51
|
Birket SE, Davis JM, Fernandez-Petty CM, Henderson AG, Oden AM, Tang L, Wen H, Hong J, Fu L, Chambers A, Fields A, Zhao G, Tearney GJ, Sorscher EJ, Rowe SM. Ivacaftor Reverses Airway Mucus Abnormalities in a Rat Model Harboring a Humanized G551D-CFTR. Am J Respir Crit Care Med 2020; 202:1271-1282. [PMID: 32584141 PMCID: PMC7605185 DOI: 10.1164/rccm.202002-0369oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022] Open
Abstract
Rationale: Animal models have been highly informative for understanding the characteristics, onset, and progression of cystic fibrosis (CF) lung disease. In particular, the CFTR-/- rat has revealed insights into the airway mucus defect characteristic of CF but does not replicate a human-relevant CFTR (cystic fibrosis transmembrane conductance regulator) variant.Objectives: We hypothesized that a rat expressing a humanized version of CFTR and harboring the ivacaftor-sensitive variant G551D could be used to test the impact of CFTR modulators on pathophysiologic development and correction.Methods: In this study, we describe a humanized-CFTR rat expressing the G551D variant obtained by zinc finger nuclease editing of a human complementary DNA superexon, spanning exon 2-27, with a 5' insertion site into the rat gene just beyond intron 1. This targeted insertion takes advantage of the endogenous rat promoter, resulting in appropriate expression compared with wild-type animals.Measurements and Main Results: The bioelectric phenotype of the epithelia recapitulates the expected absence of CFTR activity, which was restored with ivacaftor. Large airway defects, including depleted airway surface liquid and periciliary layers, delayed mucus transport rates, and increased mucus viscosity, were normalized after the administration of ivacaftor.Conclusions: This model is useful to understand the mechanisms of disease and the extent of pathology reversal with CFTR modulators.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Wen
- Cystic Fibrosis Research Center, and
| | - Jeong Hong
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Lianwu Fu
- Cystic Fibrosis Research Center, and
- Cell, Developmental, and Integrated Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Alvin Fields
- Horizon Discovery Group PLC, St. Louis, Missouri; and
| | - Gojun Zhao
- Horizon Discovery Group PLC, St. Louis, Missouri; and
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Eric J. Sorscher
- Cell, Developmental, and Integrated Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven M. Rowe
- Department of Medicine
- Cystic Fibrosis Research Center, and
- Cell, Developmental, and Integrated Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
52
|
McCormick J, Hoffman K, Thompson H, Skinner D, Zhang S, Grayson J, Illek B, Cho DY, Woodworth BA. Differential Chloride Secretory Capacity in Transepithelial Ion Transport Properties in Chronic Rhinosinusitis. Am J Rhinol Allergy 2020; 34:830-837. [PMID: 32576027 PMCID: PMC9793428 DOI: 10.1177/1945892420930975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epithelial ion transport regulates hydration of airway mucosal surfaces, and thus promotes effective mucociliary clearance (MCC). Decreased transepithelial Cl- transport may contribute to epithelial dysfunction by abrogating MCC and increasing mucus viscosity in chronic rhinosinusitis (CRS). The objective of the current study is to evaluate Cl- channel transport properties from cultures of human sinonasal epithelia. METHODS Human sinonasal epithelia (HSNE) from patients undergoing sinus surgery were cultured at an air-liquid interface to confluence and full differentiation. The epithelial monolayers were mounted in Ussing Chambers to investigate pharmacological manipulation of ion transport. Epithelial Na+ channel (via Amiloride), CFTR (via forskolin), and Ca2+-activated Cl- channel (CaCC, via UTP) transport were investigated among three different patient groups: Control, CRS and CRS with polyposis. CFTR mRNA levels were evaluated with quantitative RT-PCR. RESULTS HSNE cultures from 18 patients (Control = 9, CRS = 6, CRS with polyposis = 3) were evaluated in 142 experiments. Summary data from the 18 patients demonstrated that stimulated CFTR-mediated anion transport (Δ ISC) was significantly lower with CRS (7.58+/-2.24 µA/cm2) compared to control (25.86+/-3.44 µA/cm2) and CRS with polyposis (20.16+/-4.0 µA/cm2) (p = 0.004). No statistically significant difference was found for CaCC anion transport between groups (p = 0.39). Significantly decreased mRNA (relative expression) was noted in CRS cultures (CRS = 40.83+/-1.76 vs. control = 116.2+/-24.27, p = 0.03). CONCLUSIONS A substantial decrease in the Cl- secretory capacity of HSNE monolayers was demonstrated in CRS subjects. Data suggest that CFTR may contribute more to abnormal ion transport in CRS than CaCC.
Collapse
Affiliation(s)
- Justin McCormick
- Department of Otolaryngology—Head
& Neck Surgery, University of Alabama at Birmingham, Birmingham,
Alabama
| | - Kyle Hoffman
- Department of Otolaryngology—Head
& Neck Surgery, University of Alabama at Birmingham, Birmingham,
Alabama
| | - Harrison Thompson
- Department of Otolaryngology—Head
& Neck Surgery, University of Alabama at Birmingham, Birmingham,
Alabama
| | - Daniel Skinner
- Department of Otolaryngology—Head
& Neck Surgery, University of Alabama at Birmingham, Birmingham,
Alabama
| | - Shaoyan Zhang
- Department of Otolaryngology—Head
& Neck Surgery, University of Alabama at Birmingham, Birmingham,
Alabama
| | - Jessica Grayson
- Department of Otolaryngology—Head
& Neck Surgery, University of Alabama at Birmingham, Birmingham,
Alabama
| | - Beate Illek
- UCSF Benioff Children’s Hospital
Oakland, Children’s Hospital Oakland Research Institute, Oakland,
California
| | - Do-Yeon Cho
- Department of Otolaryngology—Head
& Neck Surgery, University of Alabama at Birmingham, Birmingham,
Alabama,Gregory Fleming James Cystic
Fibrosis Research Center, University of Alabama at Birmingham, Birmingham,
Alabama,Division of Otolaryngology,
Department of Surgery, Veteran Affairs Medical Center, Birmingham, Alabama,Do-Yeon Cho, Department of
Otolaryngology—Head and Neck Surgery, University of Alabama at Birmingham, 1155
Faculty Office Tower 510 20th Street South, Birmingham, AL. 35233, USA.
| | - Bradford A. Woodworth
- Department of Otolaryngology—Head
& Neck Surgery, University of Alabama at Birmingham, Birmingham,
Alabama,Gregory Fleming James Cystic
Fibrosis Research Center, University of Alabama at Birmingham, Birmingham,
Alabama
| |
Collapse
|
53
|
Adewale AT, Falk Libby E, Fu L, Lenzie A, Boitet ER, Birket SE, Petty CF, Johns JD, Mazur M, Tearney GJ, Copeland D, Durham C, Rowe SM. Novel Therapy of Bicarbonate, Glutathione, and Ascorbic Acid Improves Cystic Fibrosis Mucus Transport. Am J Respir Cell Mol Biol 2020; 63:362-373. [PMID: 32374624 DOI: 10.1165/rcmb.2019-0287oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Defective airway mucus clearance is a defining characteristic of cystic fibrosis lung disease, and improvements to current mucolytic strategies are needed. Novel approaches targeting a range of contributing mechanisms are in various stages of preclinical and clinical development. ARINA-1 is a new nebulized product comprised of ascorbic acid, glutathione, and bicarbonate. Using microoptical coherence tomography, we tested the effect of ARINA-1 on central features of mucociliary clearance in F508del/F508del primary human bronchial epithelial cells to assess its potential as a mucoactive therapy in cystic fibrosis. We found that ARINA-1 significantly augmented mucociliary transport rates, both alone and with CFTR (cystic fibrosis transmembrane conductance regulator) modulator therapy, whereas airway hydration and ciliary beating were largely unchanged compared with PBS vehicle control. Analysis of mucus reflectivity and particle-tracking microrheology indicated that ARINA-1 restores mucus clearance by principally reducing mucus layer viscosity. The combination of bicarbonate and glutathione elicited increases in mucociliary transport rate comparable to those seen with ARINA-1, indicating the importance of this interaction to the impact of ARINA-1 on mucus transport; this effect was not recapitulated with bicarbonate alone or bicarbonate combined with ascorbic acid. Assessment of CFTR chloride transport revealed an increase in CFTR-mediated chloride secretion in response to ARINA-1 in CFBE41o- cells expressing wild-type CFTR, driven by CFTR activity stimulation by ascorbate. This response was absent in CFBE41o- F508del cells treated with VX-809 and primary human bronchial epithelial cells, implicating CFTR-independent mechanisms for the effect of ARINA-1 on cystic fibrosis mucus. Together, these studies indicate that ARINA-1 is a novel potential therapy for the treatment of impaired mucus clearance in cystic fibrosis.
Collapse
Affiliation(s)
| | | | - Lianwu Fu
- Department of Cellular, Developmental, and Integrative Biology.,Department of Pediatrics, and
| | | | | | - Susan E Birket
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | - Guillermo J Tearney
- Wellman Center for Photomedicine and.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts; and
| | | | | | - Steven M Rowe
- Cystic Fibrosis Research Center.,Department of Cellular, Developmental, and Integrative Biology.,Department of Pediatrics, and.,Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
54
|
Mall MA, Mayer-Hamblett N, Rowe SM. Cystic Fibrosis: Emergence of Highly Effective Targeted Therapeutics and Potential Clinical Implications. Am J Respir Crit Care Med 2020; 201:1193-1208. [PMID: 31860331 DOI: 10.1164/rccm.201910-1943so] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) remains the most common life-shortening hereditary disease in white populations, with high morbidity and mortality related to chronic airway mucus obstruction, inflammation, infection, and progressive lung damage. In 1989, the discovery that CF is caused by mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene that encodes a cAMP-dependent anion channel vital for proper Cl- and HCO3- transport across epithelial surfaces provided a solid foundation for unraveling underlying disease mechanisms and the development of therapeutics targeting the basic defect in people with CF. In this review, we focus on recent advances in our understanding of the molecular defects caused by different classes of CFTR mutations, implications for pharmacological rescue of mutant CFTR, and insights into how CFTR dysfunction impairs key host defense mechanisms, such as mucociliary clearance and bacterial killing in CF airways. Furthermore, we review the path that led to the recent breakthrough in the development of highly effective CFTR-directed therapeutics, now applicable for up to 90% of people with CF who carry responsive CFTR mutations, including those with just a single copy of the most common F508del mutation. Finally, we discuss the remaining challenges and strategies to develop highly effective targeted therapies for all patients and the unprecedented potential of these novel therapies to transform CF from a fatal to a treatable chronic condition.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Pediatric Pulmonology, Immunology, and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Center for Lung Research (DZL), Berlin, Germany
| | - Nicole Mayer-Hamblett
- Department of Pediatrics and.,Department of Biostatistics, University of Washington, Seattle, Washington.,Seattle Children's Hospital, Seattle, Washington
| | - Steven M Rowe
- Department of Medicine.,Department of Pediatrics, and.,Department of Cell, Developmental and Integrative Biology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
55
|
Liu Z, Anderson JD, Deng L, Mackay S, Bailey J, Kersh L, Rowe SM, Guimbellot JS. Human Nasal Epithelial Organoids for Therapeutic Development in Cystic Fibrosis. Genes (Basel) 2020; 11:genes11060603. [PMID: 32485957 PMCID: PMC7349680 DOI: 10.3390/genes11060603] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
We describe a human nasal epithelial (HNE) organoid model derived directly from patient samples that is well-differentiated and recapitulates the airway epithelium, including the expression of cilia, mucins, tight junctions, the cystic fibrosis transmembrane conductance regulator (CFTR), and ionocytes. This model requires few cells compared to airway epithelial monolayer cultures, with multiple outcome measurements depending on the application. A novel feature of the model is the predictive capacity of lumen formation, a marker of baseline CFTR function that correlates with short-circuit current activation of CFTR in monolayers and discriminates the cystic fibrosis (CF) phenotype from non-CF. Our HNE organoid model is amenable to automated measurements of forskolin-induced swelling (FIS), which distinguishes levels of CFTR activity. While the apical side is not easily accessible, RNA- and DNA-based therapies intended for systemic administration could be evaluated in vitro, or it could be used as an ex vivo biomarker of successful repair of a mutant gene. In conclusion, this highly differentiated airway epithelial model could serve as a surrogate biomarker to assess correction of the mutant gene in CF or other diseases, recapitulating the phenotypic and genotypic diversity of the population.
Collapse
Affiliation(s)
- Zhongyu Liu
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA; (Z.L.); (J.D.A.); (S.M.); (L.K.); (S.M.R.)
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL 35233, USA; (L.D.); (J.B.)
| | - Justin D. Anderson
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA; (Z.L.); (J.D.A.); (S.M.); (L.K.); (S.M.R.)
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL 35233, USA; (L.D.); (J.B.)
| | - Lily Deng
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL 35233, USA; (L.D.); (J.B.)
| | - Stephen Mackay
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA; (Z.L.); (J.D.A.); (S.M.); (L.K.); (S.M.R.)
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL 35233, USA; (L.D.); (J.B.)
| | - Johnathan Bailey
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL 35233, USA; (L.D.); (J.B.)
| | - Latona Kersh
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA; (Z.L.); (J.D.A.); (S.M.); (L.K.); (S.M.R.)
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, UAB, Birmingham, AL 35294, USA
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA; (Z.L.); (J.D.A.); (S.M.); (L.K.); (S.M.R.)
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL 35233, USA; (L.D.); (J.B.)
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, UAB, Birmingham, AL 35294, USA
- Department of Cell, Developmental and Integrative Biology, UAB, Birmingham, AL 35294, USA
| | - Jennifer S. Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA; (Z.L.); (J.D.A.); (S.M.); (L.K.); (S.M.R.)
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL 35233, USA; (L.D.); (J.B.)
- Correspondence: ; Tel.: +1-205-234-0250; Fax: +1-205-975-5983
| |
Collapse
|
56
|
Birket SE, Rowe SM. Revealing the molecular signaling pathways of mucus stasis in cystic fibrosis. J Clin Invest 2020; 129:4089-4090. [PMID: 31524633 DOI: 10.1172/jci131652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mucus obstruction is a hallmark of cystic fibrosis (CF) airway disease, leading to chronic infection, dysregulated inflammation, and progressive lung disease. As mucus hyperexpression is a key component in the initiation and perpetuation of airway obstruction, the triggers underlying mucin release must be identified and understood. In this issue of the JCI, Chen et al. sought to delineate the mechanisms that allow IL-1α/IL-1β to perpetuate the mucoinflammatory environment characteristic of the CF airway. The authors demonstrated that IL-1α and IL-1β stimulated non-CF human bronchial epithelial (HBE) cells to upregulate and secrete both MUC5B and MUC5AC in a dose-dependent manner, an effect that was neutralized by the inhibition of the IL-1α/IL-1β receptor (IL-1R1). Further experiments using mouse models and excised lung tissue identified contributors that drive a vicious feedback cycle of hyperconcentrated mucus secretions and persistent inflammation in the CF airway, factors that are likely at the nidus of progressive lung disease.
Collapse
|
57
|
Rasmussen LW, Stanford D, Patel K, Raju SV. Evaluation of secondhand smoke effects on CFTR function in vivo. Respir Res 2020; 21:70. [PMID: 32192506 PMCID: PMC7082971 DOI: 10.1186/s12931-020-1324-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/17/2020] [Indexed: 01/01/2023] Open
Affiliation(s)
- Lawrence W Rasmussen
- Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
- Environmental Health Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Denise Stanford
- Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Krina Patel
- Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - S Vamsee Raju
- Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, USA.
- Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
58
|
Pieper M, Schulz-Hildebrandt H, Mall MA, Hüttmann G, König P. Intravital microscopic optical coherence tomography imaging to assess mucus-mobilizing interventions for muco-obstructive lung disease in mice. Am J Physiol Lung Cell Mol Physiol 2020; 318:L518-L524. [PMID: 31994896 PMCID: PMC7093113 DOI: 10.1152/ajplung.00287.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Airway mucus obstruction is a hallmark of chronic lung diseases such as cystic fibrosis, asthma, and COPD, and the development of more effective mucus-mobilizing therapies remains an important unmet need for patients with these muco-obstructive lung diseases. However, methods for sensitive visualization and quantitative assessment of immediate effects of therapeutic interventions on mucus clearance in vivo are lacking. In this study, we determined whether newly developed high-speed microscopic optical coherence tomography (mOCT) is sensitive to detect and compare in vivo effects of inhaled isotonic saline, hypertonic saline, and bicarbonate on mucus mobilization and clearance in Scnn1b-transgenic mice with muco-obstructive lung disease. In vivo mOCT imaging showed that inhaled isotonic saline-induced rapid mobilization of mucus that was mainly transported as chunks from the lower airways of Scnn1b-transgenic mice. Hypertonic saline mobilized a significantly greater amount of mucus that showed a more uniform distribution compared with isotonic saline. The addition of bicarbonate-to-isotonic saline had no effect on mucus mobilization, but also led to a more uniform mucus layer compared with treatment with isotonic saline alone. mOCT can detect differences in response to mucus-mobilizing interventions in vivo, and may thus support the development of more effective therapies for patients with muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Mario Pieper
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North, German Center for Lung Research, Lübeck, Germany
| | - Hinnerk Schulz-Hildebrandt
- Airway Research Center North, German Center for Lung Research, Lübeck, Germany.,Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Gereon Hüttmann
- Airway Research Center North, German Center for Lung Research, Lübeck, Germany.,Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North, German Center for Lung Research, Lübeck, Germany
| |
Collapse
|
59
|
Lin VY, Kaza N, Birket SE, Kim H, Edwards LJ, LaFontaine J, Liu L, Mazur M, Byzek SA, Hanes J, Tearney GJ, Raju SV, Rowe SM. Excess mucus viscosity and airway dehydration impact COPD airway clearance. Eur Respir J 2020; 55:1900419. [PMID: 31672759 PMCID: PMC7336367 DOI: 10.1183/13993003.00419-2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/09/2019] [Indexed: 12/28/2022]
Abstract
The mechanisms by which cigarette smoking impairs airway mucus clearance are not well understood. We recently established a ferret model of cigarette smoke-induced chronic obstructive pulmonary disease (COPD) exhibiting chronic bronchitis. We investigated the effects of cigarette smoke on mucociliary transport (MCT).Adult ferrets were exposed to cigarette smoke for 6 months, with in vivo mucociliary clearance measured by technetium-labelled DTPA retention. Excised tracheae were imaged with micro-optical coherence tomography. Mucus changes in primary human airway epithelial cells and ex vivo ferret airways were assessed by histology and particle tracking microrheology. Linear mixed models for repeated measures identified key determinants of MCT.Compared to air controls, cigarette smoke-exposed ferrets exhibited mucus hypersecretion, delayed mucociliary clearance (-89.0%, p<0.01) and impaired tracheal MCT (-29.4%, p<0.05). Cholinergic stimulus augmented airway surface liquid (ASL) depth (5.8±0.3 to 7.3±0.6 µm, p<0.0001) and restored MCT (6.8±0.8 to 12.9±1.2 mm·min-1, p<0.0001). Mixed model analysis controlling for covariates indicated smoking exposure, mucus hydration (ASL) and ciliary beat frequency were important predictors of MCT. Ferret mucus was hyperviscous following smoke exposure in vivo or in vitro, and contributed to diminished MCT. Primary cells from smokers with and without COPD recapitulated these findings, which persisted despite the absence of continued smoke exposure.Cigarette smoke impairs MCT by inducing airway dehydration and increased mucus viscosity, and can be partially abrogated by cholinergic secretion of fluid secretion. These data elucidate the detrimental effects of cigarette smoke exposure on mucus clearance and suggest additional avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Vivian Y. Lin
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Niroop Kaza
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Susan E. Birket
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL/USA
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Lloyd J. Edwards
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Jennifer LaFontaine
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Linbo Liu
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Marina Mazur
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Stephen A. Byzek
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Justin Hanes
- The Center for Nanomedicine at Wilmer Eye Institute, Johns Hopkins University, MD/USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA/USA
| | - S. Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL/USA
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Steven M. Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL/USA
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL/USA
| |
Collapse
|
60
|
Atanasova KR, Reznikov LR. Strategies for measuring airway mucus and mucins. Respir Res 2019; 20:261. [PMID: 31752894 PMCID: PMC6873701 DOI: 10.1186/s12931-019-1239-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Mucus secretion and mucociliary transport are essential defense mechanisms of the airways. Deviations in mucus composition and secretion can impede mucociliary transport and elicit airway obstruction. As such, mucus abnormalities are hallmark features of many respiratory diseases, including asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD). Studying mucus composition and its physical properties has therefore been of significant interest both clinically and scientifically. Yet, measuring mucus production, output, composition and transport presents several challenges. Here we summarize and discuss the advantages and limitations of several techniques from five broadly characterized strategies used to measure mucus secretion, composition and mucociliary transport, with an emphasis on the gel-forming mucins. Further, we summarize advances in the field, as well as suggest potential areas of improvement moving forward.
Collapse
Affiliation(s)
- Kalina R Atanasova
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA.
| |
Collapse
|
61
|
Abstract
The airway surface functional microanatomy, including the ciliated airway epithelium and overlying mucus layer, is a critical component of the mucociliary escalator apparatus, an innate immune defense that helps to maintain a clean environment in the respiratory tract. Many genetic and acquired respiratory diseases have underlying pathophysiological mechanisms in which constituents of the airway surface functional microanatomy are defective. For example, in cystic fibrosis, mutations in the cystic fibrosis transmembrane conductance regulator gene, which normally produces a secretory anion channel protein, result in defective anion secretion and consequent dehydrated and acidic mucosal layer overlying the airway epithelium. This thick, viscous mucus results in depressed ciliary beating and delayed mucociliary transport, trapping bacteria and other pathogens, compromising host defenses and ultimately propagating disease progression. Thus, developing tools capable of studying the airway surface microanatomy has been critical to better understanding key pathophysiological mechanisms, and may become useful tools to monitor treatment outcomes. Here, we discuss functional imaging tools to study the airway surface functional microanatomy, and how their application has contributed to an improved understanding of airway disease pathophysiology.
Collapse
|
62
|
Liu Z, Mackay S, Gordon DM, Anderson JD, Haithcock DW, Garson CJ, Tearney GJ, Solomon GM, Pant K, Prabhakarpandian B, Rowe SM, Guimbellot JS. Co-cultured microfluidic model of the airway optimized for microscopy and micro-optical coherence tomography imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:5414-5430. [PMID: 31646055 PMCID: PMC6788592 DOI: 10.1364/boe.10.005414] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 05/12/2023]
Abstract
We have developed a human bronchial epithelial (HBE) cell and endothelial cell co-cultured microfluidic model to mimic the in vivo human airway. This airway-on-a-chip was designed with a central epithelial channel and two flanking endothelial channels, with a three-dimensional monolayers of cells growing along the four walls of the channel, forming central clear lumens. These cultures mimic airways and microvasculature in vivo. The central channel cells are grown at air-liquid interface and show features of airway differentiation including tight-junction formation, mucus production, and ciliated cells. Combined with novel micro-optical coherence tomography, this chip enables functional imaging of the interior of the lumen, which includes quantitation of cilia motion including beat frequency and mucociliary transport. This airway-on-a chip is a significant step forward in the development of microfluidics models for functional imaging.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Pediatrics, University of Alabama at Birmingham, Lowder Building Suite 620, 1600 7th Avenue South, Birmingham, AL 35233, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd, Birmingham, AL 35294, USA
| | - Stephen Mackay
- Department of Pediatrics, University of Alabama at Birmingham, Lowder Building Suite 620, 1600 7th Avenue South, Birmingham, AL 35233, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd, Birmingham, AL 35294, USA
| | - Dylan M. Gordon
- Biomedical Technology, CFD Research Corporation, 701 McMillian Way NW, Huntsville, AL 35806, USA
| | - Justin D. Anderson
- Department of Pediatrics, University of Alabama at Birmingham, Lowder Building Suite 620, 1600 7th Avenue South, Birmingham, AL 35233, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd, Birmingham, AL 35294, USA
| | - Dustin W. Haithcock
- Biomedical Technology, CFD Research Corporation, 701 McMillian Way NW, Huntsville, AL 35806, USA
| | - Charles J. Garson
- Biomedical Technology, CFD Research Corporation, 701 McMillian Way NW, Huntsville, AL 35806, USA
| | - Guillermo J. Tearney
- Department of Pathology, Wellman Center for Photomedicine, Massachusetts General Hospital, & Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA
| | - George M. Solomon
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, THT 422, 1900 University Blvd, Birmingham, AL 35294, USA
| | - Kapil Pant
- Biomedical Technology, CFD Research Corporation, 701 McMillian Way NW, Huntsville, AL 35806, USA
| | | | - Steven M. Rowe
- Department of Pediatrics, University of Alabama at Birmingham, Lowder Building Suite 620, 1600 7th Avenue South, Birmingham, AL 35233, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, THT 422, 1900 University Blvd, Birmingham, AL 35294, USA
| | - Jennifer S. Guimbellot
- Department of Pediatrics, University of Alabama at Birmingham, Lowder Building Suite 620, 1600 7th Avenue South, Birmingham, AL 35233, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd, Birmingham, AL 35294, USA
| |
Collapse
|
63
|
A physiologically-motivated model of cystic fibrosis liquid and solute transport dynamics across primary human nasal epithelia. J Pharmacokinet Pharmacodyn 2019; 46:457-472. [PMID: 31494805 DOI: 10.1007/s10928-019-09649-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/02/2019] [Indexed: 11/27/2022]
Abstract
Cystic fibrosis (CF) disease is caused by mutations affecting the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel expressed in the mucosal side of epithelial tissue. In the airway, dysfunctional CFTR results in a transepithelial osmotic imbalance leading to hyperabsorption of airway surface liquid mucostasis, chronic inflammation, and eventual respiratory failure. Human nasal epithelial cell cultures from healthy and CF donors were used to perform studies of liquid and solute transport dynamics at an air/liquid interface in order to emulate the in vivo airway. Then, these results were used to inform a quantitative systems pharmacology model of airway epithelium describing electrically and chemically driven transcellular ionic transport, contributions of both convective and diffusive paracellular solute transport, and osmotically driven transepithelial water dynamics. Model predictions showed CF cultures, relative to non-CF ones, have increased apical and basolateral water permeabilities, and increase paracellular permeability and transepithelial chemical driving force for a radiolabeled tracer used to track small molecule absorption. These results provide a computational platform to better understand and probe the mechanisms behind the liquid hyperabsorption and small molecule retention profiles observed in the CF airway.
Collapse
|
64
|
Lowery AS, Gallant JN, Woodworth BA, Brown RF, Sawicki GS, Shannon CN, Virgin FW. Chronic rhino-sinusitis treatment in children with cystic fibrosis: A cross-sectional survey of pediatric pulmonologists and otolaryngologists. Int J Pediatr Otorhinolaryngol 2019; 124:139-142. [PMID: 31195306 DOI: 10.1016/j.ijporl.2019.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Children with cystic fibrosis (CF) have a high incidence of chronic rhinosinusitis (CRS); however, no clinical care guidelines currently exist for the management of CRS in these patients. As a result, there is variation in the treatment of CRS in children, especially when it comes to the frequency of surgery for nasal polyposis. METHODS A 28-question survey was sent to pediatric otolaryngologists (POs) and pulmonologists (PPs) who care for pediatric CF patients. Questions assessed the level of agreement that practitioners had with various approaches to CRS care in pediatric CF patients. RESULTS Responses from 114 POs and 50 PPs were included in our final analysis. Each group demonstrated significantly different approaches to the medical and surgical management of CRS in pediatric CF patients. POs prefer multi-modal approach while PPs prefer single-modal approaches. With respect to medical management, PPs incline towards IV antibiotics while POs tend toward oral steroids. CONCLUSION POs and PPs strongly agree that CRS has an impact on overall disease state and quality of life of pediatric CF patients. However, POs and PPs significantly differ in their approach to treating CRS, demonstrating a potential need for clinical care guidelines for the management these common sequelae of CF.
Collapse
Affiliation(s)
- Anne S Lowery
- Vanderbilt University School of Medicine, Nashville, TN, USA; Surgical Outcomes Center for Kids, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jean-Nicolas Gallant
- Vanderbilt University School of Medicine, Nashville, TN, USA; Surgical Outcomes Center for Kids, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradford A Woodworth
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebekah F Brown
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gregory S Sawicki
- Division of Pulmonary and Respiratory Diseases, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Chevis N Shannon
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Surgical Outcomes Center for Kids, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank W Virgin
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Surgical Outcomes Center for Kids, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
65
|
Leung HM, Birket SE, Hyun C, Ford TN, Cui D, Solomon GM, Shei RJ, Adewale AT, Lenzie AR, Fernandez-Petty CM, Zheng H, Palermo JH, Cho DY, Woodworth BA, Yonker LM, Hurley BP, Rowe SM, Tearney GJ. Intranasal micro-optical coherence tomography imaging for cystic fibrosis studies. Sci Transl Med 2019; 11:eaav3505. [PMID: 31391319 PMCID: PMC6886258 DOI: 10.1126/scitranslmed.aav3505] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Although impairment of mucociliary clearance contributes to severe morbidity and mortality in people with CF, a clear understanding of the pathophysiology is lacking. This is, in part, due to the absence of clinical imaging techniques capable of capturing CFTR-dependent functional metrics at the cellular level. Here, we report the clinical translation of a 1-μm resolution micro-optical coherence tomography (μOCT) technology to quantitatively characterize the functional microanatomy of human upper airways. Using a minimally invasive intranasal imaging approach, we performed a clinical study on age- and sex-matched CF and control groups. We observed delayed mucociliary transport rate at the cellular level, depletion of periciliary liquid layer, and prevalent loss of ciliation in subjects with CF. Distinctive morphological differences in mucus and various forms of epithelial injury were also revealed by μOCT imaging and had prominent effects on the mucociliary transport apparatus. Elevated mucus reflectance intensity in CF, a proxy for viscosity in situ, had a dominant effect. These results demonstrate the utility of μOCT to determine epithelial function and monitor disease status of CF airways on a per-patient basis, with applicability for other diseases of mucus clearance.
Collapse
Affiliation(s)
- Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Susan E Birket
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chulho Hyun
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Timothy N Ford
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dongyao Cui
- Nanyang Technological University, Singapore 639798, Singapore
| | - George M Solomon
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ren-Jay Shei
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Andrew R Lenzie
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Courtney M Fernandez-Petty
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Zheng
- Harvard Medical School, Boston, MA 02114, USA
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Justin H Palermo
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Do-Yeon Cho
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bradford A Woodworth
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lael M Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bryan P Hurley
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA.
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA.
- Harvard Medical School, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
66
|
Singh SB, McLearn-Montz AJ, Milavetz F, Gates LK, Fox C, Murry LT, Sabus A, Porterfield HS, Fischer AJ. Pathogen acquisition in patients with cystic fibrosis receiving ivacaftor or lumacaftor/ivacaftor. Pediatr Pulmonol 2019; 54:1200-1208. [PMID: 31012285 PMCID: PMC6641998 DOI: 10.1002/ppul.24341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/14/2019] [Accepted: 04/05/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND The cystic fibrosis transmembrane conductance regulator (CFTR) modulators ivacaftor and lumacaftor/ivacaftor improve the status of existing infections in patients with cystic fibrosis (CF). It is unknown how well these drugs protect patients against incident infections. We hypothesized that CFTR modulator treatment would decrease new infections with Pseudomonas aeruginosa or Staphylococcus aureus. METHODS We retrospectively studied a single-center cohort of patients with CF during two time periods (2008-2011, Era 1) and (2012-2015, Era 2) based on the January 2012 approval of ivacaftor. Using Kaplan-Meier analysis, we compared the time to any new infection with P. aeruginosa, methicillin-resistant S. aureus (MRSA), or methicillin-sensitive S. aureus (MSSA) that was absent during a 2-year baseline. We stratified the analysis based on whether patients received ivacaftor or lumacaftor/ivacaftor during Era 2. We used the log-rank test and considered P < 0.05 statistically significant. RESULTS For patients receiving ivacaftor or lumacaftor/ivacaftor in Era 2, there was a statistically significant delay in the time to new bacterial acquisition in Era 2 vs. Era 1 ( P = 0.008). For patients who did not receive CFTR modulators, there was a trend toward slower acquisition of new bacterial infections in Era 2 compared to Era 1, but this was not statistically significant ( P = 0.10). CONCLUSIONS Patients receiving ivacaftor or lumacaftor/ivacaftor for CF had significantly delayed acquisition of P. aeruginosa and S. aureus after these drugs were released. This method for analyzing incident infections may be useful for future studies of CFTR modulators and bacterial acquisition in CF registry cohorts.
Collapse
Affiliation(s)
- Sachinkumar B Singh
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Amanda J McLearn-Montz
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Francesca Milavetz
- Department of Pharmacy Practice and Science, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Levi K Gates
- Department of Pharmacy Practice and Science, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Christopher Fox
- Department of Pharmacy Practice and Science, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Logan T Murry
- Department of Pharmacy Practice and Science, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Ashley Sabus
- Department of Pharmacy Practice and Science, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Harry S Porterfield
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Anthony J Fischer
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
67
|
Saber A, Nakka SS, Hussain R, Hugosson S. Staphylococcus aureus in chronic rhinosinusitis: the effect on the epithelial chloride channel (cystic fibrosis transmembrane conductance regulator, CFTR) and the epithelial sodium channel (ENaC) physiology. Acta Otolaryngol 2019; 139:652-658. [PMID: 31050570 DOI: 10.1080/00016489.2019.1603513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Chronic rhinosinusitis (CRS) is an inflammatory disease of the nose and the paranasal sinuses, often associated with an infection by Staphylococcus aureus (S. aureus). Disturbance in the function of ion channels is regarded as an etiological factor for pathogenesis of CRS. Aims: The study aims to measure the mRNA expression of the ENaC and CFTR ion channels in nasal epithelial cells (NECs) and to investigate the effect of both the budesonide and S. aureus on these ion channels. Materials and method: NECs biopsies obtained from healthy volunteers and patients with CRS. NECs were infected with S. aureus strains and/or budesonide to study the mRNA expression levels of the ENaC and CFTR ion channels. Results: The mRNA expression level of CFTR was increased while that of ENaC was decreased. S. aureus infection and budesonide treatment induced a significant modulation of ENaC and CFTR ion channels expression. Conclusion: The CFTR and ENaC ion channel physiology are of importance in the pathogenesis of CRS. Exposure to S. aureus infection and treatment with budesonide modulated the mRNA expression of CFTR and ENaC ion channels. Significance: Better understanding of the pathophysiology of CRS.
Collapse
Affiliation(s)
- Amanj Saber
- Department of Otolaryngology, Örebro University Hospital, Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Science, Örebro University, Örebro, Sweden
| | - Sravya Sowdamini Nakka
- Department of Microbiology and Immunology, Institution of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rashida Hussain
- Department of Otolaryngology, Örebro University Hospital, Örebro, Sweden
| | - Svante Hugosson
- Department of Otolaryngology, Örebro University Hospital, Örebro, Sweden
- Department of Medical Education, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
68
|
Fernandez-Petty CM, Hughes GW, Bowers HL, Watson JD, Rosen BH, Townsend SM, Santos C, Ridley CE, Chu KK, Birket SE, Li Y, Leung HM, Mazur M, Garcia BA, Evans TIA, Libby EF, Hathorne H, Hanes J, Tearney GJ, Clancy JP, Engelhardt JF, Swords WE, Thornton DJ, Wiesmann WP, Baker SM, Rowe SM. A glycopolymer improves vascoelasticity and mucociliary transport of abnormal cystic fibrosis mucus. JCI Insight 2019; 4:125954. [PMID: 30996141 DOI: 10.1172/jci.insight.125954] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/28/2019] [Indexed: 01/05/2023] Open
Abstract
Cystic fibrosis (CF) is characterized by increased mucus viscosity and delayed mucociliary clearance that contributes to progressive decline of lung function. Mucus in the respiratory and GI tract is excessively adhesive in the presence of airway dehydration and excess extracellular Ca2+ upon mucin release, promoting hyperviscous, densely packed mucins characteristic of CF. Therapies that target mucins directly through ionic interactions remain unexploited. Here we show that poly (acetyl, arginyl) glucosamine (PAAG), a polycationic biopolymer suitable for human use, interacts directly with mucins in a Ca2+-sensitive manner to reduce CF mucus viscoelasticity and improve its transport. Notably, PAAG induced a linear structure of purified MUC5B and altered its sedimentation profile and viscosity, indicative of proper mucin expansion. In vivo, PAAG nebulization improved mucociliary transport in CF rats with delayed mucus clearance, and cleared mucus plugging in CF ferrets. This study demonstrates the potential use of a synthetic glycopolymer PAAG as a molecular agent that could benefit patients with a broad array of mucus diseases.
Collapse
Affiliation(s)
| | - Gareth W Hughes
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, United Kingdom
| | - Hannah L Bowers
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - John D Watson
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Bradley H Rosen
- Department of Anatomy & Cell Biology and.,Department of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | - Caroline E Ridley
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, United Kingdom
| | - Kengyeh K Chu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Susan E. Birket
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center
| | - Yao Li
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Bryan A Garcia
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center
| | | | | | - Heather Hathorne
- Gregory Fleming James Cystic Fibrosis Research Center,Department of Pediatrics, UAB, Birmingham, Alabama, USA
| | - Justin Hanes
- Center for Nanomedicine and Departments of Biomedical Engineering, Chemical & Biomolecular Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John P Clancy
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - John F Engelhardt
- Department of Anatomy & Cell Biology and.,Department of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - William E Swords
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center
| | - David J Thornton
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, United Kingdom
| | | | | | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center,Department of Pediatrics, UAB, Birmingham, Alabama, USA.,Department of Cell Developmental & Integrative Biology, UAB, Birmingham, Alabama, USA
| |
Collapse
|
69
|
Ivanova R, Benton DCH, Munye MM, Rangseesorranan S, Hart SL, Moss GWJ. A Nanosensor Toolbox for Rapid, Label-Free Measurement of Airway Surface Liquid and Epithelial Cell Function. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8731-8739. [PMID: 30648848 DOI: 10.1021/acsami.8b14122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ciliated lung epithelial cells and the airway surface liquid (ASL) comprise one of the body's most important protective systems. This system is finely tuned, and perturbations to ASL rheology, ASL depth, ASL pH, the transepithelial potential, and the cilia beat frequency are all associated with disease pathology. Further, these apparently distinct properties interact with each other in a complex manner. For example, changes in ASL rheology can result from altered mucin secretion, changes in ASL pH, or changes in ASL depth. Thus, one of the great challenges in trying to understand airway pathology is that the properties of the ASL/epithelial cell system need to be assessed near-simultaneously and without perturbing the sample. Here, we show that nanosensor probes mounted on a scanning ion conductance microscope make this possible for the first time, without any need for labeling. We also demonstrate that ASL from senescence-retarded human bronchial epithelial cells retains its native properties. Our results demonstrate that by using a nanosensor approach, it is possible to pursue faster, more accurate, more coherent, and more informative studies of ASL and airway epithelia in health and disease.
Collapse
|
70
|
Muc5b overexpression causes mucociliary dysfunction and enhances lung fibrosis in mice. Nat Commun 2018; 9:5363. [PMID: 30560893 PMCID: PMC6299094 DOI: 10.1038/s41467-018-07768-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 11/14/2018] [Indexed: 01/16/2023] Open
Abstract
The gain-of-function MUC5B promoter variant rs35705950 is the dominant risk factor for developing idiopathic pulmonary fibrosis (IPF). Here we show in humans that MUC5B, a mucin thought to be restricted to conducting airways, is co-expressed with surfactant protein C (SFTPC) in type 2 alveolar epithelia and in epithelial cells lining honeycomb cysts, indicating that cell types involved in lung fibrosis in distal airspace express MUC5B. In mice, we demonstrate that Muc5b concentration in bronchoalveolar epithelia is related to impaired mucociliary clearance (MCC) and to the extent and persistence of bleomycin-induced lung fibrosis. We also establish the ability of the mucolytic agent P-2119 to restore MCC and to suppress bleomycin-induced lung fibrosis in the setting of Muc5b overexpression. Our findings suggest that mucociliary dysfunction might play a causative role in bleomycin-induced pulmonary fibrosis in mice overexpressing Muc5b, and that MUC5B in distal airspaces is a potential therapeutic target in humans with IPF.
Collapse
|
71
|
Shei RJ, Peabody JE, Kaza N, Rowe SM. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis. Curr Opin Pharmacol 2018; 43:152-165. [PMID: 30340955 PMCID: PMC6294660 DOI: 10.1016/j.coph.2018.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/11/2018] [Indexed: 01/28/2023]
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR dysfunction is characterized by abnormal mucociliary transport due to a dehydrated airway surface liquid (ASL) and hyperviscous mucus, among other pathologies of host defense. ASL depletion is caused by the absence of CFTR mediated chloride secretion along with continued activity of the epithelial sodium channel (ENaC) activity, which can also be affected by CFTR mediated anion conductance. Therefore, ENaC has been proposed as a therapeutic target to ameliorate ASL dehydration and improve mucus transport. Inhibition of ENaC has been shown to restore ASL hydration and enhance mucociliary transport in induced models of CF lung disease. To date, no therapy inhibiting ENaC has successfully translated to clinical efficacy, in part due to concerns regarding off-target effects, systemic exposure, durability of effect, and adverse effects. Recent efforts have been made to develop novel, rationally designed therapeutics to produce-specific, long-lasting inhibition of ENaC activity in the airways while simultaneously minimizing off target fluid transport effects, systemic exposure and side effects. Such approaches comprise next-generation small molecule direct inhibitors, indirect channel-activating protease inhibitors, synthetic peptide analogs, and oligonucleotide-based therapies. These novel therapeutics represent an exciting step forward in the development of ENaC-directed therapies for CF.
Collapse
Affiliation(s)
- Ren-Jay Shei
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacelyn E Peabody
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Medical Scientist (MD/PhD) Training Program, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Niroop Kaza
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
72
|
Brand JD, Lazrak A, Trombley JE, Shei RJ, Adewale AT, Tipper JL, Yu Z, Ashtekar AR, Rowe SM, Matalon S, Harrod KS. Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis. JCI Insight 2018; 3:123467. [PMID: 30333319 DOI: 10.1172/jci.insight.123467] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
Severe influenza (IAV) infection can develop into bronchopneumonia and edema, leading to acquired respiratory distress syndrome (ARDS) and pathophysiology. Underlying causes for pulmonary edema and aberrant fluid regulation largely remain unknown, particularly regarding the role of viral-mediated mechanisms. Herein, we show that distinct IAV strains reduced the functions of the epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane regulator (CFTR) in murine respiratory and alveolar epithelia in vivo, as assessed by measurements of nasal potential differences and single-cell electrophysiology. Reduced ion channel activity was distinctly limited to virally infected cells in vivo and not bystander uninfected lung epithelium. Multiple lines of evidence indicated ENaC and CFTR dysfunction during the acute infection period; however, only CFTR dysfunction persisted beyond the infection period. ENaC, CFTR, and Na,K-ATPase activities and protein levels were also reduced in virally infected human airway epithelial cells. Reduced ENaC and CFTR led to changes in airway surface liquid morphology of human tracheobronchial cultures and airways of IAV-infected mice. Pharmacologic correction of CFTR function ameliorated IAV-induced physiologic changes. These changes are consistent with mucous stasis and pulmonary edema; furthermore, they indicate that repurposing therapeutic interventions correcting CFTR dysfunction may be efficacious for treatment of IAV lung pathophysiology.
Collapse
Affiliation(s)
- Jeffrey D Brand
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - John E Trombley
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Ren-Jay Shei
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Timothy Adewale
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Tipper
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Amit R Ashtekar
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Steven M Rowe
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| |
Collapse
|
73
|
Dobay O, Laub K, Stercz B, Kéri A, Balázs B, Tóthpál A, Kardos S, Jaikumpun P, Ruksakiet K, Quinton PM, Zsembery Á. Bicarbonate Inhibits Bacterial Growth and Biofilm Formation of Prevalent Cystic Fibrosis Pathogens. Front Microbiol 2018; 9:2245. [PMID: 30283433 PMCID: PMC6157313 DOI: 10.3389/fmicb.2018.02245] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/03/2018] [Indexed: 11/13/2022] Open
Abstract
We investigated the effects of bicarbonate on the growth of several different bacteria as well as its effects on biofilm formation and intracellular cAMP concentration in Pseudomonas aeruginosa. Biofilm formation was examined in 96-well plates, with or without bicarbonate. The cAMP production of bacteria was measured by a commercial assay kit. We found that NaHCO3 (100 mmol l-1) significantly inhibited, whereas NaCl (100 mmol l-1) did not influence the growth of planktonic bacteria. MIC and MBC measurements indicated that the effect of HCO3− is bacteriostatic rather than bactericidal. Moreover, NaHCO3 prevented biofilm formation as a function of concentration. Bicarbonate and alkalinization of external pH induced a significant increase in intracellular cAMP levels. In conclusion, HCO3− impedes the planktonic growth of different bacteria and impedes biofilm formation by P. aeruginosa that is associated with increased intracellular cAMP production. These findings suggest that aerosol inhalation therapy with HCO3− solutions may help improve respiratory hygiene in patients with cystic fibrosis and possibly other chronically infected lung diseases.
Collapse
Affiliation(s)
- Orsolya Dobay
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Krisztina Laub
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Balázs Stercz
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Adrienn Kéri
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Bernadett Balázs
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Adrienn Tóthpál
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Szilvia Kardos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | | | - Kasidid Ruksakiet
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Paul M Quinton
- Department of Pediatrics, UC San Diego School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
74
|
Ermund A, Meiss LN, Dolan B, Bähr A, Klymiuk N, Hansson GC. The mucus bundles responsible for airway cleaning are retained in cystic fibrosis and by cholinergic stimulation. Eur Respir J 2018; 52:13993003.00457-2018. [PMID: 29853489 DOI: 10.1183/13993003.00457-2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/17/2018] [Indexed: 02/04/2023]
Abstract
The beneficial effect of anticholinergic therapy for chronic lung diseases such as chronic obstructive pulmonary disease (COPD) is well documented, although cholinergic stimulation paradoxically inhibits liquid absorption, increases ciliary beat frequency and increases airway surface liquid transport.Using pig tracheobronchial explants, we quantified basal mucus transport before as well as after incubation with the clinically used antimuscarinic compound ipratropium bromide (Atrovent) and stimulation with acetylcholine.As expected, surface liquid transport was increased by acetylcholine and carbachol. In contrast, the mucus bundles secreted from the submucosal glands normally transported on the cilia were stopped from moving by acetylcholine, an effect inhibited by ipratropium bromide. Interestingly, in pigs lacking a functional cystic fibrosis (CF) transmembrane conductance regulator (CFTR) channel, the mucus bundles were almost immobile. As in wild-type pigs, CF surface liquid transport increased after carbachol stimulation. The stagnant CF mucus bundles were trapped on the tracheal surface attached to the surface goblet cells. Pseudomonas aeruginosa bacteria were moved by the mucus bundles in wild-type but not CF pigs.Acetylcholine thus uncouples airway surface liquid transport from transport of the surface mucus bundles as the bundles are dynamically inhibited by acetylcholine and the CFTR channel, explaining initiation of CF and COPD, and opening novel therapeutic windows.
Collapse
Affiliation(s)
- Anna Ermund
- Dept of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Lauren N Meiss
- Dept of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Brendan Dolan
- Dept of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andrea Bähr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gunnar C Hansson
- Dept of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
75
|
Mucins: the frontline defence of the lung. Biochem Soc Trans 2018; 46:1099-1106. [PMID: 30154090 PMCID: PMC6195635 DOI: 10.1042/bst20170402] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Mucus plays a vital role in protecting the lungs from environmental factors, but conversely, in muco-obstructive airway disease, mucus becomes pathologic. In its protective role, mucus entraps microbes and particles removing them from the lungs via the co-ordinated beating of motile cilia. This mechanism of lung defence is reliant upon a flowing mucus gel, and the major macromolecular components that determine the rheological properties of mucus are the polymeric mucins, MUC5AC and MUC5B. These large O-linked glycoproteins have direct roles in maintaining lung homeostasis. MUC5B is essential for interaction with the ciliary clearance system and MUC5AC is up-regulated in response to allergic inflammatory challenge. Mucus with abnormal biophysical properties is a feature of muco-obstructive respiratory disease and can result from many different mechanisms including alterations in mucin polymer assembly, mucin concentration and the macromolecular form in mucus, as well as changes in airway surface hydration, pH and ion composition. The abnormal mucus results in defective lung protection via compromised ciliary clearance, leading to infection and inflammation.
Collapse
|
76
|
Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, Birket SE, Yuan F, Chen S, Leung HM, Villoria J, Rogel N, Burgin G, Tsankov AM, Waghray A, Slyper M, Waldman J, Nguyen L, Dionne D, Rozenblatt-Rosen O, Tata PR, Mou H, Shivaraju M, Bihler H, Mense M, Tearney GJ, Rowe SM, Engelhardt JF, Regev A, Rajagopal J. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 2018; 560:319-324. [PMID: 30069044 PMCID: PMC6295155 DOI: 10.1038/s41586-018-0393-7] [Citation(s) in RCA: 830] [Impact Index Per Article: 118.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 06/21/2018] [Indexed: 12/16/2022]
Abstract
The airways of the lung are the primary sites of disease in asthma and cystic fibrosis. Here we study the cellular composition and hierarchy of the mouse tracheal epithelium by single-cell RNA-sequencing (scRNA-seq) and in vivo lineage tracing. We identify a rare cell type, the Foxi1+ pulmonary ionocyte; functional variations in club cells based on their location; a distinct cell type in high turnover squamous epithelial structures that we term 'hillocks'; and disease-relevant subsets of tuft and goblet cells. We developed 'pulse-seq', combining scRNA-seq and lineage tracing, to show that tuft, neuroendocrine and ionocyte cells are continually and directly replenished by basal progenitor cells. Ionocytes are the major source of transcripts of the cystic fibrosis transmembrane conductance regulator in both mouse (Cftr) and human (CFTR). Knockout of Foxi1 in mouse ionocytes causes loss of Cftr expression and disrupts airway fluid and mucus physiology, phenotypes that are characteristic of cystic fibrosis. By associating cell-type-specific expression programs with key disease genes, we establish a new cellular narrative for airways disease.
Collapse
Affiliation(s)
- Daniel T Montoro
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam L Haber
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Moshe Biton
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Vladimir Vinarsky
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Susan E Birket
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL, USA
| | - Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sijia Chen
- Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Hui Min Leung
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jorge Villoria
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Noga Rogel
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Grace Burgin
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander M Tsankov
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Avinash Waghray
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lan Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Purushothama Rao Tata
- Department of Cell Biology, Duke University, Durham, NC, USA
- Duke Cancer Institute, Duke University, Durham, NC, USA
- Division of Pulmonary Critical Care, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Regeneration Next, Duke University, Durham, NC, USA
| | - Hongmei Mou
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Manjunatha Shivaraju
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Hermann Bihler
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Martin Mense
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Guillermo J Tearney
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
77
|
Birket S. A clean sweep: mucin bundles clear the airway. Eur Respir J 2018; 52:52/2/1801144. [DOI: 10.1183/13993003.01144-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/02/2018] [Indexed: 11/05/2022]
|
78
|
Fernandez Fernandez E, De Santi C, De Rose V, Greene CM. CFTR dysfunction in cystic fibrosis and chronic obstructive pulmonary disease. Expert Rev Respir Med 2018; 12:483-492. [PMID: 29750581 DOI: 10.1080/17476348.2018.1475235] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Obstructive lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are causes of high morbidity and mortality worldwide. CF is a multiorgan genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and is characterized by progressive chronic obstructive lung disease. Most cases of COPD are a result of noxious particles, mainly cigarette smoke but also other environmental pollutants. Areas covered: Although the pathogenesis and pathophysiology of CF and COPD differ, they do share key phenotypic features and because of these similarities there is great interest in exploring common mechanisms and/or factors affected by CFTR mutations and environmental insults involved in COPD. Various molecular, cellular and clinical studies have confirmed that CFTR protein dysfunction is common in both the CF and COPD airways. This review provides an update of our understanding of the role of dysfunctional CFTR in both respiratory diseases. Expert commentary: Drugs developed for people with CF to improve mutant CFTR function and enhance CFTR ion channel activity might also be beneficial in patients with COPD. A move toward personalized therapy using, for example, microRNA modulators in conjunction with CFTR potentiators or correctors, could enhance treatment of both diseases.
Collapse
Affiliation(s)
- Elena Fernandez Fernandez
- a Lung Biology Group, Department of Clinical Microbiology , RCSI Education & Research Centre, Beaumont Hospital , Dublin 9 , Ireland
| | - Chiara De Santi
- a Lung Biology Group, Department of Clinical Microbiology , RCSI Education & Research Centre, Beaumont Hospital , Dublin 9 , Ireland
| | - Virginia De Rose
- b Department of Clinical and Biological Sciences , University of Torino , Torino , Italy
| | - Catherine M Greene
- a Lung Biology Group, Department of Clinical Microbiology , RCSI Education & Research Centre, Beaumont Hospital , Dublin 9 , Ireland
| |
Collapse
|
79
|
Peabody JE, Shei RJ, Bermingham BM, Phillips SE, Turner B, Rowe SM, Solomon GM. Seeing cilia: imaging modalities for ciliary motion and clinical connections. Am J Physiol Lung Cell Mol Physiol 2018; 314:L909-L921. [PMID: 29493257 DOI: 10.1152/ajplung.00556.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The respiratory tract is lined with multiciliated epithelial cells that function to move mucus and trapped particles via the mucociliary transport apparatus. Genetic and acquired ciliopathies result in diminished mucociliary clearance, contributing to disease pathogenesis. Recent innovations in imaging technology have advanced our understanding of ciliary motion in health and disease states. Application of imaging modalities including transmission electron microscopy, high-speed video microscopy, and micron-optical coherence tomography could improve diagnostics and be applied for precision medicine. In this review, we provide an overview of ciliary motion, imaging modalities, and ciliopathic diseases of the respiratory system including primary ciliary dyskinesia, cystic fibrosis, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Jacelyn E Peabody
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ren-Jay Shei
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| | | | - Scott E Phillips
- Department of Medicine, University of Alabama at Birmingham, Alabama
| | - Brett Turner
- Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Alabama
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - George M Solomon
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
80
|
Birket SE, Davis JM, Fernandez CM, Tuggle KL, Oden AM, Chu KK, Tearney GJ, Fanucchi MV, Sorscher EJ, Rowe SM. Development of an airway mucus defect in the cystic fibrosis rat. JCI Insight 2018; 3:97199. [PMID: 29321377 DOI: 10.1172/jci.insight.97199] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
The mechanisms underlying the development and natural progression of the airway mucus defect in cystic fibrosis (CF) remain largely unclear. New animal models of CF, coupled with imaging using micro-optical coherence tomography, can lead to insights regarding these questions. The Cftr-/- (KO) rat allows for longitudinal examination of the development and progression of airway mucus abnormalities. The KO rat exhibits decreased periciliary depth, hyperacidic pH, and increased mucus solid content percentage; however, the transport rates and viscoelastic properties of the mucus are unaffected until the KO rat ages. Airway submucosal gland hypertrophy develops in the KO rat by 6 months of age. Only then does it induce increased mucus viscosity, collapse of the periciliary layer, and delayed mucociliary transport; stimulation of gland secretion potentiates this evolution. These findings could be reversed by bicarbonate repletion but not pH correction without counterion donation. These studies demonstrate that abnormal surface epithelium in CF does not cause delayed mucus transport in the absence of functional gland secretions. Furthermore, abnormal bicarbonate transport represents a specific target for restoring mucus clearance, independent of effects on periciliary collapse. Thus, mature airway secretions are required to manifest the CF defect primed by airway dehydration and bicarbonate deficiency.
Collapse
Affiliation(s)
- Susan E Birket
- Department of Medicine and.,Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Katherine L Tuggle
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Kengyeh K Chu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Michelle V Fanucchi
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Steven M Rowe
- Department of Medicine and.,Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Cellular, Developmental, and Integrative Biology and.,Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
81
|
Therapeutic Approaches to Acquired Cystic Fibrosis Transmembrane Conductance Regulator Dysfunction in Chronic Bronchitis. Ann Am Thorac Soc 2018; 13 Suppl 2:S169-76. [PMID: 27115953 DOI: 10.1513/annalsats.201509-601kv] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease is a common cause of morbidity and a rising cause of mortality worldwide. Its rising impact indicates the ongoing unmet need for novel and effective therapies. Previous work has established a pathophysiological link between the chronic bronchitis phenotype of chronic obstructive pulmonary disease and cystic fibrosis as well as phenotypic similarities between these two airways diseases. An extensive body of evidence has established that cigarette smoke and its constituents contribute to acquired dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein in the airways, pointing to a mechanistic link with smoking-related and chronic bronchitis. Recent interest surrounding new drugs that target both mutant and wild-type CFTR channels has paved the way for a new treatment opportunity addressing the mucus defect in chronic bronchitis. We review the clinical and pathologic evidence for modulating CFTR to address acquired CFTR dysfunction and pragmatic issues surrounding clinical trials as well as a discussion of other ion channels that may represent alternative therapeutic targets.
Collapse
|
82
|
Ramsey BW, Welsh MJ. AJRCCM: 100-Year Anniversary. Progress along the Pathway of Discovery Leading to Treatment and Cure of Cystic Fibrosis. Am J Respir Crit Care Med 2017; 195:1092-1099. [PMID: 28459323 DOI: 10.1164/rccm.201702-0266ed] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Bonnie W Ramsey
- 1 Department of Pediatrics University of Washington School of Medicine Seattle, Washington.,2 Center for Clinical and Translational Research Seattle Children's Research Institute Seattle, Washington
| | - Michael J Welsh
- 3 Pappajohn Biomedical Institute.,4 Howard Hughes Medical Institute and.,5 Roy J. and Lucille A. Carver College of Medicine University of Iowa Iowa City, Iowa
| |
Collapse
|
83
|
Carlon MS, Vidović D, Birket S. Roadmap for an early gene therapy for cystic fibrosis airway disease. Prenat Diagn 2017; 37:1181-1190. [DOI: 10.1002/pd.5164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Marianne S. Carlon
- Molecular Virology and Gene Therapy; Department of Pharmaceutical and Pharmacological Sciences; KU Leuven Flanders Belgium
| | - Dragana Vidović
- Molecular Virology and Gene Therapy; Department of Pharmaceutical and Pharmacological Sciences; KU Leuven Flanders Belgium
- Current affiliation: Cellular Protein Chemistry, Faculty of Science; Utrecht University; The Netherlands
| | - Susan Birket
- Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| |
Collapse
|
84
|
Kieninger E, Yammine S, Korten I, Anagnostopoulou P, Singer F, Frey U, Mornand A, Zanolari M, Rochat I, Trachsel D, Mueller-Suter D, Moeller A, Casaulta C, Latzin P. Elevated lung clearance index in infants with cystic fibrosis shortly after birth. Eur Respir J 2017; 50:50/5/1700580. [PMID: 29122915 DOI: 10.1183/13993003.00580-2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/08/2017] [Indexed: 11/05/2022]
Abstract
It is not known at what age lung function impairment may arise in children with cystic fibrosis (CF). We assessed lung function shortly after birth in infants with CF diagnosed by newborn screening.We performed infant lung function measurements in a prospective cohort of infants with CF and healthy controls. We assessed lung clearance index (LCI), functional residual capacity (FRC) and tidal breathing parameters. The primary outcome was prevalence and severity of abnormal lung function (±1.64 z-scores) in CF.We enrolled 53 infants with CF (mean age 7.8 weeks) and 57 controls (mean age 5.2 weeks). Compared to controls, LCI and FRC were elevated (mean difference 0.30, 95% CI 0.02-0.60; p=0.034 and 14.5 mL, 95% CI 7.7-21.3 mL; p<0.001, respectively), while ratio of time to peak tidal expiratory flow to expiratory time was decreased in infants with CF. In 22 (41.5%) infants with CF, either LCI or FRC exceeded 1.64 z-scores; three infants had both elevated LCI and FRC.Shortly after birth, abnormal lung function is prevalent in CF infants. Ventilation inhomogeneity or hyperinflation may serve as noninvasive markers to monitor CF lung disease and specific treatment effects, and could thus be used as outcome parameters for future intervention studies in this age group.
Collapse
Affiliation(s)
- Elisabeth Kieninger
- Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland.,Both authors contributed equally to this work
| | - Sophie Yammine
- Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland.,Both authors contributed equally to this work
| | - Insa Korten
- Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland.,Dept of Paediatrics, University Children's Hospital of Basel, Basel, Switzerland
| | - Pinelopi Anagnostopoulou
- Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | - Florian Singer
- Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland.,Division of Respiratory Medicine, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Urs Frey
- Dept of Paediatrics, University Children's Hospital of Basel, Basel, Switzerland
| | - Anne Mornand
- Dept of the Child and Adolescent, Children's University Hospital of Geneva, Geneva, Switzerland
| | - Maura Zanolari
- Dept of Paediatrics, Hospital of Bellinzona, Bellinzona, Switzerland
| | - Isabelle Rochat
- Paediatric Pulmonology Unit, Department of Paediatrics, CHUV Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Daniel Trachsel
- Dept of Paediatrics, University Children's Hospital of Basel, Basel, Switzerland
| | | | - Alexander Moeller
- Division of Respiratory Medicine, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Carmen Casaulta
- Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
85
|
Guimbellot J, Sharma J, Rowe SM. Toward inclusive therapy with CFTR modulators: Progress and challenges. Pediatr Pulmonol 2017; 52:S4-S14. [PMID: 28881097 PMCID: PMC6208153 DOI: 10.1002/ppul.23773] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/29/2017] [Indexed: 12/29/2022]
Abstract
Cystic fibrosis is caused by gene mutations that result in an abnormal Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein on the surface of cells. CFTR modulators are a novel class of drugs that directly target the molecular defect. CFTR modulators include potentiators that result in improved activity of the channel; correctors that help the protein traffic to the cell surface properly; and readthrough agents that restore full-length CFTR by suppression of premature termination codons, among other novel classes more recently established. While some of these drugs, CFTR potentiators in particular, have provided remarkable improvements for CF patients, others have yet to achieve profoundly improved outcomes, and many CF patients are not yet impacted by CFTR modulators due to lack of knowledge regarding susceptibility of their mutations to treatment. One limitation to expanding these types of therapies to the maximum number of patients with CF is the lack of rigorously validated clinical biomarkers that can determine efficacy on an individual basis, as well as few pre-clinical tools that can predict whether an individual with a rare combination of mutant alleles will respond to a particular CFTR modulator regimen. In this review, we discuss the various groups of CFTR modulators and their status in clinical development, as well as address the current literature on biomarkers, pre-clinical cell-based tools, and the role of pharmacometrics in creating therapeutic strategies to improve the lives of all patients with cystic fibrosis, regardless of their specific mutation.
Collapse
Affiliation(s)
- Jennifer Guimbellot
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jyoti Sharma
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
- Cell Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven M. Rowe
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
- Cell Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama
- Departments of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
86
|
Nishioka H, Usuda Y, Hirabayashi G, Maruyama K, Andoh T. Effects of lubrication on air-sealing performance of a pediatric cuffed tracheal tube. BMC Anesthesiol 2017; 17:129. [PMID: 28927375 PMCID: PMC5605974 DOI: 10.1186/s12871-017-0416-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 08/27/2017] [Indexed: 11/18/2022] Open
Abstract
Background Lubrication of cuffed tracheal tubes (CTTs) reduces liquid leakage. However, it is not clear how cuff lubrication influences air leakage. We aimed to test the hypothesis that pretreatment with K-Y jelly, a water-soluble lubricant, would improve the air-sealing performance of pediatric CTTs in a model study. Methods We placed Parker Flex-Tip™ CTT with 4.0- and 5.0-mm internal diameter (ID) into a tracheal model with 9- and 12-mm ID. The tracheal model was connected to a test lung ventilated in pressure control mode. We compared three cuff lubrication conditions: none (N), water (W), and K-Y jelly (KY). We measured the leak airway pressure (LAWP), defined as the lowest peak airway pressure (PAWP) at which leakage was detected, with the fixed cuff pressure (CP) at 20 cmH2O and varied PAWP. We also measured the leak CP (LCP), defined as the highest CP at which leakage was detected, with fixed PAWP at 25 cmH2O and varied CP. We confirmed air leakage when an apparent elevation of oxygen concentration was detected above the cuff after changing the inspiratory gas from air to oxygen. Results For both 4.0-mm ID and 5.0-mm ID endotracheal tubes, the KY group showed significantly higher LAWP and lower LCP than the other two groups. For the 4.0-mm ID, median values and ranges of LAWP and LCP were K-Y group: 25 (25) and 15 (15); N group: 5 (5) and 35 (35): and W group: 5 (5) and 35 (15–35) cmH2O. For the 5.0-mm ID, median values and ranges of LAWP and LCP were K-Y group: 25 (15–25) and 15 (15–35); N group: 5 (5) and 35 (35); and W group: 5 (5) and 35 (15–35) cmH2O. Water application did not change these outcomes compared with the N group. Conclusion Pre-treatment of the cuff with K-Y jelly significantly improved the air-sealing performance of a pediatric CTT in our model study.
Collapse
Affiliation(s)
- Hiroko Nishioka
- Department of Anesthesiology, Mizonokuchi Hospital, Teikyo University School of Medicine, 3-8-3 Mizonokuchi, Takatsu-ku, Kawasaki, 213-8507, Japan
| | - Yutaka Usuda
- Department of Anesthesiology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka City, Saitama, 350-1298, Japan
| | - Go Hirabayashi
- Department of Anesthesiology, Mizonokuchi Hospital, Teikyo University School of Medicine, 3-8-3 Mizonokuchi, Takatsu-ku, Kawasaki, 213-8507, Japan
| | - Koichi Maruyama
- Department of Anesthesiology, Mizonokuchi Hospital, Teikyo University School of Medicine, 3-8-3 Mizonokuchi, Takatsu-ku, Kawasaki, 213-8507, Japan
| | - Tomio Andoh
- Department of Anesthesiology, Mizonokuchi Hospital, Teikyo University School of Medicine, 3-8-3 Mizonokuchi, Takatsu-ku, Kawasaki, 213-8507, Japan.
| |
Collapse
|
87
|
Yonker LM, Pazos MA, Lanter BB, Mou H, Chu KK, Eaton AD, Bonventre JV, Tearney GJ, Rajagopal J, Hurley BP. Neutrophil-Derived Cytosolic PLA2α Contributes to Bacterial-Induced Neutrophil Transepithelial Migration. THE JOURNAL OF IMMUNOLOGY 2017; 199:2873-2884. [PMID: 28887431 DOI: 10.4049/jimmunol.1700539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/17/2017] [Indexed: 11/19/2022]
Abstract
Eicosanoids are a group of bioactive lipids that are shown to be important mediators of neutrophilic inflammation; selective targeting of their function confers therapeutic benefit in a number of diseases. Neutrophilic airway diseases, including cystic fibrosis, are characterized by excessive neutrophil infiltration into the airspace. Understanding the role of eicosanoids in this process may reveal novel therapeutic targets. The eicosanoid hepoxilin A3 is a pathogen-elicited epithelial-produced neutrophil chemoattractant that directs transepithelial migration in response to infection. Following hepoxilin A3-driven transepithelial migration, neutrophil chemotaxis is amplified through neutrophil production of a second eicosanoid, leukotriene B4 (LTB4). The rate-limiting step of eicosanoid generation is the liberation of arachidonic acid by phospholipase A2, and the cytosolic phospholipase A2 (cPLA2)α isoform has been specifically shown to direct LTB4 synthesis in certain contexts. Whether cPLA2α is directly responsible for neutrophil synthesis of LTB4 in the context of Pseudomonas aeruginosa-induced neutrophil transepithelial migration has not been explored. Human and mouse neutrophil-epithelial cocultures were used to evaluate the role of neutrophil-derived cPLA2α in infection-induced transepithelial signaling by pharmacological and genetic approaches. Primary human airway basal stem cell-derived epithelial cultures and micro-optical coherence tomography, a new imaging modality that captures two- and three-dimensional real-time dynamics of neutrophil transepithelial migration, were applied. Evidence from these studies suggests that cPLA2α expressed by neutrophils, but not epithelial cells, plays a significant role in infection-induced neutrophil transepithelial migration by mediating LTB4 synthesis during migration, which serves to amplify the magnitude of neutrophil recruitment in response to epithelial infection.
Collapse
Affiliation(s)
- Lael M Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Michael A Pazos
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Bernard B Lanter
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Kengyeh K Chu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114.,Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Alexander D Eaton
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114
| | - Joseph V Bonventre
- Department of Medicine, Harvard Medical School, Boston, MA 02115.,Renal Division, Brigham and Women's Hospital, Boston, MA 02115; and.,Biomedical Engineering Division, Brigham and Women's Hospital, Boston, MA 02115
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114.,Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114.,Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Bryan P Hurley
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114; .,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
88
|
The normal trachea is cleaned by MUC5B mucin bundles from the submucosal glands coated with the MUC5AC mucin. Biochem Biophys Res Commun 2017; 492:331-337. [PMID: 28859985 PMCID: PMC5596833 DOI: 10.1016/j.bbrc.2017.08.113] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/27/2017] [Indexed: 11/23/2022]
Abstract
To understand the mucociliary clearance system, mucins were visualized by light, confocal and electron microscopy, and mucus was stained by Alcian blue and tracked by video microscopy on tracheal explants of newborn piglets. We observed long linear mucus bundles that appeared at the submucosal gland openings and were transported cephalically. The mucus bundles were shown by mass spectrometry and immunostaining to have a core made of MUC5B mucin and were coated with MUC5AC mucin produced by surface goblet cells. The transport speed of the bundles was slower than the airway surface liquid flow. We suggest that the goblet cell MUC5AC mucin anchors the mucus bundles and thus controls their transport. Normal clearance of the respiratory tree of pigs and humans, both rich in submucosal glands, is performed by thick and long mucus bundles. Submucosal glands in the piglet trachea form bundles of MUC5B mucin. The mucus bundles are coated with MUC5AC mucin produced by surface goblet cells. The mucus bundles are transported 10-times slower than the airway surface liquid. The surface goblet cells are suggested to control the mucus bundle movement.
Collapse
|
89
|
Development of a Primary Human Co-Culture Model of Inflamed Airway Mucosa. Sci Rep 2017; 7:8182. [PMID: 28811631 PMCID: PMC5557980 DOI: 10.1038/s41598-017-08567-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/11/2017] [Indexed: 01/05/2023] Open
Abstract
Neutrophil breach of the mucosal surface is a common pathological consequence of infection. We present an advanced co-culture model to explore neutrophil transepithelial migration utilizing airway mucosal barriers differentiated from primary human airway basal cells and examined by advanced imaging. Human airway basal cells were differentiated and cultured at air-liquid interface (ALI) on the underside of 3 µm pore-sized transwells, compatible with the study of transmigrating neutrophils. Inverted ALIs exhibit beating cilia and mucus production, consistent with conventional ALIs, as visualized by micro-optical coherence tomography (µOCT). µOCT is a recently developed imaging modality with the capacity for real time two- and three-dimensional analysis of cellular events in marked detail, including neutrophil transmigratory dynamics. Further, the newly devised and imaged primary co-culture model recapitulates key molecular mechanisms that underlie bacteria-induced neutrophil transepithelial migration previously characterized using cell line-based models. Neutrophils respond to imposed chemotactic gradients, and migrate in response to Pseudomonas aeruginosa infection of primary ALI barriers through a hepoxilin A3-directed mechanism. This primary cell-based co-culture system combined with µOCT imaging offers significant opportunity to probe, in great detail, micro-anatomical and mechanistic features of bacteria-induced neutrophil transepithelial migration and other important immunological and physiological processes at the mucosal surface.
Collapse
|
90
|
Chu KK, Mojahed D, Fernandez CM, Li Y, Liu L, Wilsterman EJ, Diephuis B, Birket SE, Bowers H, Martin Solomon G, Schuster BS, Hanes J, Rowe SM, Tearney GJ. Particle-Tracking Microrheology Using Micro-Optical Coherence Tomography. Biophys J 2017; 111:1053-63. [PMID: 27602733 DOI: 10.1016/j.bpj.2016.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 06/02/2016] [Accepted: 07/15/2016] [Indexed: 11/17/2022] Open
Abstract
Clinical manifestations of cystic fibrosis (CF) result from an increase in the viscosity of the mucus secreted by epithelial cells that line the airways. Particle-tracking microrheology (PTM) is a widely accepted means of determining the viscoelastic properties of CF mucus, providing an improved understanding of this disease as well as an avenue to assess the efficacies of pharmacologic therapies aimed at decreasing mucus viscosity. Among its advantages, PTM allows the measurement of small volumes, which was recently utilized for an in situ study of CF mucus formed by airway cell cultures. Typically, particle tracks are obtained from fluorescence microscopy video images, although this limits one's ability to distinguish particles by depth in a heterogeneous environment. Here, by performing PTM with high-resolution micro-optical coherence tomography (μOCT), we were able to characterize the viscoelastic properties of mucus, which enables simultaneous measurement of rheology with mucociliary transport parameters that we previously determined using μOCT. We obtained an accurate characterization of dextran solutions and observed a statistically significant difference in the viscosities of mucus secreted by normal and CF human airway cell cultures. We further characterized the effects of noise and imaging parameters on the sensitivity of μOCT-PTM by performing theoretical and numerical analyses, which show that our system can accurately quantify viscosities over the range that is characteristic of CF mucus. As a sensitive rheometry technique that requires very small fluid quantities, μOCT-PTM could also be generally applied to interrogate the viscosity of biological media such as blood or the vitreous humor of the eye in situ.
Collapse
Affiliation(s)
- Kengyeh K Chu
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Diana Mojahed
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts; Department of Biology, Tufts University, Medford, Massachusetts
| | - Courtney M Fernandez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yao Li
- George Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Linbo Liu
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eric J Wilsterman
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Bradford Diephuis
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Susan E Birket
- George Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hannah Bowers
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - G Martin Solomon
- George Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Justin Hanes
- Center for Nanomedicine, Johns Hopkins University, Baltimore, Maryland
| | - Steven M Rowe
- George Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
91
|
Raju SV, Lin VY, Liu L, McNicholas CM, Karki S, Sloane PA, Tang L, Jackson PL, Wang W, Wilson L, Macon KJ, Mazur M, Kappes JC, DeLucas LJ, Barnes S, Kirk K, Tearney GJ, Rowe SM. The Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor Augments Mucociliary Clearance Abrogating Cystic Fibrosis Transmembrane Conductance Regulator Inhibition by Cigarette Smoke. Am J Respir Cell Mol Biol 2017; 56:99-108. [PMID: 27585394 DOI: 10.1165/rcmb.2016-0226oc] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction may contribute to chronic obstructive pulmonary disease pathogenesis and is a potential therapeutic target. We sought to determine the acute effects of cigarette smoke on ion transport and the mucociliary transport apparatus, their mechanistic basis, and whether deleterious effects could be reversed with the CFTR potentiator ivacaftor (VX-770). Primary human bronchial epithelial (HBE) cells and human bronchi were exposed to cigarette smoke extract (CSE) and/or ivacaftor. CFTR function and expression were measured in Ussing chambers and by surface biotinylation. CSE-derived acrolein modifications on CFTR were determined by mass spectroscopic analysis of purified protein, and the functional microanatomy of the airway epithelia was measured by 1-μm resolution optical coherence tomography. CSE reduced CFTR-dependent current in HBE cells (P < 0.05) and human bronchi (P < 0.05) within minutes of exposure. The mechanism involved CSE-induced reduction of CFTR gating, decreasing CFTR open-channel probability by approximately 75% immediately after exposure (P < 0.05), whereas surface CFTR expression was partially reduced with chronic exposure, but was stable acutely. CSE treatment of purified CFTR resulted in acrolein modifications on lysine and cysteine residues that likely disrupt CFTR gating. In primary HBE cells, CSE reduced airway surface liquid depth (P < 0.05) and ciliary beat frequency (P < 0.05) within 60 minutes that was restored by coadministration with ivacaftor (P < 0.005). Cigarette smoking transmits acute reductions in CFTR activity, adversely affecting the airway surface. These effects are reversible by a CFTR potentiator in vitro, representing a potential therapeutic strategy in patients with chronic obstructive pulmonary disease with chronic bronchitis.
Collapse
Affiliation(s)
- S Vamsee Raju
- Departments of 1 Medicine.,2 the Cystic Fibrosis Research Center
| | | | - Limbo Liu
- 3 Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Carmel M McNicholas
- 2 the Cystic Fibrosis Research Center.,4 Cell Developmental and Integrative Biology
| | | | | | - Liping Tang
- Departments of 1 Medicine.,2 the Cystic Fibrosis Research Center
| | | | - Wei Wang
- 2 the Cystic Fibrosis Research Center.,4 Cell Developmental and Integrative Biology
| | | | | | | | - John C Kappes
- Departments of 1 Medicine.,2 the Cystic Fibrosis Research Center
| | | | - Stephen Barnes
- 5 Targeted Metabolomics and Proteomics Laboratory.,7 Pharmacology, and
| | - Kevin Kirk
- 2 the Cystic Fibrosis Research Center.,4 Cell Developmental and Integrative Biology
| | - Guillermo J Tearney
- 3 Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven M Rowe
- Departments of 1 Medicine.,2 the Cystic Fibrosis Research Center.,4 Cell Developmental and Integrative Biology.,8 Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
92
|
Schuster BS, Allan DB, Kays JC, Hanes J, Leheny RL. Photoactivatable fluorescent probes reveal heterogeneous nanoparticle permeation through biological gels at multiple scales. J Control Release 2017; 260:124-133. [PMID: 28578189 DOI: 10.1016/j.jconrel.2017.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/19/2017] [Accepted: 05/30/2017] [Indexed: 11/24/2022]
Abstract
Diffusion through biological gels is crucial for effective drug delivery using nanoparticles. Here, we demonstrate a new method to measure diffusivity over a large range of length scales - from tens of nanometers to tens of micrometers - using photoactivatable fluorescent nanoparticle probes. We have applied this method to investigate the length-scale dependent mobility of nanoparticles in fibrin gels and in sputum from patients with cystic fibrosis (CF). Nanoparticles composed of poly(lactic-co-glycolic acid), with polyethylene glycol coatings to resist bioadhesion, were internally labeled with caged rhodamine to make the particles photoactivatable. We activated particles within a region of sample using brief, targeted exposure to UV light, uncaging the rhodamine and causing the particles in that region to become fluorescent. We imaged the subsequent spatiotemporal evolution in fluorescence intensity and observed the collective particle diffusion over tens of minutes and tens of micrometers. We also performed complementary multiple particle tracking experiments on the same particles, extending significantly the range over which particle motion and its heterogeneity can be observed. In fibrin gels, both methods showed an immobile fraction of particles and a mobile fraction that diffused over all measured length scales. In the CF sputum, particle diffusion was spatially heterogeneous and locally anisotropic but nevertheless typically led to unbounded transport extending tens of micrometers within tens of minutes. These findings provide insight into the mesoscale architecture of these gels and its role in setting their permeability on physiologically relevant length scales, pointing toward strategies for improving nanoparticle drug delivery.
Collapse
Affiliation(s)
- Benjamin S Schuster
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel B Allan
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA; NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Joshua C Kays
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Justin Hanes
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Robert L Leheny
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
93
|
Illuminating dynamic neutrophil trans-epithelial migration with micro-optical coherence tomography. Sci Rep 2017; 8:45789. [PMID: 28368012 PMCID: PMC5377939 DOI: 10.1038/srep45789] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/02/2017] [Indexed: 01/24/2023] Open
Abstract
A model of neutrophil migration across epithelia is desirable to interrogate the underlying mechanisms of neutrophilic breach of mucosal barriers. A co-culture system consisting of a polarized mucosal epithelium and human neutrophils can provide a versatile model of trans-epithelial migration in vitro, but observations are typically limited to quantification of migrated neutrophils by myeloperoxidase correlation, a destructive assay that precludes direct longitudinal study. Our laboratory has recently developed a new isotropic 1-μm resolution optical imaging technique termed micro-optical coherence tomography (μOCT) that enables 4D (x,y,z,t) visualization of neutrophils in the co-culture environment. By applying μOCT to the trans-epithelial migration model, we can robustly monitor the spatial distribution as well as the quantity of neutrophils chemotactically crossing the epithelial boundary over time. Here, we demonstrate the imaging and quantitative migration results of our system as applied to neutrophils migrating across intestinal epithelia in response to a chemoattractant. We also demonstrate that perturbation of a key molecular event known to be critical for effective neutrophil trans-epithelial migration (CD18 engagement) substantially impacts this process both qualitatively and quantitatively.
Collapse
|
94
|
Impact of CFTR Modulation on Intestinal pH, Motility, and Clinical Outcomes in Patients With Cystic Fibrosis and the G551D Mutation. Clin Transl Gastroenterol 2017; 8:e81. [PMID: 28300821 PMCID: PMC5387753 DOI: 10.1038/ctg.2017.10] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives: A defect in bicarbonate secretion contributes to the pathophysiology of gastrointestinal complications in patients with cystic fibrosis (CF). We measured gastrointestinal pH, clinical outcomes, and intestinal transit profiles in patients with the G551D mutation before and after treatment with ivacaftor, a CF transmembrane regulator channel (CFTR) potentiator. Methods: Observational studies of ivacaftor effectiveness were conducted in the United States and Canada. A subset of subjects ingested a wireless motility capsule (n=10) that measures in vivo pH, both before therapy with ivacaftor and 1 month after treatment; values obtained were compared for mean pH and area under the pH curve, and regional intestinal motility. We also queried subjects about abdominal pain and recorded body weight before and after treatment. Results: One month after administering ivacaftor, a significant increase in mean pH was observed after gastric emptying (P<0.05). Area under the pH curve analyses indicate increased bicarbonate mass (P<0.05 for select 5 min intervals and all segments >30 min); mean weight gain was 1.1 kg (P=0.08). No difference in abdominal pain or regional transit times was seen. Conclusions: CFTR modulation improves the proximal small intestinal pH profile in patients with the G551D CFTR mutation and we observed clinically relevant, contemporaneous weight gain, although it did not reach statistical significance. These data provide in vivo evidence that CFTR is an important regulator of bicarbonate secretion, which may be a translational link between CFTR function and clinical improvement.
Collapse
|
95
|
Solomon GM, Francis R, Chu KK, Birket SE, Gabriel G, Trombley JE, Lemke KL, Klena N, Turner B, Tearney GJ, Lo CW, Rowe SM. Assessment of ciliary phenotype in primary ciliary dyskinesia by micro-optical coherence tomography. JCI Insight 2017; 2:e91702. [PMID: 28289722 DOI: 10.1172/jci.insight.91702] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ciliary motion defects cause defective mucociliary transport (MCT) in primary ciliary dyskinesia (PCD). Current diagnostic tests do not assess how MCT is affected by perturbation of ciliary motion. In this study, we sought to use micro-optical coherence tomography (μOCT) to delineate the mechanistic basis of cilia motion defects of PCD genes by functional categorization of cilia motion. Tracheae from three PCD mouse models were analyzed using μOCT to characterize ciliary motion and measure MCT. We developed multiple measures of ciliary activity, integrated these measures, and quantified dyskinesia by the angular range of the cilia effective stroke (ARC). Ccdc39-/- mice, with a known severe PCD mutation of ciliary axonemal organization, had absent motile ciliary regions, resulting in abrogated MCT. In contrast, Dnah5-/- mice, with a missense mutation of the outer dynein arms, had reduced ciliary beat frequency (CBF) but preserved motile area and ciliary stroke, maintaining some MCT. Wdr69-/- PCD mice exhibited normal motile area and CBF and partially delayed MCT due to abnormalities of ciliary ARC. Visualization of ciliary motion using μOCT provides quantitative assessment of ciliary motion and MCT. Comprehensive ciliary motion investigation in situ classifies ciliary motion defects and quantifies their contribution to delayed mucociliary clearance.
Collapse
Affiliation(s)
- George M Solomon
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Kengyeh K Chu
- Massachusetts General Hospital and Wellman Center for Photomedicine, Boston, Massachusetts, USA
| | - Susan E Birket
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - John E Trombley
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Nikolai Klena
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brett Turner
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guillermo J Tearney
- Massachusetts General Hospital and Wellman Center for Photomedicine, Boston, Massachusetts, USA
| | - Cecilia W Lo
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
96
|
Cui D, Chu KK, Yin B, Ford TN, Hyun C, Leung HM, Gardecki JA, Solomon GM, Birket SE, Liu L, Rowe SM, Tearney GJ. Flexible, high-resolution micro-optical coherence tomography endobronchial probe toward in vivo imaging of cilia. OPTICS LETTERS 2017; 42:867-870. [PMID: 28198885 PMCID: PMC5665567 DOI: 10.1364/ol.42.000867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We report the design and fabrication of a flexible, longitudinally scanning high-resolution micro-optical coherence tomography (μOCT) endobronchial probe, optimized for micro-anatomical imaging in airways. The 2.4 mm diameter and flexibility of the probe allows it to be inserted into the instrument channel of a standard bronchoscope, enabling real-time video guidance of probe placement. To generate a depth-of-focus enhancing annular beam, we utilized a new fabrication method, whereby a hollow glass ferrule was angle-polished and gold-coated to produce an elongated annular reflector. We present validation data that verifies the preservation of linear scanning, despite the use of flexible materials. When utilized on excised, cultured mouse trachea, the probe acquired images of comparable quality to those obtained by a benchtop μOCT system.
Collapse
Affiliation(s)
- Dongyao Cui
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
- Department of Dermatology, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
- School of Electrical and Electronic Engineering and COFT, The Photonics Institute (TPI), Nanyang Technological University, Singapore 639798, Singapore
| | - Kengyeh K. Chu
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
- Department of Dermatology, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
- Harvard Medical School, 25 Shattuck St., Boston, Massachusetts 02115, USA
| | - Biwei Yin
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
- Department of Dermatology, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
- Harvard Medical School, 25 Shattuck St., Boston, Massachusetts 02115, USA
| | - Timothy N. Ford
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
- Department of Dermatology, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
| | - Chulho Hyun
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
- Department of Dermatology, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
- Department of Dermatology, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
- Harvard Medical School, 25 Shattuck St., Boston, Massachusetts 02115, USA
| | - Joseph A. Gardecki
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
- Department of Dermatology, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
- Harvard Medical School, 25 Shattuck St., Boston, Massachusetts 02115, USA
| | - George M. Solomon
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd., Birmingham, Alabama 35294-0005, USA
| | - Susan E. Birket
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd., Birmingham, Alabama 35294-0005, USA
| | - Linbo Liu
- School of Electrical and Electronic Engineering and COFT, The Photonics Institute (TPI), Nanyang Technological University, Singapore 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Steven M. Rowe
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd., Birmingham, Alabama 35294-0005, USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
- Department of Dermatology, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
- Harvard Medical School, 25 Shattuck St., Boston, Massachusetts 02115, USA
- Department of Pathology, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts 02114, USA
- Corresponding author:
| |
Collapse
|
97
|
Airway mucus, inflammation and remodeling: emerging links in the pathogenesis of chronic lung diseases. Cell Tissue Res 2017; 367:537-550. [PMID: 28108847 DOI: 10.1007/s00441-016-2562-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
Abstract
Airway mucus obstruction is a hallmark of many chronic lung diseases including rare genetic disorders such as cystic fibrosis (CF) and primary ciliary dyskinesia, as well as common lung diseases such as asthma and chronic obstructive pulmonary disease (COPD), which have emerged as a leading cause of morbidity and mortality worldwide. However, the role of excess airway mucus in the in vivo pathogenesis of these diseases remains poorly understood. The generation of mice with airway-specific overexpression of epithelial Na+ channels (ENaC), exhibiting airway surface dehydration (mucus hyperconcentration), impaired mucociliary clearance (MCC) and mucus plugging, led to a model of muco-obstructive lung disease that shares key features of CF and COPD. In this review, we summarize recent progress in the understanding of causes of impaired MCC and in vivo consequences of airway mucus obstruction that can be inferred from studies in βENaC-overexpressing mice. These studies confirm that mucus hyperconcentration on airway surfaces plays a critical role in the pathophysiology of impaired MCC, mucus adhesion and airway plugging that cause airflow obstruction and provide a nidus for bacterial infection. In addition, these studies support the emerging concept that excess airway mucus per se, probably via several mechanisms including hypoxic epithelial necrosis, retention of inhaled irritants or allergens, and potential immunomodulatory effects, is a potent trigger of chronic airway inflammation and associated lung damage, even in the absence of bacterial infection. Finally, these studies suggest that improvement of mucus clearance may be a promising therapeutic strategy for a spectrum of muco-obstructive lung diseases.
Collapse
|
98
|
Ladores S, Kazmerski TM, Rowe SM. A Case Report of Pregnancy During Use of Targeted Therapeutics for Cystic Fibrosis. J Obstet Gynecol Neonatal Nurs 2016; 46:72-77. [PMID: 27875677 DOI: 10.1016/j.jogn.2016.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 11/18/2022] Open
Abstract
New therapeutics, such as ivacaftor, and the combination drug lumacaftor/ivacaftor that target the underlying genetic cause of cystic fibrosis are being hailed as game-changers in this era of personalized medicine. Although these drugs improve lung function, their effects on female fertility have not been studied. In this case report we describe one woman's experience with ivacaftor and her unanticipated pregnancy. Implications related to comprehensive sexual and reproductive health care for women with cystic fibrosis are presented.
Collapse
|
99
|
Carlon MS, Engels AC, Bosch B, Joyeux L, Mori da Cunha MGMC, Vidović D, Debyser Z, De Boeck K, Neyrinck A, Deprest JA. A novel translational model for fetoscopic intratracheal delivery of nanoparticles in piglets. Prenat Diagn 2016; 36:926-934. [DOI: 10.1002/pd.4915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences; KU Leuven; Leuven Belgium
| | - Alexander C. Engels
- Department of Development and Regeneration, Organ System Cluster; KU Leuven; Leuven Belgium
- Clinical Department of Obstetrics and Gynecology, Division Woman and Child; University Hospitals Leuven; Leuven Belgium
| | - Barbara Bosch
- Department of Development and Regeneration, Organ System Cluster; KU Leuven; Leuven Belgium
- Department of Pediatric Pulmonology; University Hospitals Leuven; Leuven Belgium
| | - Luc Joyeux
- Department of Development and Regeneration, Organ System Cluster; KU Leuven; Leuven Belgium
| | | | - Dragana Vidović
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences; KU Leuven; Leuven Belgium
| | - Zeger Debyser
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences; KU Leuven; Leuven Belgium
| | - Kris De Boeck
- Department of Pediatric Pulmonology; University Hospitals Leuven; Leuven Belgium
| | - Arne Neyrinck
- Laboratory of Anesthesiology and Algology, Department of Cardiovascular Sciences; KU Leuven; Leuven Belgium
| | - Jan A. Deprest
- Department of Development and Regeneration, Organ System Cluster; KU Leuven; Leuven Belgium
- Clinical Department of Obstetrics and Gynecology, Division Woman and Child; University Hospitals Leuven; Leuven Belgium
| |
Collapse
|
100
|
Micro-optical coherence tomography of the mammalian cochlea. Sci Rep 2016; 6:33288. [PMID: 27633610 PMCID: PMC5025881 DOI: 10.1038/srep33288] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022] Open
Abstract
The mammalian cochlea has historically resisted attempts at high-resolution, non-invasive imaging due to its small size, complex three-dimensional structure, and embedded location within the temporal bone. As a result, little is known about the relationship between an individual’s cochlear pathology and hearing function, and otologists must rely on physiological testing and imaging methods that offer limited resolution to obtain information about the inner ear prior to performing surgery. Micro-optical coherence tomography (μOCT) is a non-invasive, low-coherence interferometric imaging technique capable of resolving cellular-level anatomic structures. To determine whether μOCT is capable of resolving mammalian intracochlear anatomy, fixed guinea pig inner ears were imaged as whole temporal bones with cochlea in situ. Anatomical structures such as the tunnel of Corti, space of Nuel, modiolus, scalae, and cell groupings were visualized, in addition to individual cell types such as neuronal fibers, hair cells, and supporting cells. Visualization of these structures, via volumetrically-reconstructed image stacks and endoscopic perspective videos, represents an improvement over previous efforts using conventional OCT. These are the first μOCT images of mammalian cochlear anatomy, and they demonstrate μOCT’s potential utility as an imaging tool in otology research.
Collapse
|