51
|
Rochwerg B. Corticosteroids for severe community-acquired pneumonia: a story without an ending. Intensive Care Med 2022; 48:1053-1055. [PMID: 35552779 PMCID: PMC9098255 DOI: 10.1007/s00134-022-06699-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Bram Rochwerg
- Department of Medicine, McMaster University, 1200 Main St W, Hamilton, ON, Canada. .,Department of Health Research Methods, Evidence and Impact, McMaster University, 1200 Main St W, Hamilton, ON, Canada.
| |
Collapse
|
52
|
Effects of High-Resolution CT Changes on Prognosis Predictability in Acute Respiratory Distress Syndrome with Diffuse Alveolar Damage. J Clin Med 2022; 11:jcm11092458. [PMID: 35566584 PMCID: PMC9099591 DOI: 10.3390/jcm11092458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
Diffuse alveolar damage (DAD) is the pathological hallmark of acute respiratory distress syndrome (ARDS). DAD is independently correlated with higher mortality compared with the absence of DAD. Traction bronchiectasis in areas of ground-glass opacity or consolidation is associated with the late fibroproliferative or fibrotic phase of DAD. This study examined whether the 60-day mortality related to DAD could be predicted using high-resolution computed tomography (HRCT) findings and HRCT scores. A total of 34 patients with DAD who received HRCT within 7 days of ARDS diagnosis were enrolled; they were divided into a 60-day survival group and a nonsurvival group, with 17 patients in each group. Univariate and multivariate binary regression analyses and the receiver operating characteristic curve revealed that only the total percentage of the area with traction bronchiectasis or bronchiolectasis was an independent predictor of 60-day mortality (odds ratio, 1.067; 95% confidence interval (CI), 1.011–1.126) and had favorable predictive performance (area under the curve (AUC): 0.784; 95% CI, 0.621–0.946; cutoff, 21.7). Physiological variables, including age, days from ARDS to HRCT, the sequential organ failure assessment (SOFA) score, the PaO2/fraction of inspired oxygen (FiO2) ratio, dynamic driving pressure, and dynamic mechanical power, were not discriminative between 60-day survival and nonsurvival. In conclusion, the extent of fibroproliferation on HRCT in early ARDS, presented as the total percentage of area with bronchiectasis or bronchiolectasis, is an independent positive predictor with a favorable predictive ability for the 60-day mortality of DAD.
Collapse
|
53
|
Gavrielatou E, Vaporidi K, Tsolaki V, Tserlikakis N, Zakynthinos GE, Papoutsi E, Maragkuti A, Mantelou AG, Karayiannis D, Mastora Z, Georgopoulos D, Zakynthinos E, Routsi C, Zakynthinos SG, Schenck EJ, Kotanidou A, Siempos II. Rapidly improving acute respiratory distress syndrome in COVID-19: a multi-centre observational study. Respir Res 2022; 23:94. [PMID: 35422037 PMCID: PMC9008400 DOI: 10.1186/s12931-022-02015-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Before the pandemic of coronavirus disease (COVID-19), rapidly improving acute respiratory distress syndrome (ARDS), mostly defined by early extubation, had been recognized as an increasingly prevalent subphenotype (making up 15–24% of all ARDS cases), associated with good prognosis (10% mortality in ARDSNet trials). We attempted to determine the prevalence and prognosis of rapidly improving ARDS and of persistent severe ARDS related to COVID-19. Methods We included consecutive patients with COVID-19 receiving invasive mechanical ventilation in three intensive care units (ICU) during the second pandemic wave in Greece. We defined rapidly improving ARDS as extubation or a partial pressure of arterial oxygen to fraction of inspired oxygen ratio (PaO2:FiO2) greater than 300 on the first day following intubation. We defined persistent severe ARDS as PaO2:FiO2 of equal to or less than 100 on the second day following intubation. Results A total of 280 intubated patients met criteria of ARDS with a median PaO2:FiO2 of 125.0 (interquartile range 93.0–161.0) on day of intubation, and overall ICU-mortality of 52.5% (ranging from 24.3 to 66.9% across the three participating sites). Prevalence of rapidly improving ARDS was 3.9% (11 of 280 patients); no extubation occurred on the first day following intubation. ICU-mortality of patients with rapidly improving ARDS was 54.5%. This low prevalence and high mortality rate of rapidly improving ARDS were consistent across participating sites. Prevalence of persistent severe ARDS was 12.1% and corresponding mortality was 82.4%. Conclusions Rapidly improving ARDS was not prevalent and was not associated with good prognosis among patients with COVID-19. This is starkly different from what has been previously reported for patients with ARDS not related to COVID-19. Our results on both rapidly improving ARDS and persistent severe ARDS may contribute to our understanding of trajectory of ARDS and its association with prognosis in patients with COVID-19. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02015-8.
Collapse
|
54
|
Rachoin JS. Is the Pao2/Fio2 Ratio in Acute Respiratory Distress Syndrome Another Source of Heterogeneity? Crit Care Med 2022; 50:703-705. [PMID: 35311780 DOI: 10.1097/ccm.0000000000005378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jean-Sebastien Rachoin
- Department of Medicine, Cooper Medical School of Rowan University, Camden, NJ.,Division of Critical Care Medicine, Department of Medicine, Cooper University Health Care, Camden, NJ
| |
Collapse
|
55
|
Zhao L, Yang J, Zhou C, Wang Y, Liu T. A novel prognostic model for predicting the mortality risk of patients with sepsis-related acute respiratory failure: a cohort study using the MIMIC-IV database. Curr Med Res Opin 2022; 38:629-636. [PMID: 35125039 DOI: 10.1080/03007995.2022.2038490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Acute respiratory failure increases short-term mortality in sepsis patients. Hence, in this study, we aimed to develop a novel model for predicting the risk of hospital mortality in sepsis patients with acute respiratory failure. METHODS From the Medical Information Mart for Intensive Care (MIMIC)-IV database, we developed a matched cohort of adult sepsis patients with acute respiratory failure. After applying a multivariate COX regression analysis, we developed a nomogram based on the identified risk factors of mortality. Further, we evaluated the ability of the nomogram in predicting individual hospital death by the area under a receiver operating characteristic (ROC) curve. RESULTS A total of 663 sepsis patients with acute respiratory failure were included in this study. Systolic blood pressure, neutrophil percentage, white blood cells count, mechanical ventilation, partial pressure of oxygen < 60 mmHg, abdominal cavity infection, Klebsiella pneumoniae and Acinetobacter baumannii infection, and immunosuppressive diseases were the independent risk factors of mortality in sepsis patients with acute respiratory failure. The area under the ROC curve of the nomogram was 0.880 (95% CI: 0.851-0.908), which provided significantly higher discrimination compared to that of the simplified acute physiology score II [0.656 (95% CI: 0.612-0.701)]. CONCLUSION The model shows a good performance in predicting the mortality risk of patients with sepsis-related acute respiratory failure. Hence, this model can be used to evaluate the short-term prognosis of critically ill patients with sepsis and acute respiratory failure.
Collapse
Affiliation(s)
- Lina Zhao
- Emergency Department, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of critical care medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Jing Yang
- Emergency Department, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Cong Zhou
- Department of critical care medicine, Peking university shenzhen hospital, Shenzhen, China
| | - Yunying Wang
- Department of critical care medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Tao Liu
- Respiratory Department, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
56
|
Li HH, Wang CW, Chang CH, Huang CC, Hsu HS, Chiu LC. Relationship between Mechanical Ventilation and Histological Fibrosis in Patients with Acute Respiratory Distress Syndrome Undergoing Open Lung Biopsy. J Pers Med 2022; 12:jpm12030474. [PMID: 35330473 PMCID: PMC8954834 DOI: 10.3390/jpm12030474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Mechanical ventilation brings the risk of ventilator-induced lung injury, which can lead to pulmonary fibrosis and prolonged mechanical ventilation. Methods: A retrospective analysis of patients with acute respiratory distress syndrome (ARDS) who received open lung biopsy between March 2006 and December 2019. Results: A total of 68 ARDS patients receiving open lung biopsy with diffuse alveolar damage (DAD; the hallmark pathology of ARDS) were analyzed and stratified into non-fibrosis (n = 56) and fibrosis groups (n = 12). The duration of ventilator usage and time spent in the intensive care unit and hospital stay were all significantly higher in the fibrosis group. Hospital mortality was higher in the fibrosis than in the non-fibrosis group (67% vs. 57%, p = 0.748). A multivariable logistic regression model demonstrated that mechanical power at ARDS diagnosis and ARDS duration before biopsy were independently associated with histological fibrosis at open lung biopsy (odds ratio 1.493 (95% CI 1.014–2.200), p = 0.042; odds ratio 1.160 (95% CI 1.052–1.278), p = 0.003, respectively). Conclusions: Our findings indicate that prompt action aimed at staving off injurious mechanical stretching of lung parenchyma and subsequent progression to fibrosis may have a positive effect on clinical outcomes.
Collapse
Affiliation(s)
- Hsin-Hsien Li
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (H.-H.L.); (H.-S.H.)
- Department of Respiratory Therapy, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan;
| | - Chih-Wei Wang
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Chih-Hao Chang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
- Department of Thoracic Medicine, New Taipei Municipal TuCheng Hospital and Chang Gung University, Taoyuan 33302, Taiwan
| | - Chung-Chi Huang
- Department of Respiratory Therapy, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan;
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Han-Shui Hsu
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (H.-H.L.); (H.-S.H.)
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Li-Chung Chiu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 8467)
| |
Collapse
|
57
|
Bos LDJ, Laffey JG, Ware LB, Heijnen NFL, Sinha P, Patel B, Jabaudon M, Bastarache JA, McAuley DF, Summers C, Calfee CS, Shankar-Hari M. Towards a biological definition of ARDS: are treatable traits the solution? Intensive Care Med Exp 2022; 10:8. [PMID: 35274164 PMCID: PMC8913033 DOI: 10.1186/s40635-022-00435-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of acute respiratory distress syndrome (ARDS) includes the accumulation of protein-rich pulmonary edema in the air spaces and interstitial areas of the lung, variable degrees of epithelial injury, variable degrees of endothelial barrier disruption, transmigration of leukocytes, alongside impaired fluid and ion clearance. These pathophysiological features are different between patients contributing to substantial biological heterogeneity. In this context, it is perhaps unsurprising that a wide range of pharmacological interventions targeting these pathophysiological processes have failed to improve patient outcomes. In this manuscript, our goal is to provide a narrative summary of the potential methods to capture the underlying biological heterogeneity of ARDS and discuss how this information could inform future ARDS redefinitions. We discuss what biological tests are available to identify patients with any of the following predominant biological patterns: (1) epithelial and/or endothelial injury, (2) protein rich pulmonary edema and (3) systemic or within lung inflammatory responses.
Collapse
Affiliation(s)
- Lieuwe D J Bos
- Intensive Care, Amsterdam UMC, Location AMC, 1105AZ, Amsterdam, The Netherlands.
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, Galway University Hospitals, National University of Ireland Galway, Galway, Ireland
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nanon F L Heijnen
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Pratik Sinha
- Department of Anesthesiology, School of Medicine, Washington University, St. Louis, USA
| | - Brijesh Patel
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Imperial College, London, UK
| | - Matthieu Jabaudon
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.,GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Charlotte Summers
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Manu Shankar-Hari
- School of Immunology and Microbial Sciences, King's College London, London, UK.,Centre for Inflammation Research, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
58
|
Nava-Santana C, Rodríguez-Armida M, Jiménez JV, Vargas-Parra N, León DEA, Campos-Murguia A, Macías-Rodriguez R, Arteaga-Garrido A, Hernández-Villegas AC, Dominguez-Cherit G, Rivero-Sigarroa E, Gamboa-Dominguez A, Gullias-Herrero A, Sifuentes-Osornio J, Uribe-Uribe NO, Morales-Buenrostro LE. Clinicopathologic characteristics of severe COVID-19 patients in Mexico City: A post-mortem analysis using a minimally invasive autopsy approach. PLoS One 2022; 17:e0262783. [PMID: 35239660 PMCID: PMC8893646 DOI: 10.1371/journal.pone.0262783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Describe the histological findings of minimally ultrasound-guided invasive autopsies in deceased patients with severe SARS-CoV-2 and compare the diagnostic yield with open autopsies. DESIGN Observational post-mortem cohort study. Minimally invasive ultrasound-guided autopsies were performed in fourteen deceased patients with a confirmed diagnosis of SARS-CoV-2 pneumonia. Histological and clinical findings of lung, kidney, and liver tissue are described and contrasted with those previously reported in the literature. SETTING Single-center COVID-19 reference center in Mexico City. RESULTS Fourteen minimally invasive autopsies revealed a gross correlation with open autopsies reports: 1) Lung histology was characterized mainly by early diffuse alveolar damage (12/13). Despite low lung compliances and prolonged mechanical ventilation, the fibrotic phase was rarely observed (2/13). 2) Kidney histopathology demonstrated acute tubular injury (12/13), interstitial nephritis (11/13), and glomerulitis (11/13) as the predominant features 3) Liver histology was characterized by neutrophilic inflammation in all of the cases, as well as hepatic necrosis (8/14) despite minimal alterations in liver function testing. Hepatic steatosis was observed in most cases (12/14). SARS-CoV-2 positivity was widely observed throughout the immunohistochemical analysis. However, endothelitis and micro thrombosis, two of the hallmark features of the disease, were not observed. CONCLUSION Our data represents the largest minimally invasive, ultrasound-guided autopsy report. We demonstrate a gross histological correlation with large open autopsy cohorts. However, this approach might overlook major histologic features of the disease, such as endothelitis and micro-thrombosis. Whether this represents sampling bias is unclear.
Collapse
Affiliation(s)
- Carlos Nava-Santana
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - María Rodríguez-Armida
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - José Víctor Jiménez
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Nancy Vargas-Parra
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Diana E. Aguilar León
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Alejandro Campos-Murguia
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Ricardo Macías-Rodriguez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Andrés Arteaga-Garrido
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | | | - Guillermo Dominguez-Cherit
- Department of Critical Care Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Eduardo Rivero-Sigarroa
- Department of Critical Care Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Armando Gamboa-Dominguez
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Alfonso Gullias-Herrero
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - José Sifuentes-Osornio
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Norma Ofelia Uribe-Uribe
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Luis E. Morales-Buenrostro
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| |
Collapse
|
59
|
Mølgaard Nielsen F, Lass Klitgaard T, Granholm A, Lange T, Perner A, Lilleholt Schjørring O, Steen Rasmussen B. Higher versus lower oxygenation targets in COVID-19 patients with severe hypoxaemia (HOT-COVID) trial: Protocol for a secondary Bayesian analysis. Acta Anaesthesiol Scand 2022; 66:408-414. [PMID: 34951717 DOI: 10.1111/aas.14023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/27/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Respiratory failure is the main cause of mortality and morbidity among ICU patients with coronavirus disease 2019 (COVID-19). In these patients, supplemental oxygen therapy is essential, but there is limited evidence the optimal target. To address this, the ongoing handling oxygenation targets in COVID-19 (HOT-COVID) trial was initiated to investigate the effect of a lower oxygenation target (partial pressure of arterial oxygen (PaO2 ) of 8 kPa) versus a higher oxygenation target (PaO2 of 12 kPa) in the ICU on clinical outcome in patients with COVID-19 and hypoxaemia. METHODS The HOT-COVID is planned to enrol 780 patients. This paper presents the protocol and statistical analysis plan for the conduct of a secondary Bayesian analysis of the primary outcome of HOT-COVID being days alive without life-support at 90 days and the secondary outcome 90-day all-cause mortality. Furthermore, both outcomes will be investigated for the presence heterogeneity of treatment effects based on four baseline parameters being sequential organ failure assessment score, PaO2 /fraction of inspired oxygen ratio, highest dose of norepinephrine during the 24 h before randomisation, and plasma concentration of lactate at randomisation. CONCLUSION The results of this pre-planned secondary Bayesian analysis will complement the primary frequentist analysis of the HOT-COVID trial and may facilitate a more nuanced interpretation of the trial results.
Collapse
Affiliation(s)
- Frederik Mølgaard Nielsen
- Department of Anaesthesia and Intensive Care Aalborg University Hospital Aalborg Denmark
- Department of Clinical Medicine Aalborg University Aalborg Denmark
- Collaboration for Research in Intensive Care (CRIC) Copenhagen Denmark
| | - Thomas Lass Klitgaard
- Department of Anaesthesia and Intensive Care Aalborg University Hospital Aalborg Denmark
- Department of Clinical Medicine Aalborg University Aalborg Denmark
- Collaboration for Research in Intensive Care (CRIC) Copenhagen Denmark
| | - Anders Granholm
- Collaboration for Research in Intensive Care (CRIC) Copenhagen Denmark
- Department of Intensive Care Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
| | - Theis Lange
- Collaboration for Research in Intensive Care (CRIC) Copenhagen Denmark
- Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
| | - Anders Perner
- Collaboration for Research in Intensive Care (CRIC) Copenhagen Denmark
- Department of Intensive Care Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
| | - Olav Lilleholt Schjørring
- Department of Anaesthesia and Intensive Care Aalborg University Hospital Aalborg Denmark
- Department of Clinical Medicine Aalborg University Aalborg Denmark
- Collaboration for Research in Intensive Care (CRIC) Copenhagen Denmark
| | - Bodil Steen Rasmussen
- Department of Anaesthesia and Intensive Care Aalborg University Hospital Aalborg Denmark
- Department of Clinical Medicine Aalborg University Aalborg Denmark
- Collaboration for Research in Intensive Care (CRIC) Copenhagen Denmark
| |
Collapse
|
60
|
Michalski JE, Kurche JS, Schwartz DA. From ARDS to pulmonary fibrosis: the next phase of the COVID-19 pandemic? Transl Res 2022; 241:13-24. [PMID: 34547499 PMCID: PMC8452088 DOI: 10.1016/j.trsl.2021.09.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023]
Abstract
While the coronavirus disease 19 (COVID-19) pandemic has transformed the medical and scientific communites since it was first reported in late 2019, we are only beginning to understand the chronic health burdens associated with this disease. Although COVID-19 is a multi-systemic disease, the lungs are the primary source of infection and injury, resulting in pneumonia and, in severe cases, acute respiratory distress syndrome (ARDS). Given that pulmonary fibrosis is a well-recognized sequela of ARDS, many have questioned whether COVID-19 survivors will face long-term pulmonary consequences. This review is aimed at integrating our understanding of the pathophysiologic mechanisms underlying fibroproliferative ARDS with our current knowledge of the pulmonary consequences of COVID-19 disease.
Collapse
Affiliation(s)
- Jacob E Michalski
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Jonathan S Kurche
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; Medicine Service, Pulmonary Section, Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
61
|
Kulkarni HS, Lee JS, Bastarache JA, Kuebler WM, Downey GP, Albaiceta GM, Altemeier WA, Artigas A, Bates JHT, Calfee CS, Dela Cruz CS, Dickson RP, Englert JA, Everitt JI, Fessler MB, Gelman AE, Gowdy KM, Groshong SD, Herold S, Homer RJ, Horowitz JC, Hsia CCW, Kurahashi K, Laubach VE, Looney MR, Lucas R, Mangalmurti NS, Manicone AM, Martin TR, Matalon S, Matthay MA, McAuley DF, McGrath-Morrow SA, Mizgerd JP, Montgomery SA, Moore BB, Noël A, Perlman CE, Reilly JP, Schmidt EP, Skerrett SJ, Suber TL, Summers C, Suratt BT, Takata M, Tuder R, Uhlig S, Witzenrath M, Zemans RL, Matute-Bello G. Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2022; 66:e1-e14. [PMID: 35103557 PMCID: PMC8845128 DOI: 10.1165/rcmb.2021-0531st] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Advancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a "multidimensional entity" characterized by four "domains" that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome. These domains are 1) histological evidence of tissue injury, 2) alteration of the alveolar-capillary barrier, 3) presence of an inflammatory response, and 4) physiologic dysfunction. For each domain, we present "relevant measurements," defined as those proposed by at least 30% of respondents. We propose that experimental ALI encompasses a continuum of models ranging from those focusing on gaining specific mechanistic insights to those primarily concerned with preclinical testing of novel therapeutics or interventions. We suggest that mechanistic studies may justifiably focus on a single domain of lung injury, but models must document alterations of at least three of the four domains to qualify as "experimental ALI." Finally, we propose that a time criterion defining "acute" in ALI remains relevant, but the actual time may vary based on the specific model and the aspect of injury being modeled. The continuum concept of ALI increases the flexibility and applicability of the definition to multiple models while increasing the likelihood of translating preclinical findings to critically ill patients.
Collapse
|
62
|
Kalikkot Thekkeveedu R, El-Saie A, Prakash V, Katakam L, Shivanna B. Ventilation-Induced Lung Injury (VILI) in Neonates: Evidence-Based Concepts and Lung-Protective Strategies. J Clin Med 2022; 11:557. [PMID: 35160009 PMCID: PMC8836835 DOI: 10.3390/jcm11030557] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Supportive care with mechanical ventilation continues to be an essential strategy for managing severe neonatal respiratory failure; however, it is well known to cause and accentuate neonatal lung injury. The pathogenesis of ventilator-induced lung injury (VILI) is multifactorial and complex, resulting predominantly from interactions between ventilator-related factors and patient-related factors. Importantly, VILI is a significant risk factor for developing bronchopulmonary dysplasia (BPD), the most common chronic respiratory morbidity of preterm infants that lacks specific therapies, causes life-long morbidities, and imposes psychosocial and economic burdens. Studies of older children and adults suggest that understanding how and why VILI occurs is essential to developing strategies for mitigating VILI and its consequences. This article reviews the preclinical and clinical evidence on the pathogenesis and pathophysiology of VILI in neonates. We also highlight the evidence behind various lung-protective strategies to guide clinicians in preventing and attenuating VILI and, by extension, BPD in neonates. Further, we provide a snapshot of future directions that may help minimize neonatal VILI.
Collapse
Affiliation(s)
| | - Ahmed El-Saie
- Section of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, MO 64106, USA;
- Department of Pediatrics, Cairo University, Cairo 11956, Egypt
| | - Varsha Prakash
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Lakshmi Katakam
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
63
|
Guérin C, Cour M, Argaud L. Airway Closure and Expiratory Flow Limitation in Acute Respiratory Distress Syndrome. Front Physiol 2022; 12:815601. [PMID: 35111078 PMCID: PMC8801584 DOI: 10.3389/fphys.2021.815601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is mostly characterized by the loss of aerated lung volume associated with an increase in lung tissue and intense and complex lung inflammation. ARDS has long been associated with the histological pattern of diffuse alveolar damage (DAD). However, DAD is not the unique pathological figure in ARDS and it can also be observed in settings other than ARDS. In the coronavirus disease 2019 (COVID-19) related ARDS, the impairment of lung microvasculature has been pointed out. The airways, and of notice the small peripheral airways, may contribute to the loss of aeration observed in ARDS. High-resolution lung imaging techniques found that in specific experimental conditions small airway closure was a reality. Furthermore, low-volume ventilator-induced lung injury, also called as atelectrauma, should involve the airways. Atelectrauma is one of the basic tenet subtending the use of positive end-expiratory pressure (PEEP) set at the ventilator in ARDS. Recent data revisited the role of airways in humans with ARDS and provided findings consistent with the expiratory flow limitation and airway closure in a substantial number of patients with ARDS. We discussed the pattern of airway opening pressure disclosed in the inspiratory volume-pressure curves in COVID-19 and in non-COVID-19 related ARDS. In addition, we discussed the functional interplay between airway opening pressure and expiratory flow limitation displayed in the flow-volume curves. We discussed the individualization of the PEEP setting based on these findings.
Collapse
Affiliation(s)
- Claude Guérin
- Médecine Intensive - Réanimation Hôpital Edouard Herriot Lyon, Lyon, France
- Faculté de Médecine Lyon-Est, Université de Lyon, Lyon, France
- Institut Mondor de Recherches Biomédicales, INSERM-UPEC UMR 955 Team 13 - CNRS ERL 7000, Créteil, France
| | - Martin Cour
- Médecine Intensive - Réanimation Hôpital Edouard Herriot Lyon, Lyon, France
- Faculté de Médecine Lyon-Est, Université de Lyon, Lyon, France
| | - Laurent Argaud
- Médecine Intensive - Réanimation Hôpital Edouard Herriot Lyon, Lyon, France
- Faculté de Médecine Lyon-Est, Université de Lyon, Lyon, France
| |
Collapse
|
64
|
Duggal A, Kast R, Van Ark E, Bulgarelli L, Siuba MT, Osborn J, Rey DA, Zampieri FG, Cavalcanti AB, Maia I, Paisani DM, Laranjeira LN, Serpa Neto A, Deliberato RO. Identification of acute respiratory distress syndrome subphenotypes de novo using routine clinical data: a retrospective analysis of ARDS clinical trials. BMJ Open 2022; 12:e053297. [PMID: 34992112 PMCID: PMC8739395 DOI: 10.1136/bmjopen-2021-053297] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES The acute respiratory distress syndrome (ARDS) is a heterogeneous condition, and identification of subphenotypes may help in better risk stratification. Our study objective is to identify ARDS subphenotypes using new simpler methodology and readily available clinical variables. SETTING This is a retrospective Cohort Study of ARDS trials. Data from the US ARDSNet trials and from the international ART trial. PARTICIPANTS 3763 patients from ARDSNet data sets and 1010 patients from the ART data set. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome was 60-day or 28-day mortality, depending on what was reported in the original trial. K-means cluster analysis was performed to identify subgroups. Sets of candidate variables were tested to assess their ability to produce different probabilities for mortality in each cluster. Clusters were compared with biomarker data, allowing identification of subphenotypes. RESULTS Data from 4773 patients were analysed. Two subphenotypes (A and B) resulted in optimal separation in the final model, which included nine routinely collected clinical variables, namely heart rate, mean arterial pressure, respiratory rate, bilirubin, bicarbonate, creatinine, PaO2, arterial pH and FiO2. Participants in subphenotype B showed increased levels of proinflammatory markers, had consistently higher mortality, lower number of ventilator-free days at day 28 and longer duration of ventilation compared with patients in the subphenotype A. CONCLUSIONS Routinely available clinical data can successfully identify two distinct subphenotypes in adult ARDS patients. This work may facilitate implementation of precision therapy in ARDS clinical trials.
Collapse
Affiliation(s)
- Abhijit Duggal
- Department of Critical Care Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rachel Kast
- Department of Clinical Data Science, Endpoint Health, Palo Alto, California, USA
| | - Emily Van Ark
- Department of Clinical Data Science, Endpoint Health, Palo Alto, California, USA
| | - Lucas Bulgarelli
- Department of Clinical Data Science, Endpoint Health, Palo Alto, California, USA
| | - Matthew T Siuba
- Department of Critical Care Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jeff Osborn
- Department of Clinical Data Science, Endpoint Health, Palo Alto, California, USA
| | - Diego Ariel Rey
- Department of Clinical Data Science, Endpoint Health, Palo Alto, California, USA
| | | | | | - Israel Maia
- Hospital do Coracao, Sao Paulo, São Paulo, Brazil
| | | | | | - Ary Serpa Neto
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash University, Clayton, Victoria, Australia
- Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | |
Collapse
|
65
|
Beitler JR, Thompson BT, Baron RM, Bastarache JA, Denlinger LC, Esserman L, Gong MN, LaVange LM, Lewis RJ, Marshall JC, Martin TR, McAuley DF, Meyer NJ, Moss M, Reineck LA, Rubin E, Schmidt EP, Standiford TJ, Ware LB, Wong HR, Aggarwal NR, Calfee CS. Advancing precision medicine for acute respiratory distress syndrome. THE LANCET. RESPIRATORY MEDICINE 2022; 10:107-120. [PMID: 34310901 PMCID: PMC8302189 DOI: 10.1016/s2213-2600(21)00157-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/29/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome. Understanding of the complex pathways involved in lung injury pathogenesis, resolution, and repair has grown considerably in recent decades. Nevertheless, to date, only therapies targeting ventilation-induced lung injury have consistently proven beneficial, and despite these gains, ARDS morbidity and mortality remain high. Many candidate therapies with promise in preclinical studies have been ineffective in human trials, probably at least in part due to clinical and biological heterogeneity that modifies treatment responsiveness in human ARDS. A precision medicine approach to ARDS seeks to better account for this heterogeneity by matching therapies to subgroups of patients that are anticipated to be most likely to benefit, which initially might be identified in part by assessing for heterogeneity of treatment effect in clinical trials. In October 2019, the US National Heart, Lung, and Blood Institute convened a workshop of multidisciplinary experts to explore research opportunities and challenges for accelerating precision medicine in ARDS. Topics of discussion included the rationale and challenges for a precision medicine approach in ARDS, the roles of preclinical ARDS models in precision medicine, essential features of cohort studies to advance precision medicine, and novel approaches to clinical trials to support development and validation of a precision medicine strategy. In this Position Paper, we summarise workshop discussions, recommendations, and unresolved questions for advancing precision medicine in ARDS. Although the workshop took place before the COVID-19 pandemic began, the pandemic has highlighted the urgent need for precision therapies for ARDS as the global scientific community grapples with many of the key concepts, innovations, and challenges discussed at this workshop.
Collapse
Affiliation(s)
- Jeremy R Beitler
- Center for Acute Respiratory Failure and Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY, USA
| | - B Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Loren C Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura Esserman
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Michelle N Gong
- Division of Pulmonary and Critical Care Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lisa M LaVange
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Roger J Lewis
- Department of Emergency Medicine, Harbor-UCLA Medical Center, Torrance, CA; Berry Consultants, LLC, Austin, TX; Department of Emergency Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John C Marshall
- Departments of Surgery and Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Thomas R Martin
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast and Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, Northern Ireland
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Moss
- Division of Pulmonary Sciences and Critical Care, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lora A Reineck
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | | | - Eric P Schmidt
- Division of Pulmonary Sciences and Critical Care, University of Colorado School of Medicine, Aurora, CO, USA
| | - Theodore J Standiford
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Neil R Aggarwal
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, and Department of Anesthesia, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
66
|
Huang X, Xu L, Pei Y, Huang H, Chen C, Tang W, Jiang X, Li Y. The Association Between Oxygenation Status at 24 h After Diagnosis of Pulmonary Acute Respiratory Distress Syndrome and the 30-Day Mortality among Pediatric Oncological Patients. Front Pediatr 2022; 10:805264. [PMID: 35633973 PMCID: PMC9130705 DOI: 10.3389/fped.2022.805264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Pediatric oncology patients with acute respiratory distress syndrome (ARDS) secondary to pneumonia are at high risk of mortality. Our aim was to describe the epidemiology of ARDS in this clinical population and to identify the association between the oxygenation status at 24 h after diagnosis and the 30-day mortality rates, stratified by the severity of ARDS. METHODS This was a retrospective cohort study of 82 pediatric oncology patients, with a median age of 4 years, admitted to our pediatric intensive care unit with a diagnosis of ARDS between 2013 and 2021. Demographic and clinical factors were compared between the survivor (n = 52) and non-survivor (n = 30) groups. Univariate and multivariate Cox proportional hazards regression models were used to determine the association between the oxygenation status at 24 h after diagnosis and the 30-day mortality rates. RESULTS The mean airway pressure at ARDS diagnosis, PaO2/FiO2 (P/F) ratio, oxygenation index (OI) value, peak inspiratory pressure, and lactate level at 24 h after ARDS diagnosis, as well as complications (i.e., septicemia and more than two extrapulmonary organ failures) and adjunctive continuous renal replacement therapy, were significant mortality risk factors. After adjusting for other covariates, the oxygenation status P/F ratio (Hazard ratio [HR] = 0.98, 95% confidence interval [CI] = 0.96-1.00, P = 0.043) and OI value (HR = 1.12, 95% CI = 1.02-1.23, P = 0.016) at 24 h remained independent mortality risk factors. According to the Kaplan-Meier survival curve, a low P/F ratio (≤ 150) and high OI (>10) were associated with a higher risk of 30-day mortality (50.9 and 52.9%, respectively; both P < 0.05). CONCLUSION The P/F ratio and OI value measured at 24 h after ARDS diagnosis can provide a better stratification of patients according to ARDS disease severity to predict the 30-day mortality risk.
Collapse
Affiliation(s)
- Xueqiong Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingling Xu
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Pei
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huimin Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chao Chen
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Jiang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yijuan Li
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
67
|
Adverse Mechanical Ventilation and Pneumococcal Pneumonia Induce Immune and Mitochondrial Dysfunctions Mitigated by Mesenchymal Stem Cells in Rabbits. Anesthesiology 2021; 136:293-313. [PMID: 34965287 DOI: 10.1097/aln.0000000000004083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mechanical ventilation for pneumonia may contribute to lung injury due to factors that include mitochondrial dysfunction, and mesenchymal stem cells may attenuate injury. This study hypothesized that mechanical ventilation induces immune and mitochondrial dysfunction, with or without pneumococcal pneumonia, that could be mitigated by mesenchymal stem cells alone or combined with antibiotics. METHODS Male rabbits underwent protective mechanical ventilation (8 ml/kg tidal volume, 5 cm H2O end-expiratory pressure) or adverse mechanical ventilation (20 ml/kg tidal-volume, zero end-expiratory pressure) or were allowed to breathe spontaneously. The same settings were then repeated during pneumococcal pneumonia. Finally, infected animals during adverse mechanical ventilation received human umbilical cord-derived mesenchymal stem cells (3 × 106/kg, intravenous) and/or ceftaroline (20 mg/kg, intramuscular) or sodium chloride, 4 h after pneumococcal challenge. Twenty-four-hour survival (primary outcome), lung injury, bacterial burden, immune and mitochondrial dysfunction, and lung transcriptomes (secondary outcomes) were assessed. RESULTS High-pressure adverse mechanical ventilation reduced the survival of infected animals (0%; 0 of 7) compared with spontaneous breathing (100%; 7 of 7) and protective mechanical ventilation (86%; 6 of 7; both P < 0.001), with higher lung pathology scores (median [interquartile ranges], 5.5 [4.5 to 7.0] vs. 12.6 [12.0 to 14.0]; P = 0.046), interleukin-8 lung concentrations (106 [54 to 316] vs. 804 [753 to 868] pg/g of lung; P = 0.012), and alveolar mitochondrial DNA release (0.33 [0.28 to 0.36] vs. 0.98 [0.76 to 1.21] ng/μl; P < 0.001) compared with infected spontaneously breathing animals. Survival (0%; 0 of 7; control group) was improved by mesenchymal stem cells (57%; 4 of 7; P = 0.001) or ceftaroline alone (57%; 4 of 7; P < 0.001) and improved even more with a combination treatment (86%; 6 of 7; P < 0.001). Mesenchymal stem cells reduced lung pathology score (8.5 [7.0 to 10.5] vs. 12.6 [12.0 to 14.0]; P = 0.043) and alveolar mitochondrial DNA release (0.39 (0.34 to 0.65) vs. 0.98 (0.76 to 1.21) ng/μl; P = 0.025). Mesenchymal stem cells combined with ceftaroline reduced interleukin-8 lung concentrations (665 [595 to 795] vs. 804 [753 to 868] pg/g of lung; P = 0.007) compared to ceftaroline alone. CONCLUSIONS In this preclinical study, mesenchymal stem cells improved the outcome of rabbits with pneumonia and high-pressure mechanical ventilation by correcting immune and mitochondrial dysfunction and when combined with the antibiotic ceftaroline was synergistic in mitigating lung inflammation. EDITOR’S PERSPECTIVE
Collapse
|
68
|
Early Identification and Diagnostic Approach in Acute Respiratory Distress Syndrome (ARDS). Diagnostics (Basel) 2021; 11:diagnostics11122307. [PMID: 34943543 PMCID: PMC8700413 DOI: 10.3390/diagnostics11122307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition defined by the acute onset of severe hypoxemia with bilateral pulmonary infiltrates, in the absence of a predominant cardiac involvement. Whereas the current Berlin definition was proposed in 2012 and mainly focused on intubated patients under invasive mechanical ventilation, the recent COVID-19 pandemic has highlighted the need for a more comprehensive definition of ARDS including patients treated with noninvasive oxygenation strategies, especially high-flow nasal oxygen therapy, and fulfilling all other diagnostic criteria. Early identification of ARDS in patients breathing spontaneously may allow assessment of earlier initiation of pharmacological and non-pharmacological treatments. In the same way, accurate identification of the ARDS etiology is obviously of paramount importance for early initiation of adequate treatment. The precise underlying etiological diagnostic (bacterial, viral, fungal, immune, malignant, drug-induced, etc.) as well as the diagnostic approach have been understudied in the literature. To date, no clinical practice guidelines have recommended structured diagnostic work-up in ARDS patients. In addition to lung-protective ventilation with the aim of preventing worsening lung injury, specific treatment of the underlying cause has a central role to improve outcomes. In this review, we discuss early identification of ARDS in non-intubated patients breathing spontaneously and propose a structured diagnosis work-up.
Collapse
|
69
|
Ruan SY, Huang CT, Chang HT, Liu WL, Wang WJ, Tseng YT, Yang HC, Kuo LC, Chien JY, Wu HD. Construct Validity of PaO2/FiO2 Ratios in Defining Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2021; 205:364-366. [PMID: 34874819 DOI: 10.1164/rccm.202108-1924le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sheng-Yuan Ruan
- National Taiwan University Hospital, 38006, Department of Internal Medicine, Taipei, Taiwan;
| | - Chun-Ta Huang
- National Taiwan University Hospital, 38006, Internal Medicine, Taipei, Taiwan
| | - Hou-Tai Chang
- Far Eastern Memorial Hospital, 46608, New Taipei City, Taiwan
| | - Wei-Lun Liu
- Fu Jen Catholic University Hospital, 485856, New Taipei City, Taiwan
| | - Wei-Jhen Wang
- National Taiwan University Hospital, 38006, Taipei, Taiwan
| | - Yun-Ting Tseng
- National Taiwan University Hospital, 38006, Taipei, Taiwan
| | - Han-Ching Yang
- National Taiwan University Hospital Hsin-Chu Branch, 63423, Hsinchu, Taiwan
| | - Lu-Cheng Kuo
- National Taiwan University Hospital, 38006, Department of Internal Medicine, Taipei, Taiwan
| | - Jung-Yien Chien
- National Taiwan University Hospital, 38006, Internal Medicine, Taipei, Taiwan
| | - Huey-Dong Wu
- National Taiwan University Hospital, 38006, Internal Medicine, Taipei, Taiwan
| |
Collapse
|
70
|
Lana JFSD, Lana AVSD, Rodrigues QS, Santos GS, Navani R, Navani A, da Fonseca LF, Azzini GOM, Setti T, Mosaner T, Simplicio CL, Setti TM. Nebulization of glutathione and N-Acetylcysteine as an adjuvant therapy for COVID-19 onset. ADVANCES IN REDOX RESEARCH 2021; 3:100015. [PMID: 35425932 PMCID: PMC8349474 DOI: 10.1016/j.arres.2021.100015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Ever since its emergence, the highly transmissible and debilitating coronavirus disease spread at an incredibly fast rate, causing global devastation in a matter of months. SARS-CoV-2, the novel coronavirus responsible for COVID-19, infects hosts after binding to ACE2 receptors present on cells from many structures pertaining to the respiratory, cardiac, hematological, neurological, renal and gastrointestinal systems. COVID-19, however, appears to trigger a severe cytokine storm syndrome in pulmonary structures, resulting in oxidative stress, exacerbated inflammation and alveolar injury. Due to the recent nature of this disease no treatments have shown complete efficacy and safety. More recently, however, researchers have begun to direct some attention towards GSH and NAC. These natural antioxidants play an essential role in several biological processes in the body, especially the maintenance of the redox equilibrium. In fact, many diseases appear to be strongly related to severe oxidative stress and deficiency of endogenous GSH. The high ratios of ROS over GSH, in particular, appear to reflect severity of symptoms and prolonged hospitalization of COVID-19 patients. This imbalance interferes with the body's ability to detoxify the cellular microenvironment, fold proteins, replenish antioxidant levels, maintain healthy immune responses and even modulate apoptotic events. Oral administration of GSH and NAC is convenient and safe, but they are susceptible to degradation in the digestive tract. Considering this drawback, nebulization of GSH and NAC as an adjuvant therapy may therefore be a viable alternative for the management of the early stages of COVID-19.
Collapse
Affiliation(s)
- José Fábio Santos Duarte Lana
- Orthopedics - Sports Medicine - Pain Physician, IOC - Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd floor, Room #29 - Zip code 13334-170, Indaiatuba SP, Brazil
| | - Anna Vitória Santos Duarte Lana
- Medical Student, UniMAX - Centro Universitário Max Planck, 460 Nove de Dezembro Avenue - Jardim Pedroso - Zip code 13343-060, Indaiatuba SP, Brazil
| | - Quézia Souza Rodrigues
- Nurse, IOC - Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd floor, Room #29 - Zip code 13334-170, Indaiatuba, SP, Brazil
| | - Gabriel Silva Santos
- Biomedical Scientist, IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd floor, Room #29 - Zip code 13334-170, Indaiatuba, SP, Brazil
| | - Riya Navani
- Research Student, IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd floor, Room #29 - Zip code 13334-170, Indaiatuba, SP, Brazil
| | - Annu Navani
- Medical Director, Comprehensive Spine & Sports Center, Advisor, Le Reve Regenerative, Adjunct Clinical Associate Professor, Stanford University School of Medicine, 3425 S Bascom Ave, Suite 200, Campbell, CA 95008, USA
| | - Lucas Furtado da Fonseca
- Orthopedics - Sports Medicine - Pain Physician, Orthopaedic Department - Universidade Federal de São Paulo, 715 Napoleão de Barros St - Vila Clementino - Zip code 04024-002, São Paulo, SP, Brazil
| | - Gabriel Ohana Marques Azzini
- Orthopedics - Sports Medicine - Pain Physician, IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Presidente Kennedy Avenue, 1386 - 2nd floor, Room #29 - Zip code 13334-170, Indaiatuba, SP, Brazil
| | - Thiago Setti
- Orthopedics - Sports Medicine - Pain Physician, Indolor - Centro Intervencionista de Controle da Dor, 583 Sul Brasil Avenue - room #406 - Centro - Zip code 89814-210, Maravilha, SC, Brazil
| | - Tomas Mosaner
- Orthopedics - Sports Medicine - Pain Physician, IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd floor, Room #29 - Zip code 13334-170, Indaiatuba, SP, Brazil
| | - Claudio Lopes Simplicio
- Orthopedics - Sports Medicine - Pain Physician, Clinica Ortofisio, Avenida Brasil, 300 - Parque Hotel Araruama, Araruama, RJ, Brazil
| | - Taís Mazzini Setti
- Anesthesiology, Indolor - Centro Intervencionista de Controle da Dor, 583 Sul Brasil Avenue - room #406 - Centro - Zip code 89814-210, Maravilha, SC, Brazil
| |
Collapse
|
71
|
Imai R, Nishimura N, Takahashi O, Tamura T. High-resolution computed tomography for the prediction of mortality in acute respiratory distress syndrome: A retrospective cohort study. Health Sci Rep 2021; 4:e418. [PMID: 34646945 PMCID: PMC8499594 DOI: 10.1002/hsr2.418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND AIMS Acute respiratory distress syndrome (ARDS) demonstrates several image patterns on high-resolution computed tomography (HRCT). The purpose of this study was to investigate the relationship between specific HRCT findings and the prognosis of ARDS. METHODS This was a retrospective cohort study performed in a single hospital in Japan. We categorized HRCT findings into three distribution patterns: diffuse, subpleural sparing, and dorsal patterns. All patterns were assessed at three levels of each lung. Multivariable logistic regression analysis was used to identify parameters associated with in-hospital mortality. RESULTS A total of 144 patients with ARDS (age: 72 ± 16 years, 112 men) were included in the study. The in-hospital mortality rate was 42% (survivors, n = 83; nonsurvivors, n = 61). Nonsurvivors were significantly older (70 ± 17 vs 76 ± 13, P = 0.01) and had lower serum albumin levels (P = 0.01), more traction bronchiectasis (P = 0.02), and more diffuse pattern (P < 0.001) than survivors. The presence of diffuse patterns was an independent adverse prognostic factor for predicting mortality (odds ratio, 1.32; 95% confidence interval [CI]: 1.08-1.61, P = 0.007). CONCLUSIONS HRCT distribution patterns may predict mortality in ARDS patients.
Collapse
Affiliation(s)
- Ryosuke Imai
- Department of Pulmonary MedicineThoracic Center, St. Luke's International HospitalTokyoJapan
| | - Naoki Nishimura
- Department of Pulmonary MedicineThoracic Center, St. Luke's International HospitalTokyoJapan
| | - Osamu Takahashi
- Graduate School of Public HealthSt. Luke's International UniversityTokyoJapan
| | - Tomohide Tamura
- Department of Pulmonary MedicineThoracic Center, St. Luke's International HospitalTokyoJapan
| |
Collapse
|
72
|
Hashimoto H, Yamamoto S, Nakagawa H, Suido Y, Sato S, Tabata E, Okamori S, Yoshida T, Ando K, Yoshitake S, Okada Y. Clinical Utility of Surgical Lung Biopsy for Patients with Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. Respiration 2021; 101:422-432. [PMID: 34847559 DOI: 10.1159/000519675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Surgical lung biopsy (SLB) is performed in patients with acute respiratory distress syndrome (ARDS); however, its clinical utility remains unclear. OBJECTIVES We categorized the pathological diagnoses and investigated the predictive value for short-term mortality. METHOD Three electronic databases (MEDLINE, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov) were searched for the included studies. The QUADAS-2 was used to evaluate the risk of bias and its applicability. The types and populations of pathological diagnoses were investigated. The pooled sensitivity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), and diagnostic odds ratio (DOR) were estimated at a fixed specificity. Hierarchical summary receiver operating characteristic curves were drawn. RESULTS A total of 16 studies that enrolled 758 patients were included. The pathological diagnoses were as follows: diffuse alveolar damage (DAD) 29.9%; infection 24.7%; interstitial lung disease 17.2%; malignancy 3.6%; cardiovascular disease 3.6%; drug toxicity 2.3%; connective tissue disease 2.2%; allergic disease 1.1%; and nonspecific diagnosis 15.4%. To predict short-term mortality, 13 studies that enrolled 613 patients used DAD as an index test and recorded a mortality rate of 56.9% (349 of 613 patients). A total of 3 studies that used index tests other than DAD were excluded. The pooled sensitivity, fixed specificity, LR+, LR-, and DOR were 0.46 (95% confidence interval [CI]: 0.29-0.56), 0.69, 1.48 (95% CI: 0.92-1.81), 0.78 (95% CI: 0.63-1.03), and 1.90 (95% CI: 0.89-2.86), respectively. CONCLUSIONS SLB is unlikely to provide a specific diagnosis and should not be recommended for confirming DAD or predicting ARDS prognosis.
Collapse
Affiliation(s)
- Hiroyuki Hashimoto
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| | - Shota Yamamoto
- Department of Radiology, Tokai University Hospital, Tokai University School of Medicine, Kanagawa, Japan
| | - Hiroaki Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yoshihiro Suido
- Department of Respiratory Medicine, Asao General Hospital, Kawasaki, Japan
| | - Shintaro Sato
- Department of Respiratory Medicine, Saitama Red Cross Hospital, Saitama, Japan
| | - Erina Tabata
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Satoshi Okamori
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takuo Yoshida
- Department of Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Koichi Ando
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shigenori Yoshitake
- Department of Health Science, Kyushu University of Health and Welfare, Miyazaki, Japan
| | - Yohei Okada
- Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Preventive Services, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| |
Collapse
|
73
|
Lorente JA, Nin N, Villa P, Vasco D, Miguel-Coello AB, Rodriguez I, Herrero R, Peñuelas O, Ruiz-Cabello J, Izquierdo-Garcia JL. Metabolomic diferences between COVID-19 and H1N1 influenza induced ARDS. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:390. [PMID: 34781986 PMCID: PMC8591432 DOI: 10.1186/s13054-021-03810-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a type of respiratory failure characterized by lung inflammation and pulmonary edema. Coronavirus disease 2019 (COVID-19) is associated with ARDS in the more severe cases. This study aimed to compare the specificity of the metabolic alterations induced by COVID-19 or Influenza A pneumonia (IAP) in ARDS. METHODS Eighteen patients with ARDS due to COVID-19 and twenty patients with ARDS due to IAP, admitted to the intensive care unit. ARDS was defined as in the American-European Consensus Conference. As compared with patients with COVID-19, patients with IAP were younger and received more often noradrenaline to maintain a mean arterial pressure > 65 mm Hg. Serum samples were analyzed by Nuclear Magnetic Resonance Spectroscopy. Multivariate Statistical Analyses were used to identify metabolic differences between groups. Metabolic pathway analysis was performed to identify the most relevant pathways involved in ARDS development. RESULTS ARDS due to COVID-19 or to IAP induces a different regulation of amino acids metabolism, lipid metabolism, glycolysis, and anaplerotic metabolism. COVID-19 causes a significant energy supply deficit that induces supplementary energy-generating pathways. In contrast, IAP patients suffer more marked inflammatory and oxidative stress responses. The classificatory model discriminated against the cause of pneumonia with a success rate of 100%. CONCLUSIONS Our findings support the concept that ARDS is associated with a characteristic metabolomic profile that may discriminate patients with ARDS of different etiologies, being a potential biomarker for the diagnosis, prognosis, and management of this condition.
Collapse
Affiliation(s)
- Jose Angel Lorente
- CIBER de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| | | | - Palmira Villa
- Centro de Asistencia a La Investigación Bioimagen Complutense, Universidad Complutense de Madrid, Madrid, Spain
| | - Dovami Vasco
- Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Ana B Miguel-Coello
- CIBER de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain.,Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Ignacio Rodriguez
- CIBER de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Química en CC. Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Raquel Herrero
- Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Oscar Peñuelas
- Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Jesús Ruiz-Cabello
- CIBER de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain.,Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain.,Departamento de Química en CC. Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Jose L Izquierdo-Garcia
- CIBER de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain. .,Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 1, Madrid, Spain. .,Departamento de Química en CC. Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
74
|
Sharma R, Zhou M, Tiba MH, McCracken BM, Dickson RP, Gillies CE, Sjoding MW, Nemzek JA, Ward KR, Stringer KA, Fan X. Breath analysis for detection and trajectory monitoring of acute respiratory distress syndrome in swine. ERJ Open Res 2021; 8:00154-2021. [PMID: 35174248 PMCID: PMC8841990 DOI: 10.1183/23120541.00154-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/19/2021] [Indexed: 12/29/2022] Open
Abstract
Despite the enormous impact on human health, acute respiratory distress syndrome (ARDS) is poorly defined, and its timely diagnosis is difficult, as is tracking the course of the syndrome. The objective of this pilot study was to explore the utility of breath collection and analysis methodologies to detect ARDS through changes in the volatile organic compound (VOC) profiles present in breath. Five male Yorkshire mix swine were studied and ARDS was induced using both direct and indirect lung injury. An automated portable gas chromatography device developed in-house was used for point of care breath analysis and to monitor swine breath hourly, starting from initiation of the experiment until the development of ARDS, which was adjudicated based on the Berlin criteria at the breath sampling points and confirmed by lung biopsy at the end of the experiment. A total of 67 breath samples (chromatograms) were collected and analysed. Through machine learning, principal component analysis and linear discrimination analysis, seven VOC biomarkers were identified that distinguished ARDS. These represent seven of the nine biomarkers found in our breath analysis study of human ARDS, corroborating our findings. We also demonstrated that breath analysis detects changes 1–6 h earlier than the clinical adjudication based on the Berlin criteria. The findings provide proof of concept that breath analysis can be used to identify early changes associated with ARDS pathogenesis in swine. Its clinical application could provide intensive care clinicians with a noninvasive diagnostic tool for early detection and continuous monitoring of ARDS. ARDS, confirmed by lung biopsy, was induced in swine, with breath monitored hourly. Seven VOC markers distinguish ARDS, which are the same as those in human ARDS and can predict ARDS onset ∼3 h earlier than clinical adjudication.https://bit.ly/3zIIIMQ
Collapse
|
75
|
Middleton EA, Zimmerman GA. COVID-19-Associated Acute Respiratory Distress Syndrome: Lessons from Tissues and Cells. Crit Care Clin 2021; 37:777-793. [PMID: 34548133 PMCID: PMC8149203 DOI: 10.1016/j.ccc.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Program in Molecular Medicine, University of Utah School of Medicine, Eccles Institute of Human Genetics, 15 North 2030 East, Room #4220, Salt Lake City, UT 84112, USA
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Program in Molecular Medicine, University of Utah School of Medicine, Eccles Institute of Human Genetics, 15 North 2030 East, Room #4220, Salt Lake City, UT 84112, USA.
| |
Collapse
|
76
|
Kotas ME, Thompson BT. Toward Optimal Acute Respiratory Distress Syndrome Outcomes: Recognizing the Syndrome and Identifying Its Causes. Crit Care Clin 2021; 37:733-748. [PMID: 34548131 PMCID: PMC8449137 DOI: 10.1016/j.ccc.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, 505 Parnassus Avenue, Box 0111, San Francisco, CA 94143, USA
| | - B Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
77
|
Sinha P, Bos LD. Pathophysiology of the Acute Respiratory Distress Syndrome: Insights from Clinical Studies. Crit Care Clin 2021; 37:795-815. [PMID: 34548134 PMCID: PMC8149201 DOI: 10.1016/j.ccc.2021.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pratik Sinha
- Division of Clinical and Translational Research, Department of Anesthesia, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8054, St Louis, MO 63110, USA.
| | - Lieuwe D Bos
- Department of Respiratory Medicine, Infection and Immunity, Amsterdam University Medical Center, AMC, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands
| |
Collapse
|
78
|
Hendrickson KW, Peltan ID, Brown SM. The Epidemiology of Acute Respiratory Distress Syndrome Before and After Coronavirus Disease 2019. Crit Care Clin 2021; 37:703-716. [PMID: 34548129 PMCID: PMC8449138 DOI: 10.1016/j.ccc.2021.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kathryn W Hendrickson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Utah School of Medicine, 26 North 1900 East, Salt Lake City, UT 84112, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Intermountain Medical Center
| | - Ithan D Peltan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Utah School of Medicine, 26 North 1900 East, Salt Lake City, UT 84112, USA; Pulmonary Division, Department of Medicine, Intermountain Medical Center, 5121 South Cottonwood Street, Murray, UT 84107, USA
| | - Samuel M Brown
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Utah School of Medicine, 26 North 1900 East, Salt Lake City, UT 84112, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Intermountain Medical Center.
| |
Collapse
|
79
|
Saha A, Amonkar GP, Desai H, Baro B, Agrawal R. Acute respiratory distress syndrome: A study of autopsy findings. Lung India 2021; 38:442-447. [PMID: 34472522 PMCID: PMC8509178 DOI: 10.4103/lungindia.lungindia_198_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Context: In this autopsy study, the various morphological patterns of acute respiratory distress syndrome (ARDS) have been analyzed and compared along with their etiopathogenesis. Aims: We aimed to study the prevalence and clinicopathological correlation of ARDS based on age, gender, hospital stay, symptoms, clinical diagnosis, gross, and microscopy findings. Subjects and Methods: Total 130 cases of ARDS were studied over a period of 5 years. Age, gender, hospital stay duration, symptoms, clinical diagnosis, gross and microscopic lung finding, clinicopathological correlation, and cause of death were documented and analyzed. Special stains were done whenever required. Statistical Analysis: This is an observational study, and simple statistics such as mean, median, and standard deviation have been used for continuous variables. Results: The prevalence of ARDS among the adult autopsy was 6.05%. Majority of the cases were in the age group of 18–30 years (36.9%), with a male: female ratio of 1.7:1. Chief complaints were fever (71%), breathlessness (54.6%), and chills (43.8%). The main clinical diagnoses were ARDS (41.6%), sepsis (28.3%), acute febrile illness (17%), and lower respiratory tract infection (12.5%). Most of the patients had a hospital stay of <1 day. Associated conditions mostly included chronic alcoholism (16.1%), pregnancy (16.1%), and chronic smoking (10.7%). Major findings on gross examination were intrapulmonary hemorrhage (38.5%), ARDS (33%), pulmonary edema (13%), and pneumonia (15.3%). On microscopy, major findings were hyaline membrane (84.6%), intrapulmonary hemorrhage (76.1%), pulmonary edema (75.3%), organizing fibrin (55.3%), and bronchopneumonia (36.2%). Conclusion: Infections were one of the major predisposing causes of ARDS. Due to the short interval, the underlying cause for ARDS often goes undiagnosed.
Collapse
Affiliation(s)
- Anurag Saha
- Department of Pathology, Topiwala National Medical College, Nair Ch. Hospital, Mumbai, Maharashtra, India
| | - Gayathri P Amonkar
- Department of Pathology, Topiwala National Medical College, Nair Ch. Hospital, Mumbai, Maharashtra, India
| | - Heena Desai
- Department of Pathology, Topiwala National Medical College, Nair Ch. Hospital, Mumbai, Maharashtra, India
| | - Bhanita Baro
- Department of Pathology, Topiwala National Medical College, Nair Ch. Hospital, Mumbai, Maharashtra, India
| | - Ruchi Agrawal
- Department of Pathology, KBBH Municipal Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
80
|
Palanidurai S, Phua J, Chan YH, Mukhopadhyay A. P/FP ratio: incorporation of PEEP into the PaO 2/FiO 2 ratio for prognostication and classification of acute respiratory distress syndrome. Ann Intensive Care 2021; 11:124. [PMID: 34370116 PMCID: PMC8350287 DOI: 10.1186/s13613-021-00908-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
Background The current Berlin definition of acute respiratory distress syndrome (ARDS) uses the PaO2/FiO2 (P/F) ratio to classify severity. However, for the same P/F ratio, a patient on a higher positive end-expiratory pressure (PEEP) may have more severe lung injury than one on a lower PEEP. Objectives We designed a new formula, the P/FP ratio, incorporating PEEP into the P/F ratio and multiplying with a correction factor of 10 [(PaO2*10)/(FiO2*PEEP)], to evaluate if it better predicts hospital mortality compared to the P/F ratio post-intubation and to assess the resultant changes in severity classification of ARDS. Methods We categorized patients from a dataset of seven ARDS network trials using the thresholds of ≤ 100 (severe), 101–200 (moderate), and 201–300 (mild) for both P/F (mmHg) and P/FP (mmHg/cmH2O) ratios and evaluated hospital mortality using areas under the receiver operating characteristic curves (AUC). Results Out of 3,442 patients, 1,057 (30.7%) died. The AUC for mortality was higher for the P/FP ratio than the P/F ratio for PEEP levels > 5 cmH2O: 0.710 (95% CI 0.691–0.730) versus 0.659 (95% CI 0.637–0.681), P < 0.001. Improved AUC was seen with increasing PEEP levels; for PEEP ≥ 18 cmH2O: 0.963 (95% CI 0.947–0.978) versus 0.828 (95% CI 0.765–0.891), P < 0.001. When the P/FP ratio was used instead of the P/F ratio, 12.5% and 15% of patients with moderate and mild ARDS, respectively, were moved to more severe categories, while 13.9% and 33.6% of patients with severe and moderate ARDS, respectively, were moved to milder categories. The median PEEP and FiO2 were 14 cmH2O and 0.70 for patients reclassified to severe ARDS, and 5 cmH2O and 0.40 for patients reclassified to mild ARDS. Conclusions The multifactorial P/FP ratio has a greater predictive validity for hospital mortality in ARDS than the P/F ratio. Changes in severity classification with the P/FP ratio reflect both true illness severity and the applied PEEP strategy. Trial registration: ClinialTrials.gov–NCT03946150. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-021-00908-3.
Collapse
Affiliation(s)
- Sunitha Palanidurai
- Intensive Care Unit, Alexandra Hospital, National University Health System, 378 Alexandra Road, Singapore, 159964, Singapore.
| | - Jason Phua
- FAST and Chronic Programmes, Alexandra Hospital, National University Health System, Singapore, Singapore.,Division of Respiratory & Critical Care Medicine, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amartya Mukhopadhyay
- FAST and Chronic Programmes, Alexandra Hospital, National University Health System, Singapore, Singapore.,Division of Respiratory & Critical Care Medicine, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Medical Affairs, Alexandra Hospital, Singapore, Singapore
| |
Collapse
|
81
|
Drohan CM, Nouraie SM, Bain W, Shah FA, Evankovich J, Zhang Y, Morris A, McVerry BJ, Kitsios GD. Biomarker-Based Classification of Patients With Acute Respiratory Failure Into Inflammatory Subphenotypes: A Single-Center Exploratory Study. Crit Care Explor 2021; 3:e0518. [PMID: 34476405 PMCID: PMC8378789 DOI: 10.1097/cce.0000000000000518] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Hyper- and hypoinflammatory subphenotypes discovered in patients with acute respiratory distress syndrome predict clinical outcomes and therapeutic responses. These subphenotypes may be important in broader critically ill patient populations with acute respiratory failure regardless of clinical diagnosis. We investigated subphenotyping with latent class analysis in an inclusive population of acute respiratory failure, derived a parsimonious model for subphenotypic predictions based on a small set of variables, and examined associations with clinical outcomes. DESIGN Prospective, observational cohort study. SETTING Single-center, academic medical ICU. PATIENTS Mechanically ventilated patients with acute respiratory failure. MEASUREMENTS AND MAIN RESULTS We included 498 patients with acute respiratory failure (acute respiratory distress syndrome: 143, at-risk for acute respiratory distress syndrome: 198, congestive heart failure: 37, acute on chronic respiratory failure: 23, airway protection: 61, and multifactorial: 35) in our derivation cohort and measured 10 baseline plasma biomarkers. Latent class analysis considering clinical variables and biomarkers determined that a two-class model offered optimal fit (23% hyperinflammatory subphenotype). Distribution of hyperinflammatory subphenotype varied among acute respiratory failure etiologies (acute respiratory distress syndrome: 31%, at-risk for acute respiratory distress syndrome: 27%, congestive heart failure: 22%, acute on chronic respiratory failure 0%, airway protection: 5%, and multifactorial: 14%). Hyperinflammatory patients had higher Sequential Organ Failure Assessment scores, fewer ventilator-free days, and higher 30- and 90-day mortality (all p < 0.001). We derived a parsimonious model consisting of angiopoietin-2, soluble tumor necrosis factor receptor-1, procalcitonin, and bicarbonate and classified subphenotypes in a validation cohort (n = 139). Hyperinflammatory patients (19%) demonstrated higher levels of inflammatory biomarkers not included in the model (p < 0.01) and worse outcomes. CONCLUSIONS Host-response subphenotypes are observable in a heterogeneous population with acute respiratory failure and predict clinical outcomes. Simple, biomarker-based models can offer prognostic enrichment in patients with acute respiratory failure. The differential distribution of subphenotypes by specific etiologies of acute respiratory failure indicates that subphenotyping may be more relevant in patients with hypoxemic causes of acute respiratory failure and not in patients intubated for airway protection or acute on chronic decompensation.
Collapse
Affiliation(s)
- Callie M Drohan
- Division of General Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - S Mehdi Nouraie
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - William Bain
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
- Staff Physician, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA
| | - Faraaz A Shah
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
- Staff Physician, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA
| | - John Evankovich
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Yingze Zhang
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Alison Morris
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Bryan J McVerry
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Georgios D Kitsios
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
82
|
Shi R, Lai C, Teboul JL, Dres M, Moretto F, De Vita N, Pham T, Bonny V, Mayaux J, Vaschetto R, Beurton A, Monnet X. COVID-19 ARDS is characterized by higher extravascular lung water than non-COVID-19 ARDS: the PiCCOVID study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:186. [PMID: 34074313 PMCID: PMC8169440 DOI: 10.1186/s13054-021-03594-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/06/2021] [Indexed: 01/08/2023]
Abstract
Background In acute respiratory distress syndrome (ARDS), extravascular lung water index (EVLWi) and pulmonary vascular permeability index (PVPI) measured by transpulmonary thermodilution reflect the degree of lung injury. Whether EVLWi and PVPI are different between non-COVID-19 ARDS and the ARDS due to COVID-19 has never been reported. We aimed at comparing EVLWi, PVPI, respiratory mechanics and hemodynamics in patients with COVID-19 ARDS vs. ARDS of other origin. Methods Between March and October 2020, in an observational study conducted in intensive care units from three university hospitals, 60 patients with COVID-19-related ARDS monitored by transpulmonary thermodilution were compared to the 60 consecutive non-COVID-19 ARDS admitted immediately before the COVID-19 outbreak between December 2018 and February 2020. Results Driving pressure was similar between patients with COVID-19 and non-COVID-19 ARDS, at baseline as well as during the study period. Compared to patients without COVID-19, those with COVID-19 exhibited higher EVLWi, both at the baseline (17 (14–21) vs. 15 (11–19) mL/kg, respectively, p = 0.03) and at the time of its maximal value (24 (18–27) vs. 21 (15–24) mL/kg, respectively, p = 0.01). Similar results were observed for PVPI. In COVID-19 patients, the worst ratio between arterial oxygen partial pressure over oxygen inspired fraction was lower (81 (70–109) vs. 100 (80–124) mmHg, respectively, p = 0.02) and prone positioning and extracorporeal membrane oxygenation (ECMO) were more frequently used than in patients without COVID-19. COVID-19 patients had lower maximal lactate level and maximal norepinephrine dose than patients without COVID-19. Day-60 mortality was similar between groups (57% vs. 65%, respectively, p = 0.45). The maximal value of EVLWi and PVPI remained independently associated with outcome in the whole cohort. Conclusion Compared to ARDS patients without COVID-19, patients with COVID-19 had similar lung mechanics, but higher EVLWi and PVPI values from the beginning of the disease. This was associated with worse oxygenation and with more requirement of prone positioning and ECMO. This is compatible with the specific lung inflammation and severe diffuse alveolar damage related to COVID-19. By contrast, patients with COVID-19 had fewer hemodynamic derangement. Eventually, mortality was similar between groups. Trial registration number and date of registration ClinicalTrials.gov (NCT04337983). Registered 30 March 2020—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04337983. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03594-6.
Collapse
Affiliation(s)
- Rui Shi
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Christopher Lai
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Jean-Louis Teboul
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Martin Dres
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine intensive Réanimation (Département R3S), Paris, France.,INSERM, UMRS_1158 Neurophysiologie respiratoire expérimentale et clinique, Sorbonne Université, Paris, France
| | - Francesca Moretto
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Nello De Vita
- Università del Piemonte Orientale, Anestesia e Terapia Intensiva, Azienda Ospedaliero Universitaria 'Maggiore Della Carità", Novara, Italy
| | - Tài Pham
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France.,UVSQ, Univ. Paris-Sud, Inserm, Equipe d'Epidémiologie respiratoire intégrative, CESP, Université Paris-Saclay, 94807, Villejuif, France
| | - Vincent Bonny
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine intensive Réanimation (Département R3S), Paris, France.,INSERM, UMRS_1158 Neurophysiologie respiratoire expérimentale et clinique, Sorbonne Université, Paris, France
| | - Julien Mayaux
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine intensive Réanimation (Département R3S), Paris, France.,INSERM, UMRS_1158 Neurophysiologie respiratoire expérimentale et clinique, Sorbonne Université, Paris, France
| | - Rosanna Vaschetto
- Università del Piemonte Orientale, Anestesia e Terapia Intensiva, Azienda Ospedaliero Universitaria 'Maggiore Della Carità", Novara, Italy
| | - Alexandra Beurton
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine intensive Réanimation (Département R3S), Paris, France.,INSERM, UMRS_1158 Neurophysiologie respiratoire expérimentale et clinique, Sorbonne Université, Paris, France
| | - Xavier Monnet
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France.
| |
Collapse
|
83
|
Manso Ruiz de la Cuesta R, Modesto Alaport V, Medina Villanueva A, Del Villar Guerra P, Molinos Norniella C, Bartolomé Cano M. New paediatric definition of acute respiratory distress syndrome: Only unilateral infiltrates. Are we sure about this? Med Intensiva 2021; 45:318-319. [PMID: 34059223 DOI: 10.1016/j.medine.2019.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/07/2019] [Indexed: 11/29/2022]
Affiliation(s)
| | - V Modesto Alaport
- Paediatric Intensive Care Unit, Hospital Universitari I Politècnic La Fe de Valencia, Valencia, Spain
| | | | | | | | - M Bartolomé Cano
- Department of Paediatrics, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
84
|
Kalra SS, Jaber J, Alzghoul BN, Hyde R, Parikh S, Urbine D, Reddy R. Pre-Existing Psychiatric Illness Is Associated With an Increased Risk of Delirium in Patients With Acute Respiratory Distress Syndrome. J Intensive Care Med 2021; 37:647-654. [PMID: 34041934 DOI: 10.1177/08850666211019009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Patients with acute respiratory distress syndrome (ARDS) are highly susceptible to developing delirium for a multitude of reasons. Previous studies have linked pre-existing depression with an increased risk of postoperative delirium in patients undergoing cardiac and non-cardiac surgery. However, the evidence regarding the association between pre-existing psychiatric illnesses and delirium in ARDS patients is unknown. In this study, we aim to determine the relationship between pre-existing psychiatric illness and the risk of development of delirium amongst ARDS patients. STUDY DESIGN AND METHODS We performed a retrospective study of a mixed group of patients admitted to the intensive care unit (ICU) between January 2016 and December 2019 with a diagnosis of ARDS per the Berlin definition. The study group was divided into 2 cohorts: subjects with delirium and subjects without delirium. Comparison between the 2 groups was conducted to examine the impact of pre-existing psychiatric illnesses including major depressive disorder (MDD), generalized anxiety disorder (GAD), bipolar disorder, schizophrenia, or post-traumatic stress disorder. Multivariable logistic regression analysis was performed adjusting for benzodiazepine use, sedatives, analgesics, sequential organ failure assessment score, and corticosteroid use to determine the association between pre-existing psychiatric disorders and delirium. RESULTS 286 patients with ARDS were identified; 124 (43%) of whom were diagnosed with ICU delirium. In patients diagnosed with ICU delirium, 49.2% were found to have preexisting psychiatric illnesses, compared to 34.0% without any preexisting psychiatric illness (OR = 1.94, P = 0.01). In a subgroup analysis of individual psychiatric illnesses, GAD and MDD were associated with the development of delirium (OR = 1.88, P = 0.04 and OR = 1.76, P = 0.05 respectively). INTERPRETATION ARDS patients with preexisting psychiatric illnesses, particularly GAD and MDD are associated with an increased risk of developing ICU delirium. Clinicians should be aware of the effect of psychiatric co-morbidities on developing delirium in critically ill patients.
Collapse
Affiliation(s)
- Saminder Singh Kalra
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Johnny Jaber
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bashar N Alzghoul
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ryan Hyde
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sarina Parikh
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Daniel Urbine
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Raju Reddy
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.,Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
85
|
Pannone G, Caponio VCA, De Stefano IS, Ramunno MA, Meccariello M, Agostinone A, Pedicillo MC, Troiano G, Zhurakivska K, Cassano T, Bizzoca ME, Papagerakis S, Buonaguro FM, Advani S, Muzio LL. Lung histopathological findings in COVID-19 disease - a systematic review. Infect Agent Cancer 2021; 16:34. [PMID: 34001199 PMCID: PMC8127295 DOI: 10.1186/s13027-021-00369-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023] Open
Abstract
Since December 2019, the global burden of the COVID-19 pandemic has increased rapidly and has impacted nearly every country in the world, affecting those who are elderly or with underlying comorbidities or immunocompromised states. Aim of this systematic review is to summarize lung histopathological characteristics of COVID-19, not only for diagnostic purpose but also to evaluate changes that can reflect pathophysiological pathways that can inform clinicians of useful treatment strategies. We identified following histopathological changes among our patients:: hyaline membranes; endothelial cells/ interstitial cells involvement; alveolar cells, type I pneumocytes/ type II pneumocytes involvement; interstitial and/ or alveolar edema; evidence of hemorrhage, of inflammatory cells, evidence of microthrombi; evidence of fibrin deposition and of viral infection in the tissue samples.The scenario with proliferative cell desquamation is typical of Acute Respiratory Distress Syndrome (ARDS) that can be classified as diffuse alveolar damage (DAD) and not DAD-ARDS. The proposed pathological mechanism concerns the role of both innate and adaptive components of the immune system. COVID-19 lethal cases present themselves as a heterogeneous disease, characterized by the different simultaneous presence of different histological findings, which reflect histological phases with corresponding different pathological pathways (epithelial, vascular and fibrotic changes), in the same patient.
Collapse
Affiliation(s)
- Giuseppe Pannone
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | | | - Ilenia Sara De Stefano
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Maria Antonietta Ramunno
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Mario Meccariello
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Alessio Agostinone
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Maria Carmela Pedicillo
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Khrystyna Zhurakivska
- Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Tommaso Cassano
- Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Maria Eleonora Bizzoca
- Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Silvana Papagerakis
- Department of Surgery, College of Medicine, Health Sciences Center, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit Istituto Nazionale, Tumori IRCCS "Fondazione Pascale", 80131, Naples, Italy
| | - Shailesh Advani
- Georgetown University School of Medicine, Georgetown University, Washington, DC, USA
| | - Lorenzo Lo Muzio
- Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| |
Collapse
|
86
|
Serdaroglu E, Kesici S, Bayrakci B, Kale G. Diffuse Alveolar Damage Correlation with Clinical Diagnosis of Pediatric Acute Respiratory Distress Syndrome. J Pediatr Intensive Care 2021; 10:52-57. [PMID: 33585062 PMCID: PMC7870331 DOI: 10.1055/s-0040-1714127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 10/23/2022] Open
Abstract
Diffuse alveolar damage (DAD) is one of the pathological hallmarks of acute respiratory distress syndrome (ARDS). We aimed to compare pathological findings of DAD with clinical ARDS criteria. We re-evaluated 20 patients whose clinical autopsy revealed DAD. Total 11/20 patients with DAD (55%) met the 1994 American-European Consensus Conference and 7/17 (41%) met the 2012 Berlin clinical criteria. DAD showed only moderate correlation with current clinical ARDS definition. Oxygenation index (OI), seems to be the most valuable tool in predicting pulmonary damage severity, though OI is not listed in either of the previous definitions. We support the recommended use of OI by 2015 consensus conference.
Collapse
Affiliation(s)
- Esra Serdaroglu
- Department of Pediatric Critical Care, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Selman Kesici
- Department of Pediatric Critical Care, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Benan Bayrakci
- Department of Pediatric Critical Care, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Gulsev Kale
- Department of Pediatric Pathology, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| |
Collapse
|
87
|
Fukuda Y, Sugimoto H, Yamada Y, Ito H, Tanaka T, Yoshida T, Okamori S, Ando K, Okada Y. Safety and feasibility of lung biopsy in diagnosis of acute respiratory distress syndrome: protocol for a systematic review and meta-analysis. BMJ Open 2021; 11:e043600. [PMID: 33579770 PMCID: PMC7883844 DOI: 10.1136/bmjopen-2020-043600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is a type of acute respiratory failure characterised by non-cardiac pulmonary oedema caused by various underlying conditions. ARDS is often pathologically characterised by diffuse alveolar damage, and its pathological findings have been reported to be associated with prognosis, although the adverse effects of lung biopsies to obtain pathological findings are still unclear. The purpose of this systematic review and meta-analysis is to reveal the safety and feasibility of lung biopsy in the diagnosis of ARDS. METHODS AND ANALYSIS We will include studies that were published in MEDLINE and Cochrane Central Register of Controlled Trials until 1 June 2020. We will include the reports for critically ill patients in an intensive care unit or emergency department who undergo lung biopsy and require a mechanical ventilation. Two review authors will independently scan titles and abstracts of all identified studies. Furthermore, these two authors will read and assess the full text of study reports to identify trials that appeared broadly to address the subject of the review. We will perform a risk of bias assessment using the McMaster Quality Assessment Scale of Harms. ETHICS AND DISSEMINATION This study will be based on the published data, therefore, it does not require ethical approval. The final results of the study will be published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER UMIN000040650.
Collapse
Affiliation(s)
- Yosuke Fukuda
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University, School of Medicine, Tokyo, Japan
| | - Hiroshi Sugimoto
- Department of Respiratory Medicine, Kobe Red Cross Hospital, Kobe, Japan
| | - Yoshie Yamada
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Ito
- Department of Pulmonology, Kameda Medical Center, Chiba, Japan
| | - Takeshi Tanaka
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Takuo Yoshida
- Intensive Care Unit, Department of Anesthesiology, Jikei University School of Medicine, Tokyo, Japan
| | - Satoshi Okamori
- Department of Medicine, Division of Pulmonary Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Ando
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University, School of Medicine, Tokyo, Japan
| | - Yohei Okada
- Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Preventive Services, School of Public Health, Kyoto University, Kyoto, Japan
| |
Collapse
|
88
|
Bos LDJ, Artigas A, Constantin JM, Hagens LA, Heijnen N, Laffey JG, Meyer N, Papazian L, Pisani L, Schultz MJ, Shankar-Hari M, Smit MR, Summers C, Ware LB, Scala R, Calfee CS. Precision medicine in acute respiratory distress syndrome: workshop report and recommendations for future research. Eur Respir Rev 2021; 30:30/159/200317. [PMID: 33536264 DOI: 10.1183/16000617.0317-2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating critical illness that can be triggered by a wide range of insults and remains associated with a high mortality of around 40%. The search for targeted treatment for ARDS has been disappointing, possibly due to the enormous heterogeneity within the syndrome. In this perspective from the European Respiratory Society research seminar on "Precision medicine in ARDS", we will summarise the current evidence for heterogeneity, explore the evidence in favour of precision medicine and provide a roadmap for further research in ARDS. There is evident variation in the presentation of ARDS on three distinct levels: 1) aetiological; 2) physiological and 3) biological, which leads us to the conclusion that there is no typical ARDS. The lack of a common presentation implies that intervention studies in patients with ARDS need to be phenotype aware and apply a precision medicine approach in order to avoid the lack of success in therapeutic trials that we faced in recent decades. Deeper phenotyping and integrative analysis of the sources of variation might result in identification of additional treatable traits that represent specific pathobiological mechanisms, or so-called endotypes.
Collapse
Affiliation(s)
- Lieuwe D J Bos
- Intensive Care, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands .,Laboratory of Intensive Care and Anesthesiology Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Dept of Respiratory Medicine, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Antonio Artigas
- Critical Care Center, Corporació Sanitaria Universitaria Parc Tauli, CIBER Enfermedades Respiratorias, Autonomouus University of Barcelona, Sabadell, Spain
| | - Jean-Michel Constantin
- Dept of Anaesthesiology and Critical Care, Sorbonne University, GRC 29, AP-HP, DMU DREAM, Pitié-Salpêtrière Hospital, Paris, France
| | - Laura A Hagens
- Intensive Care, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nanon Heijnen
- Intensive care, Maastricht UMC, University of Maastricht, Maastricht, The Netherlands
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, School of Medicine, and Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,Dept of Anaesthesia, University Hospital Galway, Saolta Hospital Group, Galway, Ireland
| | - Nuala Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laurent Papazian
- Intensive Care Medicine and regional ECMO center, North hospital - Aix-Marseille University, Marseille, France
| | - Lara Pisani
- Dipartimento Cardio-Toraco-Vascolare, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Marcus J Schultz
- Intensive Care, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Intensive Care and Anesthesiology Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Dept of Respiratory Medicine, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Manu Shankar-Hari
- School of Immunology & Microbial Sciences, Kings College London, London, UK
| | - Marry R Smit
- Intensive Care, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Raffaele Scala
- Respiratory Division with Pulmonary Intensive Care Unit, S. Donato Hospital, Usl Toscana Sudest, Arezzo, Italy
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Dept of Medicine, University of California, San Francisco, CA, USA.,Dept of Anesthesia, University of California, San Francisco, CA, USA
| |
Collapse
|
89
|
Reddy HG, Maynes EJ, Saxena A, Austin MA, O'Malley TJ, Gadda MN, Al-Rawas NN, Baram M, Awsare BK, Massey HT, Tchantchaleishvili V. Utilization of extracorporeal life support for diffuse alveolar damage and diffuse alveolar hemorrhage: A systematic review. Artif Organs 2021; 45:559-568. [PMID: 33190331 DOI: 10.1111/aor.13861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/08/2020] [Accepted: 11/08/2020] [Indexed: 11/30/2022]
Abstract
Modern extracorporeal life-support (ECLS) technology has been successfully utilized to treat patients with diffuse alveolar damage (DAD) and diffuse alveolar hemorrhage (DAH); however, reports in the literature remain scarce. We sought to pool existing evidence to better characterize ECLS use in these patients. An electronic search was conducted to identify all studies in the English literature reporting the use of ECLS for DAD/DAH. Thirty-two articles consisting of 38 patients were selected, and patient-level data were extracted and pooled for analysis. Median patient age was 36 [IQR: 27, 48] years, and the majority (63.2%) were female. Most common etiological factors included granulomatosis with polyangiitis (8/38, 21.1%), systemic lupus erythematosus (8/38, 21.1%), Goodpasture's syndrome (4/38, 10.5%), and microscopic polyangiitis (4/38, 10.5%). Immunologic markers included anti-neutrophil cytoplasmic antibody (ANCA) in 15/38 (39.5%), anti-nuclear antibody (ANA) in 6/38 (15.8%), and anti-glomerular basement membrane (anti-GBM) antibodies in 4/38 (10.5%). DAH was present in 32/38 (84.2%) of cases and DAD without evidence of DAH was present in 6/38 (15.8%) of cases. ECLS strategies included extracorporeal membrane oxygenation of veno-venous type (VV-ECMO) in 28/38 (73.7%), veno-arterial type (VA-ECMO) in 5/38 (13.2%), and one case of right ventricular assist device with oxygenator (RVAD-ECMO). Heparin was utilized in 18/38 (47.4%) of cases with no difference in use between DAH versus no DAH (P = .46) or VA- versus VV-ECLS (P = 1). Median duration of ECLS was 10 [5, 14] days. Pre- versus post-ECLS comparison of blood gases showed improvement in median PaO2 (49 [45, 59] mm Hg vs. 80 [70, 99] mm Hg, P < .001), PaO2:FiO2 ratio (48.2 [41.4, 54.8] vs. 182.0 [149.4, 212.2], P < .01), and pulse oximetry values (76% [72, 80] vs. 96% [94, 97], P = .086). Overall, 94.7% (36/38) of patients survived to decannulation while 30-day mortality was 10.5% (4/38) with no differences between VA- and VV-ECMO (P = 1 and P = .94, respectively). DAD/DAH occurs in a younger, predominantly female population, and tends to be associated with systemic autoimmune processes. ECLS, independent of its type, appears to result in favorable short-term survival.
Collapse
Affiliation(s)
- Haritha G Reddy
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elizabeth J Maynes
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Abhiraj Saxena
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Melissa A Austin
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Thomas J O'Malley
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marc N Gadda
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nawar N Al-Rawas
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael Baram
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bharat K Awsare
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - H Todd Massey
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
90
|
Wildi K, Livingstone S, Palmieri C, LiBassi G, Suen J, Fraser J. The discovery of biological subphenotypes in ARDS: a novel approach to targeted medicine? J Intensive Care 2021; 9:14. [PMID: 33478589 PMCID: PMC7817965 DOI: 10.1186/s40560-021-00528-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is a severe lung disorder with a high morbidity and mortality which affects all age groups. Despite active research with intense, ongoing attempts in developing pharmacological agents to treat ARDS, its mortality rate remains unaltered high and treatment is still only supportive. Over the years, there have been many attempts to identify meaningful subgroups likely to react differently to treatment among the heterogenous ARDS population, most of them unsuccessful. Only recently, analysis of large ARDS cohorts from randomized controlled trials have identified the presence of distinct biological subphenotypes among ARDS patients: a hypoinflammatory (or uninflamed; named P1) and a hyperinflammatory (or reactive; named P2) subphenotype have been proposed and corroborated with existing retrospective data. The hyperinflammatory subphenotyope was clearly associated with shock state, metabolic acidosis, and worse clinical outcomes. Core features of the respective subphenotypes were identified consistently in all assessed cohorts, independently of the studied population, the geographical location, the study design, or the analysis method. Additionally and clinically even more relevant treatment efficacies, as assessed retrospectively, appeared to be highly dependent on the respective subphenotype. This discovery launches a promising new approach to targeted medicine in ARDS. Even though it is now widely accepted that each ARDS subphenotype has distinct functional, biological, and mechanistic differences, there are crucial gaps in our knowledge, hindering the translation to bedside application. First of all, the underlying driving biological factors are still largely unknown, and secondly, there is currently no option for fast and easy identification of ARDS subphenotypes. This narrative review aims to summarize the evidence in biological subphenotyping in ARDS and tries to point out the current issues that will need addressing before translation of biological subohenotypes into clinical practice will be possible.
Collapse
Affiliation(s)
- Karin Wildi
- The Critical Care Research Group, The Prince Charles Hospital, Clinical Sciences Building, Level 3, Chermside, Brisbane, QLD, 4032, Australia. .,Faculty of Medicine, The University of Queensland, Brisbane, Australia. .,Cardiovascular Research Group, Basel, Switzerland.
| | - Samantha Livingstone
- The Critical Care Research Group, The Prince Charles Hospital, Clinical Sciences Building, Level 3, Chermside, Brisbane, QLD, 4032, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Chiara Palmieri
- School of Veterinary Science, the University of Queensland, Brisbane, Australia
| | - Gianluigi LiBassi
- The Critical Care Research Group, The Prince Charles Hospital, Clinical Sciences Building, Level 3, Chermside, Brisbane, QLD, 4032, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jacky Suen
- The Critical Care Research Group, The Prince Charles Hospital, Clinical Sciences Building, Level 3, Chermside, Brisbane, QLD, 4032, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - John Fraser
- The Critical Care Research Group, The Prince Charles Hospital, Clinical Sciences Building, Level 3, Chermside, Brisbane, QLD, 4032, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
91
|
Use of Machine Learning to Screen for Acute Respiratory Distress Syndrome Using Raw Ventilator Waveform Data. Crit Care Explor 2021; 3:e0313. [PMID: 33458681 PMCID: PMC7803688 DOI: 10.1097/cce.0000000000000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To develop and characterize a machine learning algorithm to discriminate acute respiratory distress syndrome from other causes of respiratory failure using only ventilator waveform data. Design Retrospective, observational cohort study. Setting Academic medical center ICU. Patients Adults admitted to the ICU requiring invasive mechanical ventilation, including 50 patients with acute respiratory distress syndrome and 50 patients with primary indications for mechanical ventilation other than hypoxemic respiratory failure. Interventions None. Measurements and Main Results Pressure and flow time series data from mechanical ventilation during the first 24-hours after meeting acute respiratory distress syndrome criteria (or first 24-hr of mechanical ventilation for non-acute respiratory distress syndrome patients) were processed to extract nine physiologic features. A random forest machine learning algorithm was trained to discriminate between the patients with and without acute respiratory distress syndrome. Model performance was assessed using the area under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, and negative predictive value. Analyses examined performance when the model was trained using data from the first 24 hours and tested using withheld data from either the first 24 hours (24/24 model) or 6 hours (24/6 model). Area under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, and negative predictive value were 0.88, 0.90, 0.71, 0.77, and 0.90 (24/24); and 0.89, 0.90, 0.75, 0.83, and 0.83 (24/6). Conclusions Use of machine learning and physiologic information derived from raw ventilator waveform data may enable acute respiratory distress syndrome screening at early time points after intubation. This approach, combined with traditional diagnostic criteria, could improve timely acute respiratory distress syndrome recognition and enable automated clinical decision support, especially in settings with limited availability of conventional diagnostic tests and electronic health records.
Collapse
|
92
|
Reilly JP, Meyer NJ, Shashaty MG, Anderson BJ, Ittner C, Dunn TG, Lim B, Forker C, Bonk MP, Kotloff E, Feng R, Cantu E, Mangalmurti NS, Calfee CS, Matthay MA, Mikacenic C, Walley KR, Russell J, Christiani DC, Wurfel MM, Lanken PN, Reilly MP, Christie JD. The ABO histo-blood group, endothelial activation, and acute respiratory distress syndrome risk in critical illness. J Clin Invest 2021; 131:139700. [PMID: 32931480 PMCID: PMC7773362 DOI: 10.1172/jci139700] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDThe ABO histo-blood group is defined by carbohydrate modifications and is associated with risk for multiple diseases, including acute respiratory distress syndrome (ARDS). We hypothesized that genetically determined blood subtype A1 is associated with increased risk of ARDS and markers of microvascular dysfunction and coagulation.METHODSWe conducted analyses in 3 cohorts of critically ill trauma and sepsis patients (n = 3710) genotyped on genome-wide platforms to determine the association of the A1 blood type genotype with ARDS risk. We subsequently determined whether associations were present in FUT2-defined nonsecretors who lack ABO antigens on epithelium, but not endothelium. In a patient subgroup, we determined the associations of blood type with plasma levels of endothelial glycoproteins and disseminated intravascular coagulation (DIC). Lastly, we tested whether blood type A was associated with less donor lung injury recovery during human ex vivo lung perfusion (EVLP).RESULTSThe A1 genotype was associated with a higher risk of moderate to severe ARDS relative to type O in all 3 populations. In sepsis, this relationship was strongest in nonpulmonary infections. The association persisted in nonsecretors, suggesting a vascular mechanism. The A1 genotype was also associated with higher DIC risk as well as concentrations of thrombomodulin and von Willebrand factor, which in turn were associated with ARDS risk. Blood type A was also associated with less lung injury recovery during EVLP.CONCLUSIONWe identified a replicable association between ABO blood type A1 and risk of ARDS among the critically ill, possibly mediated through microvascular dysfunction and coagulation.FUNDINGNIH HL122075, HL125723, HL137006, HL137915, DK097307, HL115354, HL101779, and the University of Pennsylvania McCabe Fund Fellowship Award.
Collapse
Affiliation(s)
- John P. Reilly
- Division of Pulmonary, Allergy, and Critical Care
- Center for Translational Lung Biology
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care
- Center for Translational Lung Biology
| | - Michael G.S. Shashaty
- Division of Pulmonary, Allergy, and Critical Care
- Center for Translational Lung Biology
- Center for Clinical Epidemiology and Biostatics, and
| | - Brian J. Anderson
- Division of Pulmonary, Allergy, and Critical Care
- Center for Translational Lung Biology
| | | | - Thomas G. Dunn
- Division of Pulmonary, Allergy, and Critical Care
- Center for Translational Lung Biology
| | - Brian Lim
- Division of Pulmonary, Allergy, and Critical Care
| | | | | | | | - Rui Feng
- Center for Clinical Epidemiology and Biostatics, and
| | - Edward Cantu
- Center for Translational Lung Biology
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nilam S. Mangalmurti
- Division of Pulmonary, Allergy, and Critical Care
- Center for Translational Lung Biology
| | - Carolyn S. Calfee
- Department of Medicine and
- Department of Anesthesia and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Michael A. Matthay
- Department of Medicine and
- Department of Anesthesia and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Carmen Mikacenic
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - Keith R. Walley
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - James Russell
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C. Christiani
- T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Mark M. Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | | | - Muredach P. Reilly
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York, USA
| | - Jason D. Christie
- Division of Pulmonary, Allergy, and Critical Care
- Center for Translational Lung Biology
- Center for Clinical Epidemiology and Biostatics, and
| |
Collapse
|
93
|
Hariri LP, North CM, Shih AR, Israel RA, Maley JH, Villalba JA, Vinarsky V, Rubin J, Okin DA, Sclafani A, Alladina JW, Griffith JW, Gillette MA, Raz Y, Richards CJ, Wong AK, Ly A, Hung YP, Chivukula RR, Petri CR, Calhoun TF, Brenner LN, Hibbert KA, Medoff BD, Hardin CC, Stone JR, Mino-Kenudson M. Lung Histopathology in Coronavirus Disease 2019 as Compared With Severe Acute Respiratory Sydrome and H1N1 Influenza: A Systematic Review. Chest 2021; 159:73-84. [PMID: 33038391 PMCID: PMC7538870 DOI: 10.1016/j.chest.2020.09.259] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/20/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Patients with severe coronavirus disease 2019 (COVID-19) have respiratory failure with hypoxemia and acute bilateral pulmonary infiltrates, consistent with ARDS. Respiratory failure in COVID-19 might represent a novel pathologic entity. RESEARCH QUESTION How does the lung histopathology described in COVID-19 compare with the lung histopathology described in SARS and H1N1 influenza? STUDY DESIGN AND METHODS We conducted a systematic review to characterize the lung histopathologic features of COVID-19 and compare them against findings of other recent viral pandemics, H1N1 influenza and SARS. We systematically searched MEDLINE and PubMed for studies published up to June 24, 2020, using search terms for COVID-19, H1N1 influenza, and SARS with keywords for pathology, biopsy, and autopsy. Using PRISMA-Individual Participant Data guidelines, our systematic review analysis included 26 articles representing 171 COVID-19 patients; 20 articles representing 287 H1N1 patients; and eight articles representing 64 SARS patients. RESULTS In COVID-19, acute-phase diffuse alveolar damage (DAD) was reported in 88% of patients, which was similar to the proportion of cases with DAD in both H1N1 (90%) and SARS (98%). Pulmonary microthrombi were reported in 57% of COVID-19 and 58% of SARS patients, as compared with 24% of H1N1 influenza patients. INTERPRETATION DAD, the histologic correlate of ARDS, is the predominant histopathologic pattern identified in lung pathology from patients with COVID-19, H1N1 influenza, and SARS. Microthrombi were reported more frequently in both patients with COVID-19 and SARS as compared with H1N1 influenza. Future work is needed to validate this histopathologic finding and, if confirmed, elucidate the mechanistic underpinnings and characterize any associations with clinically important outcomes.
Collapse
Affiliation(s)
- Lida P Hariri
- Department of Pathology, Massachusetts General Hospital, Boston, MA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - Crystal M North
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Angela R Shih
- Department of Pathology, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Rebecca A Israel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Jason H Maley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | | | - Vladimir Vinarsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Jonah Rubin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Daniel A Okin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Alyssa Sclafani
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Jehan W Alladina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Jason W Griffith
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Michael A Gillette
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Yuval Raz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Christopher J Richards
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Alexandra K Wong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Yin P Hung
- Department of Pathology, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Raghu R Chivukula
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Whitehead Institute for Biomedical Research, Cambridge, MA; Harvard Medical School, Boston, MA
| | - Camille R Petri
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Tiara F Calhoun
- Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Laura N Brenner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Kathryn A Hibbert
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - C Corey Hardin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - James R Stone
- Department of Pathology, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| |
Collapse
|
94
|
Laier-Groeneveld G, Criée CP. [Pathophysiology, diagnostics and treatment of the respiratory pump]. DER PNEUMOLOGE 2020; 18:3-12. [PMID: 33223983 PMCID: PMC7671184 DOI: 10.1007/s10405-020-00357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Diseases of the lung result in oxygen deficiency, hypoxemia, with the indications for oxygen supplementation, whereas hypercapnia and dyspnea are consequences of disorders and failure of the ventilatory pump, which need to be treated by mechanical ventilation. Early diagnostics enable a timely noninvasive ventilation treatment and can prevent overt ventilatory failure and avoid acute invasive ventilation. Diagnostic measures are available, so that the risk of developing overt respiratory failure can be ascertained in time. Treatment of respiratory pump insufficiency, i.e. ventilatory insufficiency, is also established. Many patients with ventilatory insufficiency use intermittent or continuous ventilation every day in order to relieve the respiratory musculature. Many studies have confirmed an extension of life expectancy and a better quality of life, when this relief together with a lowering of the pCO2 is achieved under ventilation and more importantly while breathing spontaneously. If the target of lowering the pCO2 is not achieved, an effect of intermittent ventilation cannot be detected. The more severe the disease, the more difficult it is to achieve relief, because the substantial effort needed for breathing by the patient can hardly be relieved by assisted ventilation alone. The relief is always guaranteed by a total passive mechanical ventilation below the apnea threshold so that the patient does not need to independently breathe. A high tidal volume, an adequately high respiratory rate and a prolonged inspiration time are necessary in order to reduce the pCO2 to below the normal range and to induce passive ventilation. No lung damage has been observed with this treatment strategy in a large number of patients.
Collapse
Affiliation(s)
- G. Laier-Groeneveld
- Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
- Klinik für Pneumologie und Intensivmedizin, Lungenklinik Neustadt Harz, Neustadt Harz, Deutschland
- Schellstr. 13, 44789 Bochum, Deutschland
| | - C.-P. Criée
- Beatmungsmedizin und Schlaf, Ev. Krankenhaus Göttingen-Weende. Klinik für Pneumologie, Lenglern, Deutschland
| |
Collapse
|
95
|
Pourfathi M, Xin Y, Rosalino M, Cereda M, Kadlecek S, Duncan I, Profka H, Hamedani H, Siddiqui S, Ruppert K, Chatterjee S, Rizi RR. Pulmonary pyruvate metabolism as an index of inflammation and injury in a rat model of acute respiratory distress syndrome. NMR IN BIOMEDICINE 2020; 33:e4380. [PMID: 32681670 DOI: 10.1002/nbm.4380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Increased pulmonary lactate production is correlated with severity of lung injury and outcome in acute respiratory distress syndrome (ARDS) patients. This study was conducted to investigate the relative contributions of inflammation and hypoxia to the lung's metabolic shift to glycolysis in an experimental animal model of ARDS using hyperpolarized (HP) 13 C MRI. Fifty-three intubated and mechanically ventilated male rats were imaged using HP 13 C MRI before, and 1, 2.5 and 4 hours after saline (sham) or hydrochloric acid (HCl; 0.5 ml/kg) instillation in the trachea, followed by protective and nonprotective mechanical ventilation (HCl-PEEP and HCl-ZEEP) or the start of moderate or severe hypoxia (Hyp90 and Hyp75 groups). Pulmonary and cardiac HP lactate-to-pyruvate ratios were compared among groups for different time points. Postmortem histology and immunofluorescence were used to assess lung injury severity and quantify the expression of innate inflammatory markers and local tissue hypoxia. HP pulmonary lactate-to-pyruvate ratio progressively increased in rats with lung injury and moderate hypoxia (HCl-ZEEP), with no significant change in pulmonary lactate-to-pyruvate ratio in noninjured but moderately hypoxic rats (Hyp90). Pulmonary lactate-to-pyruvate ratio was elevated in otherwise healthy lung tissue only in severe systemic hypoxia (Hyp75 group). ex vivo histological and immunopathological assessment further confirmed the link between elevated glycolysis and the recruitment into and presence of activated neutrophils in injured lungs. HP lactate-to-pyruvate ratio is elevated in injured lungs predominantly as a result of increased glycolysis in activated inflammatory cells, but can also increase due to severe inflammation-induced hypoxia.
Collapse
Affiliation(s)
- Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Rosalino
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maurizio Cereda
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shampa Chatterjee
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
96
|
Polak SB, Van Gool IC, Cohen D, von der Thüsen JH, van Paassen J. A systematic review of pathological findings in COVID-19: a pathophysiological timeline and possible mechanisms of disease progression. Mod Pathol 2020; 33:2128-2138. [PMID: 32572155 PMCID: PMC7306927 DOI: 10.1038/s41379-020-0603-3] [Citation(s) in RCA: 323] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/06/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023]
Abstract
Since the outbreak of the COVID-19 pandemic, much has been learned regarding its clinical course, prognostic inflammatory markers, disease complications, and mechanical ventilation strategy. Clinically, three stages have been identified based on viral infection, pulmonary involvement with inflammation, and fibrosis. Moreover, low and high elastance phenotypes can be distinguished in mechanically ventilated patients, based on lung mechanics, ventilation-to-perfusion ratio, and CT scans; these two phenotypes have presumed differences in their underlying pathophysiology. Although essential for therapeutic guidance, the pathophysiology of COVID-19 is poorly understood. Here, we systematically reviewed published case reports and case series in order to increase our understanding of COVID-19 pathophysiology by constructing a timeline and correlating histopathological findings with clinical stages of COVID-19. Using PRISMA-IPD guidelines, 42 articles reporting 198 individual cases were included in our analysis. In lung samples (n = 131 cases), we identified three main histological patterns: epithelial (n = 110, 85%), with reactive epithelial changes and DAD; vascular (n = 76, 59%) with microvascular damage, (micro)thrombi, and acute fibrinous and organizing pneumonia; and fibrotic (n = 28, 22%) with interstitial fibrosis. The epithelial and vascular patterns can present in all stages of symptomatic COVID-19, whereas the fibrotic pattern presents starting at ~3 weeks. Moreover, patients can present with more than one pattern, either simultaneously or consecutively. These findings are consistent with knowledge regarding clinical patterns of viral infection, development of hyperinflammation and hypercoagulability, and fibrosis. Close collaboration among medical staff is necessary in order to translate this knowledge and classification of pathophysiological mechanisms into clinical stages of disease in individual patients. Moreover, further research, including histopathological studies, is warranted in order to develop reliable, clinically relevant biomarkers by correlating these pathological findings with laboratory results and radiological findings, thus, increasing our understanding of COVID-19 and facilitating the move to precision medicine for treating patients.
Collapse
Affiliation(s)
- Samuel B Polak
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge C Van Gool
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Danielle Cohen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan H von der Thüsen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Judith van Paassen
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
97
|
Macauley P, Martin A, Epelbaum O. CORTICOSTEROIDS IN THE TREATMENT OF SEVERE COVID-19 LUNG DISEASE: THE PULMONOLOGY PERSPECTIVE FROM THE FIRST UNITED STATES EPICENTER. Int J Infect Dis 2020; 100:309-313. [PMID: 32829047 PMCID: PMC7441019 DOI: 10.1016/j.ijid.2020.08.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 pandemic has introduced the medical community to a lung disease heretofore unknown to most clinicians. In much of the discourse about COVID-19 lung disease, the more familiar clinical entity of ARDS has been used as the guiding paradigm. Reflecting on studies in ARDS, particularly that due to influenza, and on data from the SARS-CoV and MERS epidemics, many authorities, including within the discipline of infectious diseases, were initially passionate in their opposition to the use of corticosteroids for lung involvement in COVID-19. The voice of the pulmonology community-the community of lung experts-has continued to be among the quietest in this conversation. Herein we offer our perspective as academic pulmonologists who encountered COVID-19 in its first United States epicenter of New York City. We encourage a conceptual separation between early COVID-19 lung involvement and ARDS. We draw on history with other immune cell-mediated lung diseases, on insights from the SARS-CoV experience, and on frontline observations in an attempt to allay the skepticism towards corticosteroids in COVID-19 lung disease that is likely to persist even as favorable study results emerge.
Collapse
Affiliation(s)
- Precious Macauley
- Division of Pulmonary and Critical Care Medicine, Lincoln Medical and Mental Health Center, Bronx, NY, USA.
| | - Alvaro Martin
- Division of Pulmonary and Critical Care Medicine, Metropolitan Hospital Center, 1901 1st Avenue, Room 704, New York, NY 10029, USA.
| | - Oleg Epelbaum
- Division of Pulmonary, Critical Care and Sleep Medicine, Westchester Medical Center, Macy Pavillion, 100 Woods Road, Valhalla, NY 10595, USA.
| |
Collapse
|
98
|
Del Sorbo L, Fan E. Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome Supported with Extracorporeal Membrane Oxygenation. Lost in Translational Research? Am J Respir Crit Care Med 2020; 202:314-315. [PMID: 32356669 PMCID: PMC7397807 DOI: 10.1164/rccm.202004-1139ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Lorenzo Del Sorbo
- Interdepartmental Division of Critical Care MedicineUniversity of TorontoToronto, Ontario, Canadaand.,Extracorporeal Life Support (ECLS) ProgramToronto General HospitalToronto, Ontario, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care MedicineUniversity of TorontoToronto, Ontario, Canadaand.,Extracorporeal Life Support (ECLS) ProgramToronto General HospitalToronto, Ontario, Canada
| |
Collapse
|
99
|
Brown R, McKelvey MC, Ryan S, Creane S, Linden D, Kidney JC, McAuley DF, Taggart CC, Weldon S. The Impact of Aging in Acute Respiratory Distress Syndrome: A Clinical and Mechanistic Overview. Front Med (Lausanne) 2020; 7:589553. [PMID: 33195353 PMCID: PMC7649269 DOI: 10.3389/fmed.2020.589553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with increased morbidity and mortality in the elderly population (≥65 years of age). Additionally, age is widely reported as a risk factor for the development of ARDS. However, the underlying pathophysiological mechanisms behind the increased risk of developing, and increased severity of, ARDS in the elderly population are not fully understood. This is compounded by the significant heterogeneity observed in patients with ARDS. With an aging population worldwide, a better understanding of these mechanisms could facilitate the development of therapies to improve outcomes in this population. In this review, the current clinical evidence of age as a risk factor and prognostic indicator in ARDS and the potential underlying mechanisms that may contribute to these factors are outlined. In addition, research on age-dependent treatment options and biomarkers, as well as future prospects for targeting these underlying mechanisms, are discussed.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Michael C McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Shannice Creane
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Dermot Linden
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Joseph C Kidney
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast, United Kingdom
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
100
|
Gacouin A, Lesouhaitier M, Reizine F, Pronier C, Grégoire M, Painvin B, Maamar A, Thibault V, Le Tulzo Y, Tadié JM. Short-term survival of acute respiratory distress syndrome patients due to influenza virus infection alone: a cohort study. ERJ Open Res 2020; 6:00587-2020. [PMID: 33263066 PMCID: PMC7682721 DOI: 10.1183/23120541.00587-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 11/07/2022] Open
Abstract
Background Influenza virus (IV)-related pathophysiology suggests that the prognosis of acute respiratory distress syndrome (ARDS) due to IV could be different from the prognosis of ARDS due to other causes. However, the impact of IV infection alone on the prognosis of ARDS patients compared to that of patients with other causes of ARDS has been poorly assessed. Methods We compared the 28-day survival from the diagnosis of ARDS with an arterial oxygen tension/inspiratory oxygen fraction ratio ≤150 mmHg between patients with and without IV infection alone. Data were collected prospectively and analysed retrospectively. We first performed survival analysis on the whole population; second, patients with IV infection alone were compared with matched pairs using propensity score matching. Results The cohort admitted from October 2009 to March 2020 consisted of 572 patients, including 73 patients (13%) with IV alone. On the first 3 days of mechanical ventilation, nonpulmonary Sequential Organ Failure Assessment scores were significantly lower in patients with IV infection than in the other patients. After the adjusted analysis, IV infection alone remained independently associated with lower mortality at day 28 (hazard ratio 0.51, 95% CI 0.26–0.99, p=0.047). Mortality at day 28 was significantly lower in patients with IV infection alone than in other patients when propensity score matching was used (20% versus 38%, p=0.02). Conclusions Our results suggest that patients with ARDS following IV infection alone have a significantly better prognosis at day 28 and less severe nonpulmonary organ dysfunction than do those with ARDS from causes other than IV infection alone. Influenza virus infection alone is associated with a better short-term prognosis than are other causes of ARDShttps://bit.ly/31W2Mh2
Collapse
|