51
|
Zalis MC, Johansson S, Englund-Johansson U. Immunocytochemical Profiling of Cultured Mouse Primary Retinal Cells. J Histochem Cytochem 2017; 65:223-239. [PMID: 28151698 PMCID: PMC5407564 DOI: 10.1369/0022155416689675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Primary retinal cell cultures and immunocytochemistry are important experimental platforms in ophthalmic research. Translation of retinal cells from their native environment to the in vitro milieu leads to cellular stress, jeopardizing their in vivo phenotype features. Moreover, the specificity and stability of many retinal immunochemical markers are poorly evaluated in retinal cell cultures. Hence, we here evaluated the expression profile of 17 retinal markers, that is, recoverin, rhodopsin, arrestin, Chx10, PKC, DCX, CRALBP, GS, vimentin, TPRV4, RBPMS, Brn3a, β-tubulin III, NeuN, MAP2, GFAP, and synaptophysin. At 7 and 18 days of culture, the marker expression profiles of mouse postnatal retinal cells were compared with their age-matched in vivo retinas. We demonstrate stable in vitro expression of all markers, except for arrestin and CRALBP. Differences in cellular expression and location of some markers were observed, both over time in culture and compared with the age-matched retina. We hypothesize that these differences are likely culture condition dependent. Taken together, we suggest a thorough evaluation of the antibodies in specific culture settings, before extrapolating the in vitro results to an in vivo setting. Moreover, the identification of specific cell types may require a combination of different genes expressed or markers with structural information.
Collapse
Affiliation(s)
- Marina C Zalis
- Division of Ophthalmology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden (MCZ, SJ, UEJ)
| | - Sebastian Johansson
- Division of Ophthalmology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden (MCZ, SJ, UEJ)
| | - Ulrica Englund-Johansson
- Division of Ophthalmology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden (MCZ, SJ, UEJ)
| |
Collapse
|
52
|
Lin FL, Lin CH, Ho JD, Yen JL, Chang HM, Chiou GCY, Cheng YW, Hsiao G. The natural retinoprotectant chrysophanol attenuated photoreceptor cell apoptosis in an N-methyl-N-nitrosourea-induced mouse model of retinal degenaration. Sci Rep 2017; 7:41086. [PMID: 28112220 PMCID: PMC5253624 DOI: 10.1038/srep41086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/15/2016] [Indexed: 01/27/2023] Open
Abstract
Retinitis pigmentosa (RP) is an inherited photoreceptor-degenerative disease, and neuronal degeneration in RP is exacerbated by glial activation. Cassia seed (Jue-ming-zi) is a traditional herbal medicine commonly used to treat ocular diseases in Asia. In this report, we investigated the retina-protective effect of chrysophanol, an active component of Cassia seed, in an N-methyl-N-nitrosourea (MNU)-induced mouse model of RP. We determined that chrysophanol inhibited the functional and morphological features of MNU-induced retinal degeneration using scotopic electroretinography (ERG), optical coherence tomography (OCT), and immunohistochemistry analysis of R/G opsin and rhodopsin. Furthermore, TUNEL assays revealed that chrysophanol attenuated MNU-induced photoreceptor cell apoptosis and inhibited the expression of the apoptosis-associated proteins PARP, Bax, and caspase-3. In addition, chrysophanol ameliorated reactive gliosis, as demonstrated by a decrease in GFAP immunolabeling, and suppressed the activation of matrix metalloproteinase (MMP)-9-mediated gelatinolysis. In vitro studies indicated that chrysophanol inhibited lipopolysaccharide (LPS)-induced iNOS and COX-2 expression in the BV2 mouse microglia cell line and inhibited MMP-9 activation in primary microglia. Our results demonstrate that chrysophanol provided neuroprotective effects and inhibited glial activation, suggesting that chrysophanol might have therapeutic value for the treatment of human RP and other retinopathies.
Collapse
Affiliation(s)
- Fan-Li Lin
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hui Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jau-Der Ho
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jing-Lun Yen
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Ming Chang
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - George C Y Chiou
- Department of Neuroscience and Experimental Therapeutics and Institute of Ocular Pharmacology, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
53
|
Retinal Macroglial Responses in Health and Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2954721. [PMID: 27294114 PMCID: PMC4887628 DOI: 10.1155/2016/2954721] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/14/2016] [Indexed: 12/20/2022]
Abstract
Due to their permanent and close proximity to neurons, glial cells perform essential tasks for the normal physiology of the retina. Astrocytes and Müller cells (retinal macroglia) provide physical support to neurons and supplement them with several metabolites and growth factors. Macroglia are involved in maintaining the homeostasis of extracellular ions and neurotransmitters, are essential for information processing in neural circuits, participate in retinal glucose metabolism and in removing metabolic waste products, regulate local blood flow, induce the blood-retinal barrier (BRB), play fundamental roles in local immune response, and protect neurons from oxidative damage. In response to polyetiological insults, glia cells react with a process called reactive gliosis, seeking to maintain retinal homeostasis. When malfunctioning, macroglial cells can become primary pathogenic elements. A reactive gliosis has been described in different retinal pathologies, including age-related macular degeneration (AMD), diabetes, glaucoma, retinal detachment, or retinitis pigmentosa. A better understanding of the dual, neuroprotective, or cytotoxic effect of macroglial involvement in retinal pathologies would help in treating the physiopathology of these diseases. The extensive participation of the macroglia in retinal diseases points to these cells as innovative targets for new drug therapies.
Collapse
|
54
|
Bogéa TH, Wen RH, Moritz OL. Light Induces Ultrastructural Changes in Rod Outer and Inner Segments, Including Autophagy, in a Transgenic Xenopus laevis P23H Rhodopsin Model of Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2016; 56:7947-55. [PMID: 26720441 DOI: 10.1167/iovs.15-16799] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We previously reported a transgenic Xenopus laevis model of retinitis pigmentosa in which tadpoles express the bovine form of P23H rhodopsin (bP23H) in rod photoreceptors. In this model, retinal degeneration was dependent on light exposure. Here, we investigated ultrastructural changes that occurred in the rod photoreceptors of these retinas when exposed to light. METHODS Tadpoles expressing bP23H in rods were transferred from constant darkness to a 12-hour light:12-hour dark (12L:12D) regimen. For comparison, transgenic tadpoles expressing an inducible form of caspase 9 (iCasp9) were reared in a 12L:12D regimen, and retinal degeneration was induced by administration of the drug AP20187. Tadpoles were euthanized at various time points, and eyes were processed for confocal light and transmission electron microscopy. RESULTS We observed defects in outer and inner segments of rods expressing bP23H that were aggravated by light exposure. Rod outer segments exhibited vesiculations throughout and were rapidly phagocytosed by the retinal pigment epithelium. In rod inner segments, we observed autophagic compartments adjacent to the endoplasmic reticulum and extensive vesiculation at later time points. These defects were not found in rods expressing iCasp9, which completely degenerated within 36 hours after drug administration. CONCLUSIONS Our results indicate that ultrastructural defects in outer and inner segment membranes of bP23H expressing rods differ from those observed in drug-induced apoptosis. We suggest that light-induced retinal degeneration caused by P23H rhodopsin occurs via cell death with autophagy, which may represent an attempt to eliminate the mutant rhodopsin and/or damaged cellular compartments from the secretory pathway.
Collapse
|
55
|
Luna G, Keeley PW, Reese BE, Linberg KA, Lewis GP, Fisher SK. Astrocyte structural reactivity and plasticity in models of retinal detachment. Exp Eye Res 2016; 150:4-21. [PMID: 27060374 DOI: 10.1016/j.exer.2016.03.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/01/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
Although retinal neurodegenerative conditions such as age-related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and retinal detachment have different etiologies and pathological characteristics, they also have many responses in common at the cellular level, including neural and glial remodeling. Structural changes in Müller cells, the large radial glia of the retina in retinal disease and injury have been well described, that of the retinal astrocytes remains less so. Using modern imaging technology to describe the structural remodeling of retinal astrocytes after retinal detachment is the focus of this paper. We present both a review of critical literature as well as novel work focusing on the responses of astrocytes following rhegmatogenous and serous retinal detachment. The mouse presents a convenient model system in which to study astrocyte reactivity since the Mϋller cell response is muted in comparison to other species thereby allowing better visualization of the astrocytes. We also show data from rat, cat, squirrel, and human retina demonstrating similarities and differences across species. Our data from immunolabeling and dye-filling experiments demonstrate previously undescribed morphological characteristics of normal astrocytes and changes induced by detachment. Astrocytes not only upregulate GFAP, but structurally remodel, becoming increasingly irregular in appearance, and often penetrating deep into neural retina. Understanding these responses, their consequences, and what drives them may prove to be an important component in improving visual outcome in a variety of therapeutic situations. Our data further supports the concept that astrocytes are important players in the retina's overall response to injury and disease.
Collapse
Affiliation(s)
- Gabriel Luna
- Neuroscience Research Institute, University of California Santa Barbara, USA; Center for Bio-image Informatics, University of California Santa Barbara, USA
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California Santa Barbara, USA
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California Santa Barbara, USA; Department of Psychological and Brain Sciences, University of California Santa Barbara, USA
| | - Kenneth A Linberg
- Neuroscience Research Institute, University of California Santa Barbara, USA
| | - Geoffrey P Lewis
- Neuroscience Research Institute, University of California Santa Barbara, USA; Center for Bio-image Informatics, University of California Santa Barbara, USA
| | - Steven K Fisher
- Neuroscience Research Institute, University of California Santa Barbara, USA; Center for Bio-image Informatics, University of California Santa Barbara, USA; Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, USA.
| |
Collapse
|
56
|
Martinez-De Luna RI, Ku RY, Aruck AM, Santiago F, Viczian AS, San Mauro D, Zuber ME. Müller glia reactivity follows retinal injury despite the absence of the glial fibrillary acidic protein gene in Xenopus. Dev Biol 2016; 426:219-235. [PMID: 26996101 DOI: 10.1016/j.ydbio.2016.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 01/02/2023]
Abstract
Intermediate filament proteins are structural components of the cellular cytoskeleton with cell-type specific expression and function. Glial fibrillary acidic protein (GFAP) is a type III intermediate filament protein and is up-regulated in glia of the nervous system in response to injury and during neurodegenerative diseases. In the retina, GFAP levels are dramatically increased in Müller glia and are thought to play a role in the extensive structural changes resulting in Müller cell hypertrophy and glial scar formation. In spite of similar changes to the morphology of Xenopus Müller cells following injury, we found that Xenopus lack a gfap gene. Other type III intermediate filament proteins were, however, significantly induced following rod photoreceptor ablation and retinal ganglion cell axotomy. The recently available X. tropicalis and X. laevis genomes indicate a small deletion most likely resulted in the loss of the gfap gene during anuran evolution. Lastly, a survey of representative species from all three extant amphibian orders including the Anura (frogs, toads), Caudata (salamanders, newts), and Gymnophiona (caecilians) suggests that deletion of the gfap locus occurred in the ancestor of all Anura after its divergence from the Caudata ancestor around 290 million years ago. Our results demonstrate that extensive changes in Müller cell morphology following retinal injury do not require GFAP in Xenopus, and other type III intermediate filament proteins may be involved in the gliotic response.
Collapse
Affiliation(s)
- Reyna I Martinez-De Luna
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Ray Y Ku
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Alexandria M Aruck
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Francesca Santiago
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Andrea S Viczian
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Diego San Mauro
- Department of Zoology & Physical Anthropology, Faculty of Biological Sciences, Complutense University, Madrid 28040, Spain
| | - Michael E Zuber
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA.
| |
Collapse
|
57
|
Pekny M, Pekna M, Messing A, Steinhäuser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A. Astrocytes: a central element in neurological diseases. Acta Neuropathol 2016; 131:323-45. [PMID: 26671410 DOI: 10.1007/s00401-015-1513-1] [Citation(s) in RCA: 560] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/28/2015] [Accepted: 11/21/2015] [Indexed: 12/18/2022]
Abstract
The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unravel the different signalling mechanisms that trigger specific molecular, morphological and functional changes in reactive astrocytes that are critical for repairing tissue and maintaining function in CNS pathologies, such as neurotrauma, stroke, or neurodegenerative diseases. An increasing body of evidence shows that the effects of astrogliosis on the neural tissue and its functions are not uniform or stereotypic, but vary in a context-specific manner from astrogliosis being an adaptive beneficial response under some circumstances to a maladaptive and deleterious process in another context. There is a growing support for the concept of astrocytopathies in which the disruption of normal astrocyte functions, astrodegeneration or dysfunctional/maladaptive astrogliosis are the primary cause or the main factor in neurological dysfunction and disease. This review describes the multiple roles of astrocytes in the healthy CNS, discusses the diversity of astroglial responses in neurological disorders and argues that targeting astrocytes may represent an effective therapeutic strategy for Alexander disease, neurotrauma, stroke, epilepsy and Alzheimer's disease as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Milos Pekny
- Department of Clinical Neuroscience and Rehabilitation, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 405 30, Gothenburg, Sweden.
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.
- University of Newcastle, New South Wales, Australia.
| | - Marcela Pekna
- Department of Clinical Neuroscience and Rehabilitation, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 405 30, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- University of Newcastle, New South Wales, Australia
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| | - Christian Steinhäuser
- Medical faculty, Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
| | - Jin-Moo Lee
- Department of Neurology, The Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, USA
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center, Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy and Nanotechnology Laboratories, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 429, Birmingham, AL, 35294, USA
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael V Sofroniew
- Department of Neurobiology, University of California, Los Angeles, CA, 90095, USA
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
- University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia.
| |
Collapse
|
58
|
Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta Mol Basis Dis 2016; 1862:483-91. [DOI: 10.1016/j.bbadis.2015.11.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/19/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023]
|
59
|
Fernández-Sánchez L, Lax P, Campello L, Pinilla I, Cuenca N. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa. Front Cell Neurosci 2015; 9:484. [PMID: 26733810 PMCID: PMC4686678 DOI: 10.3389/fncel.2015.00484] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022] Open
Abstract
Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.
Collapse
Affiliation(s)
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Aragon Institute for Health Research, Lozano Blesa University Hospital Zaragoza, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of AlicanteAlicante, Spain; Institute Ramón Margalef, University of AlicanteAlicante, Spain
| |
Collapse
|
60
|
Reactive gliosis in the adult zebrafish retina. Exp Eye Res 2015; 143:98-109. [PMID: 26492821 DOI: 10.1016/j.exer.2015.09.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 09/02/2015] [Accepted: 09/28/2015] [Indexed: 01/10/2023]
Abstract
In contrast to mammals, zebrafish posses the remarkable ability to regenerate retinal neurons. Damage to the zebrafish retina induces Müller glia to act as stem cells, generating retinal progenitors for regeneration. In contrast, injury in the mammalian retina results in Müller glial reactive gliosis, a characteristic gliotic response that is normally detrimental to vision. Understanding the signaling pathways that determine how Müller glia respond to injury is a critical step toward promoting regeneration in the mammalian retina. Here we report that zebrafish Müller glia exhibit signs of reactive gliosis even under normal regenerative conditions and that cell cycle inhibition increases this response. Persistently reactive Müller glia increase their neuroprotective functions, temporarily saving photoreceptors from a cytotoxic light lesion. However, the absence of a sustained proliferation response results in a significant inhibition of retinal regeneration. Interestingly, when cell cycle inhibition is released, a partial recovery of regeneration is observed. Together, these data demonstrate that zebrafish Müller glia possess both gliotic and regenerative potential.
Collapse
|
61
|
Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 2015; 144:103-20. [PMID: 26455456 DOI: 10.1016/j.pneurobio.2015.09.008] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/06/2015] [Accepted: 09/05/2015] [Indexed: 01/04/2023]
Abstract
Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke.
Collapse
Affiliation(s)
- Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
62
|
Correale J, Farez MF. The Role of Astrocytes in Multiple Sclerosis Progression. Front Neurol 2015; 6:180. [PMID: 26347709 PMCID: PMC4539519 DOI: 10.3389/fneur.2015.00180] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/03/2015] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disorder causing central nervous system (CNS) demyelination and axonal injury. Although its etiology remains elusive, several lines of evidence support the concept that autoimmunity plays a major role in disease pathogenesis. The course of MS is highly variable; nevertheless, the majority of patients initially present a relapsing–remitting clinical course. After 10–15 years of disease, this pattern becomes progressive in up to 50% of untreated patients, during which time clinical symptoms slowly cause constant deterioration over a period of many years. In about 15% of MS patients, however, disease progression is relentless from disease onset. Published evidence supports the concept that progressive MS reflects a poorly understood mechanism of insidious axonal degeneration and neuronal loss. Recently, the type of microglial cell and of astrocyte activation and proliferation observed has suggested contribution of resident CNS cells may play a critical role in disease progression. Astrocytes could contribute to this process through several mechanisms: (a) as part of the innate immune system, (b) as a source of cytotoxic factors, (c) inhibiting remyelination and axonal regeneration by forming a glial scar, and (d) contributing to axonal mitochondrial dysfunction. Furthermore, regulatory mechanisms mediated by astrocytes can be affected by aging. Notably, astrocytes might also limit the detrimental effects of pro-inflammatory factors, while providing support and protection for oligodendrocytes and neurons. Because of the dichotomy observed in astrocytic effects, the design of therapeutic strategies targeting astrocytes becomes a challenging endeavor. Better knowledge of molecular and functional properties of astrocytes, therefore, should promote understanding of their specific role in MS pathophysiology, and consequently lead to development of novel and more successful therapeutic approaches.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, Institute for Neurological Research Dr. Raúl Carrea, FLENI , Buenos Aires , Argentina
| | - Mauricio F Farez
- Department of Neurology, Institute for Neurological Research Dr. Raúl Carrea, FLENI , Buenos Aires , Argentina
| |
Collapse
|
63
|
Lebkuechner I, Wilhelmsson U, Möllerström E, Pekna M, Pekny M. Heterogeneity of Notch signaling in astrocytes and the effects of GFAP and vimentin deficiency. J Neurochem 2015; 135:234-48. [DOI: 10.1111/jnc.13213] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Isabell Lebkuechner
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Ulrika Wilhelmsson
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Elin Möllerström
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
- Florey Institute of Neuroscience and Mental Health; Parkville Victoria Australia
- University of Newcastle; New South Wales Australia
| | - Milos Pekny
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
- Florey Institute of Neuroscience and Mental Health; Parkville Victoria Australia
- University of Newcastle; New South Wales Australia
| |
Collapse
|
64
|
Wunderlich KA, Tanimoto N, Grosche A, Zrenner E, Pekny M, Reichenbach A, Seeliger MW, Pannicke T, Perez MT. Retinal functional alterations in mice lacking intermediate filament proteins glial fibrillary acidic protein and vimentin. FASEB J 2015; 29:4815-28. [PMID: 26251181 DOI: 10.1096/fj.15-272963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/27/2015] [Indexed: 01/02/2023]
Abstract
Vimentin (Vim) and glial fibrillary acidic protein (GFAP) are important components of the intermediate filament (IF) (or nanofilament) system of astroglial cells. We conducted full-field electroretinogram (ERG) recordings and found that whereas photoreceptor responses (a-wave) were normal in uninjured GFAP(-/-)Vim(-/-) mice, b-wave amplitudes were increased. Moreover, we found that Kir (inward rectifier K(+)) channel protein expression was reduced in the retinas of GFAP(-/-)Vim(-/-) mice and that Kir-mediated current amplitudes were lower in Müller glial cells isolated from these mice. Studies have shown that the IF system, in addition, is involved in the retinal response to injury and that attenuated Müller cell reactivity and reduced photoreceptor cell loss are observed in IF-deficient mice after experimental retinal detachment. We investigated whether the lack of IF proteins would affect cell survival in a retinal ischemia-reperfusion model. We found that although cell loss was induced in both genotypes, the number of surviving cells in the inner retina was lower in IF-deficient mice. Our findings thus show that the inability to produce GFAP and Vim affects normal retinal physiology and that the effect of IF deficiency on retinal cell survival differs, depending on the underlying pathologic condition.
Collapse
Affiliation(s)
- Kirsten A Wunderlich
- *Department of Clinical Sciences, Division of Ophthalmology, and NanoLund, Nanometer Structure Consortium, Lund University, Lund, Sweden; Graduate School of Cellular and Molecular Neuroscience, Center for Integrative Neuroscience (CIN), and Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Institute of Human Genetics, University of Regensburg, Regensburg, Germany; Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; **Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia; and Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Naoyuki Tanimoto
- *Department of Clinical Sciences, Division of Ophthalmology, and NanoLund, Nanometer Structure Consortium, Lund University, Lund, Sweden; Graduate School of Cellular and Molecular Neuroscience, Center for Integrative Neuroscience (CIN), and Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Institute of Human Genetics, University of Regensburg, Regensburg, Germany; Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; **Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia; and Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Antje Grosche
- *Department of Clinical Sciences, Division of Ophthalmology, and NanoLund, Nanometer Structure Consortium, Lund University, Lund, Sweden; Graduate School of Cellular and Molecular Neuroscience, Center for Integrative Neuroscience (CIN), and Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Institute of Human Genetics, University of Regensburg, Regensburg, Germany; Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; **Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia; and Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Eberhart Zrenner
- *Department of Clinical Sciences, Division of Ophthalmology, and NanoLund, Nanometer Structure Consortium, Lund University, Lund, Sweden; Graduate School of Cellular and Molecular Neuroscience, Center for Integrative Neuroscience (CIN), and Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Institute of Human Genetics, University of Regensburg, Regensburg, Germany; Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; **Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia; and Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Milos Pekny
- *Department of Clinical Sciences, Division of Ophthalmology, and NanoLund, Nanometer Structure Consortium, Lund University, Lund, Sweden; Graduate School of Cellular and Molecular Neuroscience, Center for Integrative Neuroscience (CIN), and Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Institute of Human Genetics, University of Regensburg, Regensburg, Germany; Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; **Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia; and Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Andreas Reichenbach
- *Department of Clinical Sciences, Division of Ophthalmology, and NanoLund, Nanometer Structure Consortium, Lund University, Lund, Sweden; Graduate School of Cellular and Molecular Neuroscience, Center for Integrative Neuroscience (CIN), and Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Institute of Human Genetics, University of Regensburg, Regensburg, Germany; Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; **Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia; and Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Mathias W Seeliger
- *Department of Clinical Sciences, Division of Ophthalmology, and NanoLund, Nanometer Structure Consortium, Lund University, Lund, Sweden; Graduate School of Cellular and Molecular Neuroscience, Center for Integrative Neuroscience (CIN), and Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Institute of Human Genetics, University of Regensburg, Regensburg, Germany; Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; **Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia; and Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Thomas Pannicke
- *Department of Clinical Sciences, Division of Ophthalmology, and NanoLund, Nanometer Structure Consortium, Lund University, Lund, Sweden; Graduate School of Cellular and Molecular Neuroscience, Center for Integrative Neuroscience (CIN), and Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Institute of Human Genetics, University of Regensburg, Regensburg, Germany; Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; **Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia; and Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Maria-Thereza Perez
- *Department of Clinical Sciences, Division of Ophthalmology, and NanoLund, Nanometer Structure Consortium, Lund University, Lund, Sweden; Graduate School of Cellular and Molecular Neuroscience, Center for Integrative Neuroscience (CIN), and Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Institute of Human Genetics, University of Regensburg, Regensburg, Germany; Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; **Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia; and Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
65
|
Bargagna-Mohan P, Lei L, Thompson A, Shaw C, Kasahara K, Inagaki M, Mohan R. Vimentin Phosphorylation Underlies Myofibroblast Sensitivity to Withaferin A In Vitro and during Corneal Fibrosis. PLoS One 2015; 10:e0133399. [PMID: 26186445 PMCID: PMC4506086 DOI: 10.1371/journal.pone.0133399] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 06/26/2015] [Indexed: 12/21/2022] Open
Abstract
Vimentin is a newly recognized target for corneal fibrosis. Using primary rabbit corneal fibroblasts and myofibroblasts we show that myofibroblasts, unlike fibroblasts, display impaired cell spreading and cell polarization, which is associated with increased levels of soluble serine-38 phosphorylated vimentin (pSer38Vim). This pSer38Vim isoform is inefficiently incorporated into growing vimentin intermediate filaments (IFs) of myofibroblasts during cell spreading, and as a result, myofibroblasts maintain higher soluble pSer38Vim levels compared to fibroblasts. Moreover, the soluble vimentin-targeting small molecule and fibrotic inhibitor withaferin A (WFA) causes a potent blockade of cell spreading selectively in myofibroblasts by targeting soluble pSer38Vim for hyperphosphorylation. WFA treatment does not induce vimentin hyperphosphorylation in fibroblasts. This hyperphosphorylated pSer38Vim species in WFA-treated myofibroblasts becomes complexed with adaptor protein filamin A (FlnA), and these complexes appear as short squiggles when displaced from focal adhesions. The extracellular-signal regulated kinase (ERK) is also phosphorylated (pERK) in response to WFA, but surprisingly, pERK does not enter the nucleus but remains bound to pSer38Vim in cytoplasmic complexes. Using a model of corneal alkali injury, we show that fibrotic corneas of wild type mice possess high levels of pERK, whereas injured corneas of vimentin-deficient (Vim KO) mice that heal with reduced fibrosis have highly reduced pERK expression. Finally, WFA treatment causes a decrease in pERK and pSer38Vim expression in healing corneas of wild type mice. Taken together, these findings identify a hereto-unappreciated role for pSer38Vim as an important determinant of myofibroblast sensitivity to WFA.
Collapse
Affiliation(s)
- Paola Bargagna-Mohan
- From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Ling Lei
- From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Alexis Thompson
- From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Camille Shaw
- From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Kousuke Kasahara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Royce Mohan
- From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
66
|
Shinjyo N, de Pablo Y, Pekny M, Pekna M. Complement Peptide C3a Promotes Astrocyte Survival in Response to Ischemic Stress. Mol Neurobiol 2015; 53:3076-3087. [DOI: 10.1007/s12035-015-9204-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/29/2015] [Indexed: 01/04/2023]
|
67
|
Lee KM, MacLean AG. New advances on glial activation in health and disease. World J Virol 2015; 4:42-55. [PMID: 25964871 PMCID: PMC4419121 DOI: 10.5501/wjv.v4.i2.42] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/23/2015] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
In addition to being the support cells of the central nervous system (CNS), astrocytes are now recognized as active players in the regulation of synaptic function, neural repair, and CNS immunity. Astrocytes are among the most structurally complex cells in the brain, and activation of these cells has been shown in a wide spectrum of CNS injuries and diseases. Over the past decade, research has begun to elucidate the role of astrocyte activation and changes in astrocyte morphology in the progression of neural pathologies, which has led to glial-specific interventions for drug development. Future therapies for CNS infection, injury, and neurodegenerative disease are now aimed at targeting astrocyte responses to such insults including astrocyte activation, astrogliosis and other morphological changes, and innate and adaptive immune responses.
Collapse
|
68
|
Abstract
BACKGROUND Idiopathic epiretinal membrane (iERM) is a fibrocellular membrane that proliferates on the inner surface of the retina at the macular area. Membrane contraction is an important sight-threatening event and is due to fibrotic remodeling. METHODS Analysis of the current literature regarding the epidemiology, clinical features, and pathogenesis of iERM and fibrotic tissue contraction. RESULTS Epidemiologic studies report a relationship between iERM prevalence, increasing age, and posterior vitreous detachment. Clinically, iERM progresses through different stages characterized by an increased thickness and wrinkling of the membrane. Pathophysiologically, iERM formation is a fibrotic process in which myofibroblast formation and the deposition of newly formed collagens play key roles. Anomalous posterior vitreous detachment may be a key event initiating the formation of iERM. The age-related accumulation of advanced glycation end products may contribute to anomalous posterior vitreous detachment formation and may also influence the mechanical properties of the iERM. CONCLUSION Remodeling of the extracellular matrix at the vitreoretinal interface by aging and fibrotic changes, plays a significant role in the pathogenesis of iERM. A better understanding of molecular mechanisms underlying this process may eventually lead to the development of effective and nonsurgical approaches to treat and prevent vitreoretinal fibrotic diseases.
Collapse
|
69
|
|
70
|
Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 2015; 32:121-30. [PMID: 25726916 DOI: 10.1016/j.ceb.2015.02.004] [Citation(s) in RCA: 588] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 01/14/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is the hallmark intermediate filament (IF; also known as nanofilament) protein in astrocytes, a main type of glial cells in the central nervous system (CNS). Astrocytes have a range of control and homeostatic functions in health and disease. Astrocytes assume a reactive phenotype in acute CNS trauma, ischemia, and in neurodegenerative diseases. This coincides with an upregulation and rearrangement of the IFs, which form a highly complex system composed of GFAP (10 isoforms), vimentin, synemin, and nestin. We begin to unravel the function of the IF system of astrocytes and in this review we discuss its role as an important crisis-command center coordinating cell responses in situations connected to cellular stress, which is a central component of many neurological diseases.
Collapse
|
71
|
Kamphuis W, Kooijman L, Orre M, Stassen O, Pekny M, Hol EM. GFAP and vimentin deficiency alters gene expression in astrocytes and microglia in wild-type mice and changes the transcriptional response of reactive glia in mouse model for Alzheimer's disease. Glia 2015; 63:1036-56. [PMID: 25731615 DOI: 10.1002/glia.22800] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/14/2015] [Indexed: 11/07/2022]
Abstract
Reactive astrocytes with an increased expression of intermediate filament (IF) proteins Glial Fibrillary Acidic Protein (GFAP) and Vimentin (VIM) surround amyloid plaques in Alzheimer's disease (AD). The functional consequences of this upregulation are unclear. To identify molecular pathways coupled to IF regulation in reactive astrocytes, and to study the interaction with microglia, we examined WT and APPswe/PS1dE9 (AD) mice lacking either GFAP, or both VIM and GFAP, and determined the transcriptome of cortical astrocytes and microglia from 15- to 18-month-old mice. Genes involved in lysosomal degradation (including several cathepsins) and in inflammatory response (including Cxcl5, Tlr6, Tnf, Il1b) exhibited a higher AD-induced increase when GFAP, or VIM and GFAP, were absent. The expression of Aqp4 and Gja1 displayed the same pattern. The downregulation of neuronal support genes in astrocytes from AD mice was absent in GFAP/VIM null mice. In contrast, the absence of IFs did not affect the transcriptional alterations induced by AD in microglia, nor was the cortical plaque load altered. Visualizing astrocyte morphology in GFAP-eGFP mice showed no clear structural differences in GFAP/VIM null mice, but did show diminished interaction of astrocyte processes with plaques. Microglial proliferation increased similarly in all AD groups. In conclusion, absence of GFAP, or both GFAP and VIM, alters AD-induced changes in gene expression profile of astrocytes, showing a compensation of the decrease of neuronal support genes and a trend for a slightly higher inflammatory expression profile. However, this has no consequences for the development of plaque load, microglial proliferation, or microglial activation.
Collapse
Affiliation(s)
- Willem Kamphuis
- Astrocyte Biology & Neurodegeneration, Netherlands Institute for Neuroscience (NIN), An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Synaptic Plasticity & Behavior, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
72
|
Kotterman MA, Yin L, Strazzeri JM, Flannery JG, Merigan WH, Schaffer DV. Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates. Gene Ther 2014; 22:116-26. [PMID: 25503696 DOI: 10.1038/gt.2014.115] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 01/05/2023]
Abstract
Gene delivery vectors based on adeno-associated viruses (AAV) have exhibited promise in both preclinical disease models and human clinical trials for numerous disease targets, including the retinal degenerative disorders Leber's congenital amaurosis and choroideremia. One general challenge for AAV is that preexisting immunity, as well as subsequent development of immunity following vector administration, can severely inhibit systemic AAV vector gene delivery. However, the role of neutralizing antibodies (NABs) in AAV transduction of tissues considered to be immune privileged, such as the eye, is unclear in large animals. Intravitreal AAV administration allows for broad retinal delivery, but is more susceptible to interactions with the immune system than subretinal administration. To assess the effects of systemic anti-AAV antibody levels on intravitreal gene delivery, we quantified the anti-AAV antibodies present in sera from non-human primates before and after intravitreal injections with various AAV capsids. Analysis showed that intravitreal administration resulted in an increase in anti-AAV antibodies regardless of the capsid serotype, transgene or dosage of virus injected. For monkeys injected with wild-type AAV2 and/or an AAV2 mutant, the variable that most significantly affected the production of anti-AAV2 antibodies was the amount of virus delivered. In addition, post-injection antibody titers were highest against the serotype administered, but the antibodies were also cross-reactive against other AAV serotypes. Furthermore, NAB levels in serum correlated with those in vitreal fluid, demonstrating both that this route of administration exposes AAV capsid epitopes to the adaptive immune system and that serum measurements are predictive of vitreous fluid NAB titers. Moreover, the presence of preexisting NAB titers in the serum of monkeys correlated strongly (R=0.76) with weak, decaying or no transgene expression following intravitreal administration of AAV. Investigating anti-AAV antibody development will aid in understanding the interactions between gene therapy vectors and the immune system during ocular administration and can form a basis for future clinical studies applying intravitreal gene delivery.
Collapse
Affiliation(s)
- M A Kotterman
- 1] Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA [2] 4D Molecular Therapeutics, San Francisco, CA, USA
| | - L Yin
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - J M Strazzeri
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - J G Flannery
- 1] The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA [2] Department of Molecular and Cellular Biology, University of California, Berkeley, CA, USA
| | - W H Merigan
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - D V Schaffer
- 1] Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA [2] The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA [3] Department of Molecular and Cellular Biology, University of California, Berkeley, CA, USA [4] Department of Bioengineering, University of California, Berkeley, CA, USA [5] 4D Molecular Therapeutics, San Francisco, CA, USA
| |
Collapse
|
73
|
Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 2014; 94:1077-98. [PMID: 25287860 DOI: 10.1152/physrev.00041.2013] [Citation(s) in RCA: 650] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Astrocytes are the most abundant cells in the central nervous system (CNS) that provide nutrients, recycle neurotransmitters, as well as fulfill a wide range of other homeostasis maintaining functions. During the past two decades, astrocytes emerged also as increasingly important regulators of neuronal functions including the generation of new nerve cells and structural as well as functional synapse remodeling. Reactive gliosis or reactive astrogliosis is a term coined for the morphological and functional changes seen in astroglial cells/astrocytes responding to CNS injury and other neurological diseases. Whereas this defensive reaction of astrocytes is conceivably aimed at handling the acute stress, limiting tissue damage, and restoring homeostasis, it may also inhibit adaptive neural plasticity mechanisms underlying recovery of function. Understanding the multifaceted roles of astrocytes in the healthy and diseased CNS will undoubtedly contribute to the development of treatment strategies that will, in a context-dependent manner and at appropriate time points, modulate reactive astrogliosis to promote brain repair and reduce the neurological impairment.
Collapse
Affiliation(s)
- Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
74
|
Abstract
Exclusively neuron-centric approaches to neuropathological mechanisms have not resulted in major new breakthroughs in the prevention and therapy of neurodegenerative diseases. In the present paper, we review the role of glia in neurodegeneration in an attempt to identify novel targets that could be used to develop much-needed strategies for the containment and cure of neurodegenerative disorders. We discuss this in the context of glial roles in the homoeostasis and defence of the brain. We consider the mounting evidence supporting a change away from the perception of reactive glial responses merely as secondary detrimental processes that exacerbate the course of neurological disorders, in favour of an emerging contemporary view of glial pathological responses as complex and multistaged defensive processes that also have the potential for dysfunction.
Collapse
|
75
|
Desclaux M, Perrin FE, Do-Thi A, Prieto-Cappellini M, Gimenez Y Ribotta M, Mallet J, Privat A. Lentiviral-mediated silencing of glial fibrillary acidic protein and vimentin promotes anatomical plasticity and functional recovery after spinal cord injury. J Neurosci Res 2014; 93:43-55. [PMID: 25131829 DOI: 10.1002/jnr.23468] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 12/24/2022]
Abstract
In spinal cord injury (SCI), absence of functional recovery and lack of spontaneous axonal regeneration are attributed, among other factors, to the formation of a glial scar that forms both physical and chemical barriers. The glial scar is composed mainly of reactive astrocytes that overexpress two intermediate filament proteins, glial fibrillary acidic protein (GFAP) and vimentin (VIM). To promote regeneration and sprouting of spared axons after spinal cord trauma and with the objective of translation to clinics, we designed an original in vivo gene transfer strategy to reduce glial scar formation after SCI, based on the RNA interference (RNAi)-mediated inhibition of GFAP and VIM. We first show that direct injection of lentiviral vectors expressing short hairpin RNA (shRNA) against GFAP and VIM in a mouse model of SCI allows efficient and specific targeting of astrocytes. We then demonstrate that the lentiviral-mediated and stable expression of shGFAP and shVIM leads to a strong reduction of astrogliosis, improves functional motor recovery, and promotes axonal regrowth and sprouting of spared axons. This study thus examplifies how the nonneuronal environment might be a major target within the lesioned central nervous system to promote axonal regeneration (and sprouting) and validates the use of lentiviral-mediated RNAi in SCI.
Collapse
Affiliation(s)
- Mathieu Desclaux
- Biotechnology and Biotherapy, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epiniere, Centre National de la Recherche Scientifique (CNRS) UMR 7225, Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 975, Université Pierre et Marie Curie (UPMC), Hôpital de la Pitié Salpêtrière, Paris, France; Columbia University, Department of Pathology and Cell Biology Project A.L.S.-Jenifer Estess Laboratory for Stem Cell Research, New York, New York
| | | | | | | | | | | | | |
Collapse
|
76
|
Yokoyama Y, Maruyama K, Yamamoto K, Omodaka K, Yasuda M, Himori N, Ryu M, Nishiguchi KM, Nakazawa T. The role of calpain in an in vivo model of oxidative stress-induced retinal ganglion cell damage. Biochem Biophys Res Commun 2014; 451:510-5. [PMID: 25111816 DOI: 10.1016/j.bbrc.2014.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022]
Abstract
PURPOSE In this study, we set out to establish an in vivo animal model of oxidative stress in the retinal ganglion cells (RGCs) and determine whether there is a link between oxidative stress in the RGCs and the activation of calpain, a major part of the apoptotic pathway. MATERIALS AND METHODS Oxidative stress was induced in the RGCs of C57BL/6 mice by the intravitreal administration of 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH, 30mM, 2μl). Control eyes were injected with 2μl of vehicle. Surviving Fluorogold (FG)-labeled RGCs were then counted in retinal flat mounts. Double staining with CellROX and Annexin V was performed to investigate the co-localization of free radical generation and apoptosis. An immunoblot assay was used both to indirectly evaluate calpain activation in the AAPH-treated eyes by confirming α-fodrin cleavage, and also to evaluate the effect of SNJ-1945 (a specific calpain inhibitor: 4% w/v, 100mg/kg, intraperitoneal administration) in these eyes. RESULTS Intravitreal administration of AAPH led to a significant decrease in FG-labeled RGCs 7days after treatment (control: 3806.7±575.2RGCs/mm(2), AAPH: 3156.1±371.2RGCs/mm(2), P<0.01). CellROX and Annexin V signals were co-localized in the FG-labeled RGCs 24h after AAPH injection. An immunoblot assay revealed a cleaved α-fodrin band that increased significantly 24h after AAPH administration. Intraperitoneally administered SNJ-1945 prevented the cleavage of α-fodrin and had a neuroprotective effect against AAPH-induced RGC death (AAPH: 3354.0±226.9RGCs/mm(2), AAPH+SNJ-1945: 3717.1±614.6RGCs/mm(2), P<0.01). CONCLUSION AAPH administration was an effective model of oxidative stress in the RGCs, showing that oxidative stress directly activated the calpain pathway and induced RGC death. Furthermore, inhibition of the calpain pathway protected the RGCs after AAPH administration.
Collapse
Affiliation(s)
- Yu Yokoyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kazuichi Maruyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kotaro Yamamoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Masayuki Yasuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Morin Ryu
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| |
Collapse
|
77
|
Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, De la Villa P, Lax P, Pinilla I. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 2014; 43:17-75. [PMID: 25038518 DOI: 10.1016/j.preteyeres.2014.07.001] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/17/2023]
Abstract
Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain; Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, Alicante, Spain.
| | - Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Pedro De la Villa
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Aragon Institute of Health Sciences, Zaragoza, Spain
| |
Collapse
|
78
|
Liu Z, Li Y, Cui Y, Roberts C, Lu M, Wilhelmsson U, Pekny M, Chopp M. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia 2014; 62:2022-33. [PMID: 25043249 DOI: 10.1002/glia.22723] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/25/2014] [Accepted: 07/03/2014] [Indexed: 12/12/2022]
Abstract
The functional role of reactive astrocytes after stroke is controversial. To elucidate whether reactive astrocytes contribute to neurological recovery, we compared behavioral outcome, axonal remodeling of the corticospinal tract (CST), and the spatio-temporal change of chondroitin sulfate proteoglycan (CSPG) expression between wild-type (WT) and glial fibrillary acidic protein/vimentin double knockout (GFAP(-/-) Vim(-/-) ) mice subjected to Rose Bengal induced cerebral cortical photothrombotic stroke in the right forelimb motor area. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA) was injected into the left motor cortex to anterogradely label the CST axons. Compared with WT mice, the motor functional recovery and BDA-positive CST axonal length in the denervated side of the cervical gray matter were significantly reduced in GFAP(-/-) Vim(-/-) mice (n = 10/group, P < 0.01). Immunohistological data showed that in GFAP(-/-) Vim(-/-) mice, in which astrocytic reactivity is attenuated, CSPG expression was significantly increased in the lesion remote areas in both hemispheres, but decreased in the ischemic lesion boundary zone, compared with WT mice (n = 12/group, P < 0.001). Our data suggest that attenuated astrocytic reactivity impairs or delays neurological recovery by reducing CST axonal remodeling in the denervated spinal cord. Thus, manipulation of astrocytic reactivity post stroke may represent a therapeutic target for neurorestorative strategies.
Collapse
Affiliation(s)
- Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Lahmar I, Pfaff AW, Marcellin L, Sauer A, Moussa A, Babba H, Candolfi E. Müller cell activation and photoreceptor depletion in a mice model of congenital ocular toxoplasmosis. Exp Parasitol 2014; 144:22-6. [PMID: 24929147 DOI: 10.1016/j.exppara.2014.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/10/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Müller glial cells are critically involved in retinal inflammatory processes. Here, we investigate the activation of Müller cells in a model of congenital ocular toxoplasmosis (OT). Four weeks after infection, retinal sections were studied immunohistochemically using the markers glial fibrillary acidic protein (GFAP) and vimentin. Müller cells showed strong up-regulation of both markers, as well as a deteriorated morphology in all infected retinas. Moreover, cell density and color intensity of the outer nuclear layer (ONL) of photoreceptors were decreased. Our results indicate that the severe retinal damage and loss of vision observed in human OT may be not only directly caused by infection but rather mediated by infection induced reactive gliosis.
Collapse
Affiliation(s)
- Ibtissem Lahmar
- Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle, Université de Strasbourg, France; Laboratoire de Parasitologie - Mycologie Médicale et Moléculaire (code LR12ES08), Département de Biologie Clinique B, Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia.
| | - Alexander W Pfaff
- Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle, Université de Strasbourg, France
| | - Luc Marcellin
- Département de Pathologie, Hôpitaux Universitaires de Strasbourg, France
| | - Arnaud Sauer
- Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle, Université de Strasbourg, France
| | - Adnane Moussa
- Laboratoire d'Anatomie Pathologique, Hôpital Universitaire Fattouma Bourguiba, Monastir, Tunisia
| | - Hamouda Babba
- Laboratoire de Parasitologie - Mycologie Médicale et Moléculaire (code LR12ES08), Département de Biologie Clinique B, Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Ermanno Candolfi
- Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle, Université de Strasbourg, France
| |
Collapse
|
80
|
Matsumoto H, Kataoka K, Tsoka P, Connor KM, Miller JW, Vavvas DG. Strain difference in photoreceptor cell death after retinal detachment in mice. Invest Ophthalmol Vis Sci 2014; 55:4165-74. [PMID: 24854853 DOI: 10.1167/iovs.14-14238] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate the potential for mouse genetic background to effect photoreceptor cell death in response to experimental retinal detachment (RD). METHODS Retinal detachment was induced in three inbred mouse strains (C57BL/6, BALB/c, and B6129SF2) by subretinal injection of sodium hyaluronate. A time course of photoreceptor cell death was assessed by TUNEL assay. Total photoreceptor cell death was analyzed through comparing the outer nuclear layer (ONL)/inner nuclear layer (INL) ratio 7 days post RD. Western blot analysis or quantitative real-time PCR (qPCR) were performed to assess cell death signaling, expression of endogenous neurotrophin, and levels of apoptosis inhibitors 24 hours after RD. Inflammatory cytokine secretion and inflammatory cell infiltration were quantified by ELISA and immunostaining, respectively. RESULTS The peak of photoreceptor cell death after RD was at 24 hours in all strains. Photoreceptor cell death as well as monocyte chemoattractant protein 1 and interleukin 6 secretion at 24 hours after RD was the highest in BALB/c, followed in order of magnitude by C57BL/6 and B6129SF2. Conversely, nerve growth factor expression and ONL/INL ratio were the lowest in BALB/c. Apoptosis signaling was higher in C57BL/6, whereas necroptosis signaling was higher in C57BL/6 and BALB/c. Autophagic signaling was higher in BALB/c. X-linked inhibitor of apoptosis (XIAP) and survivin protein levels were lower in C57BL/6 and BALB/c, respectively. Macrophage/microglia infiltration was higher in C57BL/6 and BALB/c at 24 hours after RD. CONCLUSIONS Photoreceptor cell death after RD was significantly different among the three strains, suggesting the presence of genetic factors that affect photoreceptor cell death after RD.
Collapse
Affiliation(s)
- Hidetaka Matsumoto
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Keiko Kataoka
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Pavlina Tsoka
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Kip M Connor
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Joan W Miller
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Demetrios G Vavvas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
81
|
Kim B, Abdel-Rahman MH, Wang T, Pouly S, Mahmoud AM, Cebulla CM. Retinal MMP-12, MMP-13, TIMP-1, and TIMP-2 expression in murine experimental retinal detachment. Invest Ophthalmol Vis Sci 2014; 55:2031-40. [PMID: 24526442 DOI: 10.1167/iovs.13-13374] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Matrix metalloproteinases (MMPs) and their inhibitors play a role in the pathobiology of retinal detachment (RD) and proliferative vitreoretinopathy (PVR). Proliferative vitreoretinopathy is facilitated by chronic retinal detachment and involves excessive deposition of extracellular matrix (ECM) proteins. Matrix metalloproteinase-2 and -13 are important modulators of the ECM which have not been evaluated in RD. The purpose of this study was to investigate the retinal expression of select MMPs, including MMP-12, MMP-13, and associated inhibitors in a murine model of retinal detachment. METHODS Transient or chronic retinal detachments (RDs) were induced by subretinal injection of either saline (SA) or hyaluronic acid (HA) in C57BL/6 mice. To confirm that the HA-RD model has features consistent with PVR-like changes, glial activation and subretinal fibrosis were evaluated with immunofluorescence, dilated fundus examination, and spectral-domain optical coherence tomography (SD-OCT). Gene expression was quantified by qRT-PCR. Proteins were assayed by immunoblot and immunohistochemistry. RESULTS Hyaluronic acid RD eyes developed gliosis and subretinal fibrosis on dilated exam, SD-OCT, and immunofluorescence analysis. Gene expression of Mmp-12 and Mmp-13, and Timp-1 was strongly upregulated at all time points in RD compared with controls. Timp-2, Mmp-2, and Mmp-9 expression was modest. Hyaluronic acid RDs exhibited more MMP and TIMP expression than SA-RDs. MMP-12, -13, and TIMP-1 proteins were elevated in RDs compared with controls. Immunohistochemistry revealed moderate to strong MMP-13 levels in subretinal space macrophages. CONCLUSIONS Fibrosis can develop in the HA-RD model. There is an upregulation of select MMPs that may modulate the wound healing process following RD.
Collapse
Affiliation(s)
- Bongsu Kim
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, Ohio, United States
| | | | | | | | | | | |
Collapse
|
82
|
Zhou L, Wang H, Luo J, Xiong K, Zeng L, Chen D, Huang J. Regulatory effects of inhibiting the activation of glial cells on retinal synaptic plasticity. Neural Regen Res 2014; 9:385-393. [PMID: 25206825 PMCID: PMC4146193 DOI: 10.4103/1673-5374.128240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2014] [Indexed: 01/09/2023] Open
Abstract
Various retinal injuries induced by ocular hypertension have been shown to induce plastic changes in retinal synapses, but the potential regulatory mechanism of synaptic plasticity after retinal injury was still unclear. A rat model of acute ocular hypertension was established by injecting saline intravitreally for an hour, and elevating the intraocular pressure to 14.63 kPa (110 mmHg). Western blot assay and immunofluorescence results showed that synaptophysin expression had a distinct spatiotemporal change that increased in the inner plexiform layer within 1 day and spread across the outer plexiform layer after 3 days. Glial fibrillary acidic protein expression in retinae was greatly increased after 3 days, and reached a peak at 7 days, which was also consistent with the peak time of synaptophysin expression in the outer plexiform layer following the increased intraocular pressure. Fluorocitrate, a glial metabolic inhibitor, was intravitreally injected to inhibit glial cell activation following high intraocular pressure. This significantly inhibited the enhanced glial fibrillary acidic protein expression induced by high intraocular pressure injury. Synaptophysin expression also decreased in the inner plexiform layer within a day and the widened distribution in the outer plexiform layer had disappeared by 3 days. The results suggested that retinal glial cell activation might play an important role in the process of retinal synaptic plasticity induced by acute high intraocular pressure through affecting the expression and distribution of synaptic functional proteins, such as synaptophysin.
Collapse
Affiliation(s)
- Lihong Zhou
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Hui Wang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Jia Luo
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Leping Zeng
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Dan Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Jufang Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
83
|
Pekny M, Wilhelmsson U, Pekna M. The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 2014; 565:30-8. [PMID: 24406153 DOI: 10.1016/j.neulet.2013.12.071] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/21/2013] [Accepted: 12/29/2013] [Indexed: 11/16/2022]
Abstract
Astrocyte activation and reactive gliosis accompany most of the pathologies in the brain, spinal cord, and retina. Reactive gliosis has been described as constitutive, graded, multi-stage, and evolutionary conserved defensive astroglial reaction [Verkhratsky and Butt (2013) In: Glial Physiology and Pathophysiology]. A well- known feature of astrocyte activation and reactive gliosis are the increased production of intermediate filament proteins (also known as nanofilament proteins) and remodeling of the intermediate filament system of astrocytes. Activation of astrocytes is associated with changes in the expression of many genes and characteristic morphological hallmarks, and has important functional consequences in situations such as stroke, trauma, epilepsy, Alzheimer's disease (AD), and other neurodegenerative diseases. The impact of astrocyte activation and reactive gliosis on the pathogenesis of different neurological disorders is not yet fully understood but the available experimental evidence points to many beneficial aspects of astrocyte activation and reactive gliosis that range from isolation and sequestration of the affected region of the central nervous system (CNS) from the neighboring tissue that limits the lesion size to active neuroprotection and regulation of the CNS homeostasis in times of acute ischemic, osmotic, or other kinds of stress. The available experimental data from selected CNS pathologies suggest that if not resolved in time, reactive gliosis can exert inhibitory effects on several aspects of neuroplasticity and CNS regeneration and thus might become a target for future therapeutic interventions.
Collapse
Affiliation(s)
- Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-405 30, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.
| | - Ulrika Wilhelmsson
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-405 30, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
84
|
Schumann RG, Gandorfer A. Pathophysiology of Vitreo-Macular Interface. DISEASES OF THE VITREO-MACULAR INTERFACE 2014. [DOI: 10.1007/978-3-642-40034-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
85
|
Métrailler S, Emery M, Schorderet DF, Cottet S, Roduit R. ERK1/2 pathway is activated in degenerated Rpe65-deficient mice. Exp Eye Res 2013; 116:86-95. [PMID: 24012986 DOI: 10.1016/j.exer.2013.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 08/10/2013] [Accepted: 08/22/2013] [Indexed: 12/30/2022]
Abstract
The MAPK family is composed of three majors kinases, JNK, p38 and ERK1/2, and is implicated in many degenerative processes, including retinal cell death. The purpose of our study was to evaluate the activation of ERK1/2 kinase, and its potential role in Müller cell gliosis, during photoreceptor cell death in Rpe65(-/-) mice. We assayed ERK1/2 mRNA and protein levels, and evaluated ERK1/2 phosphorylation involved in kinase activation, in 2, 4 and 6 month-old Rpe65(-/-) mice and in age-matched wild-type controls. No differences in ERK1/2 expression were detected between Rpe65(-/-) and wild-type mice, however, ERK1/2 phosphorylation was dramatically increased in the knock out mice at 4 and 6 months-of-age. Phosphorylated ERK1/2 co-localized with GFAP in the ganglion cell layer, and correlated with an increase in GFAP protein expression and retinal cell death. Accumulation of cFOS protein in the ganglion cell layer occurred concomitant with pERK1/2 activation. Müller cell proliferation was not observed. ERK1/2 activation did not occur in 2 month-old Rpe65(-/-) or in the Rpe65(-/-)/Gnat1(-/-) mice, in which no degeneration was evident. The observed activation ERK1/2 and GFAP, both markers of Müller cell gliosis, in the absence of Müller cell proliferation, is consistent with the activation of atypical gliosis occurring during the slow process of degeneration in Rpe65(-/-) mice. As Müller cell gliosis is activated in many neuronal and retinal degenerative diseases, further studies will be needed to determine whether atypical gliosis in Rpe65(-/-) mice contributes to, or protects against, the pathogenesis occurring in this model of Leber congenital amaurosis.
Collapse
Affiliation(s)
- S Métrailler
- IRO, Institute for Research in Ophthalmology, 1950 Sion, Switzerland
| | | | | | | | | |
Collapse
|
86
|
Andersson D, Wilhelmsson U, Nilsson M, Kubista M, Ståhlberg A, Pekna M, Pekny M. Plasticity response in the contralesional hemisphere after subtle neurotrauma: gene expression profiling after partial deafferentation of the hippocampus. PLoS One 2013; 8:e70699. [PMID: 23936241 PMCID: PMC3723880 DOI: 10.1371/journal.pone.0070699] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/23/2013] [Indexed: 11/19/2022] Open
Abstract
Neurotrauma or focal brain ischemia are known to trigger molecular and structural responses in the uninjured hemisphere. These responses may have implications for tissue repair processes as well as for the recovery of function. To determine whether the plasticity response in the uninjured hemisphere occurs even after a subtle trauma, we subjected mice to a partial unilateral deafferentation of the hippocampus induced by stereotactically performed entorhinal cortex lesion (ECL). The expression of selected genes was assessed by quantitative real-time PCR in the hippocampal tissue at the injured side and the contralesional side at day 4 and 14 after injury. We observed that expression of genes coding for synaptotagmin 1, ezrin, thrombospondin 4, and C1q proteins, that have all been implicated in the synapse formation, re-arrangement and plasticity, were upregulated both in the injured and the contralesional hippocampus, implying a plasticity response in the uninjured hemisphere. Several of the genes, the expression of which was altered in response to ECL, are known to be expressed in astrocytes. To test whether astrocyte activation plays a role in the observed plasticity response to ECL, we took advantage of mice deficient in two intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin (GFAP(-/-)Vim(-/-) ) and exhibiting attenuated astrocyte activation and reactive gliosis. The absence of GFAP and vimentin reduced the ECL-induced upregulation of thrombospondin 4, indicating that this response to ECL depends on astrocyte activation and reactive gliosis. We conclude that even a very limited focal neurotrauma triggers a distinct response at the contralesional side, which at least to some extent depends on astrocyte activation.
Collapse
Affiliation(s)
- Daniel Andersson
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Wilhelmsson
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael Nilsson
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Hunter Medical Research Institute, Newcastle, Australia
| | - Mikael Kubista
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; and TATAA Biocenter, Gothenburg, Sweden
| | - Anders Ståhlberg
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Pathology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
87
|
Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen–glucose deprivation and reperfusion. Histochem Cell Biol 2013; 140:81-91. [DOI: 10.1007/s00418-013-1110-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2013] [Indexed: 01/01/2023]
|
88
|
Pekny T, Faiz M, Wilhelmsson U, Curtis MA, Matej R, Skalli O, Pekny M. Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease. APMIS 2013; 122:76-80. [DOI: 10.1111/apm.12088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/09/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Tulen Pekny
- Department of Clinical Neuroscience and Rehabilitation; Center for Brain Repair and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Göteborg Sweden
| | - Maryam Faiz
- Department of Clinical Neuroscience and Rehabilitation; Center for Brain Repair and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Göteborg Sweden
| | - Ulrika Wilhelmsson
- Department of Clinical Neuroscience and Rehabilitation; Center for Brain Repair and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Göteborg Sweden
| | - Maurice A. Curtis
- Department of Clinical Neuroscience and Rehabilitation; Center for Brain Repair and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Göteborg Sweden
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine; Thomayer's Hospital; Prague Czech Republic
| | - Omar Skalli
- Department of Biological Sciences; University of Memphis; Memphis TN USA
| | - Milos Pekny
- Department of Clinical Neuroscience and Rehabilitation; Center for Brain Repair and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Göteborg Sweden
| |
Collapse
|
89
|
Bramall AN, Szego MJ, Pacione LR, Chang I, Diez E, D'Orleans-Juste P, Stewart DJ, Hauswirth WW, Yanagisawa M, McInnes RR. Endothelin-2-mediated protection of mutant photoreceptors in inherited photoreceptor degeneration. PLoS One 2013; 8:e58023. [PMID: 23469133 PMCID: PMC3585171 DOI: 10.1371/journal.pone.0058023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/30/2013] [Indexed: 12/21/2022] Open
Abstract
Expression of the Endothelin-2 (Edn2) mRNA is greatly increased in the photoreceptors (PRs) of mouse models of inherited PR degeneration (IPD). To examine the role of Edn2 in mutant PR survival, we generated Edn2−/− mice carrying homozygous Pde6brd1 alleles or the Tg(RHO P347S) transgene. In the Edn2−/− background, PR survival increased 110% in Pde6brd1/rd1 mice at post-natal (PN) day 15, and 60% in Tg(RHO P347S) mice at PN40. In contrast, PR survival was not increased in retinal explants of Pde6brd1/rd1; Edn2−/− mice. This finding, together with systemic abnormalities in Edn2−/− mice, suggested that the increased survival of mutant PRs in the Edn2−/− background resulted at least partly from the systemic EDN2 loss of function. To examine directly the role of EDN2 in mutant PRs, we used a scAAV5-Edn2 cDNA vector to restore Edn2 expression in Pde6brd1/rd1; Edn2−/− PRs and observed an 18% increase in PR survival at PN14. Importantly, PR survival was also increased after injection of scAAV5-Edn2 into Pde6brd1/rd1 retinas, by 31% at PN15. Together, these findings suggest that increased Edn2 expression is protective to mutant PRs. To begin to elucidate Edn2-mediated mechanisms that contribute to PR survival, we used microarray analysis and identified a cohort of 20 genes with >4-fold increased expression in Tg(RHO P347S) retinas, including Fgf2. Notably, increased expression of the FGF2 protein in Tg(RHO P347S) PRs was ablated in Tg(RHO P347S); Edn2−/− retinas. Our findings indicate that the increased expression of PR Edn2 increases PR survival, and suggest that the Edn2-dependent increase in PR expression of FGF2 may contribute to the augmented survival.
Collapse
Affiliation(s)
- Alexa N. Bramall
- Program in Developmental Biology, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael J. Szego
- Program in Developmental Biology, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Laura R. Pacione
- Program in Developmental Biology, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Inik Chang
- Department of Molecular Genetics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Eduardo Diez
- Lady Davis Research Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Pedro D'Orleans-Juste
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Duncan J. Stewart
- The Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - William W. Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Masashi Yanagisawa
- Department of Molecular Genetics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Roderick R. McInnes
- Program in Developmental Biology, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lady Davis Research Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
90
|
Reichenbach A, Bringmann A. Cell Biology of the Müller Cell. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
91
|
|
92
|
|
93
|
Metabolic stress response implicated in diabetic retinopathy: The role of calpain, and the therapeutic impact of calpain inhibitor. Neurobiol Dis 2012; 48:556-67. [DOI: 10.1016/j.nbd.2012.07.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/12/2012] [Accepted: 07/25/2012] [Indexed: 12/30/2022] Open
|
94
|
Böhm MRR, Melkonyan H, Oellers P, Thanos S. Effects of crystallin-β-b2 on stressed RPE in vitro and in vivo. Graefes Arch Clin Exp Ophthalmol 2012; 251:63-79. [PMID: 23073841 DOI: 10.1007/s00417-012-2157-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 08/25/2012] [Accepted: 09/03/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Crystallins are thought to play a cytoprotective role in conditions of cellular stress. The aim of this study was to determine the effects of crystallin-β-b2 (cryβ-b2) and crystallin-β-b3 (cryβ-b3) on ARPE-19 cells in vitro and on the retinal pigment epithelium (RPE) in vivo. METHODS The influence of cryβ-b2 and cryβ-b3 on the viability, proliferation and dying of ARPE-19 was measured by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay, bromo-2-deoxyuridine assay and life/death assay. The expressions of cryβ-b2, cryβ-b3, glial-derived neurotrophic factor (GDNF), and galectin-3 (Gal-3) in ARPE-19 cells were evaluated using immunohistochemistry (IHC), Western blotting (WB) and real-time-quantitative-PCR (qRT-PCR). To evaluate the response of cryβ-b2 and cryβ-b3 to stressed ARPE-19 cells, the cells were exposed to UV-light. In a rat model, cryβ-b2-expressing neural progenitor cells (cryβ-b2-NPCs) were injected intravitreally after retinal stress induced by optic nerve axotomy to examine whether they influence the RPE. Protein expression was examined 2 and 4 weeks postsurgery using IHC and WB. RESULTS Detectable alterations of GDNF, and Gal-3 were found in ARPE-19 cells upon exposure to UV light. Adding the crystallins to the medium promoted proliferation and increased viability of ARPE-19 cells in vitro. The obtained data support the view that these crystallins possess epithelioprotective properties. Likewise, in vivo, intravitreally injected cryβ-b2 and transplanted cryβ-b2-NPCs protected RPE from indirectly induced stress. CONCLUSIONS The data suggest that the RPE response to retinal ganglion cell denegeration is mediated via crystallins, which may thus be used therapeutically.
Collapse
Affiliation(s)
- Michael R R Böhm
- Institute of Experimental Ophthalmology, School of Medicine, Westfalian Wilhelms-University Münster, Albert-Schweitzer-Campus 1, D15, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
95
|
Kraft AW, Hu X, Yoon H, Yan P, Xiao Q, Wang Y, Gil SC, Brown J, Wilhelmsson U, Restivo JL, Cirrito JR, Holtzman DM, Kim J, Pekny M, Lee JM. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J 2012; 27:187-98. [PMID: 23038755 DOI: 10.1096/fj.12-208660] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accumulation of aggregated amyloid-β (Aβ) in amyloid plaques is a neuropathological hallmark of Alzheimer's disease (AD). Reactive astrocytes are intimately associated with amyloid plaques; however, their role in AD pathogenesis is unclear. We deleted the genes encoding two intermediate filament proteins required for astrocyte activation-glial fibrillary acid protein (Gfap) and vimentin (Vim)-in transgenic mice expressing mutant human amyloid precursor protein and presenilin-1 (APP/PS1). The gene deletions increased amyloid plaque load: APP/PS1 Gfap(-/-)Vim(-/-) mice had twice the plaque load of APP/PS1 Gfap(+/+)Vim(+/+) mice at 8 and 12 mo of age. APP expression and soluble and interstitial fluid Aβ levels were unchanged, suggesting that the deletions had no effect on APP processing or Aβ generation. Astrocyte morphology was markedly altered by the deletions: wild-type astrocytes had hypertrophied processes that surrounded and infiltrated plaques, whereas Gfap(-/-)Vim(-/-) astrocytes had little process hypertrophy and lacked contact with adjacent plaques. Moreover, Gfap and Vim gene deletion resulted in a marked increase in dystrophic neurites (2- to 3-fold higher than APP/PS1 Gfap(+/+)Vim(+/+) mice), even after normalization for amyloid load. These results suggest that astrocyte activation limits plaque growth and attenuates plaque-related dystrophic neurites. These activities may require intimate contact between astrocyte and plaque.
Collapse
Affiliation(s)
- Andrew W Kraft
- The Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63124, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
BACKGROUND Development of retinal detachment models in small animals can be difficult and expensive. Here we create and characterize a novel, cone-rich retinal detachment (RD) model in the chick. METHODOLOGY/PRINCIPAL FINDINGS Retinal detachments were created in chicks between postnatal days 7 and 21 by subretinal injections of either saline (SA) or hyaluronic acid (HA). Injections were performed through a dilated pupil with observation via surgical microscope, using the fellow eye as a control. Immunohistochemical analyses were performed at days 1, 3, 7, 10 and 14 after retinal detachment to evaluate the cellular responses of photoreceptors, Müller glia, microglia and nonastrocytic inner retinal glia (NIRG). Cell proliferation was detected with bromodeoxyuridine (BrdU)-incorporation and by the expression of proliferating cell nuclear antigen (PCNA). Cell death was detected with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). As in mammalian models of RD, there is shortening of photoreceptor outer segments and mis-trafficking of photoreceptor opsins in areas of RD. Photoreceptor cell death was maximal 1 day after RD, but continued until 14 days after RD. Müller glia up-regulated glial fibriliary acidic protein (GFAP), proliferated, showed interkinetic nuclear migration, and migrated to the subretinal space in areas of detachment. Microglia became reactive; they up-regulated CD45, acquired amoeboid morphology, and migrated toward outer retina in areas of RD. Reactive NIRG cells accumulated in detached areas. CONCLUSIONS/SIGNIFICANCE Subretinal injections of SA or HA in the chick eye successfully produced retinal detachments and cellular responses similar to those seen in standard mammalian models. Given the relatively large eye size, and considering the low cost, the chick model of RD offers advantages for high-throughput studies.
Collapse
|
97
|
Roesch K, Stadler MB, Cepko CL. Gene expression changes within Müller glial cells in retinitis pigmentosa. Mol Vis 2012; 18:1197-214. [PMID: 22665967 PMCID: PMC3365136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 05/04/2012] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) is a progressive retinal degeneration in which the retina loses nearly all of its photoreceptor cells and undergoes major structural changes. Little is known regarding the role the resident glia, the Müller glia, play in the progression of the disease. In this article, we define gene expression changes in Müller glial cells (MGCs) from two different mouse models of RP, the retinal degeneration 1 (rd1) and rhodopsin knockout (Rhod-ko) models. The RNA repertoire of single MGCs was comprehensively profiled, and a comparison was made between MGCs from wild-type (WT) and mutant retinas. Two time points were chosen for analysis, one at the peak of rod photoreceptor death and one during the period of cone photoreceptor death. METHODS Retinas were dissociated, and single MGCs were chosen under a dissecting microscope using a micropipette. Single cell cDNAs were generated and genome-wide profiles were obtained by hybridization to Affymetrix arrays. A comparison was made among all samples to discover the changes in gene expression during the periods of rod and cone photoreceptor death. RESULTS MGCs respond to retinal degeneration by undergoing gliosis, a process marked by the upregulation of glial fibrillary acidic protein (Gfap). Many additional transcripts were found to change. These can be placed into functional clusters, such as retinal remodeling, stress response, and immune-related response. CONCLUSIONS A high degree of heterogeneity among the individual cells was observed, possibly due to their different spatial proximities to dying cells and/or inherent heterogeneity among MGCs.
Collapse
Affiliation(s)
- Karin Roesch
- Department of Genetics, Harvard Medical School, and Howard Hughes Medical Institute, Boston MA
| | - Michael B. Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Constance L. Cepko
- Department of Genetics, Harvard Medical School, and Howard Hughes Medical Institute, Boston MA
| |
Collapse
|
98
|
Injury-independent induction of reactive gliosis in retina by loss of function of the LIM homeodomain transcription factor Lhx2. Proc Natl Acad Sci U S A 2012; 109:4657-62. [PMID: 22393024 DOI: 10.1073/pnas.1107488109] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Müller glia are the primary glial subtype in the retina and perform a wide range of physiological tasks in support of retinal function, but little is known about the transcriptional network that maintains these cells in their differentiated state. We report that selective deletion of the LIM homeodomain transcription factor Lhx2 from mature Müller glia leads to the induction of reactive retinal gliosis in the absence of injury. Furthermore, Lhx2 expression is also down-regulated in Prph2(Rd2/Rd2) animals immediately before the onset of reactive gliosis. Analysis of conditional Lhx2 knockouts showed that gliosis was hypertrophic but not proliferative. Aging of experimental animals demonstrated that constitutive reactive gliosis induced by deletion of Lhx2 reduced rates of ongoing apoptosis and compromised both rod and cone photoreceptor function. Additionally, these animals showed a dramatically reduced ability to induce expression of secreted neuroprotective factors and displayed enhanced rates of apoptosis in light-damage assays. We provide in vivo evidence that Lhx2 actively maintains mature Müller glia in a nonreactive state, with loss of function initiating a specific program of nonproliferative hypertrophic gliosis.
Collapse
|
99
|
Kunikata H, Shimura M, Nakazawa T, Sonoda KH, Yoshimura T, Ishibashi T, Nishida K. Chemokines in aqueous humour before and after intravitreal triamcinolone acetonide in eyes with macular oedema associated with branch retinal vein occlusion. Acta Ophthalmol 2012; 90:162-7. [PMID: 20456252 DOI: 10.1111/j.1755-3768.2010.01892.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To determine the aqueous humour levels of chemokines before and after an intravitreal injection of triamcinolone acetonide (IVTA) in eyes with macular oedema associated with a branch retinal vein occlusion (ME-BRVO). DESIGN Single-centre, prospective, consecutive interventional case series. PARTICIPANTS Seventeen eyes of 17 consecutive patients with ME-BRVO who underwent IVTA were studied. Seven eyes without retinal vascular disease served as control. INTERVENTION All patients with ME-BRVO underwent IVTA. MAIN OUTCOME MEASURES The optical coherence tomographically determined foveal thickness (FT) and the aqueous humour levels of inflammatory chemokines of the C-C subfamily, including eotaxin, monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), β (MIP-1β), and RANTES was determined before the IVTA (baseline) and at 1 week after the IVTA. RESULTS At the baseline, only MCP-1 and MIP-1β were detected in the aqueous, and MIP-1β was significantly higher in eyes with a ME-BRVO than in controls (p = 0.004). The level of both of these chemokines was not correlated with the FT (p = 0.654 and p = 0.608, respectively). One week after IVTA, the FT was significantly decreased (p < 0.001), and the levels of MCP-1 and MIP-1β were also significantly reduced (p < 0.001 and p = 0.044, respectively). The decrease in the FT was correlated with the decrease in only MIP-1β (r = 0.58, p = 0.020). CONCLUSIONS Alterations of the aqueous level of MIP-1β reflect the improvement of the macular oedema after IVTA in eyes with ME-BRVO. This indicates that the steroid-dependent ME-BRVO was closely related with the level of MIP-1β.
Collapse
Affiliation(s)
- Hiroshi Kunikata
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | | | | | | | | | | | | |
Collapse
|
100
|
The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis. J Neurosci 2011; 31:15575-85. [PMID: 22031903 DOI: 10.1523/jneurosci.3579-11.2011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL) is an inherited neurodegenerative disorder affecting the CNS during infancy. INCL is caused by mutations in the CLN1 gene that lead to a deficiency in the lysosomal hydrolase, palmitoyl protein thioesterase 1 (PPT1). A murine model of INCL, the PPT1-deficient (PPT1(-/-)) mouse, is an accurate phenocopy of the human disease. The first pathological change observed in the PPT1(-/-) brain is regional areas of glial fibrillary acidic protein (GFAP) upregulation, which predicts future areas of neurodegeneration. We hypothesized that preventing GFAP and vimentin upregulation in reactive astrocytes will alter the CNS disease. To test this hypothesis, we generated mice simultaneously carrying null mutations in the GFAP, Vimentin, and PPT1 genes (GFAP(-/-)Vimentin(-/-)PPT1(-/-)). Although the clinical and pathological features of the GFAP(-/-)Vimentin(-/-)PPT1(-/-) mice are similar to INCL, the disease appears earlier and progresses more rapidly. One mechanism underlying this accelerated phenotype is a profound neuroinflammatory response within the CNS. Thus, our data identify a protective role for intermediate filament upregulation during astrocyte activation in INCL, a model of chronic neurodegeneration.
Collapse
|