51
|
Jiang T, Zhang H, Li Y, Jayakumar P, Liao H, Huang H, Billiar TR, Deng M. Intraperitoneal injection of class A TLR9 agonist enhances anti-PD-1 immunotherapy in colorectal peritoneal metastases. JCI Insight 2022; 7:e160063. [PMID: 36278484 PMCID: PMC9714777 DOI: 10.1172/jci.insight.160063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/31/2022] [Indexed: 07/02/2024] Open
Abstract
Peritoneal metastases are associated with a low response rate to immune checkpoint blockade (ICB) therapy. The numbers of peritoneal resident macrophages (PRMs) are reversely correlated with the response rate to ICB therapy. We have previously shown that TLR9 in fibroblastic reticular cells (FRCs) plays a critical role in regulating peritoneal immune cell recruitment. However, the role of TLR9 in FRCs in regulating PRMs is unclear. Here, we demonstrated that the class A TLR9 agonist, ODN1585, markedly enhanced the efficacy of anti-PD-1 therapy in mouse models of colorectal peritoneal metastases. ODN1585 injected i.p. reduced the numbers of Tim4+ PRMs and enhanced CD8+ T cell antitumor immunity. Mechanistically, treatment of ODN1585 suppressed the expression of genes required for retinoid metabolism in FRCs, and this was associated with reduced expression of the PRM lineage-defining transcription factor GATA6. Selective deletion of TLR9 in FRCs diminished the benefit of ODN1585 in anti-PD-1 therapy in reducing peritoneal metastases. The crosstalk between PRMs and FRCs may be utilized to develop new strategies to improve the efficacy of ICB therapy for peritoneal metastases.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Hongji Zhang
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Yiming Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Preethi Jayakumar
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Hong Liao
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hai Huang
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meihong Deng
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
52
|
Lin Y, Zhou X, Ni Y, Zhao X, Liang X. Metabolic reprogramming of the tumor immune microenvironment in ovarian cancer: A novel orientation for immunotherapy. Front Immunol 2022; 13:1030831. [PMID: 36311734 PMCID: PMC9613923 DOI: 10.3389/fimmu.2022.1030831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic tumor, with the highest mortality rate. Numerous studies have been conducted on the treatment of ovarian cancer in the hopes of improving therapeutic outcomes. Immune cells have been revealed to play a dual function in the development of ovarian cancer, acting as both tumor promoters and tumor suppressors. Increasingly, the tumor immune microenvironment (TIME) has been proposed and confirmed to play a unique role in tumor development and treatment by altering immunosuppressive and cytotoxic responses in the vicinity of tumor cells through metabolic reprogramming. Furthermore, studies of immunometabolism have provided new insights into the understanding of the TIME. Targeting or activating metabolic processes of the TIME has the potential to be an antitumor therapy modality. In this review, we summarize the composition of the TIME of ovarian cancer and its metabolic reprogramming, its relationship with drug resistance in ovarian cancer, and recent research advances in immunotherapy.
Collapse
|
53
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
54
|
Khan ANH, Emmons TR, Magner WJ, Alqassim E, Singel KL, Ricciuti J, Eng KH, Odunsi K, Tomasi TB, Lee K, Abrams SI, Mesa C, Segal BH. VSSP abrogates murine ovarian tumor-associated myeloid cell-driven immune suppression and induces M1 polarization in tumor-associated macrophages from ovarian cancer patients. Cancer Immunol Immunother 2022; 71:2355-2369. [PMID: 35166871 PMCID: PMC10591410 DOI: 10.1007/s00262-022-03156-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/16/2022] [Indexed: 02/07/2023]
Abstract
The ovarian tumor microenvironment (TME) is characterized by the accumulation of immunosuppressive tumor-associated macrophages (TAMs) and granulocytic cells. Very small size particles (VSSP), comprised of the ganglioside NAcGM3 and Neisseria meningitidis derived outer membrane vesicles, is being developed as a nanoparticulated modulator of innate immunity. Prior studies have shown that VSSP enhanced antigen-specific cytotoxic T cell responses and reduced the suppressive phenotype of splenic granulocytic cells in tumor-bearing mice. Here, we hypothesized that intraperitoneal VSSP would modify myeloid cell accumulation and phenotypes in the ovarian TME and abrogate suppressor function of TAMs and tumor-associated granulocytic cells. In the ID8 syngeneic model of epithelial ovarian cancer, VSSP reduced peritoneal TAMs and induced M1-like polarization in TAMs. In addition, VSSP stimulated peritoneal inflammation characterized by increased granulocytes and monocytes, including inflammatory monocytic cells. VSSP treatment resulted in peritoneal TAMs and granulocytic cells being less suppressive of ex vivo stimulated CD8+ T cell responses. VSSP alone and combined with anti-PD-1 modestly but significantly prolonged survival in tumor-bearing mice. In addition, ex vivo treatment with VSSP induced M1-like polarization in TAMs from patients with metastatic ovarian cancer and variably abrogated their suppressor phenotype. VSSP treatment also partially abrogated the induction of suppressor function in healthy donor neutrophils exposed to ascites supernatants from patients with ovarian cancer. Together, these results point to VSSP reprogramming myeloid responses resulting in abrogation of suppressive pathways and raise the potential for administration of VSSP into the TME to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Anm Nazmul H Khan
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
| | - Tiffany R Emmons
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William J Magner
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Emad Alqassim
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kelly L Singel
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
- Office of Evaluation, Performance, and Reporting; Division of Program Coordination, Planning, and Strategic Initiatives; Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Jason Ricciuti
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kevin H Eng
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kunle Odunsi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| | - Thomas B Tomasi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kelvin Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
| | - Circe Mesa
- Center of Molecular Immunology, Havana, Cuba
- Innovative Immunotherapy Alliance, S. A. Mariel, Artemisa, Cuba
| | - Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA.
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA.
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
55
|
Li W, Wang F, Guo R, Bian Z, Song Y. Targeting macrophages in hematological malignancies: recent advances and future directions. J Hematol Oncol 2022; 15:110. [PMID: 35978372 PMCID: PMC9387027 DOI: 10.1186/s13045-022-01328-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/06/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence indicates that the detection and clearance of cancer cells via phagocytosis induced by innate immune checkpoints play significant roles in tumor-mediated immune escape. The most well-described innate immune checkpoints are the "don't eat me" signals, including the CD47/signal regulatory protein α axis (SIRPα), PD-1/PD-L1 axis, CD24/SIGLEC-10 axis, and MHC-I/LILRB1 axis. Molecules have been developed to block these pathways and enhance the phagocytic activity against tumors. Several clinical studies have investigated the safety and efficacy of CD47 blockades, either alone or in combination with existing therapy in hematological malignancies, including myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and lymphoma. However, only a minority of patients have significant responses to these treatments alone. Combining CD47 blockades with other treatment modalities are in clinical studies, with early results suggesting a synergistic therapeutic effect. Targeting macrophages with bispecific antibodies are being explored in blood cancer therapy. Furthermore, reprogramming of pro-tumor macrophages to anti-tumor macrophages, and CAR macrophages (CAR-M) demonstrate anti-tumor activities. In this review, we elucidated distinct types of macrophage-targeted strategies in hematological malignancies, from preclinical experiments to clinical trials, and outlined potential therapeutic approaches being developed.
Collapse
Affiliation(s)
- Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
56
|
Zhang Y, Ouyang D, Chen YH, Xia H. Peritoneal resident macrophages in tumor metastasis and immunotherapy. Front Cell Dev Biol 2022; 10:948952. [PMID: 36035994 PMCID: PMC9402905 DOI: 10.3389/fcell.2022.948952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Macrophages residing in various tissues play crucial roles in innate immunity, tissue repair, and immune homeostasis. The development and differentiation of macrophages in non-lymphoid tissues are highly regulated by the tissue microenvironment. Peritoneum provides a unique metastatic niche for certain types of tumor cells. As the dominant immune cell type in peritoneal cavity, macrophages control the immune response to tumor and influence the efficacy of anti-tumor therapy. Considering the heterogeneity of macrophages in origin, metabolism, and function, it is always challenging to define the precise roles of macrophages in tumor microenvironment. We review here recent progresses in peritoneal resident macrophage research in the context of physiological and metastatic tumor conditions, which may benefit the development of new anti-tumor therapies through targeting macrophages.
Collapse
Affiliation(s)
- Yu Zhang
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dongyun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Youhai H. Chen
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Houjun Xia
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Houjun Xia,
| |
Collapse
|
57
|
Qin D, Liu P, Zhou H, Jin J, Gong W, Liu K, Chen S, Huang J, Fan W, Tao Z, Xu Y. TIM-4 in macrophages contributes to nasal polyp formation through the TGF-β1–mediated epithelial to mesenchymal transition in nasal epithelial cells. Front Immunol 2022; 13:941608. [PMID: 35990621 PMCID: PMC9389014 DOI: 10.3389/fimmu.2022.941608] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is caused by prolonged inflammation of the paranasal sinus mucosa. The epithelial to mesenchymal transition (EMT) is involved in the occurrence and development of CRSwNP. The T-cell immunoglobulin domain and the mucin domain 4 (TIM-4) is closely related to chronic inflammation, but its mechanism in CRSwNP is poorly understood. In our study, we found that TIM-4 was increased in the sinonasal mucosa of CRSwNP patients and, especially, in macrophages. TIM-4 was positively correlated with α-SMA but negatively correlated with E-cadherin in CRS. Moreover, we confirmed that TIM-4 was positively correlated with the clinical parameters of the Lund-Mackay and Lund-Kennedy scores. In the NP mouse model, administration of TIM-4 neutralizing antibody significantly reduced the polypoid lesions and inhibited the EMT process. TIM-4 activation by stimulating with tissue extracts of CRSwNP led to a significant increase of TGF-β1 expression in macrophages in vitro. Furthermore, coculture of macrophages and human nasal epithelial cells (hNECs) results suggested that the overexpression of TIM-4 in macrophages made a contribution to the EMT process in hNECs. Mechanistically, TIM-4 upregulated TGF-β1 expression in macrophages via the ROS/p38 MAPK/Egr-1 pathway. In conclusion, TIM-4 contributes to the EMT process and aggravates the development of CRSwNP by facilitating the production of TGF-β1 in macrophages. Inhibition of TIM-4 expression suppresses nasal polyp formation, which might provide a new therapeutic approach for CRSwNP.
Collapse
Affiliation(s)
- Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiqin Zhou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Jin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wanyang Gong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kunyu Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyuan Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingyu Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjun Fan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yu Xu,
| |
Collapse
|
58
|
The impact of neoadjuvant chemotherapy on the tumor microenvironment in advanced high-grade serous carcinoma. Oncogenesis 2022; 11:43. [PMID: 35907904 PMCID: PMC9338965 DOI: 10.1038/s41389-022-00419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
High-grade serous ovarian, fallopian tube or peritoneal carcinoma is an aggressive subtype of ovarian cancer that frequently develops resistance to chemotherapy. It remains contested whether the resistance is caused by the acquisition of novel molecular aberrations or alternatively through the selection of rare pre-existing tumor clones. To address this question, we applied single-cell RNA sequencing to depict the tumor landscape of 6 samples from a single case of advanced high-grade serous fallopian tube carcinoma during neoadjuvant chemotherapy (NACT). We analyzed a total of 32,079 single cells, with 17,249 cells derived from the pre-NACT multisite tumor tissue samples and 14,830 cells derived from the post-NACT multisite tumor tissue samples. We identified the diverse properties of the tumor, immune and stromal cell types between the pre-NACT and post-NACT tumors. The malignant epithelial cells displayed a high degree of intratumor heterogeneity in response to NACT. We showed that the primary resistant clone (clone 63) epithelial genotype was already present in the pre-NACT tumors, and was adaptively enriched after NACT. This clone 63 was correlated with a poor clinical prognosis. Furthermore, single-cell analysis of CD4+ T cells demonstrated that IL2RAhi-CCL22+-Tregs were selectively enriched in post-NACT tumors. Interestingly, this Treg subtype could recruit and enrich themselves through secreting the CCL22-CCR1 combination in pre-NACT and post-NACT tumors, and further express CD274 to suppress other CD4 and CD8 T cells through a CD274-PDCD1 axis in the post-NACT tumors, and this predicted an immunosuppressive state after NACT. Overall, our results provide important evidence for the adaptive resistance theory of HGSC, and for the potential development of therapeutic strategies to treat HGSC and improve the survival of patients with HGSC.
Collapse
|
59
|
Zhan Z, Wang Z, Bao Y, Liu W, Hong L. OI inhibites development of ovarian cancer by blocking crosstalk between cancer cells and macrophages via HIF-1α pathway. Biochem Biophys Res Commun 2022; 606:142-148. [DOI: 10.1016/j.bbrc.2022.03.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 11/02/2022]
|
60
|
Abstract
Eukaryotic cells have developed complex systems to regulate the production and response to reactive oxygen species (ROS). Different ROS control diverse aspects of cell behaviour from signalling to death, and deregulation of ROS production and ROS limitation pathways are common features of cancer cells. ROS also function to modulate the tumour environment, affecting the various stromal cells that provide metabolic support, a blood supply and immune responses to the tumour. Although it is clear that ROS play important roles during tumorigenesis, it has been difficult to reliably predict the effect of ROS modulating therapies. We now understand that the responses to ROS are highly complex and dependent on multiple factors, including the types, levels, localization and persistence of ROS, as well as the origin, environment and stage of the tumours themselves. This increasing understanding of the complexity of ROS in malignancies will be key to unlocking the potential of ROS-targeting therapies for cancer treatment.
Collapse
|
61
|
Jayakumar P, Laganson A, Deng M. GATA6 + Peritoneal Resident Macrophage: The Immune Custodian in the Peritoneal Cavity. Front Pharmacol 2022; 13:866993. [PMID: 35401237 PMCID: PMC8984154 DOI: 10.3389/fphar.2022.866993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Peritoneal resident macrophages (PRMs) have been a prominent topic in the research field of immunology due to their critical roles in immune surveillance in the peritoneal cavity. PRMs initially develop from embryonic progenitor cells and are replenished by bone marrow origin monocytes during inflammation and aging. Furthermore, PRMs have been shown to crosstalk with other cells in the peritoneal cavity to control the immune response during infection, injury, and tumorigenesis. With the advance in genetic studies, GATA-binding factor 6 (GATA6) has been identified as a lineage determining transcription factor of PRMs controlling the phenotypic and functional features of PRMs. Here, we review recent advances in the developmental origin, the phenotypic identity, and functions of PRMs, emphasizing the role of GATA6 in the pathobiology of PRMs in host defense, tissue repairing, and peritoneal tumorigenesis.
Collapse
Affiliation(s)
- Preethi Jayakumar
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Andrea Laganson
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Meihong Deng
- Department of Surgery, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
62
|
Li S, Yu J, Huber A, Kryczek I, Wang Z, Jiang L, Li X, Du W, Li G, Wei S, Vatan L, Szeliga W, Chinnaiyan AM, Green MD, Cieslik M, Zou W. Metabolism drives macrophage heterogeneity in the tumor microenvironment. Cell Rep 2022; 39:110609. [PMID: 35385733 PMCID: PMC9052943 DOI: 10.1016/j.celrep.2022.110609] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/04/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are a major cellular component in the tumor microenvironment (TME). However, the relationship between the phenotype and metabolic pattern of TAMs remains poorly understood. We performed single-cell transcriptome profiling on hepatic TAMs from mice bearing liver metastatic tumors. We find that TAMs manifest high heterogeneity at the levels of transcription, development, metabolism, and function. Integrative analyses and validation experiments indicate that increased purine metabolism is a feature of TAMs with pro-tumor and terminal differentiation phenotypes. Like mouse TAMs, human TAMs are highly heterogeneous. Human TAMs with increased purine metabolism exhibit a pro-tumor phenotype and correlate with poor therapeutic efficacy to immune checkpoint blockade. Altogether, our work demonstrates that TAMs are developmentally, metabolically, and functionally heterogeneous and purine metabolism may be a key metabolic feature of a pro-tumor macrophage population.
Collapse
Affiliation(s)
- Shasha Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jiali Yu
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Amanda Huber
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zhuwen Wang
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Long Jiang
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Xiong Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Wan Du
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Gaopeng Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Wojciech Szeliga
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Michael D Green
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
63
|
Targeting Proliferating Tumor-Infiltrating Macrophages Facilitates Spatial Redistribution of CD8 + T Cells in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14061474. [PMID: 35326625 PMCID: PMC8946118 DOI: 10.3390/cancers14061474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/31/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play crucial roles in cancer progression, but the contributions and regulation of different macrophage subpopulations remain unclear. Here, we report a high level of TAM infiltration in human and mouse pancreatic ductal adenocarcinoma (PDAC) models and that the targeting of proliferating F4/80+ macrophages facilitated cytotoxic CD8+ T-cell-dependent antitumor immune responses. A well-defined KPC-derived PDAC cell line and the murine Panc02 PDAC cell line were used. Treatment of PDAC-bearing mice with clodronate liposomes, an agent that chemically depletes macrophages, did not impact macrophage subpopulations in the local tumor microenvironment (TME). However, further investigation using both BrdU and Ki67 to evaluate proliferating cells showed that clodronate liposomes treatment reduced proliferating macrophages in the KPC and Panc02 models. We further evaluated the distance between CD8+ T cells and PanCK+ tumor cells, and clodronate liposomes treatment significantly increased the number of CD8+ T cells in close proximity (<30 µm) to PanCK+ PDAC cells, with increased numbers of tumor-infiltrating IFN-γ+CD8+ T cells. This study suggests that targeting proliferating tumor-infiltrating macrophages may increase CD8+ cytotoxic lymphocyte (CTL) infiltration and facilitate the spatial redistribution of CD8+ T cells in tumors, contributing to the antitumor effect.
Collapse
|
64
|
Wu D, Liu X, Mu J, Yang J, Wu F, Zhou H. Therapeutic Approaches Targeting Proteins in Tumor-Associated Macrophages and Their Applications in Cancers. Biomolecules 2022; 12:biom12030392. [PMID: 35327584 PMCID: PMC8945446 DOI: 10.3390/biom12030392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) promote tumor proliferation, invasion, angiogenesis, stemness, therapeutic resistance, and immune tolerance in a protein-dependent manner. Therefore, the traditional target paradigms are often insufficient to exterminate tumor cells. These pro-tumoral functions are mediated by the subsets of macrophages that exhibit canonical protein markers, while simultaneously having unique transcriptional features, which makes the proteins expressed on TAMs promising targets during anti-tumor therapy. Herein, TAM-associated protein-dependent target strategies were developed with the aim of either reducing the numbers of TAMs or inhibiting the pro-tumoral functions of TAMs. Furthermore, the recent advances in TAMs associated with tumor metabolism and immunity were extensively exploited to repolarize these TAMs to become anti-tumor elements and reverse the immunosuppressive tumor microenvironment. In this review, we systematically summarize these current studies to fully illustrate the TAM-associated protein targets and their inhibitors, and we highlight the potential clinical applications of targeting the crosstalk among TAMs, tumor cells, and immune cells in anti-tumor therapy.
Collapse
Affiliation(s)
- Deyang Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Xiaowei Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
- Correspondence: (F.W.); (H.Z.)
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
- Correspondence: (F.W.); (H.Z.)
| |
Collapse
|
65
|
Du W, Frankel TL, Green M, Zou W. IFNγ signaling integrity in colorectal cancer immunity and immunotherapy. Cell Mol Immunol 2022; 19:23-32. [PMID: 34385592 PMCID: PMC8752802 DOI: 10.1038/s41423-021-00735-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
The majority of colorectal cancer patients are not responsive to immune checkpoint blockade (ICB). The interferon gamma (IFNγ) signaling pathway drives spontaneous and ICB-induced antitumor immunity. In this review, we summarize recent advances in the epigenetic, genetic, and functional integrity of the IFNγ signaling pathway in the colorectal cancer microenvironment and its immunological relevance in the therapeutic efficacy of and resistance to ICB. Moreover, we discuss how to target IFNγ signaling to inform novel clinical trials to treat patients with colorectal cancer.
Collapse
Affiliation(s)
- Wan Du
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Timothy L Frankel
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Michael Green
- Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Veterans Affairs Ann Arbor Healthcare System, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Graduate Programs in Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Graduate Programs in Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Tumor Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
66
|
Li CH, Liao CC. The Metabolism Reprogramming of microRNA Let-7-Mediated Glycolysis Contributes to Autophagy and Tumor Progression. Int J Mol Sci 2021; 23:113. [PMID: 35008539 PMCID: PMC8745176 DOI: 10.3390/ijms23010113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer is usually a result of abnormal glucose uptake and imbalanced nutrient metabolization. The dysregulation of glucose metabolism, which controls the processes of glycolysis, gives rise to various physiological defects. Autophagy is one of the metabolic-related cellular functions and involves not only energy regeneration but also tumorigenesis. The dysregulation of autophagy impacts on the imbalance of metabolic homeostasis and leads to a variety of disorders. In particular, the microRNA (miRNA) Let-7 has been identified as related to glycolysis procedures such as tissue repair, stem cell-derived cardiomyocytes, and tumoral metastasis. In many cancers, the expression of glycolysis-related enzymes is correlated with Let-7, in which multiple enzymes are related to the regulation of the autophagy process. However, much recent research has not comprehensively investigated how Let-7 participates in glycolytic reprogramming or its links to autophagic regulations, mainly in tumor progression. Through an integrated literature review and omics-related profiling correlation, this review provides the possible linkage of the Let-7 network between glycolysis and autophagy, and its role in tumor progression.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Chiao-Chun Liao
- Department of Tropical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Public Health and Department of Social Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
67
|
Zhang N, Kim SH, Gainullina A, Erlich EC, Onufer EJ, Kim J, Czepielewski RS, Helmink BA, Dominguez JR, Saunders BT, Ding J, Williams JW, Jiang JX, Segal BH, Zinselmeyer BH, Randolph GJ, Kim KW. LYVE1+ macrophages of murine peritoneal mesothelium promote omentum-independent ovarian tumor growth. J Exp Med 2021; 218:e20210924. [PMID: 34714329 PMCID: PMC8575007 DOI: 10.1084/jem.20210924] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/13/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Two resident macrophage subsets reside in peritoneal fluid. Macrophages also reside within mesothelial membranes lining the peritoneal cavity, but they remain poorly characterized. Here, we identified two macrophage populations (LYVE1hi MHC IIlo-hi CX3CR1gfplo/- and LYVE1lo/- MHC IIhi CX3CR1gfphi subsets) in the mesenteric and parietal mesothelial linings of the peritoneum. These macrophages resembled LYVE1+ macrophages within surface membranes of numerous organs. Fate-mapping approaches and analysis of newborn mice showed that LYVE1hi macrophages predominantly originated from embryonic-derived progenitors and were controlled by CSF1 made by Wt1+ stromal cells. Their gene expression profile closely overlapped with ovarian tumor-associated macrophages previously described in the omentum. Indeed, syngeneic epithelial ovarian tumor growth was strongly reduced following in vivo ablation of LYVE1hi macrophages, including in mice that received omentectomy to dissociate the role from omental macrophages. These data reveal that the peritoneal compartment contains at least four resident macrophage populations and that LYVE1hi mesothelial macrophages drive tumor growth independently of the omentum.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Seung Hyeon Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| | - Anastasiia Gainullina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Computer Technologies Department, ITMO University, St. Petersburg, Russia
| | - Emma C. Erlich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Emily J. Onufer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jiseon Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| | - Rafael S. Czepielewski
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Beth A. Helmink
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, St. Louis, MO
| | - Joseph R. Dominguez
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| | - Brian T. Saunders
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jie Ding
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| | - Jesse W. Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Brahm H. Segal
- Departments of Internal Medicine and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Bernd H. Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| |
Collapse
|
68
|
Cao J, Zhang C, Jiang GQ, Jin SJ, Wang Q, Wang AQ, Bai DS. Identification of hepatocellular carcinoma-related genes associated with macrophage differentiation based on bioinformatics analyses. Bioengineered 2021; 12:296-309. [PMID: 33380242 PMCID: PMC8806327 DOI: 10.1080/21655979.2020.1868119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophage differentiation is associated with tumorigenesis, including the tumorigenesis of hepatocellular carcinoma (HCC). Herein, we explored the value of macrophage differentiation-associated genes (MDGs) in the prognosis of HCC using data from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. We performed multivariate Cox regression analyses to identify the hub genes affecting HCC patient prognoses. The correlations between hub genes and macrophage differentiation and immune checkpoint inhibitors (PD-1, PD-L1, and CTLA4) were investigated. Finally, the potential mechanism was examined with gene set enrichment analysis (GSEA). In total, seventeen differentially expressed MDGs were obtained after intersecting data from the two databases. Multivariate analysis indicated that CDC42 expression was an independent prognostic indicator in both databases. Furthermore, CDC42 showed a strong correlation with the tumor infiltration levels of immune cells in HCC tissue. Correlation analysis revealed that CDC42 expression was positively associated with M2 macrophage markers and immune checkpoint inhibitors, which indicated that CDC42 expression might be related to M2 macrophage differentiation and HCC cell immune tolerance. Finally, GSEA showed that CDC42 expression was most significantly related to the Wnt signaling pathway. In conclusion, this study showed that CDC42 expression might be an important MDG in HCC and may prove to be a new gene for studying macrophage differentiation in HCC. Abbreviations: HCC: hepatocellular carcinoma; TCGA: The Cancer Genome Atlas; ICGC: International Cancer Genome Consortium; GSEA: gene set enrichment analysis; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; ROC: receiver operating characteristic; K-M: Kaplan-Meier; AUC: the area under the ROC curve; TNM: Tumor size/lymph nodes/distance metastasis.
Collapse
Affiliation(s)
- Jun Cao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Guo-Qing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Sheng-Jie Jin
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Qian Wang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Ao-Qing Wang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Dou-Sheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| |
Collapse
|
69
|
Prognostic and Immunological Significance of CXCR2 in Ovarian Cancer: A Promising Target for Survival Outcome and Immunotherapeutic Response Assessment. DISEASE MARKERS 2021; 2021:5350232. [PMID: 34840630 PMCID: PMC8626184 DOI: 10.1155/2021/5350232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/14/2023]
Abstract
Objective Uncovering genetic and immunologic tumor features is critical to gain insights into the mechanisms of immunotherapeutic response. Herein, this study observed the functions of CXCR2 in prognosis and immunology of ovarian cancer. Methods Expression, prognostic significance, and genetic mutations of CXCR2 were analyzed in diverse cancer types based on TCGA and GTEx datasets. Associations of CXCR2 expression with immune checkpoints, neoantigens, tumor mutational burden (TMB), and microsatellite instability (MSI) were evaluated across pancancer. CXCR2-relevant genes were identified, and their biological functions were investigated in ovarian cancer. Through three algorithms (TIMER, quanTIseq, and xCell), we assessed the relationships of CXCR2 with immune cell infiltration in ovarian cancer. GSEA was adopted for inferring KEGG and hallmark pathways involved in CXCR2. Results CXCR2 presented abnormal expression in tumors than paired normal tissues across pancancer. Higher expression of CXCR2 was found in ovarian cancer. Moreover, its expression was in relation to overall survival and progression including ovarian cancer. Prominent associations of CXCR2 with immune checkpoints, neoantigens, TMB, and MSI were observed in human cancers. Somatic mutations of CXCR2 frequently occurred across pancancer. Amplification was the main mutational type of CXCR2 in ovarian cancer. CXCR2-relevant genes were markedly enriched in immunity activation and carcinogenic pathways in ovarian cancer. Moreover, it participated in modulating immune cell infiltration in the tumor microenvironment of ovarian cancer such as macrophage and immune response was prominently modulated by CXCR2. Conclusion Collectively, CXCR2 acts as a promising prognostic and immunological biomarker as well as a novel immunotherapeutic target of ovarian cancer.
Collapse
|
70
|
Osborn G, Stavraka C, Adams R, Sayasneh A, Ghosh S, Montes A, Lacy KE, Kristeleit R, Spicer J, Josephs DH, Arnold JN, Karagiannis SN. Macrophages in ovarian cancer and their interactions with monoclonal antibody therapies. Clin Exp Immunol 2021; 209:4-21. [PMID: 35020853 PMCID: PMC9307234 DOI: 10.1093/cei/uxab020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
Abstract
The unmet clinical need for effective treatments in ovarian cancer has yet to be addressed using monoclonal antibodies (mAbs), which have largely failed to overcome tumour-associated immunosuppression, restrict cancer growth, and significantly improve survival. In recent years, experimental mAb design has moved away from solely targeting ovarian tumours and instead sought to modulate the wider tumour microenvironment (TME). Tumour-associated macrophages (TAMs) may represent an attractive therapeutic target for mAbs in ovarian cancer due to their high abundance and close proximity to tumour cells and their active involvement in facilitating several pro-tumoural processes. Moreover, the expression of several antibody crystallisable fragment (Fc) receptors and broad phenotypic plasticity of TAMs provide opportunities to modulate TAM polarisation using mAbs to promote anti-tumoural phenotypes. In this review, we discuss the role of TAMs in ovarian cancer TME and the emerging strategies to target the contributions of these cells in tumour progression through the rationale design of mAbs.
Collapse
Affiliation(s)
- Gabriel Osborn
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Chara Stavraka
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom.,Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Rebecca Adams
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Ahmad Sayasneh
- Department of Gynecological Oncology, Surgical Oncology Directorate, Guy's and St Thomas' NHS Foundation Trust, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Sharmistha Ghosh
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Ana Montes
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Rebecca Kristeleit
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom.,Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - James N Arnold
- School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| |
Collapse
|
71
|
Ke Y, Chen X, Su Y, Chen C, Lei S, Xia L, Wei D, Zhang H, Dong C, Liu X, Yin F. Low Expression of SLC7A11 Confers Drug Resistance and Worse Survival in Ovarian Cancer via Inhibition of Cell Autophagy as a Competing Endogenous RNA. Front Oncol 2021; 11:744940. [PMID: 34790572 PMCID: PMC8591223 DOI: 10.3389/fonc.2021.744940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 01/17/2023] Open
Abstract
Drug resistance is the main cause of chemotherapy failure in ovarian cancer (OC), and identifying potential druggable targets of autophagy is a novel and promising approach to overcoming drug resistance. In this study, 131 genes associated with autophagy were identified from three autophagy-related databases, and of these, 14 were differentially expressed in 90 drug-resistant OC tissues versus 197 sensitive tissues according to the Cancer Genome Atlas ovarian cancer cohort. Among these 14 genes, SLC7A11 was significantly decreased in two paclitaxel-resistant OC cells (HeyA8-R and SKOV3-R) and in 90 drug-resistant tissues compared with their controls. In vitro overexpression of SLC7A11 significantly increased the sensitivity of HeyA8-R cells to paclitaxel, inhibited colony formation, induced apoptosis, and arrested cell cycle. Further, low SLC7A11 expression was correlated with poor overall survival (OS), progression-free survival (PFS), and post-progression survival (PPS) in 1815 OC patients. Mechanistically, SLC7A11 strongly regulated cell autophagy as a competing endogenous RNA (ceRNA) based on pan-cancer analyses of 32 tumor types. Specifically, as a ceRNA for autophagy genes STX17, RAB33B, and UVRAG, SLC7A11 was strongly and positively co-expressed with these three genes in 20, 12, and 12 different tumors, respectively, in 379 OC tissues and in 90 drug-resistant OC tissues, and the former two were significantly upregulated in SLC7A11-overexpressed HeyA8-R cells. Further, SLC7A11 induced the protein expression of other autophagy genes, such as LC3, Atg16L1, and Atg7, and the expression of the respective proteins was further increased when the cells were treated with paclitaxel. The results strongly suggest that SLC7A11 regulates autophagy via ceRNA interactions with the three abovementioned genes in pan-cancer and in drug-resistant OC. Moreover, low expression of STX17 and UVRAG also significantly predicted low OS, PFS, and PPS. The combination of SLC7A11 with STX17 was more predictive of OS and PFS than either individually, and the combination of SLC7A11 with UVRAG was highly predictive of OS and PPS. The above results indicated that decreased SLC7A11 resulted in drug resistance and effected low rates of survival in OC patients, probably via ceRNA interactions with autophagy genes, and thus the gene could serve as a therapeutic target and potential biomarker in OC.
Collapse
Affiliation(s)
- Yao Ke
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Xiaoying Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Yuting Su
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Cuilan Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Shunmei Lei
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Lianping Xia
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Dan Wei
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Han Zhang
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Caihua Dong
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| |
Collapse
|
72
|
Ramel E, Lillo S, Daher B, Fioleau M, Daubon T, Saleh M. The Metabolic Control of Myeloid Cells in the Tumor Microenvironment. Cells 2021; 10:cells10112960. [PMID: 34831183 PMCID: PMC8616208 DOI: 10.3390/cells10112960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Myeloid cells are a key determinant of tumor progression and patient outcomes in a range of cancers and are therefore being actively pursued as targets of new immunotherapies. The recent use of high-dimensional single-cell approaches, e.g., mass cytometry and single-cell RNA-sequencing (scRNA-seq) has reinforced the predominance of myeloid cells in the tumor microenvironment and uncovered their phenotypic diversity in different cancers. The cancerous metabolic environment has emerged as a critical modulator of myeloid cell functions in anti-tumor immunity versus immune suppression and immune evasion. Here, we discuss mechanisms of immune-metabolic crosstalk in tumorigenesis, with a particular focus on the tumor-associated myeloid cell’s metabolic programs. We highlight the impact of several metabolic pathways on the pro-tumoral functions of tumor-associated macrophages and myeloid-derived suppressor cells and discuss the potential myeloid cell metabolic checkpoints for cancer immunotherapy, either as monotherapies or in combination with other immunotherapies.
Collapse
Affiliation(s)
- Eloise Ramel
- ImmunoConcEpT, CNRS, University of Bordeaux, UMR 5164, F-33000 Bordeaux, France; (E.R.); (S.L.); (M.F.)
| | - Sebastian Lillo
- ImmunoConcEpT, CNRS, University of Bordeaux, UMR 5164, F-33000 Bordeaux, France; (E.R.); (S.L.); (M.F.)
| | - Boutaina Daher
- Institut de Biochimie et Génétique Cellulaires (IBGC), CNRS, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France; (B.D.); (T.D.)
| | - Marina Fioleau
- ImmunoConcEpT, CNRS, University of Bordeaux, UMR 5164, F-33000 Bordeaux, France; (E.R.); (S.L.); (M.F.)
| | - Thomas Daubon
- Institut de Biochimie et Génétique Cellulaires (IBGC), CNRS, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France; (B.D.); (T.D.)
| | - Maya Saleh
- ImmunoConcEpT, CNRS, University of Bordeaux, UMR 5164, F-33000 Bordeaux, France; (E.R.); (S.L.); (M.F.)
- Department of Medicine, McGill University, Montreal, QC H3G 0B1, Canada
- Correspondence:
| |
Collapse
|
73
|
Hinton M, Eltayeb E, Ghavami S, Dakshinamurti S. Effect of pulsatile stretch on unfolded protein response in a new model of the pulmonary hypertensive vascular wall. Biochem Biophys Rep 2021; 27:101080. [PMID: 34368469 PMCID: PMC8326203 DOI: 10.1016/j.bbrep.2021.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is characterized by hypoxemia and arterial remodeling. Dynamic stretch and recoil of the arterial wall during pulsation (in normal conduit arteries, stretch 20% above diastolic diameter) maintains homeostasis; a static arterial wall is associated with remodeling. PPHN is diagnosed by echocardiography as decreased pulmonary artery wall displacement during systole, causing decreased pulmonary arterial pressure acceleration time in a stiff artery. We hypothesized that a 'normal' amplitude of pulsatile stretch is protective against ER stress, while the loss of stretch is a trigger for hypoxia-induced stress responses. Using a novel in vitro model of pulmonary arterial myocytes subject to repetitive stretch-relaxation cycles within a normoxic or hypoxic environment, we examined the relative impact of hypoxia (pulmonary circuit during unresolved PPHN) and cyclic mechanical stretch (diminished in PPHN) on myocyte homeostasis, specifically on signaling proteins for autophagy and endoplasmic reticulum (ER) stress. Stretch induced autophagosome abundance under electron microscopy. Hypoxia, in presence or absence of pulsatile stretch, decreased unfolded protein response (UPR) hallmark BIP (GRP78) in contractile phenotype pulmonary arterial myocytes. Inositol requiring enzyme-1 α (IRE1α) was not activated; but hypoxia induced eif2α phosphorylation, increasing expression of ATF4 (activating transcription factor-4). This was sensitive to inhibition by autophagy inhibitor bafilomycin A1. We conclude that in the pulmonary circuit, hypoxia induces one arm of the UPR pathway and causes ER stress. Pulsatile stretch ameliorates the hypoxic UPR response, and while increasing presence of autophagosomes, does not activate canonical autophagy signaling pathways. We propose that simultaneous application of hypoxia and graded levels of cyclic stretch can be used to distinguish myocyte signaling in the deformable pulmonary artery of early PPHN, versus the inflexible late stage PPHN artery.
Collapse
Affiliation(s)
- Martha Hinton
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, 513 – 715 McDermot Avenue, Winnipeg, Canada, R3E 3P4
- Department of Physiology and Pathophysiology, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, Canada, R3E 0J9
| | - Elwasila Eltayeb
- Section of Neonatology, Department of Pediatrics, University of Manitoba, Health Sciences Centre, 820 Sherbrook Street, Winnipeg, Canada, R3A 1R9
| | - Saeid Ghavami
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, 513 – 715 McDermot Avenue, Winnipeg, Canada, R3E 3P4
- Department of Human Anatomy and Cell Science, University of Manitoba, 130 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, Canada, R3E 0J9
| | - Shyamala Dakshinamurti
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, 513 – 715 McDermot Avenue, Winnipeg, Canada, R3E 3P4
- Section of Neonatology, Department of Pediatrics, University of Manitoba, Health Sciences Centre, 820 Sherbrook Street, Winnipeg, Canada, R3A 1R9
- Department of Physiology and Pathophysiology, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, Canada, R3E 0J9
| |
Collapse
|
74
|
Chow A, Schad S, Green MD, Hellmann MD, Allaj V, Ceglia N, Zago G, Shah NS, Sharma SK, Mattar M, Chan J, Rizvi H, Zhong H, Liu C, Bykov Y, Zamarin D, Shi H, Budhu S, Wohlhieter C, Uddin F, Gupta A, Khodos I, Waninger JJ, Qin A, Markowitz GJ, Mittal V, Balachandran V, Durham JN, Le DT, Zou W, Shah SP, McPherson A, Panageas K, Lewis JS, Perry JSA, de Stanchina E, Sen T, Poirier JT, Wolchok JD, Rudin CM, Merghoub T. Tim-4 + cavity-resident macrophages impair anti-tumor CD8 + T cell immunity. Cancer Cell 2021; 39:973-988.e9. [PMID: 34115989 PMCID: PMC9115604 DOI: 10.1016/j.ccell.2021.05.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Immune checkpoint blockade (ICB) has been a remarkable clinical advance for cancer; however, the majority of patients do not respond to ICB therapy. We show that metastatic disease in the pleural and peritoneal cavities is associated with poor clinical outcomes after ICB therapy. Cavity-resident macrophages express high levels of Tim-4, a receptor for phosphatidylserine (PS), and this is associated with reduced numbers of CD8+ T cells with tumor-reactive features in pleural effusions and peritoneal ascites from patients with cancer. We mechanistically demonstrate that viable and cytotoxic anti-tumor CD8+ T cells upregulate PS and this renders them susceptible to sequestration away from tumor targets and proliferation suppression by Tim-4+ macrophages. Tim-4 blockade abrogates this sequestration and proliferation suppression and enhances anti-tumor efficacy in models of anti-PD-1 therapy and adoptive T cell therapy in mice. Thus, Tim-4+ cavity-resident macrophages limit the efficacy of immunotherapies in these microenvironments.
Collapse
Affiliation(s)
- Andrew Chow
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Sara Schad
- Weill Cornell Medical College, New York, NY, USA
| | - Michael D Green
- Department of Radiation Oncology, University of Michigan Rogel Cancer Center and Veterans Affairs Ann Arbor Healthcare System, MI, USA
| | - Matthew D Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viola Allaj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas Ceglia
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giulia Zago
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nisargbhai S Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marissa Mattar
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Chan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hira Rizvi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Zhong
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cailian Liu
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yonina Bykov
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitriy Zamarin
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Hongyu Shi
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sadna Budhu
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Fathema Uddin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aditi Gupta
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Inna Khodos
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica J Waninger
- Department of Medical Education, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Angel Qin
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Vinod Balachandran
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer N Durham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dung T Le
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weiping Zou
- Departments of Surgery and Pathology, Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Sohrab P Shah
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew McPherson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason S Lewis
- Weill Cornell Medical College, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Triparna Sen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Jedd D Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
75
|
Abstract
Autophagy is a regulated mechanism that removes unnecessary or dysfunctional cellular components and recycles metabolic substrates. In response to stress signals in the tumour microenvironment, the autophagy pathway is altered in tumour cells and immune cells - thereby differentially affecting tumour progression, immunity and therapy. In this Review, we summarize our current understanding of the immunologically associated roles and modes of action of the autophagy pathway in cancer progression and therapy, and discuss potential approaches targeting autophagy to enhance antitumour immunity and improve the efficacy of current cancer therapy.
Collapse
Affiliation(s)
- Houjun Xia
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
76
|
Luo X, Qiu Y, Dinesh P, Gong W, Jiang L, Feng X, Li J, Jiang Y, Lei YL, Chen Q. The functions of autophagy at the tumour-immune interface. J Cell Mol Med 2021; 25:2333-2341. [PMID: 33605033 PMCID: PMC7933948 DOI: 10.1111/jcmm.16331] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
Autophagy is frequently induced in the hypoxic tumour microenvironment. Accumulating evidence reveals important functions of autophagy at the tumour-immune interface. Herein, we propose an update on the roles of autophagy in modulating tumour immunity. Autophagy promotes adaptive resistance of established tumours to the cytotoxic effects of natural killer cells (NKs), macrophages and effector T cells. Increased autophagic flux in tumours dampen their immunogenicity and inhibits the expansion of cytotoxic T lymphocytes (CTLs) by suppressing the activation of STING type I interferon signalling (IFN-I) innate immune sensing pathway. Autophagy in suppressive tumour-infiltrating immune subsets maintains their survival through metabolic remodelling. On the other hand, autophagy is involved in the antigen processing and presentation process, which is essential for anti-tumour immune responses. Genetic deletion of autophagy induces spontaneous tumours in some models. Thus, the role of autophagy is context-dependent. In summary, our review has revealed the dichotomous roles of autophagy in modulating tumour immunity. Broad targeting of autophagy may not yield maximal benefits. The characterization of specific genes regulating tumour immunogenicity and innovation in targeted delivery of autophagy inhibitors into certain tumours are among the most urgent tasks to sensitize cold cancers to immunotherapy.
Collapse
Affiliation(s)
- Xiaobo Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Palani Dinesh
- Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, USA
| | - Wang Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, USA
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
77
|
Immune cell - produced ROS and their impact on tumor growth and metastasis. Redox Biol 2021; 42:101891. [PMID: 33583736 PMCID: PMC8113043 DOI: 10.1016/j.redox.2021.101891] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen species (ROS) are derivatives of molecular oxygen (O2) involved in various physiological and pathological processes. In immune cells, ROS are mediators of pivotal functions such as phagocytosis, antigen presentation and recognition, cytolysis as well as phenotypical differentiation. Furthermore, ROS exert immunosuppressive effects on T and natural killer (NK) cells which is of particular importance in the so-called “tumor microenvironment” (TME) of solid tumors. This term describes the heterogenous group of non-malignant cells including tumor-associated fibroblasts and immune cells, vascular cells, bacteria etc. by which cancer cells are surrounded and with whom they engage in functional crosstalk. Importantly, pharmacological targeting of the TME and, specifically, tumor-associated immune cells utilizing immune checkpoint inhibitors - monoclonal antibodies that mitigate immunosuppression - turned out to be a major breakthrough in the treatment of malignant tumors. In this review, we aim to give an overview of the role that ROS produced in tumor-associated immune cells play during initiation, progression and metastatic outgrowth of solid cancers. Finally, we summarize findings on how ROS in the TME could be targeted therapeutically to increase the efficacy of cancer immunotherapy and discuss factors determining therapeutic success of redox modulation in tumors.
Collapse
|
78
|
Sheng Y, Jiang Y, Yang Y, Li X, Qiu J, Wu J, Cheng L, Han J. CNA2Subpathway: identification of dysregulated subpathway driven by copy number alterations in cancer. Brief Bioinform 2021; 22:6076935. [PMID: 33423051 DOI: 10.1093/bib/bbaa413] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/25/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Biological pathways reflect the key cellular mechanisms that dictate disease states, drug response and altered cellular function. The local areas of pathways are defined as subpathways (SPs), whose dysfunction has been reported to be associated with the occurrence and development of cancer. With the development of high-throughput sequencing technology, identifying dysfunctional SPs by using multi-omics data has become possible. Moreover, the SPs are not isolated in the biological system but interact with each other. Here, we propose a network-based calculated method, CNA2Subpathway, to identify dysfunctional SPs is driven by somatic copy number alterations (CNAs) in cancer through integrating pathway topology information, multi-omics data and SP crosstalk. This provides a novel way of SP analysis by using the SP interactions in the system biological level. Using data sets from breast cancer and head and neck cancer, we validate the effectiveness of CNA2Subpathway in identifying cancer-relevant SPs driven by the somatic CNAs, which are also shown to be associated with cancer immune and prognosis of patients. We further compare our results with five pathway or SP analysis methods based on CNA and gene expression data without considering SP crosstalk. With these analyses, we show that CNA2Subpathway could help to uncover dysfunctional SPs underlying cancer via the use of SP crosstalk. CNA2Subpathway is developed as an R-based tool, which is freely available on GitHub (https://github.com/hanjunwei-lab/CNA2Subpathway).
Collapse
Affiliation(s)
- Yuqi Sheng
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, China
| | - Yang Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Xiangmei Li
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Jiayue Qiu
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Jiashuo Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| |
Collapse
|
79
|
The Dual Role of Autophagy in Cancer Development and a Therapeutic Strategy for Cancer by Targeting Autophagy. Int J Mol Sci 2020; 22:ijms22010179. [PMID: 33375363 PMCID: PMC7795059 DOI: 10.3390/ijms22010179] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a delicate intracellular degradation process that occurs due to diverse stressful conditions, including the accumulation of damaged proteins and organelles as well as nutrient deprivation. The mechanism of autophagy is initiated by the creation of autophagosomes, which capture and encapsulate abnormal components. Afterward, autophagosomes assemble with lysosomes to recycle or remove degradative cargo. The regulation of autophagy has bipolar roles in cancer suppression and promotion in diverse cancers. Furthermore, autophagy modulates the features of tumorigenesis, cancer metastasis, cancer stem cells, and drug resistance against anticancer agents. Some autophagy regulators are used to modulate autophagy for anticancer therapy but the dual roles of autophagy limit their application in anticancer therapy, and present as the main reason for therapy failure. In this review, we summarize the mechanisms of autophagy, tumorigenesis, metastasis, cancer stem cells, and resistance against anticancer agents. Finally, we discuss whether targeting autophagy is a promising and effective therapeutic strategy in anticancer therapy.
Collapse
|
80
|
An Y, Yang Q. Tumor-associated macrophage-targeted therapeutics in ovarian cancer. Int J Cancer 2020; 149:21-30. [PMID: 33231290 DOI: 10.1002/ijc.33408] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023]
Abstract
Ovarian cancer is one of the most common gynecological malignancies. The tumor microenvironment plays an important role in regulating the progression of ovarian cancer. Macrophages, which are important immune cells in the tumor microenvironment, participate in the regulation of various biological behaviors and influence the prognosis of ovarian cancer. A large number of studies have targeted macrophages for the treatment of ovarian cancer. In addition, macrophages also play a regulatory role by interacting with other immune cells, including T cells and mesothelial cells, in the ovarian cancer microenvironment. In this review, we discuss the progress made in macrophage-targeted therapy for ovarian cancer. Although there are still several challenges in using this treatment, targeted macrophage therapy is still a promising treatment for ovarian cancer.
Collapse
Affiliation(s)
- Yuanyuan An
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qing Yang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
81
|
Alvarez-Meythaler JG, Garcia-Mayea Y, Mir C, Kondoh H, LLeonart ME. Autophagy Takes Center Stage as a Possible Cancer Hallmark. Front Oncol 2020; 10:586069. [PMID: 33194736 PMCID: PMC7643020 DOI: 10.3389/fonc.2020.586069] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide, despite significant advances in cancer research and improvements in anticancer therapies. One of the major obstacles to curing cancer is the difficulty of achieving the complete annihilation of resistant cancer cells. The resistance of cancer cells may not only be due to intrinsic factors or factors acquired during the evolution of the tumor but may also be caused by chemotherapeutic treatment failure. Conversely, autophagy is a conserved cellular process in which intracellular components, such as damaged organelles, aggregated or misfolded proteins and macromolecules, are degraded or recycled to maintain cellular homeostasis. Importantly, autophagy is an essential mechanism that plays a key role in tumor initiation and progression. Depending on the cellular context and microenvironmental conditions, autophagy acts as a double-edged sword, playing a role in inducing apoptosis or promoting cell survival. In this review, we propose several scenarios in which autophagy could contribute to cell survival or cell death. Moreover, a special focus on novel promising targets and therapeutic strategies based on autophagic resistant cells is presented.
Collapse
Affiliation(s)
- Jose G. Alvarez-Meythaler
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Hiroshi Kondoh
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Matilde E. LLeonart
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Spanish Biomedical Research Network Center in Oncology, CIBERONC, Barcelona, Spain
| |
Collapse
|