51
|
Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M, Harada H. HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep 2014; 4:3793. [PMID: 24452734 PMCID: PMC3899644 DOI: 10.1038/srep03793] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/31/2013] [Indexed: 01/09/2023] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) has been associated with distant tumor metastasis; however, its function in multiple metastatic processes has not yet been fully elucidated. In the present study, we demonstrated that cancer cells transiently upregulated HIF-1 activity during their metastatic colonization after extravasation in the lungs in hypoxia-independent and reactive oxygen species (ROS)-dependent manners. Transient activation induced the expression of lactate dehydrogenase A and phosphorylation of the E1α subunit of pyruvate dehydrogenase, which indicated the reprogramming of glucose metabolic pathways from mitochondrial oxidative phosphorylation to anaerobic glycolysis and lactic acid fermentation. The administration of the HIF-1 inhibitor, YC-1, inhibited this reprogramming, increased intratumoral ROS levels, and eventually suppressed the formation of metastatic lung tumors. These results indicate that HIF-1-mediated metabolic reprogramming is responsible for the survival of metastatic cancers during their colonization in lungs by reducing cytotoxic ROS levels; therefore, its blockade by HIF-1-inhibitors is a rational strategy to prevent tumor metastasis.
Collapse
Affiliation(s)
- Tao Zhao
- 1] Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan [2] Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University. Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [3] Department of Radiation Medicine, Fourth Military Medical University. 17 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Yuxi Zhu
- 1] Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan [2] Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University. Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [3] Department of Oncology, The First Affiliated Hospital of Chongqing Medical University. No.1 Friendship Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China
| | - Akiyo Morinibu
- 1] Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan [2] Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University. Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- 1] Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan [2] Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University. Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazumi Shinomiya
- 1] Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan [2] Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University. Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satoshi Itasaka
- Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Michio Yoshimura
- Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Guozheng Guo
- Department of Radiation Medicine, Fourth Military Medical University. 17 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Masahiro Hiraoka
- Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroshi Harada
- 1] Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan [2] Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University. Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
52
|
Marques R, Maia CJ, Vaz C, Correia S, Socorro S. The diverse roles of calcium-binding protein regucalcin in cell biology: from tissue expression and signalling to disease. Cell Mol Life Sci 2014; 71:93-111. [PMID: 23519827 PMCID: PMC11113322 DOI: 10.1007/s00018-013-1323-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/21/2013] [Accepted: 03/07/2013] [Indexed: 02/06/2023]
Abstract
Regucalcin (RGN) is a calcium (Ca(2+))-binding protein widely expressed in vertebrate and invertebrate species, which is also known as senescence marker protein 30, due to its molecular weight (33 kDa) and a characteristically diminished expression with the aging process. RGN regulates intracellular Ca(2+) homeostasis and the activity of several proteins involved in intracellular signalling pathways, namely, kinases, phosphatases, phosphodiesterase, nitric oxide synthase and proteases, which highlights its importance in cell biology. In addition, RGN has cytoprotective effects reducing intracellular levels of oxidative stress, also playing a role in the control of cell survival and apoptosis. Multiple factors have been identified regulating the cell levels of RGN transcripts and protein, and an altered expression pattern of this interesting protein has been found in cases of reproductive disorders, neurodegenerative diseases and cancer. Moreover, RGN is a serum-secreted protein, and its levels have been correlated with the stage of disease, which strongly suggests the usefulness of this protein as a potential biomarker for monitoring disease onset and progression. The present review aims to discuss the available information concerning RGN expression and function in distinct cell types and tissues, integrating cellular and molecular mechanisms in the context of normal and pathological conditions. Insight into the cellular actions of RGN will be a key step towards deepening the knowledge of the biology of several human diseases.
Collapse
Affiliation(s)
- Ricardo Marques
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cláudio J. Maia
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia Vaz
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sara Correia
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
53
|
Miyata M, Suzuki S, Misaka T, Shishido T, Saitoh SI, Ishigami A, Kubota I, Takeishi Y. Senescence marker protein 30 has a cardio-protective role in doxorubicin-induced cardiac dysfunction. PLoS One 2013; 8:e79093. [PMID: 24391705 PMCID: PMC3876969 DOI: 10.1371/journal.pone.0079093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 09/17/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Senescence marker protein 30 (SMP30), which was originally identified as an aging marker protein, is assumed to act as a novel anti-aging factor in the liver, lungs and brain. We hypothesized that SMP30 has cardio-protective function due to its anti-aging and anti-oxidant effects on doxorubicin (DOX)-induced cardiac dysfunction. METHODS AND RESULTS SMP30 knockout (SMP30 KO) mice, SMP30 transgenic (SMP30 TG) mice with cardiac-specific overexpression of SMP30 gene and wild-type (WT) littermate mice at 12-14 weeks of age were given intra-peritoneal injection of DOX (20 mg/kg) or saline. Five days after DOX injection, echocardiography revealed that left ventricular ejection fraction was more severely reduced in the DOX-treated SMP30 KO mice than in the DOX-treated WT mice, but was preserved in the DOX-treated SMP30 TG mice. Generation of reactive oxygen species and oxidative DNA damage in the myocardium were greater in the DOX-treated SMP30 KO mice than in the DOX-treated WT mice, but much less in the SMP30 TG mice. The numbers of deoxynucleotidyltransferase-mediated dUTP nick end-labeling positive nuclei in the myocardium, apoptotic signaling pathways such as caspase-3 activity, Bax/Bcl-2 ratio and phosphorylation activity of c-Jun N-terminal kinase were increased in SMP30 KO mice and decreased in SMP30 TG mice compared with WT mice after DOX injection. CONCLUSIONS SMP30 has a cardio-protective role by anti-oxidative and anti-apoptotic effects in DOX-induced cardiotoxicity, and can be a new therapeutic target to prevent DOX-induced heart failure.
Collapse
Affiliation(s)
- Makiko Miyata
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Satoshi Suzuki
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Tomofumi Misaka
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Tetsuro Shishido
- First Department of Internal Medicine, Yamagata University School of Medicine, Yamagata, Japan
| | - Shu-ichi Saitoh
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Isao Kubota
- First Department of Internal Medicine, Yamagata University School of Medicine, Yamagata, Japan
| | - Yasuchika Takeishi
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
- * E-mail:
| |
Collapse
|
54
|
Sato Y, Amano A, Kishimoto Y, Takahashi K, Handa S, Maruyama N, Ishigami A. Ascorbic acid prevents protein oxidation in livers of senescence marker protein-30/gluconolactonase knockout mice. Geriatr Gerontol Int 2013; 14:989-95. [PMID: 24118935 DOI: 10.1111/ggi.12162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2013] [Indexed: 11/27/2022]
Abstract
AIM Senescence marker protein-30 (SMP30)/gluconolactonase (GNL) knockout (KO) mice are incapable of synthesizing L-ascorbic acid (AA) in vivo. As AA is known to be a water-soluble anti-oxidant, we assessed protein oxidation levels in livers from SMP30/GNL KO mice maintained in an AA-insufficient condition. METHODS Livers were collected from male SMP30/GNL KO mice at the ages of 3, 6 and 12 months, and wild-type (WT) mice at the ages of 3, 6, 12 and 24 months. To assess protein oxidation, we measured the content of protein carbonyl, which is a major protein oxidation marker. AA levels were measured by 2,4-dinitrophenylhydrazine method using high-performance liquid chromatography. RESULTS Livers of SMP30/GNL KO mice had just ∼5% as much AA as those of WT mice from 3 to 12 months-of-age. Protein carbonyl levels in livers from SMP30/GNL KO mice were a significant 1.8- to 2.3-fold higher than those from age-atched WT mice. To establish that the AA-insufficiency caused this difference, we added AA to some drinking water, and examined the effect on AA and protein carbonyl levels in livers from SMP30/GNL KO and WT mice. Livers from SMP30/GNL KO mice given extra AA had a significantly higher content than those from their deprived counterparts. Furthermore, protein carbonyl levels in livers from AA-supplemented SMP30/GNL KO mice were significantly lower than those from the SMP30/GNL KO mice without AA supplementation. However, added AA did not affect the protein carbonyl levels in WT mice. CONCLUSIONS These results strongly suggest that AA plays an important role in preventing protein oxidation in vivo, thus enhancing overall health.
Collapse
Affiliation(s)
- Yasunori Sato
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
55
|
Misaka T, Suzuki S, Miyata M, Kobayashi A, Ishigami A, Shishido T, Saitoh SI, Kubota I, Takeishi Y. Senescence marker protein 30 inhibits angiotensin II-induced cardiac hypertrophy and diastolic dysfunction. Biochem Biophys Res Commun 2013; 439:142-7. [PMID: 23933320 DOI: 10.1016/j.bbrc.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Senescence marker protein 30 (SMP30) is assumed to behave as an anti-aging factor. Recently, we have demonstrated that deficiency of SMP30 exacerbates angiotensin II-induced cardiac hypertrophy, dysfunction and remodeling, suggesting that SMP30 may have a protective role in the heart. Thus, this study aimed to test the hypothesis that up-regulation of SMP30 inhibits cardiac adverse remodeling in response to angiotensin II. METHODS We generated transgenic mice with cardiac-specific overexpression of SMP30 gene using α-myosin heavy chain promoter. Transgenic mice and wild-type littermate mice were subjected to continuous angiotensin II infusion (800 ng/kg/min). RESULTS After 14 days, heart weight and left ventricular weight were lower in transgenic mice than in wild-type mice, although blood pressure was similarly elevated during angiotensin II infusion. Cardiac hypertrophy and diastolic dysfunction in response to angiotensin II were prevented in transgenic mice compared with wild-type mice. The degree of cardiac fibrosis by angiotensin II was lower in transgenic mice than in wild-type mice. Angiotensin II-induced generation of superoxide and subsequent cellular senescence were attenuated in transgenic mouse hearts compared with wild-type mice. CONCLUSIONS Cardiac-specific overexpression of SMP30 inhibited angiotensin II-induced cardiac adverse remodeling. SMP30 has a cardio-protective role with anti-oxidative and anti-aging effects and could be a novel therapeutic target to prevent cardiac hypertrophy and remodeling due to hypertension.
Collapse
Affiliation(s)
- Tomofumi Misaka
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Aging does not enhance experimental cigarette smoke-induced COPD in the mouse. PLoS One 2013; 8:e71410. [PMID: 23936505 PMCID: PMC3732225 DOI: 10.1371/journal.pone.0071410] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/29/2013] [Indexed: 11/25/2022] Open
Abstract
It has been proposed that the development of COPD is driven by premature aging/premature senescence of lung parenchyma cells. There are data suggesting that old mice develop a greater inflammatory and lower anti-oxidant response after cigarette smoke compared to young mice, but whether these differences actually translate into greater levels of disease is unknown. We exposed C57Bl/6 female mice to daily cigarette smoke for 6 months starting at age 3 months (Ayoung@) or age 12 months (Aold@), with air-exposed controls. There were no differences in measures of airspace size between the two control groups and cigarette smoke induced exactly the same amount of emphysema in young and old. The severity of smoke-induced small airway remodeling using various measures was identical in both groups. Smoke increased numbers of tissue macrophages and neutrophils and levels of 8-hydroxyguanosine, a marker of oxidant damage, but there were no differences between young and old. Gene expression studies using laser capture microdissected airways and parenchyma overall showed a trend to lower levels in older animals and a somewhat lesser response to cigarette smoke in both airways and parenchyma but the differences were usually not marked. Telomere length was greatest in young control mice and was decreased by both smoking and age. The senescence marker p21Waf1 was equally upregulated by smoke in young and old, but p16INK4a, another senescence marker, was not upregulated at all. We conclude, in this model, animal age does not affect the development of emphysema and small airway remodeling.
Collapse
|
57
|
Kondo Y, Hasegawa G, Okada H, Senmaru T, Fukui M, Nakamura N, Sawada M, Kitawaki J, Okanoue T, Kishimoto Y, Amano A, Maruyama N, Obayashi H, Ishigami A. Lepr(db/db) Mice with senescence marker protein-30 knockout (Lepr(db/db)Smp30(Y/-)) exhibit increases in small dense-LDL and severe fatty liver despite being fed a standard diet. PLoS One 2013; 8:e65698. [PMID: 23755269 PMCID: PMC3670834 DOI: 10.1371/journal.pone.0065698] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/26/2013] [Indexed: 01/21/2023] Open
Abstract
Background/Aims The senescence marker protein-30 (SMP30) is a 34 kDa protein originally identified in rat liver that shows decreased levels with age. Several functional studies using SMP30 knockout (Smp30Y/−) mice established that SMP30 functions as an antioxidant and protects against apoptosis. To address the potential role of SMP30 in nonalcoholic fatty liver disease (NAFLD) pathogenesis, we established Smp30Y/− mice on a Leprdb/db background (Leprdb/dbSmp30Y/− mice). Research Design/Principal Findings Male Leprdb/dbSmp30Y/− mice were fed a standard diet (340 kcal/100 g, fat 5.6%) for 16 weeks whereupon the lipid/lipoprotein profiles, hepatic expression of genes related to lipid metabolism and endoplasmic reticulum stress markers were analyzed by HPLC, quantitative RT-PCR and western blotting, respectively. Changes in the liver at a histological level were also investigated. The amount of SMP30 mRNA and protein in livers was decreased in Leprdb/dbSmp30Y/+ mice compared with Leprdb/+Smp30Y/+ mice. Compared with Leprdb/dbSmp30Y/+ mice, 24 week old Leprdb/dbSmp30Y/− mice showed: i) increased small dense LDL-cho and decreased HDL-cho levels; ii) fatty liver accompanied by numerous inflammatory cells and increased oxidative stress; iii) decreased mRNA expression of genes involved in fatty acid oxidation (PPARα) and lipoprotein uptake (LDLR and VLDLR) but increased CD36 levels; and iv) increased endoplasmic reticulum stress. Conclusion Our data strongly suggest that SMP30 is closely associated with NAFLD pathogenesis, and might be a possible therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Yoshitaka Kondo
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Goji Hasegawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Naoto Nakamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Morio Sawada
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Yuki Kishimoto
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Akiko Amano
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Naoki Maruyama
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hiroshi Obayashi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
- Institute of Bio-Response Informatics, Kyoto, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- * E-mail:
| |
Collapse
|
58
|
Misaka T, Suzuki S, Miyata M, Kobayashi A, Shishido T, Ishigami A, Saitoh SI, Hirose M, Kubota I, Takeishi Y. Deficiency of senescence marker protein 30 exacerbates angiotensin II-induced cardiac remodelling. Cardiovasc Res 2013; 99:461-70. [PMID: 23723062 DOI: 10.1093/cvr/cvt122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Ageing is an important risk factor of cardiovascular diseases including heart failure. Senescence marker protein 30 (SMP30), which was originally identified as an important ageing marker protein, is assumed to act as a novel anti-ageing factor in various organs. However, the role of SMP30 in the heart has not been previously explored. In this study, our aim was to elucidate the functional role of SMP30 on cardiac remodelling. METHODS AND RESULTS SMP30 knockout (KO) mice and wild-type (WT) mice were subjected to continuous angiotensin II (Ang II) infusion. After 14 days, the extent of cardiac hypertrophy and myocardial fibrosis was significantly higher in SMP30-KO mice than in WT mice. Echocardiography revealed that SMP30-KO mice had more severely depressed systolic and diastolic function with left ventricular dilatation compared with WT mice. Generation of reactive oxygen species related with activation of nicotinamide adenine dinucleotide phosphate-oxidase was greater in SMP30-KO mice than in WT mice. The number of deoxynucleotidyl transferase-mediated dUTP nick end-labelling positive nuclei was markedly increased in SMP30-KO mice with activation of caspase-3, increases in the Bax to Bcl-2 ratio and phosphorylation of c-Jun N-terminal kinase compared with WT mice. Furthermore, the number of senescence-associated β-galactosidase-positive cells was significantly increased via up-regulation of p21 gene expression in SMP30-KO mice compared with WT mice. CONCLUSION This study demonstrated the first evidence that deficiency of SMP30 exacerbates Ang II-induced cardiac hypertrophy, dysfunction, and remodelling, suggesting that SMP30 has a cardio-protective role in cardiac remodelling with anti-oxidative and anti-apoptotic effects in response to Ang II.
Collapse
Affiliation(s)
- Tomofumi Misaka
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Sundar IK, Yao H, Rahman I. Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases. Antioxid Redox Signal 2013; 18:1956-71. [PMID: 22978694 PMCID: PMC3624634 DOI: 10.1089/ars.2012.4863] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Chronic obstructive pulmonary disease (COPD) is predominantly a tobacco smoke-triggered disease with features of chronic low-grade systemic inflammation and aging (inflammaging) of the lung associated with steroid resistance induced by cigarette smoke (CS)-mediated oxidative stress. Oxidative stress induces various kinase signaling pathways leading to chromatin modifications (histone acetylation/deacetylation and histone methylation/demethylation) in inflammation, senescence, and steroid resistance. RECENT ADVANCES Histone mono-, di-, or tri-methylation at lysine residues result in either gene activation (H3K4, H3K36, and H3K79) or repression (H3K9, H3K27, and H3K20). Cross-talk occurs between various epigenetic marks on histones and DNA methylation. Both CS and oxidants alter histone acetylation/deacetylation and methylation/demethylation leading to enhanced proinflammatory gene expression. Chromatin modifications occur in lungs of patients with COPD. Histone deacetylase 2 (HDAC2) reduction (levels and activity) is associated with steroid resistance in response to oxidative stress. CRITICAL ISSUES Histone modifications are associated with DNA damage/repair and epigenomic instability as well as premature lung aging, which have implications in the pathogenesis of COPD. HDAC2/SIRTUIN1 (SIRT1)-dependent chromatin modifications are associated with DNA damage-induced inflammation and senescence in response to CS-mediated oxidative stress. FUTURE DIRECTIONS Understanding CS/oxidative stress-mediated chromatin modifications and the cross-talk between histone acetylation and methylation will demonstrate the involvement of epigenetic regulation of chromatin remodeling in inflammaging. This will lead to identification of novel epigenetic-based therapies against COPD and other smoking-related lung diseases. Pharmacological activation of HDAC2/SIRT1 or reversal of their oxidative post-translational modifications may offer therapies for treatment of COPD and CS-related diseases based on epigenetic histone modifications.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
60
|
Senescence marker protein-30 (SMP30) deficiency impairs myocardium-induced dilation of coronary arterioles associated with reactive oxygen species. Int J Mol Sci 2013; 14:9408-23. [PMID: 23629672 PMCID: PMC3676790 DOI: 10.3390/ijms14059408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/24/2023] Open
Abstract
Senescence marker protein-30 (SMP30) decreases with aging. Mice with SMP30 deficiency, a model of aging, have a short lifespan with increased oxidant stress. To elucidate SMP30’s effect on coronary circulation derived from myocytes, we measured the changes in the diameter of isolated coronary arterioles in wild-type (WT) mice exposed to supernatant collected from isolated paced cardiac myocytes from SMP30 KO or WT mice. Pacing increased hydrogen peroxide in myocytes, and hydrogen peroxide was greater in SMP30 KO myocytes compared to WT myocytes. Antimycin enhanced and FCCP (oxidative phosphorylation uncoupler in mitochondria) decreased superoxide production in both groups. Addition of supernatant from stimulated myocytes, either SMP30 KO or WT, caused vasodilation. The degree of the vasodilation response to supernatant was smaller in SMP30 KO mice compared to WT mice. Administration of catalase to arterioles eliminated vasodilation in myocyte supernatant of WT mice and converted vasodilation to vasoconstriction in myocyte supernatant of SMP30 KO mice. This vasoconstriction was eliminated by olmesartan, an angiotensin II receptor antagonist. Thus, SMP30 deficiency combined with oxidant stress increases angiotensin and hydrogen peroxide release from cardiac myocytes. SMP30 plays an important role in the regulation of coronary vascular tone by myocardium.
Collapse
|
61
|
Senescence-induced increases in intracellular oxidative stress and enhancement of the need for ascorbic acid in human fibroblasts. Mol Cell Biochem 2013; 380:129-41. [PMID: 23613229 DOI: 10.1007/s11010-013-1666-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/17/2013] [Indexed: 01/30/2023]
Abstract
Many studies have suggested that there is a close correlation among declines in internal ascorbic acid (AsA) levels, various disorders, and senescence. To clarify the relationships between age-associated changes in intracellular AsA levels and the effects of AsA administration on intracellular reactive oxygen species (ROS) levels, we investigated aging-related changes in AsA uptake, ROS levels, and the effects of AsA administration on intracellular ROS levels in young and old (senescent) human fibroblasts. Our results demonstrated that AsA uptake was increased in old cells compared with young cells, although mRNA and protein expression of sodium-dependent vitamin C transporter 2 was barely altered between the young and old cells. We also demonstrated that the intracellular superoxide anion level was higher in young cells, whereas the level of intracellular peroxides was significantly increased in old cells under both normal and oxidative stress conditions. Moreover, AsA administration markedly decreased the augmentation of intracellular peroxides in old cells, whereas there was no effect of AsA treatment in young cells under both normal and oxidative stress conditions. Therefore, our results also indicate that AsA could play an important role in regulating the intracellular ROS levels in senescent cells and that the need for AsA is enhanced by cellular senescence.
Collapse
|
62
|
Park JK, Lee EM, Kim AY, Lee EJ, Min CW, Kang KK, Lee MM, Jeong KS. Vitamin C deficiency accelerates bone loss inducing an increase in PPAR-γ expression in SMP30 knockout mice. Int J Exp Pathol 2012; 93:332-40. [PMID: 22974214 DOI: 10.1111/j.1365-2613.2012.00820.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Senescence marker protein (SMP) 30 knockout (KO) mice display symptoms of scurvy, including spontaneous bone fractures, and this was considered to be induced by a failure of collagen synthesis owing to vitamin C deficiency. However, low bone mineral density is also known to be associated with spontaneous bone fracture. Therefore, we investigated the effects of vitamin C deficiency on the balance between osteoblasts and osteoclasts in SMP30 KO mice as evidenced by histopathology. All mice were fed a vitamin C-free diet, and only one group (KV) mice were given water containing 1.5 g/l of vitamin C, whereas wild-type (WT) and KO mice were given normal drinking tap water without vitamin C for 16 weeks. After 16 weeks, all femur samples were removed for histopathological examination. The femurs of KO mice showed significantly reduced bone area and decreased number of osteoblasts compared with those of WT mice and KV mice. KO mice also exhibited the lowest level of alkaline phosphatase (ALP) expression in their femurs. However, KO mice showed the most elevated expression of the receptor activator of nuclear factor kappa-B ligand (RANKL). Moreover, KO mice had the strongest peroxisome proliferator-activated receptor (PPAR)-γ expression level in their osteoblasts and the highest number of TUNEL-positive bone marrow cells. Therefore, we concluded that vitamin C deficiency plays an important role in spontaneous bone fracture by inhibiting osteoblast differentiation and promoting transition of osteoblasts to adipocytes, and this could in turn be related to the increased PPAR-γ expression.
Collapse
Affiliation(s)
- Jin-Kyu Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Ito K, Colley T, Mercado N. Geroprotectors as a novel therapeutic strategy for COPD, an accelerating aging disease. Int J Chron Obstruct Pulmon Dis 2012; 7:641-52. [PMID: 23055713 PMCID: PMC3459652 DOI: 10.2147/copd.s28250] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) progresses very slowly and the majority of patients are therefore elderly. COPD is characterized by an abnormal persistent inflammatory response to noxious environmental stimuli and there are increasing evidences for a close relationship between premature aging and chronic inflammatory diseases. Thus, COPD is considered to be a disease of an accelerating aging. In this review, we collected the evidence for roles of aging on pathogenesis of COPD and considered future therapeutic strategy for COPD based on this senescence hypothesis. Since calorie restriction has been proved to extend lifespan, many efforts were made to clarify the molecular mechanism of aging. Aging is defined as the progressive decline of homeostasis that occurs after the reproductive phase of life is complete, leading to an increasing risk of disease or death due to impaired DNA repair after damage by oxidative stress or telomere shortening as a result of repeated cell division. During aging, pulmonary function progressively deteriorates; innate immunity is impaired and pulmonary inflammation increases, accompanied by structural changes, such as an enlargement of airspaces. Noxious environmental gases, such as cigarette smoke, may worsen these aging-related events in the lung or accelerate aging of the lung due to reduction in anti-aging molecules and/or stimulation of aging molecules. Aging signaling are complex but conserved in divert species, such as worm, fruit fry, rodent and humans. Especially the insulin like growth factor (IGF-1) signaling was well documented. Geroprotectors are therapeutics that affect the root cause of aging and age-related diseases, and thus prolong the life-span of animals. Most of geroprotectors such as melatonin, metformin, rapamycin and resveratrol are anti-oxidant or anti-aging molecule regulators. Therefore, geroprotection for the lung might be an attractive approach for the treatment of COPD by preventing premature aging of lung.
Collapse
Affiliation(s)
- Kazuhiro Ito
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | | | | |
Collapse
|
64
|
Yao H, Rahman I. Role of histone deacetylase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD. Am J Physiol Lung Cell Mol Physiol 2012; 303:L557-66. [PMID: 22842217 DOI: 10.1152/ajplung.00175.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Histone deacetylase 2 (HDAC2) is a class I histone deacetylase that regulates various cellular processes, such as cell cycle, senescence, proliferation, differentiation, development, apoptosis, and glucocorticoid function in inhibiting inflammatory response. HDAC2 has been shown to protect against DNA damage response and cellular senescence/premature aging via an epigenetic mechanism in response to oxidative stress. These phenomena are observed in patients with chronic obstructive pulmonary disease (COPD). HDAC2 is posttranslationally modified by oxidative/carbonyl stress imposed by cigarette smoke and oxidants, leading to its reduction via an ubiquitination-proteasome dependent degradation in lungs of patients with COPD. In this perspective, we have discussed the role of HDAC2 posttranslational modifications and its role in regulation of inflammation, histone/DNA epigenetic modifications, DNA damage response, and cellular senescence, particularly in inflammaging, and during the development of COPD. We have also discussed the potential directions for future translational research avenues in modulating lung inflammaging and cellular senescence based on epigenetic chromatin modifications in diseases associated with increased oxidative stress.
Collapse
Affiliation(s)
- Hongwei Yao
- Dept. of Environmental Medicine, Lung Biology and Disease Program, Univ. of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
65
|
Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence. Biochem Pharmacol 2012; 84:1332-9. [PMID: 22796566 DOI: 10.1016/j.bcp.2012.06.031] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 02/08/2023]
Abstract
Sirtuin1 (SIRT1), a type III protein deacetylase, is considered as a novel anti-aging protein involved in regulation of cellular senescence/aging and inflammation. SIRT1 level and activity are decreased during lung inflammaging caused by oxidative stress. The mechanism of SIRT1-mediated protection against inflammaging is associated with the regulation of inflammation, premature senescence, telomere attrition, senescence associated secretory phenotype, and DNA damage response. A variety of dietary polyphenols and pharmacological activators are shown to regulate SIRT1 so as to intervene the progression of type 2 diabetes, cancer, cardiovascular diseases, and chronic obstructive pulmonary disease associated with inflammaging. However, recent studies have shown the non-specific regulation of SIRT1 by the aforementioned pharmacological activators and polyphenols. In this perspective, we have briefly discussed the role of SIRT1 in regulation of cellular senescence and its associated secretory phenotype, DNA damage response, particularly in lung inflammaging and during the development of chronic obstructive pulmonary diseases. We have also discussed the potential directions for future translational therapeutic avenues for SIRT1 in modulating lung inflammaging associated with senescence in chronic lung diseases associated with increased oxidative stress.
Collapse
|
66
|
Faner R, Rojas M, Macnee W, Agustí A. Abnormal lung aging in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2012; 186:306-13. [PMID: 22582162 DOI: 10.1164/rccm.201202-0282pp] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aging is a natural process characterized by progressive functional impairment and reduced capacity to respond appropriately to environmental stimuli and injury. The incidence of two common chronic respiratory diseases (chronic obstructive pulmonary disease [COPD] and idiopathic pulmonary fibrosis [IPF]) increases with advanced age. It is plausible, therefore, that abnormal regulation of the mechanisms of normal aging may contribute to the pathobiology of both COPD and IPF. This review discusses the available evidence supporting a number of aging mechanisms, including oxidative stress, telomere length regulation, cellular and immunosenescence, as well as changes in a number of antiaging molecules and the extracellular matrix, which are abnormal in COPD and/or IPF. A better understanding of these abnormalities may help in the design of novel and better therapeutic interventions for these patients.
Collapse
Affiliation(s)
- Rosa Faner
- Fundación Investigación Sanitaria Illes Balears, Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Palma de Mallorca, and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | |
Collapse
|
67
|
Rahman I, Kinnula VL, Gorbunova V, Yao H. SIRT1 as a therapeutic target in inflammaging of the pulmonary disease. Prev Med 2012; 54 Suppl:S20-8. [PMID: 22178470 PMCID: PMC3311735 DOI: 10.1016/j.ypmed.2011.11.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Chronic inflammation and cellular senescence are intertwined in the pathogenesis of premature aging, which is considered as an important contributing factor in driving chronic obstructive pulmonary disease (COPD). Sirtuin1 (SIRT1), a nicotinamide adenine dinucleotide (NAD(+))-dependent protein/histone deacetylase, regulates inflammation, senescence/aging, stress resistance, and deoxyribonucleic acid (DNA) damage repair via deacetylating intracellular signaling molecules and chromatin histones. The present review describes the mechanism and regulation of SIRT1 by environmental agents/oxidants/reactive aldehydes and pro-inflammatory stimuli in lung inflammation and aging. The role of dietary polyphenols in regulation of SIRT1 in inflammaging is also discussed. METHODS Analysis of current research findings on the mechanism of inflammation and senescence/aging (i.e., inflammaging) and their regulation by SIRT1 in premature aging of the lung. RESULTS COPD is a disease of the lung inflammaging, which is associated with the DNA damage response, transcription activation and chromatin modifications. SIRT1 regulates inflammaging via regulating forkhead box class O 3, p53, nuclear factor kappa B, histones and various proteins involved in DNA damage and repair. Polyphenols and its analogs have been shown to activate SIRT1 although they have anti-inflammatory and antioxidant properties. CONCLUSIONS Targeting lung inflammation and cellular senescence as well as premature lung aging using pharmacological SIRT1 activators or polyphenols would be a promising therapeutic intervention for COPD/emphysema.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
68
|
Yao H, Chung S, Hwang JW, Rajendrasozhan S, Sundar IK, Dean DA, McBurney MW, Guarente L, Gu W, Rönty M, Kinnula VL, Rahman I. SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest 2012; 122:2032-45. [PMID: 22546858 DOI: 10.1172/jci60132] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 03/07/2012] [Indexed: 01/06/2023] Open
Abstract
Chronic obstructive pulmonary disease/emphysema (COPD/emphysema) is characterized by chronic inflammation and premature lung aging. Anti-aging sirtuin 1 (SIRT1), a NAD+-dependent protein/histone deacetylase, is reduced in lungs of patients with COPD. However, the molecular signals underlying the premature aging in lungs, and whether SIRT1 protects against cellular senescence and various pathophysiological alterations in emphysema, remain unknown. Here, we showed increased cellular senescence in lungs of COPD patients. SIRT1 activation by both genetic overexpression and a selective pharmacological activator, SRT1720, attenuated stress-induced premature cellular senescence and protected against emphysema induced by cigarette smoke and elastase in mice. Ablation of Sirt1 in airway epithelium, but not in myeloid cells, aggravated airspace enlargement, impaired lung function, and reduced exercise tolerance. These effects were due to the ability of SIRT1 to deacetylate the FOXO3 transcription factor, since Foxo3 deficiency diminished the protective effect of SRT1720 on cellular senescence and emphysematous changes. Inhibition of lung inflammation by an NF-κB/IKK2 inhibitor did not have any beneficial effect on emphysema. Thus, SIRT1 protects against emphysema through FOXO3-mediated reduction of cellular senescence, independently of inflammation. Activation of SIRT1 may be an attractive therapeutic strategy in COPD/emphysema.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Hong IH, Han SY, Ki MR, Moon YM, Park JK, You SY, Lee EM, Kim AY, Lee EJ, Jeong JH, Kang KS, Jeong KS. Inhibition of kupffer cell activity improves transplantation of human adipose-derived stem cells and liver functions. Cell Transplant 2012; 22:447-59. [PMID: 22546493 DOI: 10.3727/096368912x640583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Numerous approaches to cell transplantation of the hepatic or the extrahepatic origin into liver tissue have been developed; however, the efficiency of cell transplantation remains low and liver functions are not well corrected. The liver is a highly immunoreactive organ that contains many resident macrophages known as Kupffer cells. Here, we show that the inhibition of Kupffer cell activity improves stem cell transplantation into liver tissue and corrects some of the liver functions under conditions of liver injury. We found that, when Kupffer cells were inhibited by glycine, numerous adipose-derived stem cells (ASCs) were successfully transplanted into livers, and these transplanted cells showed hepatoprotective effects, including decrease of liver injury factors, increase of liver regeneration, and albumin production. On the contrary, injected ASCs without glycine recruited numerous Kupffer cells, not lymphocytes, and showed low transplantation efficiency. Intriguingly, successfully transplanted ASCs in liver tissue modulated Kupffer cell activity to inhibit tumor necrosis factor-α secretion. Thus, our data show that Kupffer cell inactivation is an important step in order to improve ASC transplantation efficiency and therapeutic potential in liver injuries. In addition, the hepatoprotective function of glycine has synergic effects on liver protection and the engraftment of ASCs.
Collapse
Affiliation(s)
- Il-Hwa Hong
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
The maintenance of the alveolar structure is required throughout life. To accomplish this goal, alveolar cells, including endothelial, epithelial, and fibroblastic cells, provide key molecules with broad survival and antiapoptotic effects. These complex interactions are disrupted by cigarette smoke, leading to emphysema. Smoke imposes an environmental stress to the lung with the activation of "sensor-like" molecular signaling. Activation of RTP801, leading to mTOR inhibition, is paradigmatic of these responses. The accumulation of cellular damage, with the generation of endogenous mediators of inflammation, may proceed toward an aging phenotype. These alterations may impose significant challenges to cell-based regenerative or pharmacological therapies.
Collapse
|
71
|
Li L, Bao H, Wu J, Duan X, Liu B, Sun J, Gong W, Lv Y, Zhang H, Luo Q, Wu X, Dong J. Baicalin is anti-inflammatory in cigarette smoke-induced inflammatory models in vivo and in vitro: A possible role for HDAC2 activity. Int Immunopharmacol 2012; 13:15-22. [PMID: 22421405 DOI: 10.1016/j.intimp.2012.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 12/29/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease characterized by airway obstruction and progressive lung inflammation, which is insensitive to corticosteroids therapies. In this study, we investigated the mechanism underlying the attenuation of cigarette smoke (CS)-induced respiratory inflammation by baicalin, a flavonoid compound isolated from the root of Scutellaria baicalensis Georgi, in vivo and in vitro. In vivo, mice were exposed to smoke of 15 cigarettes for 1 h/day, 6 days/week for 3 months and dosed with baicalin (25, 50 and 100mg/kg) or dexamethasone (1mg/kg). In vitro, A549 cells were incubated with baicalin (10, 50 and 100 μM) or dexamethasone (10(-12), 10(-10), 10(-8) and 10(-6)M) followed by treatments with cigarette smoke extract (CSE, 2.5 and 5%), or TNF-α (10 ng/ml), or trichostatin A (TSA, 100 ng/ml). We found that baicalin significantly protected pulmonary function and attenuated CS-induced inflammatory response by decreasing inflammatory cells and production of TNF-α, IL-8 and MMP-9. This result was not found in the group treated with dexamethasone. Baicalin also showed efficacy in enhancing histone deacetylase (HDAC)2 activity and protein expression, however, it did not affect HDAC2 mRNA. Further studies revealed that baicalin inhibited HDAC2 phosphorylation, suggesting that it may directly affect the protein structure and effect by modification at post-translational level. Together these results suggest that baicalin has anti-inflammatory effects in cigarette smoke induced inflammatory models in mice and A549 cells, possibly achieved by modulating HDAC2.
Collapse
Affiliation(s)
- Lulu Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Scott SH, Bahnson BJ. Senescence Marker Protein 30: Functional and Structural Insights to its Unknown Physiological Function. Biomol Concepts 2011; 2:469-480. [PMID: 22844387 PMCID: PMC3405729 DOI: 10.1515/bmc.2011.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Senescence marker protein 30 (SMP30) is a multifunctional protein involved in cellular Ca(2+) homeostasis and the biosynthesis of ascorbate in non-primate mammals. The primary structure of the protein is highly conserved among vertebrates, suggesting the existence of a significant physiological function common to all mammals, including primates. Enzymatic activities of SMP30 include aldonolactone and organophosphate hydrolysis. Protective effects against apoptosis and oxidative stress have been reported. X-ray crystallography revealed that SMP30 is a six-bladed β-propeller with structural similarity to paraoxonase 1, another protein with lactonase and organophosphate hydrolase activities. SMP30 has recently been tied to several physiological conditions including osteoporosis, liver fibrosis, diabetes, and cancer. This review aims to describe the recent advances made toward understanding the connection between molecular structure, enzymatic activity and physiological function of this highly conserved, multifaceted protein.
Collapse
Affiliation(s)
- Stephanie H. Scott
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Brian J. Bahnson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
73
|
Senmaru T, Yamazaki M, Okada H, Asano M, Fukui M, Nakamura N, Obayashi H, Kondo Y, Maruyama N, Ishigami A, Hasegawa G. Pancreatic insulin release in vitamin C-deficient senescence marker protein-30/gluconolactonase knockout mice. J Clin Biochem Nutr 2011; 50:114-8. [PMID: 22448091 PMCID: PMC3303473 DOI: 10.3164/jcbn.11-52] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/08/2011] [Indexed: 11/22/2022] Open
Abstract
We recently identified senescence marker protein-30 as the lactone-hydrolyzing enzyme gluconolactonase, which is involved in vitamin C biosynthesis. In this study, we investigated the effects of vitamin C on insulin secretion from pancreatic β-cells using senescence marker protein-30/gluconolactonase knockout mice. In intraperitoneal glucose tolerance tests, vitamin C-deficient senescence marker protein-30/gluconolactonase knockout mice demonstrated impaired glucose tolerance with significantly lower blood insulin levels at 30 and 120 min post-challenge than in wild type mice (p<0.01-0.05). In contrast, vitamin C-sufficient senescence marker protein-30/gluconolactonase knockout mice demonstrated significantly higher blood glucose and lower insulin only at the 30 min post-challenge time point (p<0.05). Senescence marker protein-30/gluconolactonase knockout mice showed enhanced insulin sensitivity regardless of vitamin C status. Static incubation of islets revealed that 20 mM glucose-stimulated insulin secretion and islet ATP production were significantly decreased at 60 min only in vitamin C-deficient SMP30/GNL knockout mice relative to wild type mice (p<0.05). These results indicate that the site of vitamin C action lies between glycolysis and mitochondrial oxidative phosphorylation, while SMP30 deficiency itself impairs the distal portion of insulin secretion pathway.
Collapse
Affiliation(s)
- Takafumi Senmaru
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine Graduate School of Medical Science, 465 Kajii-cho, Hirokoji, Kamikyo-ku, Kyoto 602-8556, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Fukui M, Senmaru T, Hasegawa G, Yamazaki M, Asano M, Kagami Y, Ishigami A, Maruyama N, Iwasa K, Kitawaki J, Itoh Y, Okanoue T, Ohta M, Obayashi H, Nakamura N. 17β-Estradiol attenuates saturated fatty acid diet-induced liver injury in ovariectomized mice by up-regulating hepatic senescence marker protein-30. Biochem Biophys Res Commun 2011; 415:252-7. [DOI: 10.1016/j.bbrc.2011.10.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
|
75
|
Calvi CL, Podowski M, D'Alessio FR, Metzger SL, Misono K, Poonyagariyagorn H, Lopez-Mercado A, Ku T, Lauer T, Cheadle C, Talbot CC, Jie C, McGrath-Morrow S, King LS, Walston J, Neptune ER. Critical transition in tissue homeostasis accompanies murine lung senescence. PLoS One 2011; 6:e20712. [PMID: 21713037 PMCID: PMC3119663 DOI: 10.1371/journal.pone.0020712] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/11/2011] [Indexed: 01/06/2023] Open
Abstract
Background Respiratory dysfunction is a major contributor to morbidity and mortality in aged populations. The susceptibility to pulmonary insults is attributed to “low pulmonary reserve”, ostensibly reflecting a combination of age-related musculoskeletal, immunologic and intrinsic pulmonary dysfunction. Methods/Principal Findings Using a murine model of the aging lung, senescent DBA/2 mice, we correlated a longitudinal survey of airspace size and injury measures with a transcriptome from the aging lung at 2, 4, 8, 12, 16 and 20 months of age. Morphometric analysis demonstrated a nonlinear pattern of airspace caliber enlargement with a critical transition occurring between 8 and 12 months of age marked by an initial increase in oxidative stress, cell death and elastase activation which is soon followed by inflammatory cell infiltration, immune complex deposition and the onset of airspace enlargement. The temporally correlative transcriptome showed exuberant induction of immunoglobulin genes coincident with airspace enlargement. Immunohistochemistry, ELISA analysis and flow cytometry demonstrated increased immunoglobulin deposition in the lung associated with a contemporaneous increase in activated B-cells expressing high levels of TLR4 (toll receptor 4) and CD86 and macrophages during midlife. These midlife changes culminate in progressive airspace enlargement during late life stages. Conclusion/Significance Our findings establish that a tissue-specific aging program is evident during a presenescent interval which involves early oxidative stress, cell death and elastase activation, followed by B lymphocyte and macrophage expansion/activation. This sequence heralds the progression to overt airspace enlargement in the aged lung. These signature events, during middle age, indicate that early stages of the aging immune system may have important correlates in the maintenance of tissue morphology. We further show that time-course analyses of aging models, when informed by structural surveys, can reveal nonintuitive signatures of organ-specific aging pathology.
Collapse
Affiliation(s)
- Carla L. Calvi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Megan Podowski
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Franco R. D'Alessio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shana L. Metzger
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kaori Misono
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hataya Poonyagariyagorn
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Armando Lopez-Mercado
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Therese Ku
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas Lauer
- Pediatric Pulmonary, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher Cheadle
- Lowe Family Genomics Core, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - C. Conover Talbot
- JHMI Microarray Core, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Chunfa Jie
- JHMI Microarray Core, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sharon McGrath-Morrow
- Pediatric Pulmonary, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Landon S. King
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jeremy Walston
- Division of Geriatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Enid R. Neptune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
76
|
Abstract
PURPOSE OF REVIEW Recent research suggests that chronic obstructive pulmonary disease (COPD) may be a disease of accelerated aging. The senescence hypothesis of COPD pathogenesis is supported by in-vitro, in-vivo and clinical studies. The purpose of this review is to provide a comprehensive overview of the senescence hypothesis of COPD and summarize methods that are used to assess cellular aging. RECENT FINDINGS Accelerated aging due to exposure to cigarette smoke is hypothesized to induce rapid progression of COPD. Recent studies have shown that COPD patients have enhanced expression of senescence-associated proteins in the lung and in the peripheral circulation compared to healthy controls. Murine models of accelerated aging demonstrate spontaneous emphysematous changes in the lungs, while lungs of COPD patients demonstrate enhanced markers of senescence in fibroblasts and alveolar cells. More recently, studies of telomeres, which shorten with cellular aging, have shown that COPD patients may experience accelerated telomere attrition compared with healthy controls. However, studies to date have been relatively small and have produced heterogeneous results. SUMMARY The evidence for the role of accelerated aging in COPD progression is growing and senescence is one possible molecular pathway by which COPD occurs.
Collapse
|
77
|
Eguchi S, Takatsuki M, Hidaka M, Soyama A, Muraoka I, Tomonaga T, Shimokawa I, Kanematsu T. Lack of grafted liver rejuvenation in adult-to-pediatric liver transplantation. Dig Dis Sci 2011; 56:1542-7. [PMID: 20936349 DOI: 10.1007/s10620-010-1445-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 09/19/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND A grafted donor liver should grow and survive under the different conditions presented by a liver transplantation recipient. It has remained unclear, however, whether the age of a grafted liver can be modulated by recipient factors. AIMS This study investigated whether a grafted aged donor liver can be rejuvenated in a pediatric recipient. METHODS Of 119 living donor liver transplants, ten pairs were adult-to-pediatric combinations. Senescence marker protein-30 (SMP-30), which is a protein that is remarkably reduced upon aging, was used as a senescence marker. Immunohistochemical staining for SMP-30 was performed in biopsy specimen after living donor liver transplantation (LDLT). Re-expression of SMP-30 was investigated in a biopsied adult liver (n = 6) that had been transplanted in a pediatric recipient. RESULTS A remarkable expression of SMP-30 was seen in a control pediatric normal liver in comparison with that in an aged adult donor biopsy. Re-expression or an increase in SMP-30 was not observed in the liver of any pediatric recipient who had received an adult liver. CONCLUSION An adult grafted liver does not appear to rejuvenate in a pediatric recipient.
Collapse
Affiliation(s)
- Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
Chronic obstructive pulmonary disease (COPD) has traditionally been considered a disease of the lungs secondary to cigarette smoking and characterized by airflow obstruction due to abnormalities of both airway (bronchitis) and lung parenchyma (emphysema). It is now well known that COPD is associated with significant systemic abnormalities, such as renal and hormonal abnormalities, malnutrition, muscle wasting, osteoporosis, and anemia. However, it is still unclear whether they represent consequences of the pulmonary disorder, or whether COPD should be considered as a systemic disease. These systemic abnormalities have been attributed to an increased level of systemic inflammation. Chronic inflammation, however, may not be the only cause of the systemic effects of COPD. Recent data from humans and animal models support the view that emphysema may be a vascular disease. Other studies have highlighted the role of repair failure, bone marrow abnormality, genetic and epigenetic factors, immunological disorders and infections as potential causes of COPD systemic manifestations. Based on this new evidence, it is reasonable to consider COPD, and emphysema in particular, as 'a disease with a significant systemic component' if not a 'systemic disease' per se. The aim of this review is to give an overview of the most relevant and innovative hypothesis about the extrapulmonary manifestations of COPD.
Collapse
Affiliation(s)
- Alice Huertas
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
79
|
Park JK, Hong IH, Ki MR, Chung HY, Ishigami A, Ji AR, Goo MJ, Kim DH, Kwak JH, Min CW, Lee SS, Jeong KS. Vitamin C deficiency increases the binucleation of hepatocytes in SMP30 knock-out mice. J Gastroenterol Hepatol 2010; 25:1769-76. [PMID: 21039840 DOI: 10.1111/j.1440-1746.2010.06239.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The binucleation of hepatocytes, which was known as an important feature of liver growth and physiology, has been reported to be increased during the chronic oxidative injury stage and has been regarded as an age-related change of hepatic structures. Therefore, we investigated the binuclearity pattern in the livers of senescence marker proteins-30 (SMP30) knock-out (KO) mice compared with wild-type (WT) mice and vitamin C-treated KO (KO + VC) mice. METHODS The WT, KO and KO + VC mice were fed a vitamin C free diet and VC(+) group mice were given vitamin C water containing 1.5 g/L of vitamin C, whereas VC(-) group was given normal drinking water without vitamin C, for 16 weeks. RESULTS In microscopic examination, the livers of KO mice showed a significantly increased number of binuclear hepatocytes compared with that of WT mice and KO + VC mice. KO mice also showed the most increased expression level of CYP2E1 and PCNA determined by immunohistochemistry and immunoblot analysis. Moreover, KO mice indicated the highest level of serum alanine aminotransferase and aspartate aminotransferase level in serum biochemical analysis. Accordingly, significantly decreased levels of reactive oxygen species, MDA (malondialdehyde) and HAE (4-hydroxyalkenals) were detected in KO + VC mice compared with KO mice. CONCLUSION Therefore, it is concluded that vitamin C deficiency induces an increase of CYP2E1 expression and elevated ROS production, which causes oxidative liver injury and the elevation of hepatocyte binucleation in SMP30 KO mice.
Collapse
Affiliation(s)
- Jin-Kyu Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Maruyama N, Ishigami A, Kondo Y. Pathophysiological significance of senescence marker protein-30. Geriatr Gerontol Int 2010; 10 Suppl 1:S88-98. [DOI: 10.1111/j.1447-0594.2010.00586.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
81
|
Di Petta A. Pathogenesis of pulmonary emphysema – cellular and molecular events. EINSTEIN-SAO PAULO 2010; 8:248-51. [DOI: 10.1590/s1679-45082010rb1480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 04/12/2010] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Pulmonary emphysema is a chronic obstructive disease, resulting from important alterations in the whole distal structure of terminal bronchioles, either by enlargement of air spaces or by destruction of the alveolar wall, leading to loss of respiratory surface, decreased elastic recoil and lung hyperinflation. For many years, the hypothesis of protease-antiprotease unbalance prevailed as the central theme in the pathogenesis of pulmonary emphysema. According to this hypothesis, the release of active proteolytic enzymes, produced mainly by neutrophils and macrophages, degrades the extracellular matrix, affecting the integrity of its components, especially collagen and elastic fibers. However, new concepts involving cellular and molecular events were proposed, including oxidative stress, cell apoptosis, cellular senescence and failed lung tissue repair. The aim of this review paper was to evaluate the cellular and molecular mechanisms seen in the pathogenesis of pulmonary emphysema.
Collapse
|
82
|
Koike K, Kondo Y, Sekiya M, Sato Y, Tobino K, Iwakami SI, Goto S, Takahashi K, Maruyama N, Seyama K, Ishigami A. Complete lack of vitamin C intake generates pulmonary emphysema in senescence marker protein-30 knockout mice. Am J Physiol Lung Cell Mol Physiol 2010; 298:L784-92. [DOI: 10.1152/ajplung.00256.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vitamin C (VC) is a potent antioxidant and plays an essential role in collagen synthesis. As we previously reported, senescence marker protein-30 (SMP30) knockout (KO) mice cannot synthesize VC due to the genetic disruption of gluconolactonase (i.e., SMP30). Here, we utilized SMP30 KO mice deprived of VC and found that VC depletion caused pulmonary emphysema due to oxidative stress and a decrease of collagen synthesis by the third month of age. We grew SMP30 KO mice and wild-type (WT) mice on VC-free chow and either VC water [VC(+)] or plain water [VC(−)] after weaning at 4 wk of age. Morphometric findings and reactive oxygen species (ROS) in the lungs were evaluated at 3 mo of age. No VC was detected in the lungs of SMP30 KO VC(−) mice, but their ROS increased 50.9% over that of the VC(+) group. Moreover, their collagen content in the lungs markedly decreased, and their collagen I mRNA decreased 82.2% compared with that of the WT VC(−) group. In the SMP30 KO VC(−) mice, emphysema developed [21.6% increase of mean linear intercepts (MLI) and 42.7% increase of destructive index compared with VC(+) groups], and the levels of sirtuin 1 (Sirt1) decreased 16.8%. However, VC intake increased the MLI 16.2% and thiobarbituric acid reactive substances 22.2% in WT mice, suggesting that an excess of VC can generate oxidative stress and may be harmful during this period of lung development. These results suggest that VC plays an important role in lung development through affecting oxidant-antioxidant balance and collagen synthesis.
Collapse
Affiliation(s)
- Kengo Koike
- Department of Respiratory Medicine, Juntendo University School of Medicine, and
| | - Yoshitaka Kondo
- Department of Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo
| | - Mitsuaki Sekiya
- Department of Respiratory Medicine, Juntendo University School of Medicine, and
| | - Yasunori Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba
| | - Kazunori Tobino
- Department of Respiratory Medicine, Juntendo University School of Medicine, and
| | - Shin-iciro Iwakami
- Department of Respiratory Medicine, Juntendo University Shizuoka Hospital, Shizuoka; and
| | - Sataro Goto
- Juntendo University Graduate School, Institute of Health and Sports Science and Medicine, Chiba, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University School of Medicine, and
| | - Naoki Maruyama
- Department of Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo
| | - Kuniaki Seyama
- Department of Respiratory Medicine, Juntendo University School of Medicine, and
| | - Akihito Ishigami
- Department of Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba
| |
Collapse
|
83
|
Mukohda M, Yamawaki H, Okada M, Hara Y. Methylglyoxal enhances sodium nitroprusside-induced relaxation in rat aorta. J Pharmacol Sci 2010; 112:176-83. [PMID: 20168042 DOI: 10.1254/jphs.09219fp] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The concentration of methylglyoxal (MGO), a metabolite of glucose, increases in plasma of type II diabetic patients as well as in tissues of hypertensive rats. We have previously shown that MGO inhibited noradrenaline (NA)-induced smooth muscle contraction in rat aorta. However, the effect of MGO on relaxing responses in isolated blood vessel remains to be clarified. Thus, we examined if MGO affects acetylcholine (ACh)- or sodium nitroprusside (SNP)-induced vasodilation on NA (100 nM)-induced pre-contraction in rat thoracic aorta. Treatment of endothelium-intact aorta with MGO (420 microM, 30 min) did not change ACh (1 nM - 3 microM)-induced endothelium-dependent relaxation. In contrast, treatment of endothelium-denuded aorta with MGO shifted the concentration-response curve for SNP (0.1 - 300 nM) to the left. MGO increased reactive oxygen species (ROS) production in smooth muscle on analysis of protein carbonylation. Anti-oxidant agents such as tempol (10 microM), catalase (5000 U/mL), and nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methylester (100 microM) had no effect on MGO-induced enhancement of SNP-induced relaxation. However, iberiotoxin (100 nM), a large-conductance Ca(2+)-activated K(+) (BK(Ca))-channel inhibitor, significantly prevented the effect. The present study revealed that MGO enhanced SNP-induced relaxation in a ROS-independent manner via in part opening smooth muscle BK(Ca) channels.
Collapse
Affiliation(s)
- Masashi Mukohda
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Japan
| | | | | | | |
Collapse
|
84
|
Park JK, Ki MR, Lee HR, Hong IH, Ji AR, Ishigami A, Park SI, Kim JM, Chung HY, Yoo SE, Jeong KS. Vitamin C deficiency attenuates liver fibrosis by way of up-regulated peroxisome proliferator-activated receptor-gamma expression in senescence marker protein 30 knockout mice. Hepatology 2010; 51:1766-77. [PMID: 20162732 DOI: 10.1002/hep.23499] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Senescence marker protein 30 (SMP30), an important aging marker molecule that is highly expressed in the liver, has been known to protect hepatocytes from apoptosis by the synthesis of vitamin C. To explore the function of SMP30 in liver fibrosis, the effect of SMP30 deficiency on liver fibrosis was investigated in SMP30 knockout (KO) mice. Moreover, the in vivo results were further confirmed by way of hepatic stellate cell (HSC) isolation. We demonstrated that carbon tetrachloride (CCl(4))-induced liver fibrosis and the nuclear translocation of p-Smad2/3, the immediate downstream of transforming growth factor beta (TGF-beta), were significantly inhibited in the liver of SMP30 KO mice compared with wildtype (WT) mice. We also confirmed that both WT and SMP30 KO HSCs did not express SMP30. Finally, we further confirmed that up-regulation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) caused by a lack of vitamin C was the pivotal factor in the mechanisms for attenuated liver fibrosis of SMP30 KO mice, and feeding with vitamin C restored CCl(4)-induced liver fibrosis in SMP30 KO mice. CONCLUSION Vitamin C deficiency by SMP30 depletion attenuated liver fibrosis by way of up-regulated PPAR-gamma expression in SMP30 KO mice. Our results provide, for the first time, the possible mechanisms underlying inhibition of HSC activation associated with vitamin C and PPAR-gamma up-regulation in liver fibrosis of SMP30 KO mice.
Collapse
Affiliation(s)
- Jin-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Boutten A, Goven D, Boczkowski J, Bonay M. Oxidative stress targets in pulmonary emphysema: focus on the Nrf2 pathway. Expert Opin Ther Targets 2010; 14:329-46. [PMID: 20148719 DOI: 10.1517/14728221003629750] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE OF THE FIELD Oxidative stress has been implicated in the pathogenesis of pulmonary emphysema. Nuclear factor erythroid-2-related factor 2 (Nrf2) a major antioxidant transcription factor could play a protective role in pulmonary emphysema. AREAS COVERED IN THIS REVIEW Nrf2 is ubiquitously expressed throughout the lung, but is predominantly found in epithelium and alveolar macrophages. Evidence suggests that Nrf2 and several Nrf2 downstream genes have an essential protective role in the lung against oxidative stress from environmental pollutants and toxicants such as cigarette smoke, a major causative factor for the development and progression of pulmonary emphysema. Application of Nrf2-deficient mice identified an extensive range of protective roles for Nrf2 against the pathogenesis of pulmonary emphysema. Therefore, Nrf2 promises to be an attractive therapeutic target for intervention and prevention strategies. WHAT THE READER WILL GAIN In this review, we discuss recent findings on the association of oxidative stress with pulmonary emphysema. We also address the mechanisms of Nrf2 lung protection against oxidative stress based on emerging evidence from experimental oxidative disease models and human studie. TAKE HOME MESSAGE The current literature suggests that among oxidative stress targets, Nrf2 is a valuable therapeutic target in pulmonary emphysema.
Collapse
Affiliation(s)
- A Boutten
- Inserm, U700, Université Paris 7, Faculté de Médecine Denis Diderot-site Bichat, BP416, 75870 Paris Cedex 18, France
| | | | | | | |
Collapse
|
86
|
Bobadilla Fazzini RA, Preto MJ, Quintas ACP, Bielecka A, Dos Santos VAPM. Consortia modulation of the stress response: proteomic analysis of single strain versus mixed culture. Environ Microbiol 2010; 12:2436-49. [PMID: 20406297 DOI: 10.1111/j.1462-2920.2010.02217.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The high complexity of naturally occurring microbial communities is the major drawback limiting the study of these important biological systems. In this study, a comparison between pure cultures of Pseudomonas reinekei sp. strain MT1 and stable community cultures composed of MT1 plus the addition of Achromobacter xylosoxidans strain MT3 (in a steady-state proportion 9:1) was used as a model system to study bacterial interactions that take place under simultaneous chemical and oxidative stress. Both are members of a real community isolated from a polluted sediment by enrichment in 4-chlorosalicylate (4CS). The analysis of dynamic states was carried out at the proteome, metabolic profile and population dynamic level. Differential protein expression was evaluated under exposure to 4CS and high concentrations of toxic intermediates (4-chlorocatechol and protoanemonin), including proteins from several functional groups and particularly enzymes of aromatic degradation pathways and outer membrane proteins. Remarkably, 4CS addition generated a strong oxidative stress response in pure strain MT1 culture led by alkyl hydroperoxide reductase, while the community showed an enhanced central metabolism response, where A. xylosoxidans MT3 helped to prevent toxic intermediate accumulation. A significant change in the outer membrane composition of P. reinekei MT1 was observed during the chemical stress caused by 4CS and in the presence of A. xylosoxidans MT3, highlighting the expression of the major outer membrane protein OprF, tightly correlated to 4CC concentration profile and its potential detoxification role.
Collapse
|
87
|
Park H, Ishigami A, Shima T, Mizuno M, Maruyama N, Yamaguchi K, Mitsuyoshi H, Minami M, Yasui K, Itoh Y, Yoshikawa T, Fukui M, Hasegawa G, Nakamura N, Ohta M, Obayashi H, Okanoue T. Hepatic senescence marker protein-30 is involved in the progression of nonalcoholic fatty liver disease. J Gastroenterol 2010; 45:426-34. [PMID: 19946731 DOI: 10.1007/s00535-009-0154-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 10/10/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND Both insulin resistance and increased oxidative stress in the liver are associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Senescence marker protein-30 (SMP30) was initially identified as a novel protein in the rat liver, and acts as an antioxidant and antiapoptotic protein. Our aim was to determine whether hepatic SMP30 levels are associated with the development and progression of NAFLD. METHODS Liver biopsies and blood samples were obtained from patients with an NAFLD activity score (NAS) < or = 2 (n = 18), NAS of 3-4 (n = 14), and NAS > or = 5 (n = 66). RESULTS Patients with NAS > or = 5 had significantly lower hepatic SMP30 levels (12.5 +/- 8.4 ng/mg protein) than patients with NAS < or = 2 (30.5 +/- 14.2 ng/mg protein) and patients with NAS = 3-4 (24.6 +/- 12.2 ng/mg protein). Hepatic SMP30 decreased in a fibrosis stage-dependent manner. Hepatic SMP30 levels were correlated positively with the platelet count (r = 0.291) and negatively with the homeostasis model assessment of insulin resistance (r = -0.298), the net electronegative charge modified-low-density lipoprotein (r = -0.442), and type IV collagen 7S (r = -0.350). The immunostaining intensity levels of 4-hydroxynonenal in the liver were significantly and inversely correlated with hepatic SMP30 levels. Both serum large very low-density lipoprotein (VLDL) and very small low-density lipoprotein (LDL) levels in patients with NAS > or = 5 were significantly higher than those seen in patients with NAS < or = 2, and these lipoprotein fractions were significantly and inversely correlated with hepatic SMP30. CONCLUSION These results suggest that hepatic SMP30 is closely associated with the pathogenesis of NAFLD, although it is not known whether decreased hepatic SMP30 is a result or a cause of cirrhosis.
Collapse
Affiliation(s)
- Hyohun Park
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Kawazonocho 1-2, Suita, Osaka 564-0013, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
To Y, Ito K, Kizawa Y, Failla M, Ito M, Kusama T, Elliott WM, Hogg JC, Adcock IM, Barnes PJ. Targeting phosphoinositide-3-kinase-delta with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182:897-904. [PMID: 20224070 DOI: 10.1164/rccm.200906-0937oc] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Patients with chronic obstructive pulmonary disease (COPD) show a poor response to corticosteroids. This has been linked to a reduction of histone deacetylase-2 as a result of oxidative stress and is reversed by theophylline. OBJECTIVES To determine the role of phosphoinositide-3-kinase-delta (PI3K-δ) on the development of corticosteroid insensitivity in COPD and under oxidative stress, and as a target for theophylline. METHODS Corticosteroid sensitivity was determined as the 50% inhibitory concentration of dexamethasone on tumor necrosis factor-α-induced interleukin-8 release in peripheral blood mononuclear cells from patients with COPD (n = 17) and compared with that of nonsmoking (n = 8) and smoking (n = 7) control subjects. The effect of theophylline and a selective PI3K-δ inhibitor (IC87114) on restoration of corticosteroid sensitivity was confirmed in cigarette smoke-exposed mice. MEASUREMENTS AND MAIN RESULTS Peripheral blood mononuclear cells of COPD (50% inhibitory concentration of dexamethasone: 156.8 ± 32.6 nM) were less corticosteroid sensitive than those of nonsmoking (41.2 ± 10.5 nM; P = 0.018) and smoking control subjects (47.5 ± 19.6 nM; P = 0.031). Corticosteroid insensitivity and reduced histone deacetylase-2 activity after oxidative stress were reversed by a non-selective PI3K inhibitor (LY294002) and low concentrations of theophylline. Theophylline was a potent selective inhibitor of oxidant-activated PI3K-δ, which was up-regulated in peripheral lung tissue of patients with COPD. Furthermore, cells with knock-down of PI3K-δ failed to develop corticosteroid insensitivity with oxidative stress. Both theophylline and IC87114, combined with dexamethasone, inhibited corticosteroid-insensitive lung inflammation in cigarette-smoke-exposed mice in vivo. CONCLUSIONS Inhibition of oxidative stress dependent PI3K-δ activation by a selective inhibitor or theophylline provides a novel approach to reversing corticosteroid insensitivity in COPD.
Collapse
Affiliation(s)
- Yasuo To
- Airway Disease Section, NHLI Imperial College, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Hasegawa G, Yamasaki M, Kadono M, Tanaka M, Asano M, Senmaru T, Kondo Y, Fukui M, Obayashi H, Maruyama N, Nakamura N, Ishigami A. Senescence marker protein-30/gluconolactonase deletion worsens glucose tolerance through impairment of acute insulin secretion. Endocrinology 2010; 151:529-36. [PMID: 19934374 DOI: 10.1210/en.2009-1163] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Senescence marker protein-30 (SMP30) is an androgen-independent factor that decreases with age. We recently identified SMP30 as the lactone-hydrolyzing enzyme gluconolactonase (GNL), which is involved in vitamin C biosynthesis in animal species. To examine whether the age-related decrease in SMP30/GNL has effects on glucose homeostasis, we used SMP30/GNL knockout (KO) mice treated with L-ascorbic acid. In an ip glucose tolerance test at 15 wk of age, blood glucose levels in SMP30/GNL KO mice were significantly increased by 25% at 30 min after glucose administration compared with wild-type (WT) mice. Insulin levels in SMP30/GNL KO mice were significantly decreased by 37% at 30 min after glucose compared with WT mice. Interestingly, an insulin tolerance test showed a greater glucose-lowering effect in SMP30/GNL KO mice. High-fat diet feeding severely worsened glucose tolerance in both WT and SMP30/GNL KO mice. Morphometric analysis revealed no differences in the degree of high-fat diet-induced compensatory increase in beta-cell mass and proliferation. In the static incubation study of islets, insulin secretion in response to 20 mm glucose or KCl was significantly decreased in SMP30/GNL KO mice. On the other hand, islet ATP content at 20 mm in SMP30/GNL KO mice was similar to that in WT mice. Collectively, these data indicate that impairment of the early phase of insulin secretion due to dysfunction of the distal portion of the secretion pathway underlies glucose intolerance in SMP30/GNL KO mice. Decreased SMP30/GNL may contribute to the worsening of glucose tolerance that occurs in normal aging.
Collapse
Affiliation(s)
- Goji Hasegawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine Graduate School of Medical Science, 465 Kajii-cho, Hirokoji, Kawaramachi-dori, Kamikyo-ku, Kyoto 602-8566, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Affiliation(s)
- Akihito ISHIGAMI
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University
| |
Collapse
|
91
|
Kim HJ. New Paradigms in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Tuberc Respir Dis (Seoul) 2010. [DOI: 10.4046/trd.2010.69.5.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hui Jung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Sanbon Medical Center, Wonkwang University School of Medicine, Gunpo, Korea
| |
Collapse
|
92
|
Accelerated lung aging: a novel pathogenic mechanism of chronic obstructive pulmonary disease (COPD). Biochem Soc Trans 2009; 37:819-23. [PMID: 19614601 DOI: 10.1042/bst0370819] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An enhanced or abnormal inflammatory response to the lungs to inhaled particles and gases, usually from cigarette smoke, is considered to be a general pathogenic mechanism in COPD (chronic obstructive pulmonary disease). Activation of leucocytes and the development of oxidant-antioxidant and protease-anti-protease imbalances are thought to be important aspects of this enhanced inflammatory response to cigarette smoke. The mechanisms involved in the perpetuation of the inflammatory response in the lungs in patients who develop COPD, even after smoking cessation, are not fully established and are key to our understanding of the pathogenic mechanisms in COPD and may be important for the development of new therapies. There is a relationship between chronic inflammatory diseases and aging, and the processes involved in aging may provide a novel mechanism in the pathogenesis of COPD. There is good evidence linking aging and COPD. During normal aging, pulmonary function deteriorates progressively and pulmonary inflammation increases, accompanied in the lungs by the features of emphysema. These features are accelerated in COPD. Emphysema is associated with markers of accelerated aging in the lungs, and COPD is also associated with features of accelerated aging in other organs, such as the cardiovascular and musculoskeletal systems. Cigarette smoke and other oxidative stresses result in cellular senescence and accelerate lung aging. There is also evidence that anti-aging molecules such as histone deacetylases and sirtuins are decreased in the lungs of COPD patients, compared with smokers without COPD, resulting in enhanced inflammation and further progression of COPD. The processes involved in accelerated aging may provide novel targets for therapy in COPD. The present article reviews the evidence for accelerated aging as a mechanism in the pathogenesis of COPD.
Collapse
|
93
|
Le A, Zielinski R, He C, Crow MT, Biswal S, Tuder RM, Becker PM. Pulmonary epithelial neuropilin-1 deletion enhances development of cigarette smoke-induced emphysema. Am J Respir Crit Care Med 2009; 180:396-406. [PMID: 19520907 PMCID: PMC2742758 DOI: 10.1164/rccm.200809-1483oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 06/09/2009] [Indexed: 01/03/2023] Open
Abstract
RATIONALE Cigarette smoke (CS) exposure is an important risk factor for chronic obstructive pulmonary disease; however, not all smokers develop disease, suggesting that other factors influence disease development. OBJECTIVES We sought to determine whether neuropilin-1 (Nrp1), an integral component of receptor complexes mediating alveolar septation and vascular development, was involved in maintenance of normal alveolar structure, and/or altered susceptibility to the effects of CS. METHODS Transgenic mice were generated to achieve inducible lung-specific deletion of epithelial Nrp1. We determined whether conditional Nrp1 deletion altered airspace size, then compared the effects of chronic CS or filtered air exposure on airspace size, inflammation, and the balance between cell death and proliferation in conditionally Nrp1-deficient adult mice and littermate controls. Finally, we evaluated the effects of Nrp1 silencing on cell death after acute exposure of A549 cells to cigarette smoke extract or short chain ceramides. MEASUREMENTS AND MAIN RESULTS Genetic deletion of epithelial Nrp1 in either postnatal or adult lungs resulted in a small increase in airspace size. More notably, both airspace enlargement and apoptosis of type I and type II alveolar epithelial cells were significantly enhanced following chronic CS exposure in conditionally Nrp1-deficient adult mice. Silencing of Nrp1 in A549 cells did not alter cell survival after vehicle treatment but significantly augmented apoptosis after exposure to cigarette smoke extract or ceramide. CONCLUSIONS These data support a role for epithelial Nrp1 in the maintenance of normal alveolar structure and suggest that dysregulation of Nrp1 expression may promote epithelial cell death in response to CS exposure, thereby enhancing emphysema development.
Collapse
Affiliation(s)
- Anne Le
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Hackenhaar FS, Salomon TB, Alabarse PVG, Ehrenbrink G, Benfato MS. Pulmonary antioxidant defences and protein damage during the ageing process of both sexes. Cell Biochem Funct 2009; 27:378-82. [DOI: 10.1002/cbf.1585] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
95
|
|
96
|
Effects of vitamin C deficiency on the skin of the senescence marker protein-30 (SMP30) knockout mouse. Biochem Biophys Res Commun 2009; 385:478-83. [DOI: 10.1016/j.bbrc.2009.05.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 05/26/2009] [Indexed: 11/15/2022]
|
97
|
Abstract
Emphysema is characterized by the destruction of alveolar parenchymal tissue and the concordant loss of lung epithelial cells, endothelial cells, and interstitial mesenchymal cells. Key features in the pathobiology of emphysema include inflammation, alveolar epithelial cell injury/apoptosis, and excessive activation of extracellular matrix (ECM) proteases. Mesenchymal cells are versatile connective tissue cells that are critical effectors of wound-repair. The excessive loss of connective tissue and the destruction of alveolar septae in emphysema suggest that the mesenchymal cell reparative response to epithelial injury is impaired. Yet, the mechanisms regulating mesenchymal cell (dys)function in emphysema remain poorly understood. We propose that mesenchymal cell fate, modulated by transforming growth factor beta-1 (TGF-beta1) and the balance of ECM proteases and antiproteases, is a critical determinant of the emphysema phenotype. We examine emphysema in the context of wound-repair responses, with a focus on the regulation of mesenchymal cell fate and phenotype. We discuss the emerging evidence supporting that genetic factors, inflammation and environmental factors, including cigarette smoke itself, collectively impair mesenchymal cell survival and function, thus contributing to the pathogenesis of emphysema.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109-2319, USA.
| | | | | |
Collapse
|
98
|
Bobadilla Fazzini RA, Bielecka A, Poucas Quintas AK, Golyshin PN, Preto MJ, Timmis KN, Martins dos Santos VAP. Bacterial consortium proteomics under 4-chlorosalicylate carbon-limiting conditions. Proteomics 2009; 9:2273-85. [DOI: 10.1002/pmic.200800489] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
99
|
Abstract
There is increasing evidence for a close relationship between aging and chronic inflammatory diseases. COPD is a chronic inflammatory disease of the lungs, which progresses very slowly and the majority of patients are therefore elderly. We here review the evidence that accelerating aging of lung in response to oxidative stress is involved in the pathogenesis and progression of COPD, particularly emphysema. Aging is defined as the progressive decline of homeostasis that occurs after the reproductive phase of life is complete, leading to an increasing risk of disease or death. This results from a failure of organs to repair DNA damage by oxidative stress (nonprogrammed aging) and from telomere shortening as a result of repeated cell division (programmed aging). During aging, pulmonary function progressively deteriorates and pulmonary inflammation increases, accompanied by structural changes, which are described as senile emphysema. Environmental gases, such as cigarette smoke or other pollutants, may accelerate the aging of lung or worsen aging-related events in lung by defective resolution of inflammation, for example, by reducing antiaging molecules, such as histone deacetylases and sirtuins, and this consequently induces accelerated progression of COPD. Recent studies of the signal transduction mechanisms, such as protein acetylation pathways involved in aging, have identified novel antiaging molecules that may provide a new therapeutic approach to COPD.
Collapse
Affiliation(s)
- Kazuhiro Ito
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, UK.
| | - Peter J Barnes
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
100
|
Macnee W, Maclay J, McAllister D. Cardiovascular injury and repair in chronic obstructive pulmonary disease. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2008; 5:824-33. [PMID: 19017737 PMCID: PMC2643206 DOI: 10.1513/pats.200807-071th] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 08/25/2008] [Indexed: 01/22/2023]
Abstract
Cardiovascular disease represents a considerable burden in terms of both morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD). For 20 years, forced expiratory volume in 1 second (FEV(1)) has been an established predictor of cardiovascular mortality among smokers, never-smokers, and patients with COPD. We review evidence for increased cardiovascular risk in COPD. In addition, we assess the emerging evidence which suggests that hypoxia, systemic inflammation, and oxidative stress in patients with COPD may cause cardiovascular disease. We also discuss alternative hypotheses that the endothelium and connective tissues in the arteries and lungs of patients with COPD and cardiovascular disease have a shared susceptibility to these factors.
Collapse
Affiliation(s)
- William Macnee
- ELEGI Colt Research Labs, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.
| | | | | |
Collapse
|