51
|
ACE2: from protection of liver disease to propagation of COVID-19. Clin Sci (Lond) 2020; 134:3137-3158. [PMID: 33284956 DOI: 10.1042/cs20201268] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023]
Abstract
Twenty years ago, the discovery of angiotensin-converting enzyme 2 (ACE2) was an important breakthrough dramatically enhancing our understanding of the renin-angiotensin system (RAS). The classical RAS is driven by its key enzyme ACE and is pivotal in the regulation of blood pressure and fluid homeostasis. More recently, it has been recognised that the protective RAS regulated by ACE2 counterbalances many of the deleterious effects of the classical RAS. Studies in murine models demonstrated that manipulating the protective RAS can dramatically alter many diseases including liver disease. Liver-specific overexpression of ACE2 in mice with liver fibrosis has proved to be highly effective in antagonising liver injury and fibrosis progression. Importantly, despite its highly protective role in disease pathogenesis, ACE2 is hijacked by SARS-CoV-2 as a cellular receptor to gain entry to alveolar epithelial cells, causing COVID-19, a severe respiratory disease in humans. COVID-19 is frequently life-threatening especially in elderly or people with other medical conditions. As an unprecedented number of COVID-19 patients have been affected globally, there is an urgent need to discover novel therapeutics targeting the interaction between the SARS-CoV-2 spike protein and ACE2. Understanding the role of ACE2 in physiology, pathobiology and as a cellular receptor for SARS-CoV-2 infection provides insight into potential new therapeutic strategies aiming to prevent SARS-CoV-2 infection related tissue injury. This review outlines the role of the RAS with a strong focus on ACE2-driven protective RAS in liver disease and provides therapeutic approaches to develop strategies to prevent SARS-CoV-2 infection in humans.
Collapse
|
52
|
New drug targets for hypertension: A literature review. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166037. [PMID: 33309796 DOI: 10.1016/j.bbadis.2020.166037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Hypertension is one of the most prevalent cardiovascular diseases worldwide. However, in the population of resistant hypertension, blood pressure is difficult to control effectively. Moreover, antihypertensive drugs may have adverse effect currently. Hence, new therapeutic targets and treatments are needed to uncovered and exploited to control hypertension and its comorbidities. In the past, classical drug targets, such as the aldosterone receptor, aldosterone synthase, and ACE2/angiotensin 1-7/Mas receptor axis, have been investigated. Recently, vaccines and drugs targeting the gastrointestinal microbiome, which represent drug classes, have also been investigated for the management of blood pressure. In this review, we summarized current knowledge on classical and new drug targets and discussed the potential utility of new drugs in the treatment of hypertension.
Collapse
|
53
|
Is Spironolactone the Preferred Renin-Angiotensin-Aldosterone Inhibitor for Protection Against COVID-19? J Cardiovasc Pharmacol 2020; 77:323-331. [PMID: 33278189 DOI: 10.1097/fjc.0000000000000960] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022]
Abstract
ABSTRACT The high mortality of specific groups from COVID-19 highlights the importance of host-viral interactions and the potential benefits from enhancing host defenses. SARS-CoV-2 requires angiotensin-converting enzyme (ACE) 2 as a receptor for cell entry and infection. Although both ACE inhibitors and spironolactone can upregulate tissue ACE2, there are important points of discrimination between these approaches. The virus requires proteolytic processing of its spike protein by transmembrane protease receptor serine type 2 (TMPRSS2) to enable binding to cellular ACE2. Because TMPRSS2 contains an androgen promoter, it may be downregulated by the antiandrogenic actions of spironolactone. Furin and plasmin also process the spike protein. They are inhibited by protease nexin 1 or serpin E2 (PN1) that is upregulated by angiotensin II but downregulated by aldosterone. Therefore, spironolactone should selectively downregulate furin and plasmin. Furin also promotes pulmonary edema, whereas plasmin promotes hemovascular dysfunction. Thus, a downregulation of furin and plasmin by PN1 could be a further benefit of MRAs beyond their well-established organ protection. We review the evidence that spironolactone may be the preferred RASSi to increase PN1 and decrease TMPRSS2, furin, and plasmin activities and thereby reduce viral cell binding, entry, infectivity, and bad outcomes. This hypothesis requires direct investigation.
Collapse
|
54
|
Payandeh Z, Rahbar MR, Jahangiri A, Hashemi ZS, Zakeri A, Jafarisani M, Rasaee MJ, Khalili S. Design of an engineered ACE2 as a novel therapeutics against COVID-19. J Theor Biol 2020; 505:110425. [PMID: 32735992 PMCID: PMC7387268 DOI: 10.1016/j.jtbi.2020.110425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/05/2020] [Accepted: 07/27/2020] [Indexed: 01/02/2023]
Abstract
The interaction between the angiotensin-converting enzyme 2 (ACE2) and the receptor binding domain (RBD) of the spike protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a pivotal role in virus entry into the host cells. Since recombinant ACE2 protein has been suggested as an anti-SARS-CoV-2 therapeutic agent, this study was conducted to design an ACE2 protein with more desirable properties. In this regard, the amino acids with central roles in enzymatic activity of the ACE2 were substituted. Moreover, saturation mutagenesis at the interaction interface between the ACE2 and RBD was performed to increase their interaction affinity. The best mutations to increase the structural and thermal stability of the ACE2 were also selected based on B factors and mutation effects. The obtained resulted revealed that the Arg273Gln and Thr445Gly mutation have drastically reduced the binding affinity of the angiotensin-II into the active site of ACE2. The Thr27Arg mutation was determined to be the most potent mutation to increase the binding affinity. The Asp427Arg mutation was done to decrease the flexibility of the region with high B factor. The Pro451Met mutation along with the Gly448Trp mutation was predicted to increase the thermodynamic stability and thermostability of the ACE2. The designed therapeutic ACE2 would have no enzymatic activity while it could bear stronger interaction with Spike glycoprotein of the SARS-CoV-2. Moreover, decreased in vivo enzymatic degradation would be anticipated due to increased thermostability. This engineered ACE2 could be exploited as a novel therapeutic agent against COVID-19 after necessary evaluations.
Collapse
Affiliation(s)
- Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Moslem Jafarisani
- Clinical Biochemistry, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
55
|
Magadum A, Kishore R. Cardiovascular Manifestations of COVID-19 Infection. Cells 2020; 9:E2508. [PMID: 33228225 PMCID: PMC7699571 DOI: 10.3390/cells9112508] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 induced the novel coronavirus disease (COVID-19) outbreak, the most significant medical challenge in the last century. COVID-19 is associated with notable increases in morbidity and death worldwide. Preexisting conditions, like cardiovascular disease (CVD), diabetes, hypertension, and obesity, are correlated with higher severity and a significant increase in the fatality rate of COVID-19. COVID-19 induces multiple cardiovascular complexities, such as cardiac arrest, myocarditis, acute myocardial injury, stress-induced cardiomyopathy, cardiogenic shock, arrhythmias and, subsequently, heart failure (HF). The precise mechanisms of how SARS-CoV-2 may cause myocardial complications are not clearly understood. The proposed mechanisms of myocardial injury based on current knowledge are the direct viral entry of the virus and damage to the myocardium, systemic inflammation, hypoxia, cytokine storm, interferon-mediated immune response, and plaque destabilization. The virus enters the cell through the angiotensin-converting enzyme-2 (ACE2) receptor and plays a central function in the virus's pathogenesis. A systematic understanding of cardiovascular effects of SARS-CoV2 is needed to develop novel therapeutic tools to target the virus-induced cardiac damage as a potential strategy to minimize permanent damage to the cardiovascular system and reduce the morbidity. In this review, we discuss our current understanding of COVID-19 mediated damage to the cardiovascular system.
Collapse
Affiliation(s)
- Ajit Magadum
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Raj Kishore
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
56
|
Ni J, Yang F, Huang X, Meng J, Chen J, Bader M, Penninger JM, Fung E, Yu X, Lan H. Dual deficiency of angiotensin-converting enzyme-2 and Mas receptor enhances angiotensin II-induced hypertension and hypertensive nephropathy. J Cell Mol Med 2020; 24:13093-13103. [PMID: 32971570 PMCID: PMC7701568 DOI: 10.1111/jcmm.15914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022] Open
Abstract
Angiotensin-converting enzyme-2 (ACE2) and Mas receptor are the major components of the ACE2/Ang 1-7/Mas axis and have been shown to play a protective role in hypertension and hypertensive nephropathy individually. However, the effects of dual deficiency of ACE2 and Mas (ACE2/Mas) on Ang II-induced hypertensive nephropathy remain unexplored, which was investigated in this study in a mouse model of hypertension induced in either ACE2 knockout (KO) or Mas KO mice and in double ACE2/Mas KO mice by subcutaneously chronic infusion of Ang II. Compared with wild-type (WT) animals, mice lacking either ACE2 or Mas significantly increased blood pressure over 7-28 days following a chronic Ang II infusion (P < .001), which was further exacerbated in double ACE2/Mas KO mice (P < .001). Furthermore, compared to a single ACE2 or Mas KO mice, mice lacking ACE2/Mas developed more severe renal injury including higher levels of serum creatinine and a further reduction in creatinine clearance, and progressive renal inflammation and fibrosis. Mechanistically, worsen hypertensive nephropathy in double ACE2/Mas KO mice was associated with markedly enhanced AT1-ERK1/2-Smad3 and NF-κB signalling, thereby promoting renal fibrosis and renal inflammation in the hypertensive kidney. In conclusion, ACE2 and Mas play an additive protective role in Ang II-induced hypertension and hypertensive nephropathy. Thus, restoring the ACE2/Ang1-7/Mas axis may represent a novel therapy for hypertension and hypertensive nephropathy.
Collapse
Affiliation(s)
- Jun Ni
- Department of Medicine & TherapeuticsLi Ka Shing Institute of Health SciencesLui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Department of Immunology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fuye Yang
- Department of Medicine & TherapeuticsLi Ka Shing Institute of Health SciencesLui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Department of NephrologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiao‐Ru Huang
- Department of Medicine & TherapeuticsLi Ka Shing Institute of Health SciencesLui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Guangdong‐Hong Kong Joint Laboratory on Immunological and Genetic Kidney DiseasesGuangdong Provincial Key Laboratory Coronary Heart Disease PreventionGuangdong Cardiovascular InstituteGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Jinxiu Meng
- Guangdong‐Hong Kong Joint Laboratory on Immunological and Genetic Kidney DiseasesGuangdong Provincial Key Laboratory Coronary Heart Disease PreventionGuangdong Cardiovascular InstituteGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Jiaoyi Chen
- Department of Medicine & TherapeuticsLi Ka Shing Institute of Health SciencesLui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Michael Bader
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Erik Fung
- Department of Medicine & TherapeuticsLi Ka Shing Institute of Health SciencesLui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Xue‐Qing Yu
- Guangdong‐Hong Kong Joint Laboratory on Immunological and Genetic Kidney DiseasesGuangdong Provincial Key Laboratory Coronary Heart Disease PreventionGuangdong Cardiovascular InstituteGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Hui‐Yao Lan
- Department of Medicine & TherapeuticsLi Ka Shing Institute of Health SciencesLui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
57
|
Maksimowski N, Williams VR, Scholey JW. Kidney ACE2 expression: Implications for chronic kidney disease. PLoS One 2020; 15:e0241534. [PMID: 33125431 PMCID: PMC7598523 DOI: 10.1371/journal.pone.0241534] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been implicated in the pathogenesis of chronic kidney disease (CKD) and is a membrane receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease (COVID-19), whereas transmembrane protease, serine 2 (TMPRSS2) is involved in viral attachment. Together, tissue expression of ACE2 and TMPRSS2 may determine infection. Sex, age, body mass index (BMI), and CKD are clinical risk factors for COVID-19 severity, but the relationships between kidney ACE2 and TMPRSS2 expression and these clinical variables are unknown. Accordingly, we obtained renal tubulointerstitial and glomerular microarray expression data and clinical variables from healthy living donors (HLD) and patients with CKD from the European Renal cDNA Bank. ACE2 expression was similar in the tubulointerstitium of the two groups, but greater in females than males in HLD (P = 0.005) and CKD (P < 0.0001). ACE2 expression was lower in glomeruli of CKD patients compared to HLD (P = 0.0002) and lower in males than females. TMPRSS2 expression was similar in the tubulointerstitium but lower in glomeruli of CKD patients compared to HLD (P < 0.0001). There was a strong relationship between ACE2 and TMPRSS2 expression in the glomerulus (r = 0.51, P < 0.0001). In CKD, there was a relationship between tubulointerstitial ACE2 expression and estimated glomerular filtration rate (r = 0.36, P < 0.0001) and age (r = -0.17, P = 0.03), but no relationship with BMI. There were no relationships between TMPRSS2 expression and clinical variables. Genes involved in inflammation (CCL2, IL6, and TNF) and fibrosis (COL1A1, TGFB1, and FN1) were inversely correlated with ACE2 expression. In summary, kidney expression of ACE2 and TMPRSS2 differs in HLD and CKD. ACE2 is related to sex and eGFR. ACE2 is also associated with expression of genes implicated in inflammation and fibrosis.
Collapse
Affiliation(s)
| | - Vanessa R. Williams
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| | - James W. Scholey
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
58
|
Song L, Liu J, Shi T, Zhang Y, Xin Z, Cao X, Yang J. Angiotensin‐(1‐7), the product of ACE2 ameliorates NAFLD by acting through its receptor Mas to regulate hepatic mitochondrial function and glycolipid metabolism. FASEB J 2020; 34:16291-16306. [PMID: 33078906 DOI: 10.1096/fj.202001639r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Li‐Ni Song
- Beijing Key Laboratory of Diabetes Research and Care Department of Endocrinology Beijing Diabetes Institute Beijing Tongren Hospital Capital Medical University Beijing China
| | - Jing‐Yi Liu
- Beijing Key Laboratory of Diabetes Research and Care Department of Endocrinology Beijing Diabetes Institute Beijing Tongren Hospital Capital Medical University Beijing China
| | - Ting‐Ting Shi
- Beijing Key Laboratory of Diabetes Research and Care Department of Endocrinology Beijing Diabetes Institute Beijing Tongren Hospital Capital Medical University Beijing China
| | - Yi‐Chen Zhang
- Beijing Key Laboratory of Diabetes Research and Care Department of Endocrinology Beijing Diabetes Institute Beijing Tongren Hospital Capital Medical University Beijing China
| | - Zhong Xin
- Beijing Key Laboratory of Diabetes Research and Care Department of Endocrinology Beijing Diabetes Institute Beijing Tongren Hospital Capital Medical University Beijing China
| | - Xi Cao
- Beijing Key Laboratory of Diabetes Research and Care Department of Endocrinology Beijing Diabetes Institute Beijing Tongren Hospital Capital Medical University Beijing China
| | - Jin‐Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care Department of Endocrinology Beijing Diabetes Institute Beijing Tongren Hospital Capital Medical University Beijing China
| |
Collapse
|
59
|
Ferrario CM, Ahmad S, Groban L. Twenty years of progress in angiotensin converting enzyme 2 and its link to SARS-CoV-2 disease. Clin Sci (Lond) 2020; 134:2645-2664. [PMID: 33063823 PMCID: PMC9055624 DOI: 10.1042/cs20200901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
The virulence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the aggressive nature of the disease has transformed the universal pace of research in the desperate attempt to seek effective therapies to halt the morbidity and mortality of this pandemic. The rapid sequencing of the SARS-CoV-2 virus facilitated identification of the receptor for angiotensin converting enzyme 2 (ACE2) as the high affinity binding site that allows virus endocytosis. Parallel evidence that coronavirus disease 2019 (COVID-19) disease evolution shows greater lethality in patients with antecedent cardiovascular disease, diabetes, or even obesity questioned the potential unfavorable contribution of angiotensin converting enzyme (ACE) inhibitors or angiotensin II (Ang II) receptor blockers as facilitators of adverse outcomes due to the ability of these therapies to augment the transcription of Ace2 with consequent increase in protein formation and enzymatic activity. We review, here, the specific studies that support a role of these agents in altering the expression and activity of ACE2 and underscore that the robustness of the experimental data is associated with weak clinical long-term studies of the existence of a similar regulation of tissue or plasma ACE2 in human subjects.
Collapse
Affiliation(s)
- Carlos M. Ferrario
- Departments of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
| |
Collapse
|
60
|
Jia H, Yue X, Lazartigues E. ACE2 mouse models: a toolbox for cardiovascular and pulmonary research. Nat Commun 2020; 11:5165. [PMID: 33057007 PMCID: PMC7560817 DOI: 10.1038/s41467-020-18880-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been identified as the host entry receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the COVID-19 pandemic. ACE2 is a regulatory enzyme of the renin-angiotensin system and has protective functions in many cardiovascular, pulmonary and metabolic diseases. This review summarizes available murine models with systemic or organ-specific deletion of ACE2, or with overexpression of murine or human ACE2. The purpose of this review is to provide researchers with the genetic tools available for further understanding of ACE2 biology and for the investigation of ACE2 in the pathogenesis and treatment of COVID-19.
Collapse
Affiliation(s)
- Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xinping Yue
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Eric Lazartigues
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA. .,Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA. .,Southeast Louisiana Veterans Health Care Systems, New Orleans, LA, 70119, USA.
| |
Collapse
|
61
|
Kumar R, Lee MH, Mickael C, Kassa B, Pasha Q, Tuder R, Graham B. Pathophysiology and potential future therapeutic targets using preclinical models of COVID-19. ERJ Open Res 2020; 6:00405-2020. [PMID: 33313306 PMCID: PMC7720688 DOI: 10.1183/23120541.00405-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) gains entry into the lung epithelial cells by binding to the surface protein angiotensin-converting enzyme 2. Severe SARS-CoV-2 infection, also known as coronavirus disease 2019 (COVID-19), can lead to death due to acute respiratory distress syndrome mediated by inflammatory immune cells and cytokines. In this review, we discuss the molecular and biochemical bases of the interaction between SARS-CoV-2 and human cells, and in doing so we highlight knowledge gaps currently precluding development of new effective therapies. In particular, discovery of novel treatment targets in COVID-19 will start from understanding pathologic changes based on a large number of autopsy lung tissue samples. Pathogenetic roles of potential molecular targets identified in human lung tissues must be validated in established animal models. Overall, this stepwise approach will enable appropriate selection of candidate therapeutic modalities targeting SARS-CoV2 and the host inflammatory response.
Collapse
Affiliation(s)
- Rahul Kumar
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael H. Lee
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Claudia Mickael
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Biruk Kassa
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Qadar Pasha
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Rubin Tuder
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian Graham
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
62
|
Wang K, Basu R, Poglitsch M, Bakal JA, Oudit GY. Elevated Angiotensin 1-7/Angiotensin II Ratio Predicts Favorable Outcomes in Patients With Heart Failure. Circ Heart Fail 2020; 13:e006939. [PMID: 32580658 DOI: 10.1161/circheartfailure.120.006939] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND ACE2 (angiotensin-converting enzyme 2) and Ang 1-7 (angiotensin 1-7) are endogenous negative regulators of the renin-angiotensin system exerting cardioprotective effects in models of heart failure. Recombinant human ACE2 markedly increased plasma Ang 1-7 and lowered Ang II levels in phase II clinical trials. We hypothesize that the dynamic state of this renin-angiotensin system protective arm could influence long-term outcomes in patients with heart failure. METHODS One hundred ten patients with heart failure were prospectively enrolled from our outpatient clinic and the emergency department. Comprehensive circulating and equilibrium levels of plasma angiotensin peptide profiles were assessed using novel liquid chromatography-mass spectrometry/mass spectroscopy techniques. Plasma aldosterone, B-type natriuretic peptide, active renin concentration, and clinical profiles were captured at baseline. During a median follow-up of 5.1 years (interquartile range, 4.7-5.7 years), composite clinical outcomes were assessed using all-cause in-patient hospitalizations and mortality. RESULTS Circulating and equilibrium angiotensin peptide levels strongly correlated in our patient cohort. Adjusting for covariates, elevated equilibrium (hazard ratio, 0.38 [95% CI, 0.18-0.81] P=0.012), and circulating (hazard ratio, 0.38 [95% CI, 0.18-0.80] P=0.011) Ang 1-7/Ang II ratios were associated with improved survival. Lower hospitalization duration was also associated with elevated equilibrium (P<0.001) and circulating (P=0.023) Ang 1-7/Ang II ratios. Importantly, individual Ang 1-7 and Ang II peptide levels failed to predict all-cause mortality or hospitalization duration in our patient cohort. CONCLUSIONS We extensively profiled plasma angiotensin peptides in patients with heart failure and identified elevated Ang 1-7/Ang II ratio, as an independent and incremental predictor of beneficial outcomes, higher survival rate, and decreased hospitalization duration. These findings provide important clinical evidence supporting strategies aiming to promote the beneficial Ang 1-7/Mas axis concurrent with renin-angiotensin system blockade therapies inhibiting the detrimental Ang II/AT1 receptor axis.
Collapse
Affiliation(s)
- Kaiming Wang
- Division of Cardiology, Department of Medicine (K.W., R.B., G.Y.O.), University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute (K.W., R.B., G.Y.O.), University of Alberta, Edmonton, Canada
| | - Ratnadeep Basu
- Division of Cardiology, Department of Medicine (K.W., R.B., G.Y.O.), University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute (K.W., R.B., G.Y.O.), University of Alberta, Edmonton, Canada
| | | | - Jeffrey A Bakal
- Alberta Strategy for Patient Oriented Research (SPOR) Unit (J.A.B.), University of Alberta, Edmonton, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine (K.W., R.B., G.Y.O.), University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute (K.W., R.B., G.Y.O.), University of Alberta, Edmonton, Canada
| |
Collapse
|
63
|
Banu N, Panikar SS, Leal LR, Leal AR. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications. Life Sci 2020; 256:117905. [PMID: 32504757 PMCID: PMC7832382 DOI: 10.1016/j.lfs.2020.117905] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
In light of the outbreak of the 2019 novel coronavirus disease (COVID-19), the international scientific community has joined forces to develop effective treatment strategies. The Angiotensin-Converting Enzyme (ACE) 2, is an essential receptor for cell fusion and engulfs the SARS coronavirus infections. ACE2 plays an important physiological role, practically in all the organs and systems. Also, ACE2 exerts protective functions in various models of pathologies with acute and chronic inflammation. While ACE2 downregulation by SARS-CoV-2 spike protein leads to an overactivation of Angiotensin (Ang) II/AT1R axis and the deleterious effects of Ang II may explain the multiorgan dysfunction seen in patients. Specifically, the role of Ang II leading to the appearance of Macrophage Activation Syndrome (MAS) and the cytokine storm in COVID-19 is discussed below. In this review, we summarized the latest research progress in the strategies of treatments that mainly focus on reducing the Ang II-induced deleterious effects rather than attenuating the virus replication. Protective role of ACE2 in the organs and system Downregulation of ACE2 expression by SARS-CoV-2 leads to Ang II-induced organ damage. The appearance of MAS in COVID-19 patient Suggested treatment to diminish the deleterious effect of Ang II or appearance of MAS
Collapse
Affiliation(s)
- Nehla Banu
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sandeep Surendra Panikar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autonoma de México (UNAM), Apartado Postal 1-1010, Queretaro, Queretaro 76000, Mexico
| | - Lizbeth Riera Leal
- Hospital General Regional número 45, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Annie Riera Leal
- UC DAVIS Institute for Regenerative Cure, Department of Dermatology, University of California, 2921 Stockton Blvd, Rm 1630, 95817 Sacramento, CA, USA.
| |
Collapse
|
64
|
Sobczuk P, Czerwińska M, Kleibert M, Cudnoch-Jędrzejewska A. Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system-from molecular mechanisms to therapeutic applications. Heart Fail Rev 2020; 27:295-319. [PMID: 32472524 PMCID: PMC8739307 DOI: 10.1007/s10741-020-09977-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Few millions of new cancer cases are diagnosed worldwide every year. Due to significant progress in understanding cancer biology and developing new therapies, the mortality rates are decreasing with many of patients that can be completely cured. However, vast majority of them require chemotherapy which comes with high medical costs in terms of adverse events, of which cardiotoxicity is one of the most serious and challenging. Anthracyclines (doxorubicin, epirubicin) are a class of cytotoxic agents used in treatment of breast cancer, sarcomas, or hematological malignancies that are associated with high risk of cardiotoxicity that is observed in even up to 30% of patients and can be diagnosed years after the therapy. The mechanism, in which anthracyclines cause cardiotoxicity are not well known, but it is proposed that dysregulation of renin-angiotensin-aldosterone system (RAAS), one of main humoral regulators of cardiovascular system, may play a significant role. There is increasing evidence that drugs targeting this system can be effective in the prevention and treatment of anthracycline-induced cardiotoxicity what has recently found reflection in the recommendation of some scientific societies. In this review, we comprehensively describe possible mechanisms how anthracyclines affect RAAS and lead to cardiotoxicity. Moreover, we critically review available preclinical and clinical data on use of RAAS inhibitors in the primary and secondary prevention and treatment of cardiac adverse events associated with anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Czerwińska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Kleibert
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
65
|
Gemmati D, Bramanti B, Serino ML, Secchiero P, Zauli G, Tisato V. COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males? Int J Mol Sci 2020; 21:E3474. [PMID: 32423094 PMCID: PMC7278991 DOI: 10.3390/ijms21103474] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
In December 2019, a novel severe acute respiratory syndrome (SARS) from a new coronavirus (SARS-CoV-2) was recognized in the city of Wuhan, China. Rapidly, it became an epidemic in China and has now spread throughout the world reaching pandemic proportions. High mortality rates characterize SARS-CoV-2 disease (COVID-19), which mainly affects the elderly, causing unrestrained cytokines-storm and subsequent pulmonary shutdown, also suspected micro thromboembolism events. At the present time, no specific and dedicated treatments, nor approved vaccines, are available, though very promising data come from the use of anti-inflammatory, anti-malaria, and anti-coagulant drugs. In addition, it seems that males are more susceptible to SARS-CoV-2 than females, with males 65% more likely to die from the infection than females. Data from the World Health Organization (WHO) and Chinese scientists show that of all cases about 1.7% of women who contract the virus will die compared with 2.8% of men, and data from Hong Kong hospitals state that 32% of male and 15% of female COVID-19 patients required intensive care or died. On the other hand, the long-term fallout of coronavirus may be worse for women than for men due to social and psychosocial reasons. Regardless of sex- or gender-biased data obtained from WHO and those gathered from sometimes controversial scientific journals, some central points should be considered. Firstly, SARS-CoV-2 has a strong interaction with the human ACE2 receptor, which plays an essential role in cell entry together with transmembrane serine protease 2 (TMPRSS2); it is interesting to note that the ACE2 gene lays on the X-chromosome, thus allowing females to be potentially heterozygous and differently assorted compared to men who are definitely hemizygous. Secondly, the higher ACE2 expression rate in females, though controversial, might ascribe them the worst prognosis, in contrast with worldwide epidemiological data. Finally, several genes involved in inflammation are located on the X-chromosome, which also contains high number of immune-related genes responsible for innate and adaptive immune responses to infection. Other genes, out from the RAS-pathway, might directly or indirectly impact on the ACE1/ACE2 balance by influencing its main actors (e.g., ABO locus, SRY, SOX3, ADAM17). Unexpectedly, the higher levels of ACE2 or ACE1/ACE2 rebalancing might improve the outcome of COVID-19 in both sexes by reducing inflammation, thrombosis, and death. Moreover, X-heterozygous females might also activate a mosaic advantage and show more pronounced sex-related differences resulting in a sex dimorphism, further favoring them in counteracting the progression of the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Donato Gemmati
- Department of Morphology, Surgery and Experimental Medicine and Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
- University Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Barbara Bramanti
- University Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy;
- Department of Biomedical & Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Luisa Serino
- Department of Medical Sciences and Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy;
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (P.S.); (G.Z.); (V.T.)
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (P.S.); (G.Z.); (V.T.)
| | - Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (P.S.); (G.Z.); (V.T.)
| |
Collapse
|
66
|
Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, Raizada MK, Grant MB, Oudit GY. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res 2020; 126:1456-1474. [PMID: 32264791 PMCID: PMC7188049 DOI: 10.1161/circresaha.120.317015] [Citation(s) in RCA: 1363] [Impact Index Per Article: 272.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ACE2 (angiotensin-converting enzyme 2) has a multiplicity of physiological roles that revolve around its trivalent function: a negative regulator of the renin-angiotensin system, facilitator of amino acid transport, and the severe acute respiratory syndrome-coronavirus (SARS-CoV) and SARS-CoV-2 receptor. ACE2 is widely expressed, including, in the lungs, cardiovascular system, gut, kidneys, central nervous system, and adipose tissue. ACE2 has recently been identified as the SARS-CoV-2 receptor, the infective agent responsible for coronavirus disease 2019, providing a critical link between immunity, inflammation, ACE2, and cardiovascular disease. Although sharing a close evolutionary relationship with SARS-CoV, the receptor-binding domain of SARS-CoV-2 differs in several key amino acid residues, allowing for stronger binding affinity with the human ACE2 receptor, which may account for the greater pathogenicity of SARS-CoV-2. The loss of ACE2 function following binding by SARS-CoV-2 is driven by endocytosis and activation of proteolytic cleavage and processing. The ACE2 system is a critical protective pathway against heart failure with reduced and preserved ejection fraction including, myocardial infarction and hypertension, and against lung disease and diabetes mellitus. The control of gut dysbiosis and vascular permeability by ACE2 has emerged as an essential mechanism of pulmonary hypertension and diabetic cardiovascular complications. Recombinant ACE2, gene-delivery of Ace2, Ang 1-7 analogs, and Mas receptor agonists enhance ACE2 action and serve as potential therapies for disease conditions associated with an activated renin-angiotensin system. rhACE2 (recombinant human ACE2) has completed clinical trials and efficiently lowered or increased plasma angiotensin II and angiotensin 1-7 levels, respectively. Our review summarizes the progress over the past 20 years, highlighting the critical role of ACE2 as the novel SARS-CoV-2 receptor and as the negative regulator of the renin-angiotensin system, together with implications for the coronavirus disease 2019 pandemic and associated cardiovascular diseases.
Collapse
Affiliation(s)
- Mahmoud Gheblawi
- From the Department of Physiology (M.G., A.V., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada (K.W., Q.N., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Anissa Viveiros
- From the Department of Physiology (M.G., A.V., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Quynh Nguyen
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada (K.W., Q.N., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (J.-C.Z.)
| | - Anthony J. Turner
- School of Biomedical Sciences, University of Leeds, United Kingdom (A.J.T.)
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (M.K.R.)
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (M.B.G.)
| | - Gavin Y. Oudit
- From the Department of Physiology (M.G., A.V., G.Y.O.)
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada (K.W., Q.N., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| |
Collapse
|
67
|
Lei C, Qian K, Li T, Zhang S, Fu W, Ding M, Hu S. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat Commun 2020; 11:2070. [PMID: 32332765 PMCID: PMC7265355 DOI: 10.1038/s41467-020-16048-4] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/11/2020] [Indexed: 12/26/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, at the end of 2019, and there are currently no specific antiviral treatments or vaccines available. SARS-CoV-2 has been shown to use the same cell entry receptor as SARS-CoV, angiotensin-converting enzyme 2 (ACE2). In this report, we generate a recombinant protein by connecting the extracellular domain of human ACE2 to the Fc region of the human immunoglobulin IgG1. A fusion protein containing an ACE2 mutant with low catalytic activity is also used in this study. The fusion proteins are then characterized. Both fusion proteins have a high binding affinity for the receptor-binding domains of SARS-CoV and SARS-CoV-2 and exhibit desirable pharmacological properties in mice. Moreover, the fusion proteins neutralize virus pseudotyped with SARS-CoV or SARS-CoV-2 spike proteins in vitro. As these fusion proteins exhibit cross-reactivity against coronaviruses, they have potential applications in the diagnosis, prophylaxis, and treatment of SARS-CoV-2. SARS-CoV-2 uses ACE2 as the entry receptor. Here, the authors show that an ACE2-Ig fusion protein inhibits entry of virus pseudotyped with the SARS-CoV-2 spike protein, show differential binding kinetics of SARS-CoV and SARSCoV-2 spike proteins to ACE2, and determine pharmakocinetic parameters of ACE2-Ig in mice.
Collapse
Affiliation(s)
- Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, China.,Team SMMU-China of the International Genetically Engineered Machine (iGEM) competition, Department of Biophysics, Second Military Medical University, Shanghai, 200433, China
| | - Kewen Qian
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, China.,Team SMMU-China of the International Genetically Engineered Machine (iGEM) competition, Department of Biophysics, Second Military Medical University, Shanghai, 200433, China
| | - Tian Li
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, China.,Team SMMU-China of the International Genetically Engineered Machine (iGEM) competition, Department of Biophysics, Second Military Medical University, Shanghai, 200433, China
| | - Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenyan Fu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Min Ding
- Pharchoice Therapeutics, Inc, Shanghai, 201406, China
| | - Shi Hu
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, China. .,Team SMMU-China of the International Genetically Engineered Machine (iGEM) competition, Department of Biophysics, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
68
|
Lei C, Qian K, Li T, Zhang S, Fu W, Ding M, Hu S. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat Commun 2020. [PMID: 32332765 DOI: 10.1038/.s41467-020-16048-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, at the end of 2019, and there are currently no specific antiviral treatments or vaccines available. SARS-CoV-2 has been shown to use the same cell entry receptor as SARS-CoV, angiotensin-converting enzyme 2 (ACE2). In this report, we generate a recombinant protein by connecting the extracellular domain of human ACE2 to the Fc region of the human immunoglobulin IgG1. A fusion protein containing an ACE2 mutant with low catalytic activity is also used in this study. The fusion proteins are then characterized. Both fusion proteins have a high binding affinity for the receptor-binding domains of SARS-CoV and SARS-CoV-2 and exhibit desirable pharmacological properties in mice. Moreover, the fusion proteins neutralize virus pseudotyped with SARS-CoV or SARS-CoV-2 spike proteins in vitro. As these fusion proteins exhibit cross-reactivity against coronaviruses, they have potential applications in the diagnosis, prophylaxis, and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, China
- Team SMMU-China of the International Genetically Engineered Machine (iGEM) competition, Department of Biophysics, Second Military Medical University, Shanghai, 200433, China
| | - Kewen Qian
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, China
- Team SMMU-China of the International Genetically Engineered Machine (iGEM) competition, Department of Biophysics, Second Military Medical University, Shanghai, 200433, China
| | - Tian Li
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, China
- Team SMMU-China of the International Genetically Engineered Machine (iGEM) competition, Department of Biophysics, Second Military Medical University, Shanghai, 200433, China
| | - Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenyan Fu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Min Ding
- Pharchoice Therapeutics, Inc, Shanghai, 201406, China
| | - Shi Hu
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, China.
- Team SMMU-China of the International Genetically Engineered Machine (iGEM) competition, Department of Biophysics, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
69
|
Lytvyn Y, Bjornstad P, van Raalte DH, Heerspink HL, Cherney DZI. The New Biology of Diabetic Kidney Disease-Mechanisms and Therapeutic Implications. Endocr Rev 2020; 41:5601424. [PMID: 31633153 PMCID: PMC7156849 DOI: 10.1210/endrev/bnz010] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease remains the most common cause of end-stage kidney disease in the world. Despite reductions in incidence rates of myocardial infarction and stroke in people with diabetes over the past 3 decades, the risk of diabetic kidney disease has remained unchanged, and may even be increasing in younger individuals afflicted with this disease. Accordingly, changes in public health policy have to be implemented to address the root causes of diabetic kidney disease, including the rise of obesity and diabetes, in addition to the use of safe and effective pharmacological agents to prevent cardiorenal complications in people with diabetes. The aim of this article is to review the mechanisms of pathogenesis and therapies that are either in clinical practice or that are emerging in clinical development programs for potential use to treat diabetic kidney disease.
Collapse
Affiliation(s)
- Yuliya Lytvyn
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Petter Bjornstad
- Department of Medicine, Division of Nephrology, Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel H van Raalte
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Netherlands
| | - Hiddo L Heerspink
- The George Institute for Global Health, Sydney, Australia.,Department of Clinical Pharmacology, University of Groningen, Groningen, Netherlands
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
70
|
Disruption of CXCR6 Ameliorates Kidney Inflammation and Fibrosis in Deoxycorticosterone Acetate/Salt Hypertension. Sci Rep 2020; 10:133. [PMID: 31924817 PMCID: PMC6954216 DOI: 10.1038/s41598-019-56933-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 12/19/2019] [Indexed: 01/03/2023] Open
Abstract
Circulating cells have a pathogenic role in the development of hypertensive nephropathy. However, how these cells infiltrate into the kidney are not fully elucidated. In this study, we investigated the role of CXCR6 in deoxycorticosterone acetate (DOCA)/salt-induced inflammation and fibrosis of the kidney. Following uninephrectomy, wild-type and CXCR6 knockout mice were treated with DOCA/salt for 3 weeks. Blood pressure was similar between wild-type and CXCR6 knockout mice at baseline and after treatment with DOCA/salt. Wild-type mice develop significant kidney injury, proteinuria, and kidney fibrosis after three weeks of DOCA/salt treatment. CXCR6 deficiency ameliorated kidney injury, proteinuria, and kidney fibrosis following treatment with DOCA/salt. Moreover, CXCR6 deficiency inhibited accumulation of bone marrow–derived fibroblasts and myofibroblasts in the kidney following treatment with DOCA/salt. Furthermore, CXCR6 deficiency markedly reduced the number of macrophages and T cells in the kidney after DOCA/salt treatment. In summary, our results identify a critical role of CXCR6 in the development of inflammation and fibrosis of the kidney in salt-sensitive hypertension.
Collapse
|
71
|
Kim MG. Cardiorenal syndrome. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2020. [DOI: 10.5124/jkma.2020.63.1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Myung-Gyu Kim
- Division of Nephrology, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
72
|
Ginsenoside Rg3 Attenuates Angiotensin II-Mediated Renal Injury in Rats and Mice by Upregulating Angiotensin-Converting Enzyme 2 in the Renal Tissue. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6741057. [PMID: 31885658 PMCID: PMC6915024 DOI: 10.1155/2019/6741057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/05/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
Angiotensin II- (Ang II-) mediated renal injury represents a major pathogenetic mechanism in most chronic kidney diseases. Our previous research demonstrated that ginsenoside Rg3 (Rg3) attenuates Ang II elevation in the myocardium in spontaneously hypertensive rats (SHR). It is possible that Rg3 has similar effects in the renal tissue. In this research, we first demonstrated that Rg3 could attenuate Ang II increase in the kidney of SHR and reduce hypertensive nephropathy progression. Then, we found that Rg3 attenuated Ang II increase by upregulating angiotensin-converting enzyme 2 (ACE2) in the renal tissue. We confirmed this finding in an exogenous Ang II-infused mice model of renal injury, and two models showed consistent results. In conclusion, Rg3 attenuates Ang II-mediated renal injury in rats and mice by upregulating ACE2 in the renal tissue. This research is the first to demonstrate that Rg3 increases tissue ACE2 levels in vivo.
Collapse
|
73
|
Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019; 39:BSR20181994. [PMID: 31413168 PMCID: PMC6722492 DOI: 10.1042/bsr20181994] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS) is undisputedly well-studied as one of the oldest and most critical regulators for arterial blood pressure, fluid volume, as well as renal function. In recent studies, RAS has also been implicated in the development of obesity, diabetes, hyperlipidemia, and other diseases, and also involved in the regulation of several signaling pathways such as proliferation, apoptosis and autophagy, and insulin resistance. AMP-activated protein kinase (AMPK), an essential cellular energy sensor, has also been discovered to be involved in these diseases and cellular pathways. This would imply a connection between the RAS and AMPK. Therefore, this review serves to draw attention to the cross-talk between RAS and AMPK, then summering the most recent literature which highlights AMPK as a point of balance between physiological and pathological functions of the RAS.
Collapse
Affiliation(s)
- Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xuan Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Qingguo Lu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xiaodong Sun
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
74
|
Zhang YY, Yu Y, Yu C. Antifibrotic Roles of RAAS Blockers: Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:671-691. [PMID: 31399990 PMCID: PMC7121580 DOI: 10.1007/978-981-13-8871-2_33] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The rennin-angiotensin-aldosterone system (RAAS) has been well documented in regulating blood pressure, fluid volume, and sodium balance. Overactivity of RAAS promotes both systemic and regional glomerular capillary hypertension, which could induce hemodynamic injury to the glomerulus, leading to kidney damage and renal fibrosis via profibrotic and proinflammatory pathway. Therefore, the use of RAAS inhibitors (i.e., ACEIs, ARBs, and MRAs) as the optional therapy has been demonstrated to prevent proteinuria, and kidney fibrosis and slow the decline of renal function effectively in the process of kidney disease during the last few decades. Recently, several new components of the RAAS have been discovered, including ACE2 and the corresponding ACE2/Ang (1-7)/Mas axis, which are also present in the kidney. Besides the classic RAAS inhibitors target the angiotensin-AT1-aldosterone axis, with the expanding knowledge about RAAS, a number of potential therapeutic targets in this system is emerging. Newer agents that are more specific are being developed. The present chapter outlines the insights of the RAAS agents (classic RAAS antagonists/the new RAAS drugs), and discusses its clinical application in the combat of renal fibrosis.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
75
|
Liao W, Fan H, Davidge ST, Wu J. Egg White-Derived Antihypertensive Peptide IRW (Ile-Arg-Trp) Reduces Blood Pressure in Spontaneously Hypertensive Rats via the ACE2/Ang (1-7)/Mas Receptor Axis. Mol Nutr Food Res 2019; 63:e1900063. [PMID: 30913349 PMCID: PMC6594022 DOI: 10.1002/mnfr.201900063] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/04/2019] [Indexed: 01/19/2023]
Abstract
Scope It is found in the previous study that egg‐white‐derived antihypertensive peptide Ile‐Arg‐Trp (IRW) upregulated angiotensin converting enzyme 2 (ACE2) in spontaneously hypertensive rats (SHRs). The objective of this study is to evaluate the contribution of ACE2 activation by IRW to blood‐pressure‐lowering activity in vivo. Methods and results Adult male SHRs (13–15 week old) are assigned into four groups: 1) untreated with saline infusion; 2) IRW administration (15 mg per kg body weight) with saline infusion; 3) Mas receptor (MasR) antagonist A779 (48 µg per kg body weight per h) infusion; 4) A779 infusion and IRW. Animals are implanted with telemetry transmitter first, and then an osmotic pump filled with saline or A779 is implanted. A779/saline is infused for 7 days, continued with an additional 7 days of treatments. Results indicate that blocking MasR abolished the blood‐pressure‐lowering effect of IRW. Akt/eNOS signaling in aorta is upregulated by IRW treatment but deactivated by A779 infusion. Circulating levels of interleukin 6 and monocyte chemoattractant protein 1, along with cyclooxygenase 2 in aorta are reduced by IRW but restored by A779 infusion. Conclusion IRW reduces blood pressure of SHR via the ACE2/Ang (1‐7)/MasR axis. Mechanisms pertaining to IRW as an ACE2 activator in vivo include enhanced endothelium‐dependent vasorelaxation and reduced vascular inflammation.
Collapse
Affiliation(s)
- Wang Liao
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| | - Hongbing Fan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| | - Sandra T Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7.,Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada, T6G 2R7.,Department of Physiology, University of Alberta, Edmonton, AB, Canada, T6G 2R7.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| |
Collapse
|
76
|
Ji J, Tao P, He L. Kangxianling decoction prevents renal fibrosis in rats with 5/6 nephrectomy and inhibits Ang II-induced ECM production in glomerular mesangial cells. J Pharmacol Sci 2019; 139:367-372. [PMID: 30929858 DOI: 10.1016/j.jphs.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
Renal fibrosis is a common pathological change in all stages of kidney disease. Kangxianling decoction was widely used in patients with chronic kidney disease, which could improve symptoms such as poor appetite, edema, and fatigue. However, its effect on renal fibrosis remains to be studied. In this study, we investigated its effects on renal fibrosis in a rat model of 5/6 Nephrectomy (5/6 N) in vivo and in angiotensin II (Ang II)-treated rat glomerular mesangial cells (HBZY-1) in vitro. Our data showed that 5/6 N induced renal fibrosis and combined with the activation of JNK signaling, the upregulation of transforming growth factor-β (TGF-β), collagen I (Col-I) and fibronectin (FN). The administration of kangxianling decoction inhibited the activation of JNK signaling and attenuated the deposition of extracellular matrix (ECM) proteins in damaged kidneys. In HBZY-1 cells, Ang II increased the protein expression of Col-I and FN. It also activates JNK signaling and TGF-β in a time-dependent manner. Treatment of the HBZY-1 cells with kangxianling decoction blocked Ang II-induced JNK activation and ECM overproduction. Our results indicated that Kangxianling Decoction could reduce renal fibrosis, accompanied by inhibiting the production of ECM proteins and JNK, along with downregulation of TGF-β, Ang II.
Collapse
Affiliation(s)
- Jing Ji
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China; Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200013, China
| | - Pengyu Tao
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Liqun He
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China; Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200013, China.
| |
Collapse
|
77
|
Tabari FS, Karimian A, Parsian H, Rameshknia V, Mahmoodpour A, Majidinia M, Maniati M, Yousefi B. The roles of FGF21 in atherosclerosis pathogenesis. Rev Endocr Metab Disord 2019; 20:103-114. [PMID: 30879171 DOI: 10.1007/s11154-019-09488-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
FGF21 is a peptide hormone that regulates homeostasis of lipid and glucose as well as energy metabolism. It is mainly expressed and secreted in liver and adipose tissues, and it is expressed in lower amounts in the aorta. Recent clinical and preclinical studies indicate increased serum FGF21 levels in atherosclerosis patients. Also, FGF21 therapy has been reported to reduce the initiation and progression of atherosclerosis in animal models and in vitro studies. Moreover, growing evidence indicates that administration of exogenous FGF21 induces anti-atherosclerotic effects, because of its ability to reduce lipid profile, alleviation of oxidative stress, inflammation, and apoptosis. Therefore, FGF21 can not only be considered as a biomarker for predicting atherosclerosis, but also induce protective effects against atherosclerosis. Besides, serum levels of FGF21 increase in various diseases including in diabetes mellitus, hypertension, and obesity, which may be related to initiating and exacerbating atherosclerosis. On the other hand, FGF21 therapy significantly improves lipid profiles, and reduces vascular inflammation and oxidative stress in atherosclerosis related diseases. Therefore, further prospective studies are needed to clarify whether FGF21 can be used as a prognostic biomarker to identify individuals at future risk of atherosclerosis in these atherosclerosis-associated diseases. In this review, we will discuss the possible mechanism by which FGF21 protects against atherosclerosis.
Collapse
Affiliation(s)
- Farzane Shanebandpour Tabari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Vahid Rameshknia
- Faculty of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Biochemistry, Baku State University, Baku, Azerbaijan
| | - Ata Mahmoodpour
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahmood Maniati
- Faculty of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Yousefi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
78
|
Santos RAS. Genetic Models. ANGIOTENSIN-(1-7) 2019. [PMCID: PMC7120897 DOI: 10.1007/978-3-030-22696-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically altered rat and mouse models have been instrumental in the functional analysis of genes in a physiological context. In particular, studies on the renin-angiotensin system (RAS) have profited from this technology in the past. In this review, we summarize the existing animal models for the protective axis of the RAS consisting of angiotensin-converting enzyme 2 (ACE2), angiotensin-(1-7)(Ang-(1-7), and its receptor Mas. With the help of models with altered expression of the components of this axis in the brain and cardiovascular organs, its physiological and pathophysiological functions have been elucidated. Thus, novel opportunities for therapeutic interventions in cardiovascular diseases were revealed targeting ACE2 or Mas.
Collapse
|
79
|
Guo R, Hu X, Yamada Y, Harada M, Nakajima T, Kashihara T, Yamada M, Aoyama T, Kamijo Y. Effects of hypertension and antihypertensive treatments on sulfatide levels in serum and its metabolism. Hypertens Res 2018; 42:598-609. [DOI: 10.1038/s41440-018-0160-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 11/09/2022]
|
80
|
Chen QF, Hao H, Kuang XD, Hu QD, Huang YH, Zhou XY. BML-111, a lipoxin receptor agonist, protects against acute injury via regulating the renin angiotensin-aldosterone system. Prostaglandins Other Lipid Mediat 2018; 140:9-17. [PMID: 30412790 DOI: 10.1016/j.prostaglandins.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 09/30/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The renin angiotensin-aldosterone system (RAAS) and lipoxins (LXs) have similar roles in many processes. We previously reported that BML-111, a Lipoxin receptor agonist, inhibited chronic injury hepatic fibrosis by regulating RAAS, but whether LXs are involved in BML-111-mediated protection from acute injury is unclear still. METHODS We established models of acute liver/lung injury and confirmed them with histopathology and myeloperoxidase (MPO) measurements. BML-111, a lipoxin receptor agonist, was applied to mimic the effects of LXs. The contents and activities of angiotensin converting enzyme(ACE) and angiotensinconverting enzyme 2 (ACE2) were measured through ELISA and activity assay kits respectively. Angiotensin II (AngII), angiotensin-(1-7) (Ang-1-7), AngII type 1 receptor (AT1R), and Mas receptor were quantified with ELISA and Western blot. RESULTS Models of acute injury were established successfully and BML-111 protected LPS-induced acute lung injury and LPS/D-GalN-induced acute liver injury. BML-111 repressed the activity of ACE, but increased the activity of ACE2. BML-111 decreased the expression levels of ACE, AngII, and AT1R, meanwhile increased the levels of ACE2, Ang-(1-7), and Mas. Furthermore, BOC-2, an inhibitor of lipoxin receptor, reversed all the effects. CONCLUSION BML-111 could protect against acute injury via regulation RAAS.
Collapse
Affiliation(s)
- Qiong-Feng Chen
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang 330006, China
| | - Hua Hao
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiao-Dong Kuang
- Department of Pathology, Medical College of Nanchang University, Nanchang 330006, China
| | - Quan-Dong Hu
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang 330006, China
| | - Yong-Hong Huang
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Tumor Etiology and Molecular Pathology, Nanchang 330006, China
| | - Xiao-Yan Zhou
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Tumor Etiology and Molecular Pathology, Nanchang 330006, China.
| |
Collapse
|
81
|
Cardiovascular Interactions between Fibroblast Growth Factor-23 and Angiotensin II. Sci Rep 2018; 8:12398. [PMID: 30120363 PMCID: PMC6098163 DOI: 10.1038/s41598-018-30098-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/14/2018] [Indexed: 12/12/2022] Open
Abstract
Both the activation of the renin angiotensin aldosterone system (RAAS) and elevations of circulating Fibroblast Growth Factor-23 (FGF-23) have been implicated in the pathogenesis of left ventricular hypertrophy (LVH) in chronic kidney disease. To investigate potential cross-talk between RAAS and FGF-23, we administered angiotensin II (Ang II) to wild-type rodents and the Hyp mouse model of excess FGF-23. Ang II administration for four weeks to wild-type rodents resulted in significant increases in systolic blood pressure and LVH. Unexpectedly, FGF-23 circulating levels were increased by 1.5-1.7 fold in Ang II treated animals. In addition, Ang II treatment increased expression of FGF-23 message levels in bone, the predominant tissue for FGF-23 production, and induced expression of FGF-23 and its co-receptor α-Klotho in the heart, which normally does not express FGF-23 or α-Klotho in physiologically relevant levels. Hyp mice with elevated FGF-23 exhibited increased blood pressure and LVH at baseline. Ang II administration to Hyp mice resulted further increments in blood pressure and left ventricular hypertrophy, consistent with additive cardiovascular effects. These findings suggest that FGF-23 may participate in unexpected systemic and paracrine networks regulating hemodynamic and myocardial responses.
Collapse
|
82
|
Kendi Celebi Z, Peker A, Kutlay S, Kocak S, Tuzuner A, Erturk S, Keven K, Sengul S. Effect of unilateral nephrectomy on urinary angiotensinogen levels in living kidney donors: 1 year follow-up study. J Renin Angiotensin Aldosterone Syst 2018; 18:1470320317734082. [PMID: 28988519 PMCID: PMC5843895 DOI: 10.1177/1470320317734082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Urinary angiotensinogen (uAGT) has recently been proposed as a marker of kidney injury and activated intrarenal renin–angiotensin system. We investigated the effects of living donor nephrectomy on uAGT levels, blood pressure, estimated glomerular filtration rate, proteinuria and compensatory hypertrophy in the remaining kidney of living kidney donors. Methods: Twenty living kidney donors were included in the study and followed for 1 year. uAGT levels were measured with enzyme-linked immunosorbent assay preoperatively and postoperatively at the 15th day, 1, 6 and 12 months. Results: Four donors were excluded from the study due to lack of data. The mean baseline estimated glomerular filtration rate was 98 ± 15 ml/min/1.73 m². Serum creatinine, uAGT/creatinine, uAGT/protein levels were higher and estimated glomerular filtration rate was lower than baseline values at all time periods. Urinary protein/creatinine levels increased after donor nephrectomy, but after 6 months they returned to baseline values. Renal volume increased after nephrectomy, but these changes did not show any correlation with uAGT/creatinine, uAGT/protein, estimated glomerular filtration rate or systolic/diastolic blood pressures. uAGT/creatinine at 6 months and urinary protein/creatinine ratio at 12 months showed a positive correlation (P=0.008, r=0.639). Conclusion: After donor nephrectomy, increasing uAGT levels can be the result of activation of the intrarenal renin–angiotensin system affecting the compensatory changes in the remaining kidney. The long-term effects of increased uAGT levels on the remaining kidney should be examined more closely in future studies.
Collapse
Affiliation(s)
| | - Ahmet Peker
- 2 Department of Radiology, Ankara University School of Medicine, Turkey
| | - Sim Kutlay
- 1 Department of Nephrology, Ankara University School of Medicine, Turkey
| | - Senem Kocak
- 1 Department of Nephrology, Ankara University School of Medicine, Turkey
| | - Acar Tuzuner
- 3 Department of General Surgery, Ankara University School of Medicine, Turkey.,4 Transplantation Center, Ankara University School of Medicine, Turkey
| | - Sehsuvar Erturk
- 1 Department of Nephrology, Ankara University School of Medicine, Turkey
| | - Kenan Keven
- 1 Department of Nephrology, Ankara University School of Medicine, Turkey.,4 Transplantation Center, Ankara University School of Medicine, Turkey
| | - Sule Sengul
- 1 Department of Nephrology, Ankara University School of Medicine, Turkey.,4 Transplantation Center, Ankara University School of Medicine, Turkey
| |
Collapse
|
83
|
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) is a pivotal player in the physiology and pathophysiology of cardiovascular and renal systems. Discovery of angiotensin-converting enzyme 2 (ACE2), capable of cleaving RAS effector peptide angiotensin (Ang) II into biologically active Ang-(1-7), has increased the complexity of our knowledge of the RAS. ACE2 expression is abundant in the kidney and is thought to provide protection against injury. This review emphasizes current experimental and clinical findings that examine ACE2 in the context of kidney injury and its potential therapeutic impact for treatment of kidney disease. RECENT FINDINGS Clinical studies have reported upregulation of ACE2 in urine from diabetic patients, which may be reflective of pathological shedding of renal ACE2 as suggested by mechanistic experiments. Studies in experimental models have investigated the feasibility of pharmacological induction of ACE2 for improvement of renal function, inflammation, and fibrosis. SUMMARY Emerging concepts about the RAS indicate that ACE2 is a critical regulator of angiotensin peptide metabolism and the pathogenesis of renal disease. Human recombinant ACE2 is available and may be a practical clinical approach to enzyme replacement. Elucidating precise roles of ACE2 throughout disease progression will enrich our view of the RAS and help identify novel targets and appropriate strategies for intervention.
Collapse
|
84
|
Liu P, Wysocki J, Souma T, Ye M, Ramirez V, Zhou B, Wilsbacher LD, Quaggin SE, Batlle D, Jin J. Novel ACE2-Fc chimeric fusion provides long-lasting hypertension control and organ protection in mouse models of systemic renin angiotensin system activation. Kidney Int 2018; 94:114-125. [PMID: 29691064 DOI: 10.1016/j.kint.2018.01.029] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 12/22/2017] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a carboxypeptidase that potently degrades angiotensin II to angiotensin 1-7. Previous studies showed that injection of the enzymatic ectodomain of recombinant ACE2 (rACE2) markedly increases circulatory levels of ACE2 activity, and effectively lowered blood pressure in angiotensin II-induced hypertension. However, due to the short plasma half-life of rACE2, its therapeutic potential for chronic use is limited. To circumvent this, we generated a chimeric fusion of rACE2 and the immunoglobulin fragment Fc segment to increase its plasma stability. This rACE2-Fc fusion protein retained full peptidase activity and exhibited greatly extended plasma half-life in mice, from less than two hours of the original rACE2, to over a week. A single 2.5 mg/kg injection of rACE2-Fc increased the overall angiotensin II-conversion activities in blood by up to 100-fold and enhanced blood pressure recovery from acute angiotensin II induced hypertension seven days after administration. To assess rACE2-Fc given weekly on cardiac protection, we performed studies in mice continuously infused with angiotensin II for 28 days and in a Renin transgenic mouse model of hypertension. The angiotensin II infused mice achieved sustained blood pressure control and reduced cardiac hypertrophy and fibrosis. In chronic hypertensive transgenic mice, weekly injections of rACE2-Fc effectively lowered plasma angiotensin II and blood pressure. Additionally, rACE2-Fc ameliorated albuminuria, and reduced kidney and cardiac fibrosis. Thus, our chimeric fusion strategy for rACE2-Fc is suitable for future development of new renin angiotensin system-based inhibition therapies.
Collapse
Affiliation(s)
- Pan Liu
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jan Wysocki
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tomokazu Souma
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Minghao Ye
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Veronica Ramirez
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bisheng Zhou
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lisa D Wilsbacher
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Susan E Quaggin
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jing Jin
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
85
|
Angiotensin-converting enzyme 2 overexpression protects against doxorubicin-induced cardiomyopathy by multiple mechanisms in rats. Oncotarget 2018; 8:24548-24563. [PMID: 28445944 PMCID: PMC5421869 DOI: 10.18632/oncotarget.15595] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/13/2017] [Indexed: 11/25/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a potential therapeutic target of the renin-angiotensin system (RAS) for the treatment of cardiovascular diseases. We aimed to explore the effects of ACE2 overexpression on doxorubicin-induced cardiomyopathy in rats. Rats were randomly divided into treatment and control groups. The rats of treatment group were injected intraperitoneally with 6 doses of doxorubicin (2.5 mg/kg) within a period of two weeks. Two weeks after the initial injection of doxorubicin, these rats were randomly divided into Mock, Ad-EGFP, Ad-ACE2, and Cilazapril groups. The rats of Ad-EGFP and Ad-ACE2 groups received intramyocardial injection of Ad-EGFP and Ad-ACE2, respectively. The rats of Cilazapril group received cilazapril (10 mg/kg/day) via intragastric intubation. Apoptosis, inflammation, oxidative stress, cardiac function, the extent of myocardial fibrosis, and levels of ACE2, ACE, angiotensin II (AngII), and angiotensin (1–7) were evaluated. Four weeks after ACE2 gene transfer, the Ad-ACE2 group showed not only reduced apoptosis, inflammatory response, oxidative stress, left ventricular (LV) volume, extent of myocardial fibrosis and mortality of rats, but also increased LV ejection fraction and ACE2 expression level compared with the Mock and Ad-EGFP groups. ACE2 overexpression was superior to cilazapril in improving doxorubicin-induced cardiomyopathy. The putative mechanisms may involve activation of the AMPK and PI3K-AKT pathways, inhibition of the ERK pathway, decrease of TGF-β1 expression, and interactions of shifting RAS components, such as decreased myocardium AngII levels, increased myocardium Ang (1–7) levels, and reduced ACE expression. Thus, ACE2 may be a novel therapeutic approach to prevent and treat doxorubicin-induced cardiomyopathy.
Collapse
|
86
|
Leal S, Ricardo Jorge DO, Joana B, Maria S, Isabel S. Heavy Alcohol Consumption Effects on Blood Pressure and on Kidney Structure Persist After Long-Term Withdrawal. Kidney Blood Press Res 2017; 42:664-675. [DOI: 10.1159/000482022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/07/2017] [Indexed: 11/19/2022] Open
|
87
|
Weber KT, Sun Y, Gerling IC, Guntaka RV. Regression of Established Cardiac Fibrosis in Hypertensive Heart Disease. Am J Hypertens 2017; 30:1049-1052. [PMID: 28379281 DOI: 10.1093/ajh/hpx054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/20/2017] [Indexed: 01/19/2023] Open
Abstract
Established cardiac fibrosis (ECF) with symptomatic heart failure preserved ejection fraction represents an ever-increasing segment of the hypertensive population. The regression of ECF with attendant improvement in myocardial stiffness and symptomatic failure represents an unmet health care need. Is the regression of ECF in hypertensive heart disease feasible and will stiffness and symptomatic failure be improved? What is the cellular/molecular signaling involved in its regression? What incremental knowledge is needed to proceed effectively? These issues are addressed in this Review.
Collapse
Affiliation(s)
- Karl T Weber
- Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yao Sun
- Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ivan C Gerling
- Division of Endocrinology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ramareddy V Guntaka
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
88
|
Zhang ZZ, Wang W, Jin HY, Chen X, Cheng YW, Xu YL, Song B, Penninger JM, Oudit GY, Zhong JC. Apelin Is a Negative Regulator of Angiotensin II-Mediated Adverse Myocardial Remodeling and Dysfunction. Hypertension 2017; 70:1165-1175. [PMID: 28974565 DOI: 10.1161/hypertensionaha.117.10156] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/22/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Abstract
The apelin pathway has emerged as a critical regulator of cardiovascular homeostasis and disease. However, the exact role of pyr1-apelin-13 in angiotensin (Ang) II-mediated heart disease remains unclear. We used apelin-deficient (APLN-/y) and apolipoprotein E knockout mice to evaluate the regulatory roles of pyr1-apelin-13. The 1-year aged APLN-/y mice developed myocardial hypertrophy and dysfunction with reduced angiotensin-converting enzyme 2 levels. Ang II infusion (1.5 mg kg-1 d-1) for 4 weeks potentiated oxidative stress, pathological hypertrophy, and myocardial fibrosis in young APLN-/y hearts resulting in exacerbation of cardiac dysfunction. Importantly, daily administration of 100 μg/kg pyr1-apelin-13 resulted in upregulated angiotensin-converting enzyme 2 levels, decreased superoxide production and expression of hypertrophy- and fibrosis-related genes leading to attenuated myocardial hypertrophy, fibrosis, and dysfunction in the Ang II-infused apolipoprotein E knockout mice. In addition, pyr1-apelin-13 treatment largely attenuated Ang II-induced apoptosis and ultrastructural injury in the apolipoprotein E knockout mice by activating Akt and endothelial nitric oxide synthase phosphorylation signaling. In cultured neonatal rat cardiomyocytes and cardiofibroblasts, exposure of Ang II decreased angiotensin-converting enzyme 2 protein and increased superoxide generation, cellular proliferation, and migration, which were rescued by pyr1-apelin-13, and Akt and endothelial nitric oxide synthase agonist stimulation. The increased superoxide generation and apoptosis in cultured cardiofibroblasts in response to Ang II were strikingly prevented by pyr1-apelin-13 which was partially reversed by cotreatment with the Akt inhibitor MK2206. In conclusion, pyr1-apelin-13 peptide pathway is a negative regulator of aging-mediated and Ang II-mediated adverse myocardial remodeling and dysfunction and represents a potential candidate to prevent and treat heart disease.
Collapse
Affiliation(s)
- Zhen-Zhou Zhang
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Wang Wang
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Hai-Yan Jin
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Xueyi Chen
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Yu-Wen Cheng
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Ying-Le Xu
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Bei Song
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Josef M Penninger
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Gavin Y Oudit
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.).
| | - Jiu-Chang Zhong
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.).
| |
Collapse
|
89
|
The sirtuin 6 prevents angiotensin II-mediated myocardial fibrosis and injury by targeting AMPK-ACE2 signaling. Oncotarget 2017; 8:72302-72314. [PMID: 29069788 PMCID: PMC5641131 DOI: 10.18632/oncotarget.20305] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
Sirtuin 6 (SIRT6) is an important modulator of cardiovascular functions in health and diseases. However, the exact role of SIRT6 in heart disease is poorly defined. We hypothesized that SIRT6 is a negative regulator of angiotensin II (Ang II)-mediated myocardial remodeling, fibrosis and injury. The male Sprague-Dawley rats were randomized to Ang II (200 ng/kg/min) infusion with an osmotic minipump and pretreated with recombinant plasmids adeno-associated viral vector (AAV)-SIRT6 (pAAV-SIRT6) or pAAV-GFP for 4 weeks. Ang II triggered downregulated levels of SIRT6 and angiotensin-converting enzyme 2 (ACE2) and upregulated expression of connective tissue growth factor (CTGF) and proinflammatory chemokine fractalkine (FKN), contributing to enhanced cardiac fibrosis and ultrastructural injury. Reduced levels of phosphorylated pAMPK-α, increased myocardial hypertrophy and impaired heart dysfunction were observed in both Ang II-induced hypertensive rats and ACE2 knockout rats, characterized with increases in heart weight and left ventricular (LV) posterior wall thickness and decreases in LV ejection fraction and LV fractional shortening. More importantly, pAAV-SIRT6 treatment strikingly potentiated cardiac levels of pAMPKα and ACE2 as well as decreased levels of CTGF, FKN, TGFβ1, collagen I and collagen III, resulting in alleviation of Ang II-induced pathological hypertrophy, myocardial fibrosis, cardiac dysfunction and ultrastructural injury in hypertensive rats. In conclusion, our findings confirmed cardioprotective effects of SIRT6 on pathological remodeling, fibrosis and myocardial injury through activation of AMPK-ACE2 signaling and suppression of CTGF-FKN pathway, indicating that SIRT6 functions as a partial agonist of ACE2 and targeting SIRT6 has potential therapeutic importance for cardiac fibrosis and heart disease.
Collapse
|
90
|
Byon IS, Lee DH, Jun ES, Shin MK, Park SW, Lee JE. Effect of angiotensin II type 1 receptor blocker and angiotensin converting enzyme inhibitor on the intraocular growth factors and their receptors in streptozotocin-induced diabetic rats. Int J Ophthalmol 2017; 10:896-901. [PMID: 28730079 DOI: 10.18240/ijo.2017.06.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/24/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the effect of angiotensin II type 1 receptor blocker (ARB) and angiotensin converting enzyme inhibitor (ACEI) on intraocular growth factors and their receptors in streptozotocin-induced diabetic rats. METHODS Forty Sprague-Dawley rats were divided into 4 groups: control, diabetes mellitus (DM), candesartan-treated DM, and enalapril-treated DM (each group, n=10). After the induction of DM by streptozotocin, candesartan [ARB, 5 mg/(kg·d)] and enalapril [ACEI, 10 mg/(kg·d)] were administered to rats orally for 4wk. Vascular endothelial growth factor (VEGF) and angiotensin II (Ang II) concentrations in the vitreous were measured using enzyme-linked immunosorbent assays, and VEGF receptor 2 and angiotensin II type 1 receptor (AT1R) levels were assessed at week 4 by Western blotting. RESULTS Vitreous Ang II levels were significantly higher in the DM group and candesartan-treated DM group than in the control (P=0.04 and 0.005, respectively). Vitreous AT1R increased significantly in DM compared to the other three groups (P<0.007). Candesartan-treated DM rats showed higher vitreal AT1R concentration than the enalapril-treated DM group and control (P<0.001 and P=0.005, respectively). No difference in vitreous Ang II and AT1R concentration was found between the enalapril-treated DM group and control. VEGF and its receptor were below the minimum detection limit in all 4 groups. CONCLUSION Increased Ang II and AT1R in the hyperglycemic state indicate activated the intraocular renin-angiotensin system, which is inhibited more effectively by systemic ACEI than systemic ARB.
Collapse
Affiliation(s)
- Ik Soo Byon
- Department of Ophthalmology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.,College of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Dong Hyun Lee
- Department of Ophthalmology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| | - Eun Sook Jun
- Department of Ophthalmology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea
| | | | - Sung Who Park
- College of Medicine, Pusan National University, Yangsan 50612, Korea.,Department of Ophthalmology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea
| | - Ji Eun Lee
- College of Medicine, Pusan National University, Yangsan 50612, Korea.,Department of Ophthalmology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea
| |
Collapse
|
91
|
Tamargo M, Tamargo J. Future drug discovery in renin-angiotensin-aldosterone system intervention. Expert Opin Drug Discov 2017; 12:827-848. [PMID: 28541811 DOI: 10.1080/17460441.2017.1335301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Renin-angiotensin-aldosterone system inhibitors (RAASIs), including angiotensin-converting enzyme inhibitors, angiotensin AT1 receptor blockers and mineralocorticoid receptor antagonists (MRAs), are the cornerstone for the treatment of cardiovascular and renal diseases. Areas covered: The authors searched MEDLINE, PubMed and ClinicalTrials.gov to identify eligible full-text English language papers. Herein, the authors discuss AT2-receptor agonists and ACE2/angiotensin-(1-7)/Mas-receptor axis modulators, direct renin inhibitors, brain aminopeptidase A inhibitors, biased AT1R blockers, chymase inhibitors, multitargeted drugs, vaccines and aldosterone receptor antagonists as well as aldosterone synthase inhibitors. Expert opinion: Preclinical studies have demonstrated that activation of the protective axis of the RAAS represents a novel therapeutic strategy for treating cardiovascular and renal diseases, but there are no clinical trials supporting our expectations. Non-steroidal MRAs might become the third-generation of MRAs for the treatment of heart failure, diabetes mellitus and chronic kidney disease. The main challenge for these new drugs is that conventional RAASIs are safe, effective and cheap generics. Thus, the future of new RAASIs will be directed by economical/strategic reasons.
Collapse
Affiliation(s)
- Maria Tamargo
- a Department of Cardiology , Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV , Madrid , Spain
| | - Juan Tamargo
- b Department of Pharmacology , School of Medicine, University Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV , Madrid , Spain
| |
Collapse
|
92
|
Murine recombinant angiotensin-converting enzyme 2 attenuates kidney injury in experimental Alport syndrome. Kidney Int 2017; 91:1347-1361. [DOI: 10.1016/j.kint.2016.12.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 01/11/2023]
|
93
|
Wang K, Liu X, Xiao H, Wang H, Zhang Y. The correlation between inflammatory injury induced by LPS and RAS in EpH4-Ev cells. Int Immunopharmacol 2017; 46:23-30. [PMID: 28249221 DOI: 10.1016/j.intimp.2017.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/02/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022]
Abstract
Renin-angiotensin system (RAS) plays an important role of regulating inflammatory injury. However, it is not clear about the correlation between renin-angiotensin system (RAS) and inflammation induced by LPS in mammary gland cells. So immunofluorescence was performed to verify the ACE2 expression in mammary gland cells. MTT assay was performed to detect cell viability. ELISA was performed to detect cytokines in cell supernatant. Western Blot was performed to analyze RAS levels and ACE2 level change was observed by immunofluorescence. The TLR4 level and p65 phosphorylation were detected by Western Blot. The ACE2 protein intensively located on the cell membrane. According to the results of MTT assay and TNF-α level, the injury was evidently induced by high concentration LPS after 9h. The TNF-α, IL-6, IL-8, ACE, AT1R and AngII had an increasing expression with the rise of cell injury. In contrast, the MasR, Ang1-7 and ACE2 had a declining expression with the increase of cell injury degree. The TLR4 level and p65 phosphorylation in high concentration LPS group was significantly higher than that of control group. These results suggest that a valid inflammatory injury was induced after the cells were treated by high concentration of LPS for 9h. Meanwhile, the ACE/AngII/AT1R axis was activated and the ACE2/Ang1-7/MasR axis was depressed.
Collapse
Affiliation(s)
- Kun Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Xiaoqian Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Hang Xiao
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Huanhuan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Yuanshu Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China.
| |
Collapse
|
94
|
Velkoska E, Patel SK, Griggs K, Burrell LM. Diminazene Aceturate Improves Cardiac Fibrosis and Diastolic Dysfunction in Rats with Kidney Disease. PLoS One 2016; 11:e0161760. [PMID: 27571511 PMCID: PMC5003360 DOI: 10.1371/journal.pone.0161760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/11/2016] [Indexed: 12/02/2022] Open
Abstract
Angiotensin converting enzyme (ACE) 2 is a negative regulator of the renin angiotensin system (RAS) through its role to degrade angiotensin II. In rats with subtotal nephrectomy (STNx), adverse cardiac remodelling occurs despite elevated cardiac ACE2 activity. We hypothesised that diminazene aceturate (DIZE), which has been described as having an off-target effect to activate ACE2, would have beneficial cardiac effects in STNx rats. STNx led to hypertension, diastolic dysfunction, left ventricular hypertrophy, cardiac fibrosis, and increased cardiac ACE, ACE2, Ang II and Ang 1-7 levels. Cardiac gene expression of ADAM17 was also increased. In STNx, two-weeks of subcutaneous DIZE (15mg/kg/d) had no effect on blood pressure but improved diastolic dysfunction and cardiac fibrosis, reduced ADAM17 mRNA and shifted the cardiac RAS balance to a cardioprotective profile with reduced ACE and Ang II. There was no change in cardiac ACE2 activity or in cardiac Ang 1-7 levels with DIZE. In conclusion, our results suggest that DIZE exerts a protective effect on the heart under the pathological condition of kidney injury. This effect was not due to improved kidney function, a fall in blood pressure or a reduction in LVH but was associated with a reduction in cardiac ACE and cardiac Ang II levels. As in vitro studies showed no direct effect of DIZE on ACE2 or ACE activity, the precise mechanism of action of DIZE remains to be determined.
Collapse
Affiliation(s)
- Elena Velkoska
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Sheila K. Patel
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Karen Griggs
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Louise M. Burrell
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
95
|
Fan D, Takawale A, Shen M, Samokhvalov V, Basu R, Patel V, Wang X, Fernandez-Patron C, Seubert JM, Oudit GY, Kassiri Z. A Disintegrin and Metalloprotease-17 Regulates Pressure Overload-Induced Myocardial Hypertrophy and Dysfunction Through Proteolytic Processing of Integrin β1. Hypertension 2016; 68:937-48. [PMID: 27550917 DOI: 10.1161/hypertensionaha.116.07566] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022]
Abstract
A disintegrin and metalloprotease-17 (ADAM17) belongs to a family of transmembrane enzymes, and it can mediate ectodomain shedding of several membrane-bound molecules. ADAM17 levels are elevated in patients with hypertrophic and dilated cardiomyopathy; however, its direct role in hypertrophic cardiomyopathy is unknown. Cardiomyocyte-specific ADAM17 knockdown mice (ADAM17(flox/flox)/αMHC-Cre; ADAM17(f/f)/Cre) and littermates with intact ADAM17 levels (ADAM17(f/f)) were subjected to cardiac pressure-overload by transverse aortic constriction. Cardiac function/architecture was assessed by echocardiography at 2 and 5 weeks post transverse aortic constriction. ADAM17 knockdown enhanced myocardial hypertrophy, fibrosis, more severe left ventricular dilation, and systolic dysfunction at 5 weeks post transverse aortic constriction. Pressure overload-induced upregulation of integrin β1 was much greater with ADAM17 knockdown, concomitant with the greater activation of the focal adhesion kinase pathway, suggesting that integrin β1 could be a substrate for ADAM17. ADAM17 knockdown did not alter other cardiomyocyte integrins, integrin α5 or α7, and HB-EGF (heparin-bound epidermal growth factor), another potential substrate for ADAM17, remained unaltered after pressure overload. ADAM17-mediated cleavage of integrin β1 was confirmed by an in vitro assay. Intriguingly, ADAM17 knockdown did not affect the myocardial hypertrophy induced by a subpressor dose of angiotensin II, which occurs independent from the integrin β1-mediated pathway. ADAM17-knockdown enhanced the hypertrophic response to cyclic mechanical stretching in neonatal rat cardiomyocytes. This study reports a novel cardioprotective function for ADAM17 in pressure overload cardiomyopathy, where loss of ADAM17 promotes hypertrophy by reducing the cleavage of cardiac integrin β1, a novel substrate for ADAM17. This function of ADAM17 is selective for pressure overload-induced myocardial hypertrophy and dysfunction, and not agonist-induced hypertrophy.
Collapse
Affiliation(s)
- Dong Fan
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Abhijit Takawale
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Mengcheng Shen
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Victor Samokhvalov
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Ratnadeep Basu
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Vaibhav Patel
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Xiuhua Wang
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Carlos Fernandez-Patron
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - John M Seubert
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Gavin Y Oudit
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Zamaneh Kassiri
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.).
| |
Collapse
|
96
|
Yuan Y, Ma S, Qi Y, Wei X, Cai H, Dong L, Lu Y, Zhang Y, Guo Q. Quercetin inhibited cadmium-induced autophagy in the mouse kidney via inhibition of oxidative stress. J Toxicol Pathol 2016; 29:247-252. [PMID: 27821909 PMCID: PMC5097967 DOI: 10.1293/tox.2016-0026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/04/2016] [Indexed: 12/22/2022] Open
Abstract
The objective of the current study was to explore the inhibitory effects of quercetin on cadmium-induced autophagy in mouse kidneys. Mice were intraperitoneally injected with cadmium and quercetin once daily for 3 days. The LC3-II/β-actin ratio was used as the autophagy marker, and autophagy was observed by transmission electron microscopy. Oxidative stress was investigated in terms of reactive oxygen species, total antioxidant capacity, and malondialdehyde. Cadmium significantly induced typical autophagosome formation, increased the LC3-II/β-actin ratio, reactive oxygen species level, and malondialdehyde content, and decreased total antioxidant capacity. Interestingly, quercetin markedly decreased the cadmium-induced LC3-II/β-actin ratio, reactive oxygen species levels, and malondialdehyde content, and simultaneously increased total antioxidant capacity. Cadmium can inhibit total antioxidant capacity, produce a large amount of reactive oxygen species, lead to oxidative stress, and promote lipid peroxidation, eventually inducing autophagy in mouse kidneys. Quercetin could inhibit cadmium-induced autophagy via inhibition of oxidative stress. This study may provide a theoretical basis for the treatment of cadmium injury.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Intensive Medicine, Gansu Provincial Hospital, 204 West Donggang Rd, Lanzhou, Gansu Province, 730000, China
| | - Shixun Ma
- Department of General Surgery 1, Gansu Provincial Hospital, 204 West Donggang Rd, Lanzhou, Gansu Province, 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu Province, 730000, China
| | - Xue Wei
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu Province, 730000, China
| | - Hui Cai
- Medical Department, Gansu Provincial Hospital, 204 West Donggang Rd, Lanzhou, Gansu Province, 730000, China
| | - Li Dong
- Department of Centrol Laboratory, Gansu Provincial Hospital, 204 West Donggang Rd, Lanzhou, Gansu Province, 730000, China
| | - Yufeng Lu
- Department of Obstetrics, Gansu Provincial Hospital, 204 West Donggang Rd, Lanzhou, Gansu Province, 730000, China
| | - Yupeng Zhang
- Department of Oncological Surgery, Ningxia Medical University, 1160 South Shengli Rd, Yinchuan, Ningxia Province, 750000, China
| | - Qingjin Guo
- Department of Oncological Surgery, Ningxia Medical University, 1160 South Shengli Rd, Yinchuan, Ningxia Province, 750000, China
| |
Collapse
|
97
|
Jia Z, Zhuang Y, Hu C, Zhang X, Ding G, Zhang Y, Rohatgi R, Hua H, Huang S, He JCJ, Zhang A. Albuminuria enhances NHE3 and NCC via stimulation of mitochondrial oxidative stress/angiotensin II axis. Oncotarget 2016; 7:47134-47144. [PMID: 27323402 PMCID: PMC5216930 DOI: 10.18632/oncotarget.9972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/20/2016] [Indexed: 12/31/2022] Open
Abstract
Imbalance of salt and water is a frequent and challenging complication of kidney disease, whose pathogenic mechanisms remain elusive. Employing an albumin overload mouse model, we discovered that albuminuria enhanced the expression of NHE3 and NCC but not other transporters in murine kidney in line with the stimulation of angiotensinogen (AGT)/angiotensin converting enzyme (ACE)/angiotensin (Ang) II cascade. In primary cultures of renal tubular cells, albumin directly stimulated AGT/ACE/Ang II and upregulated NHE3 and NCC expression. Blocking Ang II production with an ACE inhibitor normalized the upregulation of NHE3 and NCC in cells. Interestingly, albumin overload significantly reduced mitochondrial superoxide dismutase (SOD2), and administration of a SOD2 mimic (MnTBAP) normalized the expression of NHE3, NCC, and the components of AGT/ACE pathway affected by albuminuria, indicating a key role of mitochondria-derived oxidative stress in modulating renin-angiotensin system (RAS) and renal sodium transporters. In addition, the functional data showing the reduced urinary excretion of Na and Cl and enhanced response to specific NCC inhibitor further supported the regulatory results of sodium transporters following albumin overload. More importantly, the upregulation of NHE3 and NCC and activation of ACE/Ang II signaling pathway were also observed in albuminuric patient kidneys, suggesting that our animal model accurately replicates the human condition. Taken together, these novel findings demonstrated that albuminuria is of importance in resetting renal salt handling via mitochondrial oxidative stress-initiated stimulation of ACE/Ang II cascade. This may also offer novel, effective therapeutic targets for dealing with salt and water imbalance in proteinuric renal diseases.
Collapse
Affiliation(s)
- Zhanjun Jia
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yibo Zhuang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Caiyu Hu
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xintong Zhang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Rajeev Rohatgi
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Hu Hua
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - John Ci-jiang He
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
98
|
Zhou Y, Zeng YP, Zhou Q, Guan JX, Lu ZN. The effect of captopril on the expression of MMP-9 and the prognosis of neurological function in herpes simplex encephalitis mice. Neurol Res 2016; 38:733-9. [PMID: 27354147 DOI: 10.1080/01616412.2016.1202462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE Early increased matrix metalloproteinase-9 (MMP-9) expression is involved in the evolution of herpes simplex encephalitis (HSE) by facilitating the development of cerebrovascular complications. However, the molecular mechanism underlying the detrimental effects of MMP-9 in HSE has not been elucidated. Recent research finds angiotensin II plays an important role in regulation of MMP-9 activity. The aim of this work was to identify the influence of angiotensin-converting enzyme inhibitor (ACEI) captopril on MMP-9 activation after herpes simplex virus 1 (HSV-1) infection. METHODS Animal models of HSE were established by intracerebral inoculation of HSV-1 into mice. Brain tissue ROS levels were measured by staining with dihydroethidium. MMP-9 protein expression was detected by immunofluorescence and brain water content was measured with dry-wet weight method. Neurological function score was quantified 5 d after HSV-1 infection. Microglial cells were treated with various concentrations of captopril. MMP-9 gelatinolytic activity in the supematant of the cell cultures was assessed by zymography. RT-PCR was used to detect the mRNA expressions of p47phox and MMP-9. RESULTS Immunofluorescence showed that expression of MMP-9 in brain tissue was mainly presented in OX-42 positive microglia. Quantification of gelatinolytic activity by densitometry showed that expression of MMP-9 in microglia was significantly increased after HSV-1 infection and inhibited by captopril treatment. NADPH oxidase subunit p47phox and MMP-9 mRNA expression were significantly increased 6 h after HSV-1 infection, and were seen reduced after captopril treatment in dose dependence. Captopril also downregulated ROS and MMP-9 protein expression following encephalitis in vivo, and attenuated brain edema, and improved neurological function. DISCUSSION This compelling evidence suggests that MMP-9 is a key pathogenic factor within HSE. ACEI captopril could reduce the expression of MMP-9 mediated by ROS, then relieve cerebral edema and improve neurological function, which may lay a foundation for further basic research and clinical application.
Collapse
Affiliation(s)
- Yu Zhou
- a Department of Neurology , Renmin Hospital of Wuhan University , Wuhan , China
| | - Yan-Ping Zeng
- a Department of Neurology , Renmin Hospital of Wuhan University , Wuhan , China
| | - Qin Zhou
- a Department of Neurology , Renmin Hospital of Wuhan University , Wuhan , China
| | - Jing-Xia Guan
- a Department of Neurology , Renmin Hospital of Wuhan University , Wuhan , China
| | - Zu-Neng Lu
- a Department of Neurology , Renmin Hospital of Wuhan University , Wuhan , China
| |
Collapse
|
99
|
Liang H, Ma Z, Peng H, He L, Hu Z, Wang Y. CXCL16 Deficiency Attenuates Renal Injury and Fibrosis in Salt-Sensitive Hypertension. Sci Rep 2016; 6:28715. [PMID: 27353044 PMCID: PMC4926114 DOI: 10.1038/srep28715] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022] Open
Abstract
Inflammation plays an important role in the pathogenesis of hypertensive kidney disease. However, the molecular mechanisms underlying the induction of inflammation are not completely understood. We have found that CXCL16 is induced in the kidney in deoxycorticosterone acetate (DOCA)-salt hypertension. Here we examined whether CXCL16 is involved in DOCA-salt-induced renal inflammation and fibrosis. Wild-type and CXCL16 knockout mice were subjected to uninephrectomy and DOCA-salt treatment for 3 weeks. There was no difference in blood pressure at baseline between wild-type and CXCL16 knockout mice. DOCA-salt treatment resulted in significant elevation in blood pressure that was comparable between wild-type and CXCL16 knockout mice. CXCL16 knockout mice exhibited less severe renal dysfunction, proteinuria, and fibrosis after DOCA-salt treatment compared with wild-type mice. CXCL16 deficiency attenuated extracellular matrix protein production and suppressed bone marrow–derived fibroblast accumulation and myofibroblast formation in the kidneys following DOCA-salt treatment. Furthermore, CXCL16 deficiency reduced macrophage and T cell infiltration into the kidneys in response to DOCA-salt hypertension. Taken together, our results indicate that CXCL16 plays a key role in the pathogenesis of renal injury and fibrosis in salt-sensitive hypertension through regulation of bone marrow–derived fibroblast accumulation and macrophage and T cell infiltration.
Collapse
Affiliation(s)
- Hua Liang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
| | - Zhiheng Ma
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Section of Nephrology, Department of Medicine, Shuguang Hospital, Shanghai, China
| | - Hui Peng
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Section of Nephrology, Department of Internal Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liqun He
- Section of Nephrology, Department of Medicine, Shuguang Hospital, Shanghai, China
| | - Zhaoyong Hu
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yanlin Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Center for Translational Research on Inflammatory Diseases (CTRID) and Renal Section, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| |
Collapse
|
100
|
Mariana CP, Ramona PA, Ioana BC, Diana M, Claudia RC, Stefan VD, Maria KI. Urinary angiotensin converting enzyme 2 is strongly related to urinary nephrin in type 2 diabetes patients. Int Urol Nephrol 2016; 48:1491-7. [PMID: 27312782 DOI: 10.1007/s11255-016-1334-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/23/2016] [Indexed: 01/27/2023]
Abstract
PURPOSE Podocyte lesion is recently recognized as an early event in diabetic kidney disease (DKD) and is reflected by urinary (u) nephrin (Neph) shedding. Angiotensin II plays an important role in podocyte dysfunction of diabetes. Angiotensin converting enzyme 2 (ACE2) is the main ACE variant in podocytes and counteracts deleterious angiotensin II effects. We assessed for the first time the relation of uACE2 and uNeph in type 2 diabetes subjects. MATERIAL AND METHOD Seventy-five type 2 diabetes patients were included in a transversal study. History, clinical and laboratory data, urinary albumin-to-creatinine ratio (uACR), and ELISA determination of uNeph and uACE2 were obtained. RESULTS uNeph was 349.00 ± 133.42 pg/ml, and uACE2 was 45.50 (36.35-62.60) pg/ml. uNeph correlated to uACE2 (r = 0.44, p < 0.001) and to uACR (r = 0.25, p = 0.032). In multivariate regression, introducing parameters that are known to be related to DKD, uACE2 (p < 0.0001), LDL cholesterol (p = 0.02) and glycated hemoglobin (p = 0.03) remained significant predictors of uNeph. Normoalbuminuric patients had lower uNeph than patients with uACR > 30 mg/g (325.50 ± 135.45 vs 391.03 ± 121.40 pg/ml, p = 0.04); they also had a tendency versus lower uACE2 [41.40 (34.30-60.65) vs 52.57 (37.95-69.85) pg/ml, p = 0.06]. A cutoff for uNeph of 451.6 pg/ml was derived from the ROC curve analysis; uACE2 was the main determinant for uNeph being above or below this cutoff-OR = 1.09; 95 %CI (1.04-1.15), p = 0.001. Patients taking blockers of the renin angiotensin system had similar uNeph and uACE2. uNeph and uACE2 were not influenced by renal function. CONCLUSION uNeph is significantly correlated to uACE2 and uACR in type 2 diabetes patients.
Collapse
Affiliation(s)
- Ciorba Pop Mariana
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 3-5 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Potra Alina Ramona
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 3-5 Clinicilor Street, 400006, Cluj-Napoca, Romania.
| | - Bondor Cosmina Ioana
- Department of Informatics and Biostatistics, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 6 Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Moldovan Diana
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 3-5 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Rusu Crina Claudia
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 3-5 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Vladutiu Dan Stefan
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 3-5 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Kacso Ina Maria
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 3-5 Clinicilor Street, 400006, Cluj-Napoca, Romania
| |
Collapse
|