecules such as TB4 may likely result in reversing aging processes and accelerate organ regeneration in the human body.
Collapse
Affiliation(s)
- Ildiko Bock-Marquette
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary.
| | - Klaudia Maar
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Szabolcs Maar
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Balint Lippai
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Gabor Faskerti
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Roddenberry Stem Cell Center, Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
59
|
Ramamoorthi Elangovan V, Saadat N, Ghnenis A, Padmanabhan V, Vyas AK. Developmental programming: adverse sexually dimorphic transcriptional programming of gestational testosterone excess in cardiac left ventricle of fetal sheep. Sci Rep 2023; 13:2682. [PMID: 36792653 PMCID: PMC9932081 DOI: 10.1038/s41598-023-29212-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Adverse in-utero insults during fetal life alters offspring's developmental trajectory, including that of the cardiovascular system. Gestational hyperandrogenism is once such adverse in-utero insult. Gestational testosterone (T)-treatment, an environment of gestational hyperandrogenism, manifests as hypertension and pathological left ventricular (LV) remodeling in adult ovine offspring. Furthermore, sexual dimorphism is noted in cardiomyocyte number and morphology in fetal life and at birth. This study investigated transcriptional changes and potential biomarkers of prenatal T excess-induced adverse cardiac programming. Genome-wide coding and non-coding (nc) RNA expression were compared between prenatal T-treated (T propionate 100 mg intramuscular twice weekly from days 30 to 90 of gestation; Term: 147 days) and control ovine LV at day 90 fetus in both sexes. Prenatal T induced differential expression of mRNAs in the LV of female (2 down, 5 up) and male (3 down, 1 up) (FDR < 0.05, absolute log2 fold change > 0.5); pathways analysis demonstrated 205 pathways unique to the female, 382 unique to the male and 23 common pathways. In the male, analysis of ncRNA showed differential regulation of 15 lncRNAs (14 down, 1 up) and 27 snoRNAs (26 down and 1 up). These findings suggest sexual dimorphic modulation of cardiac coding and ncRNA with gestational T excess.
Collapse
Affiliation(s)
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Adel Ghnenis
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Arpita K Vyas
- College of Medicine, California Northstate University, Elk Grove, CA, USA.
- Department of Pediatrics, Division of Pediatric Endocrinology, School of Medicine, Washington University, St Louis, MO, USA.
| |
Collapse
|
60
|
Zhang J, Ouyang Z, Xia L, Wang Q, Zheng F, Xu K, Xing Y, Wei K, Shi S, Li C, Yang J. Dynamic chromatin landscape encodes programs for perinatal transition of cardiomyocytes. Cell Death Dis 2023; 9:11. [PMID: 36653336 PMCID: PMC9849264 DOI: 10.1038/s41420-023-01322-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
The perinatal period occurring immediately before and after birth is critical for cardiomyocytes because they must change rapidly to accommodate the switch from fetal to neonatal circulation after birth. This transition is a well-orchestrated process, and any perturbation leads to unhealthy cardiomyocytes and heart disease. Despite its importance, little is known about how this transition is regulated and controlled. Here, by mapping the genome-wide chromatin accessibility, transcription-centered long-range chromatin interactions and gene expression in cardiomyocytes undergoing perinatal transition, we discovered two key transcription factors, MEF2 and AP1, that are crucial for driving the phenotypic changes within the perinatal window. Thousands of dynamic regulatory elements were found in perinatal cardiomyocytes and we show these elements mediated the transcriptional reprogramming through an elegant chromatin high-order architecture. We recompiled transcriptional program of induced stem cell-derived cardiomyocytes according to our discovered network, and they showed adult cardiomyocyte-like electrophysiological expression. Our work provides a comprehensive regulatory resource of cardiomyocytes perinatal reprogramming, and aids the gap-filling of cardiac translational research.
Collapse
Affiliation(s)
- Jing Zhang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XJiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| | - Zhaohui Ouyang
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092 Shanghai, China
| | - Limei Xia
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XJiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| | - Qi Wang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XJiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| | - Feng Zheng
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XJiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| | - Kun Xu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XJiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| | - Yuexian Xing
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| | - Ke Wei
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092 Shanghai, China
| | - Shaolin Shi
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| | - Chaojun Li
- grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Gusu School, Nanjing Medical University, 211166 Nanjing, China
| | - Jingping Yang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XJiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| |
Collapse
|
61
|
Ge Y, Liu X, Chen H, Li G, Xing X, Liu J, Zhang C, Zhuge Y, Wang F. The serum soluble scavenger with 5 domains levels: A novel biomarker for individuals with heart failure. Front Physiol 2023; 14:1140856. [PMID: 37123263 PMCID: PMC10133869 DOI: 10.3389/fphys.2023.1140856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Background: We aimed to explore the relationship between the serum Soluble Scavenger with 5 Domains (SSC5D) levels and heart failure (HF). Methods and Results: We retrospectively enrolled 276 patients diagnosed with HF or normal during hospitalization in Shanghai General Hospital between September 2020 and December 2021. Previously published RNA sequencing data were re-analyzed to confirm the expression profile of SSC5D in failing and non-failing human and mouse heart tissues. Quantitative real-time polymerase chain reaction assay was used to quantify Ssc5d mRNA levels in murine heart tissue after myocardial infarction and transverse aortic constriction surgery. To understand the HF-induced secreted proteins profile, 1,755 secreted proteins were investigated using human dilated cardiomyopathy RNA-seq data, and the results indicated that SSC5D levels were significantly elevated in failing hearts compared to the non-failing. Using single-cell RNA sequencing data, we demonstrated that Ssc5d is predominantly expressed in cardiac fibroblasts. In a murine model of myocardial infarction or transverse aortic constriction, Ssc5d mRNA levels were markedly increased compared with those in the sham group. Similarly, serum SSC5D levels were considerably elevated in the HF group compared with the control group [15,789.35 (10,745.32-23,110.65) pg/mL, 95% CI (16,263.01-19,655.43) vs. 8,938.72 (6,154.97-12,778.81) pg/mL, 95% CI (9,337.50-11,142.93); p < 0.0001]. Moreover, serum SSC5D levels were positively correlated with N-terminal pro-B-type natriuretic peptide (R = 0.4, p = 7.9e-12) and inversely correlated with left ventricular ejection fraction (R = -0.46, p = 9.8e-16). Conclusion: We concluded that SSC5D was a specific response to HF. Serum SSC5D may function as a novel biomarker and therapeutic target for patients with HF.
Collapse
Affiliation(s)
- Yulong Ge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqiang Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hangwei Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gonghao Li
- Department of Cardiology, The First People’s Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, China
| | - Xing Xing
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyi Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxia Zhang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhuge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Ying Zhuge, ; Fang Wang,
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Ying Zhuge, ; Fang Wang,
| |
Collapse
|
62
|
Wang D, Zhang Y, Ye T, Zhang R, Zhang L, Shi D, Li T, Xia G, Niu K, Zhao Z, Chen Y, Pan W, Liu L, Jin X, Shen C. Cthrc1 deficiency aggravates wound healing and promotes cardiac rupture after myocardial infarction via non-canonical WNT5A signaling pathway. Int J Biol Sci 2023; 19:1299-1315. [PMID: 36923925 PMCID: PMC10008688 DOI: 10.7150/ijbs.79260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/03/2023] [Indexed: 03/13/2023] Open
Abstract
Cardiac fibroblasts are crucial for scar formation and cardiac repair after myocardial infarction (MI). Collagen triple helix repeat containing 1 (CTHRC1), an extracellular matrix protein, is involved in the pathogenesis of vascular remodeling, bone formation, and tumor progression. However, the role and underlying mechanism of CTHRC1 in post-MI wound repair are not fully clear. Bioinformatics analysis demonstrated CTHRC1 up-regulation in cardiac fibroblasts after ischemic cardiac injury. Serum levels of CTHRC1 were increased in MI mice and CTHRC1 expression was up-regulated in cardiac fibroblasts after MI. In vitro results showed that the induction of CTHRC1 expression in cardiac fibroblasts was mediated by canonical TGFβ1-Smad2/3 signaling axis. Moreover, CTHRC1 improved wound healing and boosted cardiac fibroblast activation in vitro. Cthrc1 deficiency aggravated cardiac function and reduced collagen deposition as well as increased mortality attributable to cardiac rupture after MI. Consistent with above phenotypes, reduced the levels of myocardial CD31, α-smooth muscle actin, collagen I, and collagen III was observed, whereas myocardial expression of matrix metalloproteinase 2 and matrix metalloproteinase 9 were increased in Cthrc1 knockout mice post-MI. Above effects could be partly reversed by rCTHRC1 protein or rWNT5A protein. Our study indicates that cardiac fibroblast-derived, canonical TGFβ1-Smad2/3-dependent CTHRC1 could improve wound repair and prevent cardiac rupture after MI via selectively activating non-canonical WNT5A-PCP signaling pathway.
Collapse
Affiliation(s)
- Di Wang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Yaping Zhang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Tianbao Ye
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Runlei Zhang
- Department of General Practice, Qibao Community Health Service Center Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Zhang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Dongmei Shi
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Taixi Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Guofang Xia
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Kaifan Niu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Zhe Zhao
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu Chen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Liang Liu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Xian Jin
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
- ✉ Corresponding authors: Xian Jin, MD. Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China, 200233. ; Chengxing Shen, MD, PhD. Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China, 200233.
| | - Chengxing Shen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
- ✉ Corresponding authors: Xian Jin, MD. Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China, 200233. ; Chengxing Shen, MD, PhD. Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China, 200233.
| |
Collapse
|
63
|
Boikova A, Bywater MJ, Quaife-Ryan GA, Straube J, Thompson L, Ascanelli C, Littlewood TD, Evan GI, Hudson JE, Wilson CH. HRas and Myc synergistically induce cell cycle progression and apoptosis of murine cardiomyocytes. Front Cardiovasc Med 2022; 9:948281. [PMID: 36337898 PMCID: PMC9630352 DOI: 10.3389/fcvm.2022.948281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Aim Adult mammalian cardiomyocytes are incapable of significant proliferation, limiting regeneration after myocardial injury. Overexpression of the transcription factor Myc has been shown to drive proliferation in the adult mouse heart, but only when combined with Cyclin T1. As constitutive HRas activity has been shown to stabilise Cyclin T1 in vivo, we aimed to establish whether Myc and HRas could also act cooperatively to induce proliferation in adult mammalian cardiomyocytes in vivo. Methods and results Using a genetically modified mouse model, we confirmed that constitutive HRas activity (HRas G 12 V ) increased Cyclin T1 expression. HRas G 12 V and constitutive Myc expression together co-operate to drive cell-cycle progression of adult mammalian cardiomyocytes. However, stimulation of endogenous cardiac proliferation by the ectopic expression of HRas G 12 V and Myc also induced cardiomyocyte death, while Myc and Cyclin T1 expression did not. Conclusion Co-expression of Cyclin T1 and Myc may be a therapeutically tractable approach for cardiomyocyte neo-genesis post injury, while cell death induced by HRas G 12 V and Myc expression likely limits this option as a regenerative therapeutic target.
Collapse
Affiliation(s)
- Aleksandra Boikova
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Megan J. Bywater
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Jasmin Straube
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Lucy Thompson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Camilla Ascanelli
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | | - Gerard I. Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - James E. Hudson
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Catherine H. Wilson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
64
|
Hammelman J, Patel T, Closser M, Wichterle H, Gifford D. Ranking reprogramming factors for cell differentiation. Nat Methods 2022; 19:812-822. [PMID: 35710610 PMCID: PMC10460539 DOI: 10.1038/s41592-022-01522-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/13/2022] [Indexed: 12/16/2022]
Abstract
Transcription factor over-expression is a proven method for reprogramming cells to a desired cell type for regenerative medicine and therapeutic discovery. However, a general method for the identification of reprogramming factors to create an arbitrary cell type is an open problem. Here we examine the success rate of methods and data for differentiation by testing the ability of nine computational methods (CellNet, GarNet, EBseq, AME, DREME, HOMER, KMAC, diffTF and DeepAccess) to discover and rank candidate factors for eight target cell types with known reprogramming solutions. We compare methods that use gene expression, biological networks and chromatin accessibility data, and comprehensively test parameter and preprocessing of input data to optimize performance. We find the best factor identification methods can identify an average of 50-60% of reprogramming factors within the top ten candidates, and methods that use chromatin accessibility perform the best. Among the chromatin accessibility methods, complex methods DeepAccess and diffTF have higher correlation with the ranked significance of transcription factor candidates within reprogramming protocols for differentiation. We provide evidence that AME and diffTF are optimal methods for transcription factor recovery that will allow for systematic prioritization of transcription factor candidates to aid in the design of new reprogramming protocols.
Collapse
Affiliation(s)
- Jennifer Hammelman
- Computational and Systems Biology, MIT, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
| | - Tulsi Patel
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Closser
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - David Gifford
- Computational and Systems Biology, MIT, Cambridge, MA, USA.
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA.
| |
Collapse
|
65
|
Liu S, Li RG, Martin JF. The cell-autonomous and non–cell-autonomous roles of the Hippo pathway in heart regeneration. J Mol Cell Cardiol 2022; 168:98-106. [PMID: 35526477 DOI: 10.1016/j.yjmcc.2022.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/04/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
|
66
|
Abstract
It is well established that humans and other mammals are minimally regenerative compared with organisms such as zebrafish, salamander or amphibians. In recent years, however, the identification of regenerative potential in neonatal mouse tissues that normally heal poorly in adults has transformed our understanding of regenerative capacity in mammals. In this Review, we survey the mammalian tissues for which regenerative or improved neonatal healing has been established, including the heart, cochlear hair cells, the brain and spinal cord, and dense connective tissues. We also highlight common and/or tissue-specific mechanisms of neonatal regeneration, which involve cells, signaling pathways, extracellular matrix, immune cells and other factors. The identification of such common features across neonatal tissues may direct therapeutic strategies that will be broadly applicable to multiple adult tissues.
Collapse
Affiliation(s)
| | - Alice H. Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
67
|
Fouani Y, Kirchhof L, Stanicek L, Luxán G, Heumüller AW, Knau A, Fischer A, Devraj K, John D, Neumann P, Bindereif A, Boon RA, Liebner S, Wittig I, Mogler C, Karimova M, Dimmeler S, Jaé N. The splicing-regulatory lncRNA NTRAS sustains vascular integrity. EMBO Rep 2022; 23:e54157. [PMID: 35527520 PMCID: PMC9171682 DOI: 10.15252/embr.202154157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/17/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Vascular integrity is essential for organ homeostasis to prevent edema formation and infiltration of inflammatory cells. Long non‐coding RNAs (lncRNAs) are important regulators of gene expression and often expressed in a cell type‐specific manner. By screening for endothelial‐enriched lncRNAs, we identified the undescribed lncRNA NTRAS to control endothelial cell functions. Silencing of NTRAS induces endothelial cell dysfunction in vitro and increases vascular permeability and lethality in mice. Biochemical analysis revealed that NTRAS, through its CA‐dinucleotide repeat motif, sequesters the splicing regulator hnRNPL to control alternative splicing of tight junction protein 1 (TJP1; also named zona occludens 1, ZO‐1) pre‐mRNA. Deletion of the hnRNPL binding motif in mice (Ntras∆CA/∆CA) significantly repressed TJP1 exon 20 usage, favoring expression of the TJP1α‐ isoform, which augments permeability of the endothelial monolayer. Ntras∆CA/∆CA mice further showed reduced retinal vessel growth and increased vascular permeability and myocarditis. In summary, this study demonstrates that NTRAS is an essential gatekeeper of vascular integrity.
Collapse
Affiliation(s)
- Youssef Fouani
- Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany.,Faculty of Biological Sciences, Goethe University, Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Frankfurt, Germany
| | - Luisa Kirchhof
- Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany.,Faculty of Biological Sciences, Goethe University, Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Frankfurt, Germany
| | - Laura Stanicek
- Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany.,Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Guillermo Luxán
- Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Frankfurt, Germany
| | - Andreas W Heumüller
- Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany.,Faculty of Biological Sciences, Goethe University, Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Frankfurt, Germany
| | - Andrea Knau
- Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Ariane Fischer
- Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany
| | - David John
- Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Philipp Neumann
- Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany
| | | | - Reinier A Boon
- Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Frankfurt, Germany.,Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Madina Karimova
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Frankfurt, Germany
| | - Nicolas Jaé
- Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Frankfurt, Germany
| |
Collapse
|
68
|
Bromage DI, Trevelin SC, Huntington J, Yang VX, Muthukumar A, Mackie SJ, Sawyer G, Zhang X, Santos CXC, Safinia N, Smyrnias I, Giacca M, Ivetic A, Shah AM. Nrf2 attenuates the innate immune response after experimental myocardial infarction. Biochem Biophys Res Commun 2022; 606:10-16. [PMID: 35338853 DOI: 10.1016/j.bbrc.2022.03.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND There is compelling evidence implicating dysregulated inflammation in the mechanism of ventricular remodeling and heart failure (HF) after MI. The transcription factor nuclear factor erythroid-derived 2-like 2 (Nrf2, encoded by Nfe2l2) is a promising target in this context since it impedes transcriptional upregulation of pro-inflammatory cytokines and is anti-inflammatory in various murine models. OBJECTIVES We aimed to investigate the contribution of Nrf2 to the inflammatory response after experimental myocardial infarction (MI). METHODS We subjected Nrf2-/- mice and wild type (WT) controls to permanent left coronary artery (LCA) ligation. The inflammatory response was investigated with fluorescence-activated cell sorting (FACS) analysis of peripheral blood and heart cell suspensions, together with qRT-PCR of infarcted tissue for chemokines and their receptors. To investigate whether Nrf2-mediated transcription is a dedicated function of leukocytes, we interrogated publicly available RNA-sequencing (RNA-seq) data from mouse hearts after permanent LCA ligation for Nrf2-regulated gene (NRG) expression. RESULTS FACS analysis demonstrated a profoundly inflamed phenotype in the hearts of global Nrf2-/- mice as compared to WT mice after MI. Moreover, infarcted tissue from Nrf2-/- mice displayed higher expression of mRNA coding for inflammatory cytokines, chemokines, and their receptors, including IL-6, Ccl2, and Cxcr4. RNA-seq analysis showed upregulated NRG expression in WT mice after MI compared to naive mice, which was significantly higher in bioinformatically isolated CCR2+ cells. CONCLUSIONS Taken together, the results suggest that Nrf2 signalling in leukocytes, and possibly CCR2+ monocytes and monocyte-derived cardiac resident macrophages, may be potential targets to prevent post-MI ventricular remodeling.
Collapse
Affiliation(s)
- Daniel I Bromage
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| | - Silvia C Trevelin
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Josef Huntington
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Victoria X Yang
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Ananya Muthukumar
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Sarah J Mackie
- School of Cancer and Pharmaceutical Sciences, SGDP Centre, King's College London, Memory Lane, London, SE5 8AF, UK
| | - Greta Sawyer
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Xiaohong Zhang
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Celio X C Santos
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Niloufar Safinia
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Ioannis Smyrnias
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK; School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, GU2 7AL, UK
| | - Mauro Giacca
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Aleksandar Ivetic
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| |
Collapse
|
69
|
Techane T, Legesse B, Ayalew Y, Hailu A. Rheumatic heart disease knowledge and associated factors among nurses working in cardiac centers at public and private hospitals of Addis Ababa: cross sectional study. BMC Nurs 2022; 21:130. [PMID: 35619104 PMCID: PMC9137194 DOI: 10.1186/s12912-022-00910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background It is proposed that the biggest gap in control of rheumatic heart disease is in implementing of ineffective primary and secondary preventive measures. These measures are supposed to be well addressed by nurses. For prevention and proper management, nurses are expected to have full knowledge about rheumatic heart disease. Therefor the main objective of the study was to assess the level of nurse’s knowledge and factors behind regarding RHD in the current study. Method Institution based cross sectional study was conducted on nurses working in cardiac centers of public and private hospitals at Addis Ababa from April 1 to 30, 2021. Total sample size is 163 selected by purposive sampling method. Data was entered in to Epi-data version 4.5 and exported to SPSS version 25.0 and was checked for missing values. Data was cleaned. Descriptive statistics such as frequency, mean and percentages were calculated, described and displayed in tables, graphs and charts. Binary logistic regression was done to see the crude significant relation of each independent variable with nurse’s good knowledge score. Significant factors were identified based on multivariate logistics regression in 95% confidence level at P-value less than 0.05. Result In the present study about 154 participants were participated. The mean correct answer response of the nurses for knowledge of RHD questions is 12.2 ± 5.2. Only 48.7% of the nurses have good knowledge towards RHD. Being male in gender, having history of sore throat, taking formal education in university or collage, taking in-service training on RHD, having higher wok experience, have found significantly associated with higher odds of nurses’ good knowledge towards RHD. Conclusion and recommendation Regular training regarding RHD management should be given to nurses who are working in cardiac centers. Rheumatic heart disease early treatment and prevention should be incorporated and reinforced in to nursing and other health related professions curriculums.
Collapse
Affiliation(s)
- Tesfaye Techane
- School of Nursing, Department of Medical Surgical Nursing, Saint Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia.
| | - Bethlehem Legesse
- Addis Ababa University College of Health Sciences School of Nursing and Midwifery, Addis Ababa, Ethiopia
| | - Yohannes Ayalew
- Addis Ababa University College of Health Sciences School of Nursing and Midwifery, Addis Ababa, Ethiopia
| | - Aklil Hailu
- Addis Ababa University College of Health Sciences School of Nursing and Midwifery, Addis Ababa, Ethiopia
| |
Collapse
|
70
|
Pharmacokinetic and pharmacodynamic studies of supaglutide in rats and monkeys. Eur J Pharm Sci 2022; 175:106218. [PMID: 35618199 DOI: 10.1016/j.ejps.2022.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/29/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
Abstract
We demonstrated recently that supaglutide, a novel GLP-1 mimetic generated by recombinant fusion protein techniques, exerted hypoglycemic effects in type 2 diabetes db/db mice and spontaneous diabetic monkeys. In this study, we investigated the pharmacokinetics and pharmacodynamics of supaglutide by single subcutaneous and intravenous injection(s) in rats and rhesus monkeys, as well as fourconsecutive subcutaneous injections in monkeys.We found the half-life (t1/2) of supaglutide was 39.7 hours and 35.8 hours at dosing 0.1 mg/kg upon subcutaneous or intravenous administration respectively, in rhesus monkeys. The plasma supaglutide peaked at 8-10 hours, while the plasma drug exposure levels increased with the increase of dose, showing approximately a linear pharmacokinetic characteristic. The elimination kinetics (Ke) were found to be similar between subcutaneous (∼0.025 in rats and ∼0.018 in monkeys) and intravenous administration (0.021 in rats and 0.020 in monkeys), whereas the bioavailability was found to be 31.1% in rats and 63.9% in monkeys. In monkeys, a single dose injection of supaglutide markedly decreased the random blood glucose levels that reaching the maxima effects in 14-16 hours, gradually recovered and returned to the baseline level approximately after 72 hours. 125I-supaglutide was found mainly distributed in the serum and organs rich in blood supply. Urine was found to be the primary excretion route of supaglutide, following by feces, but mostly not in bile.Our results show that supaglutide possess linear pharmacokinetic characteristics associated with prolonged hypoglycemic effects inanimals,suggestinga potential weekly dosing therapeutic reagent for the treatment of type 2 diabetes and metabolic diseases.
Collapse
|
71
|
Dourson AJ, Willits A, Raut NG, Kader L, Young E, Jankowski MP, Chidambaran V. Genetic and epigenetic mechanisms influencing acute to chronic postsurgical pain transitions in pediatrics: Preclinical to clinical evidence. Can J Pain 2022; 6:85-107. [PMID: 35572362 PMCID: PMC9103644 DOI: 10.1080/24740527.2021.2021799] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022]
Abstract
Background Chronic postsurgical pain (CPSP) in children remains an important problem with no effective preventive or therapeutic strategies. Recently, genomic underpinnings explaining additional interindividual risk beyond psychological factors have been proposed. Aims We present a comprehensive review of current preclinical and clinical evidence for genetic and epigenetic mechanisms relevant to pediatric CPSP. Methods Narrative review. Results Animal models are relevant to translational research for unraveling genomic mechanisms. For example, Cacng2, p2rx7, and bdnf mutant mice show altered mechanical hypersensitivity to injury, and variants of the same genes have been associated with CPSP susceptibility in humans; similarly, differential DNA methylation (H1SP) and miRNAs (miR-96/7a) have shown translational implications. Animal studies also suggest that crosstalk between neurons and immune cells may be involved in nociceptive priming observed in neonates. In children, differential DNA methylation in regulatory genomic regions enriching GABAergic, dopaminergic, and immune pathways, as well as polygenic risk scores for enhanced prediction of CPSP, have been described. Genome-wide studies in pediatric CPSP are scarce, but pathways identified by adult gene association studies point to potential common mechanisms. Conclusions Bench-to-bedside genomics research in pediatric CPSP is currently limited. Reverse translational approaches, use of other -omics, and inclusion of pediatric/CPSP endophenotypes in large-scale biobanks may be potential solutions. Time of developmental vulnerability and longitudinal genomic changes after surgery warrant further investigation. Emergence of promising precision pain management strategies based on gene editing and epigenetic programing emphasize need for further research in pediatric CPSP-related genomics.
Collapse
Affiliation(s)
- Adam J. Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Adam Willits
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Namrata G.R. Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Leena Kader
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Erin Young
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Vidya Chidambaran
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| |
Collapse
|
72
|
Young A, Bradley LA, Farrar E, Bilcheck HO, Tkachenko S, Saucerman JJ, Bekiranov S, Wolf MJ. Inhibition of DYRK1a Enhances Cardiomyocyte Cycling After Myocardial Infarction. Circ Res 2022; 130:1345-1361. [PMID: 35369706 PMCID: PMC9050942 DOI: 10.1161/circresaha.121.320005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND DYRK1a (dual-specificity tyrosine phosphorylation-regulated kinase 1a) contributes to the control of cycling cells, including cardiomyocytes. However, the effects of inhibition of DYRK1a on cardiac function and cycling cardiomyocytes after myocardial infarction (MI) remain unknown. METHODS We investigated the impacts of pharmacological inhibition and conditional genetic ablation of DYRK1a on endogenous cardiomyocyte cycling and left ventricular systolic function in ischemia-reperfusion (I/R) MI using αMHC-MerDreMer-Ki67p-RoxedCre::Rox-Lox-tdTomato-eGFP (RLTG) (denoted αDKRC::RLTG) and αMHC-Cre::Fucci2aR::DYRK1aflox/flox mice. RESULTS We observed that harmine, an inhibitor of DYRK1a, improved left ventricular ejection fraction (39.5±1.6% and 29.1±1.6%, harmine versus placebo, respectively), 2 weeks after I/R MI. Harmine also increased cardiomyocyte cycling after I/R MI in αDKRC::RLTG mice, 10.8±1.5 versus 24.3±2.6 enhanced Green Fluorescent Protein (eGFP)+ cardiomyocytes, placebo versus harmine, respectively, P=1.0×10-3. The effects of harmine on left ventricular ejection fraction were attenuated in αDKRC::DTA mice that expressed an inducible diphtheria toxin in adult cycling cardiomyocytes. The conditional cardiomyocyte-specific genetic ablation of DYRK1a in αMHC-Cre::Fucci2aR::DYRK1aflox/flox (denoted DYRK1a k/o) mice caused cardiomyocyte hyperplasia at baseline (210±28 versus 126±5 cardiomyocytes per 40× field, DYRK1a k/o versus controls, respectively, P=1.7×10-2) without changes in cardiac function compared with controls, or compensatory changes in the expression of other DYRK isoforms. After I/R MI, DYRK1a k/o mice had improved left ventricular function (left ventricular ejection fraction 41.8±2.2% and 26.4±0.8%, DYRK1a k/o versus control, respectively, P=3.7×10-2). RNAseq of cardiomyocytes isolated from αMHC-Cre::Fucci2aR::DYRK1aflox/flox and αMHC-Cre::Fucci2aR mice after I/R MI or Sham surgeries identified enrichment in mitotic cell cycle genes in αMHC-Cre::Fucci2aR::DYRK1aflox/flox compared with αMHC-Cre::Fucci2aR. CONCLUSIONS The pharmacological inhibition or cardiomyocyte-specific ablation of DYRK1a caused baseline hyperplasia and improved cardiac function after I/R MI, with an increase in cell cycle gene expression, suggesting the inhibition of DYRK1a may serve as a therapeutic target to treat MI.
Collapse
Affiliation(s)
- Alexander Young
- Department of Medicine (A.Y., L.A.B., E.F., H.O.B., M.J.W.), University of Virginia, Charlottesville
- Robert M. Berne Cardiovascular Research Center (A.Y., L.A.B., H.O.B., M.J.W.), University of Virginia, Charlottesville
| | - Leigh A Bradley
- Department of Medicine (A.Y., L.A.B., E.F., H.O.B., M.J.W.), University of Virginia, Charlottesville
- Robert M. Berne Cardiovascular Research Center (A.Y., L.A.B., H.O.B., M.J.W.), University of Virginia, Charlottesville
| | - Elizabeth Farrar
- Department of Medicine (A.Y., L.A.B., E.F., H.O.B., M.J.W.), University of Virginia, Charlottesville
| | - Helen O Bilcheck
- Department of Medicine (A.Y., L.A.B., E.F., H.O.B., M.J.W.), University of Virginia, Charlottesville
- Robert M. Berne Cardiovascular Research Center (A.Y., L.A.B., H.O.B., M.J.W.), University of Virginia, Charlottesville
| | - Svyatoslav Tkachenko
- Departments of Biomedical Engineering (S.T., J.J.S.), University of Virginia, Charlottesville
| | - Jeffrey J Saucerman
- Departments of Biomedical Engineering (S.T., J.J.S.), University of Virginia, Charlottesville
| | - Stefan Bekiranov
- Biochemistry and Molecular Genetics (S.B.), University of Virginia, Charlottesville
| | - Matthew J Wolf
- Department of Medicine (A.Y., L.A.B., E.F., H.O.B., M.J.W.), University of Virginia, Charlottesville
- Robert M. Berne Cardiovascular Research Center (A.Y., L.A.B., H.O.B., M.J.W.), University of Virginia, Charlottesville
| |
Collapse
|
73
|
Methods of mouse cardiomyocyte isolation from postnatal heart. J Mol Cell Cardiol 2022; 168:35-43. [DOI: 10.1016/j.yjmcc.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/15/2022] [Accepted: 04/09/2022] [Indexed: 01/10/2023]
|
74
|
Hu S, Vondriska TM. How Chromatin Stiffens Fibroblasts. CURRENT OPINION IN PHYSIOLOGY 2022; 26. [DOI: 10.1016/j.cophys.2022.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
75
|
Techane T, Nigussa E, Lemessa F, Fekadu T. Factors Associated with Length of Intensive Care Unit Stay Following Cardiac Surgery in Cardiac Center Ethiopia, Addis Ababa, Ethiopia: Institution Based Cross Sectional Study. RESEARCH REPORTS IN CLINICAL CARDIOLOGY 2022. [DOI: https://doi.org/10.2147/rrcc.s349038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
76
|
Techane T, Nigussa E, Lemessa F, Fekadu T. Factors Associated with Length of Intensive Care Unit Stay Following Cardiac Surgery in Cardiac Center Ethiopia, Addis Ababa, Ethiopia: Institution Based Cross Sectional Study. RESEARCH REPORTS IN CLINICAL CARDIOLOGY 2022. [DOI: 10.2147/rrcc.s349038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
77
|
Schoger E, Lelek S, Panáková D, Zelarayán LC. Tailoring Cardiac Synthetic Transcriptional Modulation Towards Precision Medicine. Front Cardiovasc Med 2022; 8:783072. [PMID: 35097003 PMCID: PMC8795974 DOI: 10.3389/fcvm.2021.783072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular and genetic differences between individual cells within tissues underlie cellular heterogeneities defining organ physiology and function in homeostasis as well as in disease states. Transcriptional control of endogenous gene expression has been intensively studied for decades. Thanks to a fast-developing field of single cell genomics, we are facing an unprecedented leap in information available pertaining organ biology offering a comprehensive overview. The single-cell technologies that arose aided in resolving the precise cellular composition of many organ systems in the past years. Importantly, when applied to diseased tissues, the novel approaches have been immensely improving our understanding of the underlying pathophysiology of common human diseases. With this information, precise prediction of regulatory elements controlling gene expression upon perturbations in a given cell type or a specific context will be realistic. Simultaneously, the technological advances in CRISPR-mediated regulation of gene transcription as well as their application in the context of epigenome modulation, have opened up novel avenues for targeted therapy and personalized medicine. Here, we discuss the fast-paced advancements during the recent years and the applications thereof in the context of cardiac biology and common cardiac disease. The combination of single cell technologies and the deep knowledge of fundamental biology of the diseased heart together with the CRISPR-mediated modulation of gene regulatory networks will be instrumental in tailoring the right strategies for personalized and precision medicine in the near future. In this review, we provide a brief overview of how single cell transcriptomics has advanced our knowledge and paved the way for emerging CRISPR/Cas9-technologies in clinical applications in cardiac biomedicine.
Collapse
Affiliation(s)
- Eric Schoger
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Goettingen, Goettingen, Germany
| | - Sara Lelek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniela Panáková
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Daniela Panáková
| | - Laura Cecilia Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Goettingen, Goettingen, Germany
- *Correspondence: Laura Cecilia Zelarayán
| |
Collapse
|
78
|
Majid QA, Orsolits B, Pohjolainen L, Kovács Z, Földes G, Talman V. Application of Human Induced Pluripotent Stem Cell Technology for Cardiovascular Regenerative Pharmacology. Methods Mol Biol 2022; 2454:163-196. [PMID: 33755910 DOI: 10.1007/7651_2021_369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases are one of the leading causes of mortality in the western world. Myocardial infarction is among the most prevalent and results in significant cell loss within the myocardium. Similarly, numerous drugs have been identified as having cardiotoxic side effects. The adult human heart is however unable to instigate an effective repair mechanism and regenerate the myocardium in response to such damage. This is in large part due to the withdrawal of cardiomyocytes (CMs) from the cell cycle. Thus, identifying, screening, and developing agents that could enhance the proliferative capacity of CMs holds great potential in cardiac regeneration. Human induced pluripotent stem cells (hiPSCs) and their cardiovascular derivatives are excellent tools in the search for such agents. This chapter outlines state-of-the art techniques for the two-dimensional differentiation and attainment of hiPSC-derived CMs and endothelial cells (ECs). Bioreactor systems and three-dimensional spheroids derived from hiPSC-cardiovascular derivatives are explored as platforms for drug discovery before focusing on relevant assays that can be employed to assess cell proliferation and viability.
Collapse
Affiliation(s)
- Qasim A Majid
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Barbara Orsolits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Zsófia Kovács
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gábor Földes
- National Heart and Lung Institute, Imperial College London, London, UK.
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary.
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
79
|
Abstract
The Human Genome Project marked a major milestone in the scientific community as it unravelled the ~3 billion bases that are central to crucial aspects of human life. Despite this achievement, it only scratched the surface of understanding how each nucleotide matters, both individually and as part of a larger unit. Beyond the coding genome, which comprises only ~2% of the whole genome, scientists have realized that large portions of the genome, not known to code for any protein, were crucial for regulating the coding genes. These large portions of the genome comprise the 'non-coding genome'. The history of gene regulation mediated by proteins that bind to the regulatory non-coding genome dates back many decades to the 1960s. However, the original definition of 'enhancers' was first used in the early 1980s. In this Review, we summarize benchmark studies that have mapped the role of cardiac enhancers in disease and development. We highlight instances in which enhancer-localized genetic variants explain the missing link to cardiac pathogenesis. Finally, we inspire readers to consider the next phase of exploring enhancer-based gene therapy for cardiovascular disease.
Collapse
|
80
|
Zhang Y, Wang D, Zhao Z, Liu L, Xia G, Ye T, Chen Y, Xu C, Jin X, Shen C. Nephronectin promotes cardiac repair post myocardial infarction via activating EGFR/JAK2/STAT3 pathway. Int J Med Sci 2022; 19:878-892. [PMID: 35693734 PMCID: PMC9149649 DOI: 10.7150/ijms.71780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/01/2022] [Indexed: 11/05/2022] Open
Abstract
Background: ECM proteins are instrumental for angiogenesis, which plays momentous roles during development and repair in various organs, including post cardiac insult. After a screening based on an open access RNA-seq database, we identified Nephronectin (NPNT), an extracellular protein, might be involved in cardiac repair post myocardial infarction (MI). However, the specific impact of nephronectin during cardiac repair in MI remains elusive. Methods and Results: In the present study, we established a system overexpressing NPNT locally in mouse heart by utilizing a recombinant adeno-associated virus. One-to-four weeks post MI induction, we observed improved cardiac function, limited infarct size, alleviated cardiac fibrosis, with promoted angiogenesis in infarct border zone in NPNT overexpressed mice. And NPNT treatment enhanced human umbilical vascular endothelial cell (HUVEC) migration and tube formation, putatively through advocating phosphorylation of EGFR/JAK2/STAT3. The migration and capillary-like tube formation events could be readily revoked by EGFR or STAT3 inhibition. Notably, phosphorylation of EGFR, JAK2 and STAT3 were markedly upregulated in AAV2/9-cTnT-NPNT-treated mice with MI. Conclusions: Our study thus identifies the beneficial effects of NPNT on angiogenesis and cardiac repair post MI by enhancing the EGFR/JAK2/STAT3 signaling pathway, implying the potential therapeutic application of NPNT on myocardial dysfunction post MI.
Collapse
Affiliation(s)
- Yaping Zhang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Di Wang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhe Zhao
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Liang Liu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guofang Xia
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Tianbao Ye
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yu Chen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Congfeng Xu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xian Jin
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chengxing Shen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
81
|
Sergienko NM, Donner DG, Delbridge LMD, McMullen JR, Weeks KL. Protein phosphatase 2A in the healthy and failing heart: New insights and therapeutic opportunities. Cell Signal 2021; 91:110213. [PMID: 34902541 DOI: 10.1016/j.cellsig.2021.110213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Protein phosphatases have emerged as critical regulators of phosphoprotein homeostasis in settings of health and disease. Protein phosphatase 2A (PP2A) encompasses a large subfamily of enzymes that remove phosphate groups from serine/threonine residues within phosphoproteins. The heterogeneity in PP2A structure, which arises from the grouping of different catalytic, scaffolding and regulatory subunit isoforms, creates distinct populations of catalytically active enzymes (i.e. holoenzymes) that localise to different parts of the cell. This structural complexity, combined with other regulatory mechanisms, such as interaction of PP2A heterotrimers with accessory proteins and post-translational modification of the catalytic and/or regulatory subunits, enables PP2A holoenzymes to target phosphoprotein substrates in a highly specific manner. In this review, we summarise the roles of PP2A in cardiac physiology and disease. PP2A modulates numerous processes that are vital for heart function including calcium handling, contractility, β-adrenergic signalling, metabolism and transcription. Dysregulation of PP2A has been observed in human cardiac disease settings, including heart failure and atrial fibrillation. Efforts are underway, particularly in the cancer field, to develop therapeutics targeting PP2A activity. The development of small molecule activators of PP2A (SMAPs) and other compounds that selectively target specific PP2A holoenzymes (e.g. PP2A/B56α and PP2A/B56ε) will improve understanding of the function of different PP2A species in the heart, and may lead to the development of therapeutics for normalising aberrant protein phosphorylation in settings of cardiac remodelling and dysfunction.
Collapse
Affiliation(s)
- Nicola M Sergienko
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Central Clinical School, Monash University, Clayton VIC 3800, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton VIC 3800, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
82
|
Cui Q, Sun S, Zhu H, Xiao Y, Jiang C, Zhang H, Liu J, Ye L, Shen J. Volume Overload Initiates an Immune Response in the Right Ventricle at the Neonatal Stage. Front Cardiovasc Med 2021; 8:772336. [PMID: 34869688 PMCID: PMC8635051 DOI: 10.3389/fcvm.2021.772336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pulmonary regurgitation caused by the correction or palliation of pediatric tetralogy of Fallot (TOF) leads to chronic right ventricular (RV) volume overload (VO), which induces adolescent RV dysfunction. A better understanding of the molecular mechanism by which VO initiates neonatal RV remodeling may bring new insights into the post-surgical management of pediatric TOF. Methods and Results: We created a fistula between the abdominal aorta and inferior vena cava on postnatal day 1 (P1) using a rat model to induce neonatal VO. Echocardiography revealed that the velocity and velocity- time-integral of the pulmonary artery (PA) were significantly elevated, and hematoxylin and eosin (H&E) staining showed that the diameter of the RV significantly increased. RNA-seq analysis of the RV on P7 indicated that the top 10 enriched Gene Ontology (GO) terms and the top 20 enriched terms in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were associated with immune responses. Flow-cytometric analysis demonstrated that the number of CD4+and CD8+ immune cells were significantly augmented in the VO group compared with the sham group. Conclusions: A neonatal cardiac VO rat model on P1 was successfully created, providing a platform for studying the molecular biology of neonatal RV under the influence of VO. VO - induces an immune response at the neonatal stage (from P1 to P7), suggesting that immune responses may be an initiating factor for neonatal RV remodeling under the influence of VO and that immunosuppressants may be used to prevent pediatric RV remodeling caused by VO.
Collapse
Affiliation(s)
- Qing Cui
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sijuan Sun
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbin Zhu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Xiao
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuan Jiang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Zhang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Children's Medical Center, Shanghai Institute for Pediatric Congenital Heart Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinfen Liu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Children's Medical Center, Shanghai Institute for Pediatric Congenital Heart Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Children's Medical Center, Shanghai Institute for Pediatric Congenital Heart Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Children's Medical Center, Institute of Pediatric Translational Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Shen
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
83
|
Identification and characterization of distinct cell cycle stages in cardiomyocytes using the FUCCI transgenic system. Exp Cell Res 2021; 408:112880. [PMID: 34655601 DOI: 10.1016/j.yexcr.2021.112880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022]
Abstract
Understanding the regulatory mechanism by which cardiomyocyte proliferation transitions to endoreplication and cell cycle arrest during the neonatal period is crucial for identifying proproliferative factors and developing regenerative therapies. We used a transgenic mouse model based on the fluorescent ubiquitination-based cell cycle indicator (FUCCI) system to isolate and characterize cycling cardiomyocytes at different cell cycle stages at a single-cell resolution. Single-cell transcriptome analysis of cycling and noncycling cardiomyocytes was performed at postnatal days 0 (P0) and 7 (P7). The FUCCI system proved to be efficient for the identification of cycling cardiomyocytes with the highest mitotic activity at birth, followed by a gradual decline in the number of cycling and mitotic cardiomyocytes during the neonatal period. Cardiomyocytes showed premature cell cycle exit at G1/S shortly after birth and delayed G1/S progression during endoreplication at P7. Single-cell RNA-seq confirmed previously described signaling pathways involved in cardiomyocyte proliferation (Erbb2 and Hippo/YAP), and maturation-related transcriptional changes during postnatal development, including the metabolic switch from glycolysis to fatty acid oxidation in cardiomyocytes. Importantly, we generated transcriptional profiles specific to cell division and endoreplication in cardiomyocytes at different developmental stages that may facilitate the identification of genes important for adult cardiomyocyte proliferation and heart regeneration. In conclusion, the FUCCI mouse provides a valuable system to study cardiomyocyte cell cycle activity at single cell resolution that can help to decipher the switch from cardiomyocyte proliferation to endoreplication, and to revert this process to facilitate endogenous repair.
Collapse
|
84
|
Lantz C, Becker A, Thorp EB. Can polarization of macrophage metabolism enhance cardiac regeneration? J Mol Cell Cardiol 2021; 160:87-96. [PMID: 34293342 PMCID: PMC8571050 DOI: 10.1016/j.yjmcc.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
While largely appreciated for their antimicrobial and repair functions, macrophages have emerged as indispensable for the development, homeostasis, and regeneration of tissue, including regeneration of the neonatal heart. Upon activation, mammalian neonatal macrophages express and secrete factors that coordinate angiogenesis, resolution of inflammation, and ultimately cardiomyocyte proliferation. This is contrary to adult macrophages in the adult heart, which are incapable of inducing significant levels of cardiac regeneration. The underlying mechanisms by which pro-regenerative macrophages are activated and regulated remain vague. A timely hypothesis is that macrophage metabolism contributes to this proliferative and regenerative potential. This is because we now appreciate the significant contributions of metabolites to immune cell programming and function, beyond solely bioenergetics. After birth, the metabolic milieu of the neonate is subject to significant alterations in oxygenation and nutrient supply, which will affect how metabolic substrates are catabolized. In this context, we discuss potential roles for select macrophage metabolic pathways during cardiac regeneration.
Collapse
Affiliation(s)
- Connor Lantz
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amanda Becker
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; The Division of Critical Care Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; The Heart Center, Stanley Manne Children's Research Institute, Chicago, IL, USA.
| |
Collapse
|
85
|
Walker CJ, Schroeder ME, Aguado BA, Anseth KS, Leinwand LA. Matters of the heart: Cellular sex differences. J Mol Cell Cardiol 2021; 160:42-55. [PMID: 34166708 PMCID: PMC8571046 DOI: 10.1016/j.yjmcc.2021.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Nearly all cardiovascular diseases show sexual dimorphisms in prevalence, presentation, and outcomes. Until recently, most clinical trials were carried out in males, and many animal studies either failed to identify the sex of the animals or combined data obtained from males and females. Cellular sex in the heart is relatively understudied and many studies fail to report the sex of the cells used for in vitro experiments. Moreover, in the small number of studies in which sex is reported, most of those studies use male cells. The observation that cells from males and females are inherently different is becoming increasingly clear - either due to acquired differences from hormones and other factors or due to intrinsic differences in genotype (XX or XY). Because of the likely contribution of cellular sex differences in cardiac health and disease, here, we explore differences in mammalian male and female cells in the heart, including the less-studied non-myocyte cell populations. We discuss how the heart's microenvironment impacts male and female cellular phenotypes and vice versa, including how secretory profiles are dependent on cellular sex, and how hormones contribute to sexually dimorphic phenotypes and cellular functions. Intracellular mechanisms that contribute to sex differences, including gene expression and epigenetic remodeling, are also described. Recent single-cell sequencing studies have revealed unexpected sex differences in the composition of cell types in the heart which we discuss. Finally, future recommendations for considering cellular sex differences in the design of bioengineered in vitro disease models of the heart are provided.
Collapse
Affiliation(s)
- Cierra J Walker
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80303, United States of America; Interdisciplinary Quantitative Biology, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Megan E Schroeder
- Chemical and Biological Engineering Department, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Brian A Aguado
- Chemical and Biological Engineering Department, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Kristi S Anseth
- Chemical and Biological Engineering Department, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America; Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, United States of America.
| |
Collapse
|
86
|
Song MH, Choi SC, Noh JM, Joo HJ, Park CY, Cha JJ, Ahn TH, Ko TH, Choi JI, Na JE, Rhyu IJ, Jang Y, Park Y, Gim JA, Kim JH, Lim DS. LEFTY-PITX2 signaling pathway is critical for generation of mature and ventricular cardiac organoids in human pluripotent stem cell-derived cardiac mesoderm cells. Biomaterials 2021; 278:121133. [PMID: 34571434 DOI: 10.1016/j.biomaterials.2021.121133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
The generation of mature ventricular cardiomyocytes (CMs) resembling adult CMs from human pluripotent stem cells (hPSCs) is necessary for disease modeling and drug discovery. To investigate the effect of self-organizing capacity on the generation of mature cardiac organoids (COs), we generated cardiac mesoderm cell-derived COs (CMC-COs) and CM-derived COs (CM-COs) and evaluated COs. CMC-COs exhibited more organized sarcomere structures and mitochondria, well-arranged t-tubule structures, and evenly distributed intercalated discs. Increased expressions of ventricular CM, cardiac metabolic, t-tubule formation, K+ ion channel, and junctional markers were confirmed in CMC-COs. Mature ventricular-like function such as faster motion vector speed, decreased beats per min, increased peak-to-peak duration, and prolonged APD50 and APD90 were observed in CMC-COs. Transcriptional profiling revealed that extracellular matrix-integrin, focal adhesion, and LEFTY-PITX2 signaling pathways are upregulated in CMC-COs. LEFTY knockdown affected ECM-integrin-FA signaling pathways in CMC-COs. Here, we found that high self-organizing capacity of CMCs is critical for the generation of mature and ventricular COs. We also demonstrated that LEFTY-PITX2 signaling plays key roles for CM maturation and specification into ventricular-like CM subtype in CMC-COs. CMC-COs are an attractive resource for disease modeling and drug discovery.
Collapse
Affiliation(s)
- Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; R&D Center for Companion Diagnostic, SOL Bio Corporation, Suite 510, 27, Seongsui-ro7-gil, Seongdong-gu, Seoul, 04780, South Korea
| | - Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Chi-Yeon Park
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jung-Joon Cha
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Tae Hoon Ahn
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Tae Hee Ko
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, Seoul, 02841, South Korea
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, Seoul, 02841, South Korea
| | - Ji Eun Na
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Yongjun Jang
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University Guro Hospital, Seoul,08308, South Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea.
| |
Collapse
|
87
|
Abstract
Heart regeneration is a remarkable process whereby regrowth of damaged cardiac tissue rehabilitates organ anatomy and function. Unfortunately, the human heart is highly resistant to regeneration, which creates a shortage of cardiomyocytes in the wake of ischemic injury, and explains, in part, why coronary artery disease remains a leading cause of death worldwide. Luckily, a detailed blueprint for achieving therapeutic heart regeneration already exists in nature because several lower vertebrate species successfully regenerate amputated or damaged heart muscle through robust cardiomyocyte proliferation. A growing number of species are being interrogated for cardiac regenerative potential, and several commonalities have emerged between those animals showing high or low innate capabilities. In this review, we provide a historical perspective on the field, discuss how regenerative potential is influenced by cardiomyocyte properties, mitogenic signals, and chromatin accessibility, and highlight unanswered questions under active investigation. Ultimately, delineating why heart regeneration occurs preferentially in some organisms, but not in others, will uncover novel therapeutic inroads for achieving cardiac restoration in humans.
Collapse
Affiliation(s)
- Hui-Min Yin
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
88
|
Bongiovanni C, Sacchi F, Da Pra S, Pantano E, Miano C, Morelli MB, D'Uva G. Reawakening the Intrinsic Cardiac Regenerative Potential: Molecular Strategies to Boost Dedifferentiation and Proliferation of Endogenous Cardiomyocytes. Front Cardiovasc Med 2021; 8:750604. [PMID: 34692797 PMCID: PMC8531484 DOI: 10.3389/fcvm.2021.750604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Despite considerable efforts carried out to develop stem/progenitor cell-based technologies aiming at replacing and restoring the cardiac tissue following severe damages, thus far no strategies based on adult stem cell transplantation have been demonstrated to efficiently generate new cardiac muscle cells. Intriguingly, dedifferentiation, and proliferation of pre-existing cardiomyocytes and not stem cell differentiation represent the preponderant cellular mechanism by which lower vertebrates spontaneously regenerate the injured heart. Mammals can also regenerate their heart up to the early neonatal period, even in this case by activating the proliferation of endogenous cardiomyocytes. However, the mammalian cardiac regenerative potential is dramatically reduced soon after birth, when most cardiomyocytes exit from the cell cycle, undergo further maturation, and continue to grow in size. Although a slow rate of cardiomyocyte turnover has also been documented in adult mammals, both in mice and humans, this is not enough to sustain a robust regenerative process. Nevertheless, these remarkable findings opened the door to a branch of novel regenerative approaches aiming at reactivating the endogenous cardiac regenerative potential by triggering a partial dedifferentiation process and cell cycle re-entry in endogenous cardiomyocytes. Several adaptations from intrauterine to extrauterine life starting at birth and continuing in the immediate neonatal period concur to the loss of the mammalian cardiac regenerative ability. A wide range of systemic and microenvironmental factors or cell-intrinsic molecular players proved to regulate cardiomyocyte proliferation and their manipulation has been explored as a therapeutic strategy to boost cardiac function after injuries. We here review the scientific knowledge gained thus far in this novel and flourishing field of research, elucidating the key biological and molecular mechanisms whose modulation may represent a viable approach for regenerating the human damaged myocardium.
Collapse
Affiliation(s)
- Chiara Bongiovanni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Francesca Sacchi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Silvia Da Pra
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Elvira Pantano
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Carmen Miano
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Marco Bruno Morelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Gabriele D'Uva
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| |
Collapse
|
89
|
Aslan GS, Polat F, Eren SN, Yucel D, Arbatli S, Cumbul A, Kocabas F. Identification of Novel and Potent Modulators Involved in Neonatal Cardiac Regeneration. Pediatr Cardiol 2021; 42:1554-1566. [PMID: 34046720 DOI: 10.1007/s00246-021-02640-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022]
Abstract
Neonatal mammalian heart has been shown to possess the capacity to regenerate substantially after an injury. This remarkable regenerative capacity is lost in a week. This transition has been marked with cardiomyocyte cell cycle arrest and induction of fibrotic response similar to what occurs after myocardial infarction in adult hearts. Recent studies outlined the function of several cardiogenic factors that play a pivotal role in neonatal cardiac regeneration. However, underlying molecular mechanisms of neonatal cardiac regeneration and other cardiogenic factors remained elusive. Here, we investigated the involvement of novel putative cardiogenic factors in neonatal cardiac regeneration and cardiomyocyte cell cycle withdrawal. We have shown that Cbl, Dnmt3a, and Itch are significantly downregulated during neonatal cardiac regeneration process after cardiac injury in vivo. Intriguingly, several of studied factors are upregulated in non-regenerative period of 7-day-old mice after cardiac injury. Knockdown of Cbl, Dnmt3a and Itch in rat neonatal cardiomyocytes lead to the induction of cardiomyocyte proliferation. Cardiomyocyte proliferation accompanies upregulation of positive regulators of cardiomyocyte division and downregulation of CDKIs. Taken together, our findings suggest that Cbl, Dnmt3a, and Itch may be involved in the regulation of cardiomyocyte cell cycle withdrawal and may represent new targets for the induction of cardiac regeneration.
Collapse
Affiliation(s)
- Galip Servet Aslan
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany.,Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.,Faculty of Biological Science, Goethe University, Frankfurt, Germany
| | - Feyza Polat
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Seyma Nur Eren
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Dogacan Yucel
- Faculty of Medicine, University of Minnesota, Minnesota, USA
| | | | - Alev Cumbul
- Department of Histology and Embryology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabas
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
90
|
Perreault LR, Le TT, Oudin MJ, Black LD. RNA sequencing indicates age-dependent shifts in the cardiac fibroblast transcriptome between fetal, neonatal, and adult developmental ages. Physiol Genomics 2021; 53:414-429. [PMID: 34281425 PMCID: PMC8560366 DOI: 10.1152/physiolgenomics.00074.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022] Open
Abstract
Cardiac fibroblasts are responsible for extracellular matrix turnover and repair in the cardiac environment and serve to help facilitate immune responses. However, it is well established that they have a significant phenotypic heterogeneity with respect to location, physiological conditions, and developmental age. The goal of this study was to provide an in-depth transcriptomic profile of cardiac fibroblasts derived from rat hearts at fetal, neonatal, and adult developmental ages to ascertain variations in gene expression that may drive functional differences in these cells at these specific stages of development. We performed RNA sequencing (RNA-seq) of cardiac fibroblasts isolated from fetal, neonatal, and adult rats and compared with the rat genome. Principal component analysis of RNA-seq data suggested that data variance was predominantly due to developmental age. Differential expression and gene set enrichment analysis against Gene Ontology and Kyoto Encyclopedia of Genes and Genomes datasets indicated an array of differences across developmental ages, including significant decreases in cardiac development and cardiac function-associated genes with age and a significant increase in immune- and inflammatory-associated functions, particularly immune cell signaling and cytokine and chemokine production, with respect to increasing developmental age. These results reinforce established evidence of diverse phenotypic heterogeneity of fibroblasts with respect to developmental age. Furthermore, based on our analysis of gene expression, age-specific alterations in cardiac fibroblasts may play a crucial role in observed differences in cardiac inflammation and immune response observed across developmental ages.
Collapse
Affiliation(s)
- Luke R Perreault
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Thanh T Le
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
- Cellular, Molecular, and Developmental Biology Program, Tufts Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
- Cellular, Molecular, and Developmental Biology Program, Tufts Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
91
|
Allanki S, Strilic B, Scheinberger L, Onderwater YL, Marks A, Günther S, Preussner J, Kikhi K, Looso M, Stainier DYR, Reischauer S. Interleukin-11 signaling promotes cellular reprogramming and limits fibrotic scarring during tissue regeneration. SCIENCE ADVANCES 2021; 7:eabg6497. [PMID: 34516874 PMCID: PMC8442930 DOI: 10.1126/sciadv.abg6497] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/16/2021] [Indexed: 05/02/2023]
Abstract
Damage-induced fibrotic scarring limits tissue regeneration in mammals and is a leading cause of morbidity. In contrast, species like zebrafish can regenerate damaged tissues without excessive fibrosis. However, whether specific signaling pathways can both limit fibrosis and promote regeneration is unclear. Here, we show that interleukin-11 (Il-11)/Stat3 signaling has such a dual function. Zebrafish lacking Il-11 receptor function display severely compromised heart, fin, and scale regeneration. Deep phenotyping and transcriptional analysis of adult hearts and fins show that Il-11 signaling drives cellular reprogramming to orchestrate global and tissue-specific regenerative programs and broadly antagonizes hallmarks of adult mammalian scarring. Mechanistically, our data indicate that IL-11 signaling in endothelial cells antagonizes profibrotic transforming growth factor–β signaling and endothelial-to-mesenchymal transition, limiting scarring and promoting cardiomyocyte repopulation, after injury. Overall, our findings position damage-induced Il-11/Stat3 signaling in a key role limiting fibrosis and promoting regeneration, revealing novel targets for regenerative therapies.
Collapse
Affiliation(s)
- Srinivas Allanki
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Lilly Scheinberger
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Yeszamin L. Onderwater
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Alora Marks
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jens Preussner
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Mario Looso
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| |
Collapse
|
92
|
The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen Med 2021; 6:43. [PMID: 34376677 PMCID: PMC8355260 DOI: 10.1038/s41536-021-00153-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a pathologic process characterized by the replacement of parenchymal tissue by large amounts of extracellular matrix, which may lead to organ dysfunction and even death. Fibroblasts are classically associated to fibrosis and tissue repair, and seldom to regeneration. However, accumulating evidence supports a pro-regenerative role of fibroblasts in different organs. While some organs rely on fibroblasts for maintaining stem cell niches, others depend on fibroblast activity, particularly on secreted molecules that promote cell adhesion, migration, and proliferation, to guide the regenerative process. Herein we provide an up-to-date overview of fibroblast-derived regenerative signaling across different organs and discuss how this capacity may become compromised with aging. We further introduce a new paradigm for regenerative therapies based on reverting adult fibroblasts to a fetal/neonatal-like phenotype.
Collapse
|
93
|
Early adaptive chromatin remodeling events precede pathologic phenotypes and are reinforced in the failing heart. J Mol Cell Cardiol 2021; 160:73-86. [PMID: 34273410 PMCID: PMC9181638 DOI: 10.1016/j.yjmcc.2021.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022]
Abstract
The temporal nature of chromatin structural changes underpinning pathologic transcription are poorly understood. We measured chromatin accessibility and DNA methylation to study the contribution of chromatin remodeling at different stages of cardiac hypertrophy and failure. ATAC-seq and reduced representation bisulfite sequencing were performed in cardiac myocytes after transverse aortic constriction (TAC) or depletion of the chromatin structural protein CTCF. Early compensation to pressure overload showed changes in chromatin accessibility and DNA methylation preferentially localized to intergenic and intronic regions. Most methylation and accessibility changes observed in enhancers and promoters at the late phase (3 weeks after TAC) were established at an earlier time point (3 days after TAC), before heart failure manifests. Enhancers were paired with genes based on chromatin conformation capture data: while enhancer accessibility generally correlated with changes in gene expression, this feature, nor DNA methylation, was alone sufficient to predict transcription of all enhancer interacting genes. Enrichment of transcription factors and active histone marks at these regions suggests that enhancer activity coordinates with other epigenetic factors to determine gene transcription. In support of this hypothesis, ChIP-qPCR demonstrated increased enhancer and promoter occupancy of GATA4 and NKX2.5 at Itga9 and Nppa, respectively, concomitant with increased transcription of these genes in the diseased heart. Lastly, we demonstrate that accessibility and DNA methylation are imperfect predictors of chromatin structure at the scale of A/B compartmentalization-rather, accessibility, DNA methylation, transcription factors and other histone marks work within these domains to determine gene expression. These studies establish that chromatin reorganization during early compensation after pathologic stimuli is maintained into the later decompensatory phases of heart failure. The findings reveal the rules for how local chromatin features govern gene expression in the context of global genomic structure and identify chromatin remodeling events for therapeutic targeting in disease.
Collapse
|
94
|
Redd MA, Scheuer SE, Saez NJ, Yoshikawa Y, Chiu HS, Gao L, Hicks M, Villanueva JE, Joshi Y, Chow CY, Cuellar-Partida G, Peart JN, See Hoe LE, Chen X, Sun Y, Suen JY, Hatch RJ, Rollo B, Xia D, Alzubaidi MAH, Maljevic S, Quaife-Ryan GA, Hudson JE, Porrello ER, White MY, Cordwell SJ, Fraser JF, Petrou S, Reichelt ME, Thomas WG, King GF, Macdonald PS, Palpant NJ. Therapeutic Inhibition of Acid Sensing Ion Channel 1a Recovers Heart Function After Ischemia-Reperfusion Injury. Circulation 2021; 144:947-960. [PMID: 34264749 DOI: 10.1161/circulationaha.121.054360] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Ischemia-reperfusion injury (IRI) is one of the major risk factors implicated in morbidity and mortality associated with cardiovascular disease. During cardiac ischemia, the build-up of acidic metabolites results in decreased intracellular and extracellular pH that can reach as low as 6.0-6.5. The resulting tissue acidosis exacerbates ischemic injury and significantly impacts cardiac function. Methods: We used genetic and pharmacological methods to investigate the role of acid sensing ion channel 1a (ASIC1a) in cardiac IRI at the cellular and whole organ level. Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) as well as ex vivo and in vivo models of IRI were used to test the efficacy of ASIC1a inhibitors as pre- and post-conditioning therapeutic agents. Results: Analysis of human complex trait genetics indicate that variants in the ASIC1 genetic locus are significantly associated with cardiac and cerebrovascular ischemic injuries. Using hiPSC-CMs in vitro and murine ex vivo heart models, we demonstrate that genetic ablation of ASIC1a improves cardiomyocyte viability after acute IRI. Therapeutic blockade of ASIC1a using specific and potent pharmacological inhibitors recapitulates this cardioprotective effect. We used an in vivo model of myocardial infarction (MI) and two models of ex vivo donor heart procurement and storage as clinical models to show that ASIC1a inhibition improves post-IRI cardiac viability. Use of ASIC1a inhibitors as pre- or post-conditioning agents provided equivalent cardioprotection to benchmark drugs, including the sodium-hydrogen exchange inhibitor zoniporide. At the cellular and whole organ level, we show that acute exposure to ASIC1a inhibitors has no impact on cardiac ion channels regulating baseline electromechanical coupling and physiological performance. Conclusions: Collectively, our data provide compelling evidence for a novel pharmacological strategy involving ASIC1a blockade as a cardioprotective therapy to improve the viability of hearts subjected to IRI.
Collapse
Affiliation(s)
- Meredith A Redd
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, Australia (M.A.R., L.E.S.H., J.Y.S., J.F.F.)
| | - Sarah E Scheuer
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
- Cardiopulmonary Transplant Unit (S.E.S., Y.J., P.S.M.), St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia (S.E.S., M.H., J.E.V., Y.J., P.S.M.)
| | - Natalie J Saez
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science (N.J.S., G.F.K.), The University of Queensland, St Lucia, Australia
| | - Yusuke Yoshikawa
- School of Biomedical Sciences (Y.Y., M.E.R., W.G.T.), The University of Queensland, St Lucia, Australia
| | - Han Sheng Chiu
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| | - Ling Gao
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
| | - Mark Hicks
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
- Department of Pharmacology (M.H.), St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia (S.E.S., M.H., J.E.V., Y.J., P.S.M.)
| | - Jeanette E Villanueva
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
- Faculty of Medicine, University of New South Wales, Sydney, Australia (S.E.S., M.H., J.E.V., Y.J., P.S.M.)
| | - Yashutosh Joshi
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
- Cardiopulmonary Transplant Unit (S.E.S., Y.J., P.S.M.), St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia (S.E.S., M.H., J.E.V., Y.J., P.S.M.)
| | - Chun Yuen Chow
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| | - Gabriel Cuellar-Partida
- The University of Queensland Diamantina Institute, Faculty of Medicine and Translational Research Institute, Woolloongabba, Australia (G.C.-P.)
| | - Jason N Peart
- School of Medical Science, Griffith University, Southport, Australia (J.N.P.)
| | - Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, Australia (M.A.R., L.E.S.H., J.Y.S., J.F.F.)
- Faculty of Medicine, The University of Queensland, Brisbane, Australia (L.E.S.H., J.Y.S., J.F.F.)
| | - Xiaoli Chen
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| | - Yuliangzi Sun
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, Australia (M.A.R., L.E.S.H., J.Y.S., J.F.F.)
- Faculty of Medicine, The University of Queensland, Brisbane, Australia (L.E.S.H., J.Y.S., J.F.F.)
| | - Robert J Hatch
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia (R.J.H., B.R., S.M., S.P.)
| | - Ben Rollo
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia (R.J.H., B.R., S.M., S.P.)
| | - Di Xia
- Genome Innovation Hub (D.X.), The University of Queensland, St Lucia, Australia
| | - Mubarak A H Alzubaidi
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| | - Snezana Maljevic
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia (R.J.H., B.R., S.M., S.P.)
| | | | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Australia (G.A.Q.-R., J.E.H.)
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia (E.R.P.)
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, Australia (E.R.P.)
| | - Melanie Y White
- School of Medical Sciences, School of Life and Environmental Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, Australia (M.Y.W., S.J.C.)
| | - Stuart J Cordwell
- School of Medical Sciences, School of Life and Environmental Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, Australia (M.Y.W., S.J.C.)
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, Australia (M.A.R., L.E.S.H., J.Y.S., J.F.F.)
- Faculty of Medicine, The University of Queensland, Brisbane, Australia (L.E.S.H., J.Y.S., J.F.F.)
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia (R.J.H., B.R., S.M., S.P.)
| | - Melissa E Reichelt
- School of Biomedical Sciences (Y.Y., M.E.R., W.G.T.), The University of Queensland, St Lucia, Australia
| | - Walter G Thomas
- School of Biomedical Sciences (Y.Y., M.E.R., W.G.T.), The University of Queensland, St Lucia, Australia
| | - Glenn F King
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science (N.J.S., G.F.K.), The University of Queensland, St Lucia, Australia
| | - Peter S Macdonald
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
- Cardiopulmonary Transplant Unit (S.E.S., Y.J., P.S.M.), St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia (S.E.S., M.H., J.E.V., Y.J., P.S.M.)
| | - Nathan J Palpant
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| |
Collapse
|
95
|
Zhang Y, Wang J, Ye M, Li G, Zhong M, Guan X. The effect of mechanical stimulation on the expression of apoptosis-related genes in cardiomyocytes. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
96
|
Rogers JD, Holmes JW, Saucerman JJ, Richardson WJ. Mechano-chemo signaling interactions modulate matrix production by cardiac fibroblasts. Matrix Biol Plus 2021; 10:100055. [PMID: 34195592 PMCID: PMC8233457 DOI: 10.1016/j.mbplus.2020.100055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 01/20/2023] Open
Abstract
Extracellular matrix remodeling after myocardial infarction occurs in a dynamic environment in which local mechanical stresses and biochemical signaling species stimulate the accumulation of collagen-rich scar tissue. It is well-known that cardiac fibroblasts regulate post-infarction matrix turnover by secreting matrix proteins, proteases, and protease inhibitors in response to both biochemical stimuli and mechanical stretch, but how these stimuli act together to dictate cellular responses is still unclear. We developed a screen of cardiac fibroblast-secreted proteins in response to combinations of biochemical agonists and cyclic uniaxial stretch in order to elucidate the relationships between stretch, biochemical signaling, and cardiac matrix turnover. We found that stretch significantly synergized with biochemical agonists to inhibit the secretion of matrix metalloproteinases, with stretch either amplifying protease suppression by individual agonists or antagonizing agonist-driven upregulation of protease expression. Stretch also modulated fibroblast sensitivity towards biochemical agonists by either sensitizing cells towards agonists that suppress protease secretion or de-sensitizing cells towards agonists that upregulate protease secretion. These findings suggest that the mechanical environment can significantly alter fibrosis-related signaling in cardiac fibroblasts, suggesting caution when extrapolating in vitro data to predict effects of fibrosis-related cytokines in situations like myocardial infarction where mechanical stretch occurs.
Collapse
Affiliation(s)
- Jesse D. Rogers
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Jeffrey W. Holmes
- Departments of Biomedical Engineering, Medicine/Cardiovascular Disease, and Surgery/Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
97
|
Maar K, Hetenyi R, Maar S, Faskerti G, Hanna D, Lippai B, Takatsy A, Bock-Marquette I. Utilizing Developmentally Essential Secreted Peptides Such as Thymosin Beta-4 to Remind the Adult Organs of Their Embryonic State-New Directions in Anti-Aging Regenerative Therapies. Cells 2021; 10:1343. [PMID: 34071596 PMCID: PMC8228050 DOI: 10.3390/cells10061343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
Our dream of defeating the processes of aging has occupied the curious and has challenged scientists globally for hundreds of years. The history is long, and sadly, the solution is still elusive. Our endeavors to reverse the magnitude of damaging cellular and molecular alterations resulted in only a few, yet significant advancements. Furthermore, as our lifespan increases, physicians are facing more mind-bending questions in their routine practice than ever before. Although the ultimate goal is to successfully treat the body as a whole, steps towards regenerating individual organs are even considered significant. As our initial approach to enhance the endogenous restorative capacity by delivering exogenous progenitor cells appears limited, we propose, utilizing small molecules critical during embryonic development may prove to be a powerful tool to increase regeneration and to reverse the processes associated with aging. In this review, we introduce Thymosin beta-4, a 43aa secreted peptide fulfilling our hopes and capable of numerous regenerative achievements via systemic administration in the heart. Observing the broad capacity of this small, secreted peptide, we believe it is not the only molecule which nature conceals to our benefit. Hence, the discovery and postnatal administration of developmentally relevant agents along with other approaches may result in reversing the aging process.
Collapse
Affiliation(s)
- Klaudia Maar
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Roland Hetenyi
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Szabolcs Maar
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Gabor Faskerti
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Daniel Hanna
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Balint Lippai
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Aniko Takatsy
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Ildiko Bock-Marquette
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| |
Collapse
|
98
|
Yan H, Rao X, Wang R, Zhu S, Liu R, Zheng X. Cell Cycle Withdrawal Limit the Regenerative Potential of Neonatal Cardiomyocytes. Cardiovasc Eng Technol 2021; 12:475-484. [PMID: 34046845 DOI: 10.1007/s13239-021-00551-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The neonatal mouse possesses a transient capacity for cardiac regeneration during the first few days of life. The regenerative response of neonatal mouse is primarily mediated by pre-existing cardiomyocyte (CM) proliferation, which has been identified as the primary source of myocardial regeneration. Postnatal 4-day-old (P4) mouse CMs appear to undergo a rapid transition from hyperplastic to hypertrophic growth and binucleation. By 7 days following birth this regenerative potential is lost which coincidently correspond with CM cell cycle arrest and binucleation. CCM2-like (Ccm2l) plays pivotal roles in cardiovascular development and cardiac growth, indicating a potential function in heart regeneration postnatally. The aim of this study was to determine the cardiac regeneration ability of P4 neonatal mouse using a novel and more reproducible injury model and to determine whether Ccm2l has any functional roles in heart repair following ischemic injury. METHODS We performed a modified left anterior descending artery (LAD) ligation procedure on P4 mice to examine cardiac regenerative responses at different time points. Additionally, we generated an endothelial-specific Ccm2l gain-of-function transgenic mouse to determine the role of Ccm2l in neonatal cardiac regeneration. RESULTS We found that the P4 mouse heart harbor a robust regenerative response after injury that was through the proliferation of pre-existing CMs but cardiac hypertrophy and subsequent remodeling was still evident 60 days after LAD ligation. Furthermore, we show that endothelial-specific overexpression of Ccm2l does not promote CM proliferation and heart repair after LAD ligation. CONCLUSION The neonatal heart at P4 harbors a robust but incomplete capacity for cardiac regeneration. Endothelial overexpression of Ccm2l has no effect on cardiac regeneration.
Collapse
Affiliation(s)
- Huili Yan
- Department of Pharmacology, School of Basic Biomedical Sciences, Tianjin Medical University, No. 22. Qixiangtai Rd, Tianjin, China
| | - Xiyun Rao
- Department of Pharmacology, School of Basic Biomedical Sciences, Tianjin Medical University, No. 22. Qixiangtai Rd, Tianjin, China
| | - Rui Wang
- Department of Pharmacology, School of Basic Biomedical Sciences, Tianjin Medical University, No. 22. Qixiangtai Rd, Tianjin, China
| | - Shichao Zhu
- Department of Pharmacology, School of Basic Biomedical Sciences, Tianjin Medical University, No. 22. Qixiangtai Rd, Tianjin, China
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Xiangjian Zheng
- Department of Pharmacology, School of Basic Biomedical Sciences, Tianjin Medical University, No. 22. Qixiangtai Rd, Tianjin, China.
| |
Collapse
|
99
|
Watt KI, Henstridge DC, Ziemann M, Sim CB, Montgomery MK, Samocha-Bonet D, Parker BL, Dodd GT, Bond ST, Salmi TM, Lee RS, Thomson RE, Hagg A, Davey JR, Qian H, Koopman R, El-Osta A, Greenfield JR, Watt MJ, Febbraio MA, Drew BG, Cox AG, Porrello ER, Harvey KF, Gregorevic P. Yap regulates skeletal muscle fatty acid oxidation and adiposity in metabolic disease. Nat Commun 2021; 12:2887. [PMID: 34001905 PMCID: PMC8129430 DOI: 10.1038/s41467-021-23240-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is a major risk factor underlying the development of metabolic disease and a growing public health concern globally. Strategies to promote skeletal muscle metabolism can be effective to limit the progression of metabolic disease. Here, we demonstrate that the levels of the Hippo pathway transcriptional co-activator YAP are decreased in muscle biopsies from obese, insulin-resistant humans and mice. Targeted disruption of Yap in adult skeletal muscle resulted in incomplete oxidation of fatty acids and lipotoxicity. Integrated 'omics analysis from isolated adult muscle nuclei revealed that Yap regulates a transcriptional profile associated with metabolic substrate utilisation. In line with these findings, increasing Yap abundance in the striated muscle of obese (db/db) mice enhanced energy expenditure and attenuated adiposity. Our results demonstrate a vital role for Yap as a mediator of skeletal muscle metabolism. Strategies to enhance Yap activity in skeletal muscle warrant consideration as part of comprehensive approaches to treat metabolic disease.
Collapse
Affiliation(s)
- K I Watt
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
- Dept of Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Dept of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - D C Henstridge
- School of Health Sciences, University of Tasmania, Hobart, Tas, Australia
| | - M Ziemann
- Deakin University, Melbourne, VIC, Australia
| | - C B Sim
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - M K Montgomery
- Dept of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - D Samocha-Bonet
- Division of Healthy Aging, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - B L Parker
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
- Dept of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - G T Dodd
- Dept of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - S T Bond
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - T M Salmi
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Dept of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
- Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - R S Lee
- Metabolic Disease and Obesity Phenotyping Facility, Monash University, Melbourne, VIC, Australia
| | - R E Thomson
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
| | - A Hagg
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
| | - J R Davey
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
| | - H Qian
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
| | - R Koopman
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
| | - A El-Osta
- Dept of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Dept of Pathology, The University of Melbourne, Melbourne, VIC, Australia
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - J R Greenfield
- Division of Healthy Aging, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Dept of Diabetes and Endocrinology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - M J Watt
- Dept of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - M A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - B G Drew
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - A G Cox
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Dept of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
- Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - E R Porrello
- Dept of Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - K F Harvey
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Dept of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - P Gregorevic
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia.
- Dept of Physiology, The University of Melbourne, Melbourne, VIC, Australia.
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Dept of Neurology, The University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
100
|
Zhuang A, Calkin AC, Lau S, Kiriazis H, Donner DG, Liu Y, Bond ST, Moody SC, Gould EA, Colgan TD, Carmona SR, Inouye M, de Aguiar Vallim TQ, Tarling EJ, Quaife-Ryan GA, Hudson JE, Porrello ER, Gregorevic P, Gao XM, Du XJ, McMullen JR, Drew BG. Loss of the long non-coding RNA OIP5-AS1 exacerbates heart failure in a sex-specific manner. iScience 2021; 24:102537. [PMID: 34142046 PMCID: PMC8184514 DOI: 10.1016/j.isci.2021.102537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to influence numerous biological processes, being strongly implicated in the maintenance and physiological function of various tissues including the heart. The lncRNA OIP5-AS1 (1700020I14Rik/Cyrano) has been studied in several settings; however its role in cardiac pathologies remains mostly uncharacterized. Using a series of in vitro and ex vivo methods, we demonstrate that OIP5-AS1 is regulated during cardiac development in rodent and human models and in disease settings in mice. Using CRISPR, we engineered a global OIP5-AS1 knockout (KO) mouse and demonstrated that female KO mice develop exacerbated heart failure following cardiac pressure overload (transverse aortic constriction [TAC]) but male mice do not. RNA-sequencing of wild-type and KO hearts suggest that OIP5-AS1 regulates pathways that impact mitochondrial function. Thus, these findings highlight OIP5-AS1 as a gene of interest in sex-specific differences in mitochondrial function and development of heart failure. The lncRNA OIP5-AS1 is enriched in striated muscles in mice and humans. OIP5-AS1 is regulated during heart development and in models of heart disease. Global deletion of OIP5-AS1 exacerbates heart failure specifically in female mice. Transcriptomics analysis suggests that loss OIP5-AS1 alters mitochondrial function.
Collapse
Affiliation(s)
- Aowen Zhuang
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Anna C. Calkin
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Shannen Lau
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Helen Kiriazis
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Daniel G. Donner
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Yingying Liu
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Simon T. Bond
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Sarah C. Moody
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | | | | | | | - Michael Inouye
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | | | - Elizabeth J. Tarling
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | - Enzo R. Porrello
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul Gregorevic
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiao-Ming Gao
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Xiao-Jun Du
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Julie R. McMullen
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Corresponding author
| | - Brian G. Drew
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Corresponding author
| |
Collapse
|