51
|
BMP9 reduces age-related bone loss in mice by inhibiting osteoblast senescence through Smad1-Stat1-P21 axis. Cell Death Dis 2022; 8:254. [PMID: 35523787 PMCID: PMC9076651 DOI: 10.1038/s41420-022-01048-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
Age-related osteoporosis is characterized by the accumulation of senescent osteoblastic cells in bone microenvironment and significantly reduced osteogenic differentiation. Clearing of the senescent cells is helpful to improve bone formation in aged mice. Bone morphogenetic protein 9 (BMP9), a multifunctional protein produced and secreted by liver, was reported to improve osteoporosis caused by estrogen withdrawal. However, the mechanism of BMP9 has not been fully elucidated, and its effect on senile osteoporosis has not been reported. This study reveals that BMP9 significantly increases bone mass and improves bone biomechanical properties in aged mice. Furthermore, BMP9 reduces expression of senescent genes in bone microenvironment, accompanied by decreased senescence-associated secretory phenotypes (SASPs) such as Ccl5, Mmp9, Hmgb1, Nfkb1, and Vcam1. In vitro, Bmp9 treatment inhibits osteoblast senescence through activating Smad1, which suppresses the transcriptional activity of Stat1, thereby inhibits P21 expression and SASPs production. Furthermore, inhibiting the Smad1 signal in vivo can reverse the inhibitory effect of BMP9 on Stat1 and downstream senescent genes, which eliminates the protection of BMP9 on age-related osteoporosis. These findings highlight the critical role of BMP9 on reducing age-related bone loss by inhibiting osteoblast senescence through Smad1-Stat1-P21 axis. BMP9 inhibits cellular senescence by activation of Smad1, which suppresses the transcription of Stat1, resulting in decreased P21 expression and SASPs production in osteoblast. The anti-aging effect of BMP9 is benefit to improving age-related osteoporosis.![]()
Collapse
|
52
|
Kemppainen AV, Finnilä MA, Heikkinen A, Härönen H, Izzi V, Kauppinen S, Saarakkala S, Pihlajaniemi T, Koivunen J. The CMS19 disease model specifies a pivotal role for collagen XIII in bone homeostasis. Sci Rep 2022; 12:5866. [PMID: 35393492 PMCID: PMC8990013 DOI: 10.1038/s41598-022-09653-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in the COL13A1 gene result in congenital myasthenic syndrome type 19 (CMS19), a disease of neuromuscular synapses and including various skeletal manifestations, particularly facial dysmorphisms. The phenotypic consequences in Col13a1 null mice (Col13a1−/−) recapitulate the muscle findings of the CMS19 patients. Collagen XIII (ColXIII) is exists as two forms, a transmembrane protein and a soluble molecule. While the Col13a1−/− mice have poorly formed neuromuscular junctions, the prevention of shedding of the ColXIII ectodomain in the Col13a1tm/tm mice results in acetylcholine receptor clusters of increased size and complexity. In view of the bone abnormalities in CMS19, we here studied the tubular and calvarial bone morphology of the Col13a1−/− mice. We discovered several craniofacial malformations, albeit less pronounced ones than in the human disease, and a reduction of cortical bone mass in aged mice. In the Col13a1tm/tm mice, where ColXIII is synthesized but the ectodomain shedding is prevented due to a mutation in a protease recognition sequence, the cortical bone mass decreased as well with age and the cephalometric analyses revealed significant craniofacial abnormalities but no clear phenotypical pattern. To conclude, our data indicates an intrinsic role for ColXIII, particularly the soluble form, in the upkeep of bone with aging and suggests the possibility of previously undiscovered bone pathologies in patients with CMS19.
Collapse
Affiliation(s)
- A V Kemppainen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - M A Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - A Heikkinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - H Härönen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - V Izzi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.,Faculty of Medicine, University of Oulu, 90014, Oulu, Finland.,Foundation for the Finnish Cancer Institute, Tukholmankatu 8, 00130, Helsinki, Finland
| | - S Kauppinen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - S Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - T Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - J Koivunen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.
| |
Collapse
|
53
|
Piet J, Adamo S, Hu D, Baron R, Shefelbine SJ. Marrow aspiration in aged mice: intramedullary osteogenesis, reduced mechano-adaptation, increased marrow fat. Connect Tissue Res 2022; 63:97-111. [PMID: 31868022 DOI: 10.1080/03008207.2019.1698557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Introduction: With age, the number of adipocytes and osteoclasts increases, the number of osteoblasts decreases, and mechano-adaptation is impaired.Objectives: Using marrow aspiration, which has a known osteogenic effect in young mice, we sought to recruit osteoblast progenitors to mediate the mechano-adaptive response to in vivo tibial loading.Methods: First, we assessed bone formation and marrow adiposity in the tibiae of old mice (>20 months) sacrificed 1, 2, and 4 weeks after unilateral marrow aspiration. Then, we examined the effects of marrow aspiration on mechano-adaptation in aged mice using tibial loading.Results: Two weeks after aspiration, aspirated tibiae had more bone than contralateral tibiae due to the formation of bone in the medullary canal. Two weeks and four weeks after marrow aspiration, the volume of marrow adipose tissue was higher in the aspirated tibiae, compared to contralateral tibiae. Histomorphometry indicated that aspiration increased non-periosteal (endosteal, intracortical, intramedullary) bone formation, compared to the contralateral tibia. Mice with marrow aspiration had reduced periosteal bone formation in the contralateral tibia, compared to mice that had loading alone. Loading-induced periosteal bone formation was higher in mice that had loading alone, compared to mice that had aspiration + loading, indicating that aspiration further reduced the mechano-adaptive response.Conclusion: These data demonstrate that, in old mice, bone forms in the medullary canal following aspiration. Adiposity is increased following marrow aspiration, and periosteal mechano-adaptation is reduced.
Collapse
Affiliation(s)
- Judith Piet
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Sarah Adamo
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Dorothy Hu
- Department of Medicine, Harvard Medical School, and Division of Bone and Mineral Research, and Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School, and Division of Bone and Mineral Research, and Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, Boston, MA, USA.,Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
54
|
Carpintero-Fernández P, Varela-Eirín M, García-Yuste A, López-Díaz I, Caeiro JR, Mayán MD. Osteoarthritis: Mechanistic Insights, Senescence, and Novel Therapeutic Opportunities. Bioelectricity 2022; 4:39-47. [PMID: 39355566 PMCID: PMC11441363 DOI: 10.1089/bioe.2021.0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease. In the last years, the research community has focused on understanding the molecular mechanisms that led to the pathogenesis of the disease, trying to identify different molecular and clinical phenotypes along with the discovery of new therapeutic opportunities. Different types of cell-to-cell communication mechanisms have been proposed to contribute to OA progression, including mechanisms mediated by connexin43 (Cx43) channels or by small extracellular vesicles. Furthermore, changes in the chondrocyte phenotype such as cellular senescence have been proposed as new contributors of the OA progression, changing the paradigm of the disease. The use of different drugs able to restore chondrocyte phenotype, to reduce cellular senescence and senescence-associated secretory phenotype components, and to modulate ion channel activity or Cx43 appears to be promising therapeutic strategies for the different types of OA. In this review, we aim to summarize the current knowledge in OA phenotypes related with aging and tissue damage and the new therapeutic opportunities currently available.
Collapse
Affiliation(s)
- Paula Carpintero-Fernández
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - Marta Varela-Eirín
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Alejandro García-Yuste
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - Iñaki López-Díaz
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - José Ramón Caeiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| |
Collapse
|
55
|
Little-Letsinger SE, Rubin J, Diekman B, Rubin CT, McGrath C, Pagnotti GM, Klett EL, Styner M. Exercise to Mend Aged-tissue Crosstalk in Bone Targeting Osteoporosis & Osteoarthritis. Semin Cell Dev Biol 2022; 123:22-35. [PMID: 34489173 PMCID: PMC8840966 DOI: 10.1016/j.semcdb.2021.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Aging induces alterations in bone structure and strength through a multitude of processes, exacerbating common aging- related diseases like osteoporosis and osteoarthritis. Cellular hallmarks of aging are examined, as related to bone and the marrow microenvironment, and ways in which these might contribute to a variety of age-related perturbations in osteoblasts, osteocytes, marrow adipocytes, chondrocytes, osteoclasts, and their respective progenitors. Cellular senescence, stem cell exhaustion, mitochondrial dysfunction, epigenetic and intracellular communication changes are central pathways and recognized as associated and potentially causal in aging. We focus on these in musculoskeletal system and highlight knowledge gaps in the literature regarding cellular and tissue crosstalk in bone, cartilage, and the bone marrow niche. While senolytics have been utilized to target aging pathways, here we propose non-pharmacologic, exercise-based interventions as prospective "senolytics" against aging effects on the skeleton. Increased bone mass and delayed onset or progression of osteoporosis and osteoarthritis are some of the recognized benefits of regular exercise across the lifespan. Further investigation is needed to delineate how cellular indicators of aging manifest in bone and the marrow niche and how altered cellular and tissue crosstalk impact disease progression, as well as consideration of exercise as a therapeutic modality, as a means to enhance discovery of bone-targeted therapies.
Collapse
Affiliation(s)
- SE Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - J Rubin
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| | - B Diekman
- Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill,Joint Departments of Biomedical Engineering NC State & University of North Carolina at Chapel Hill
| | - CT Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook
| | - C McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - GM Pagnotti
- Dept of Endocrine, Neoplasia, and Hormonal Disorders, University Texas MD Anderson Cancer Center, Houston
| | - EL Klett
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill
| | - M Styner
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| |
Collapse
|
56
|
Föger-Samwald U, Kerschan-Schindl K, Butylina M, Pietschmann P. Age Related Osteoporosis: Targeting Cellular Senescence. Int J Mol Sci 2022; 23:ijms23052701. [PMID: 35269841 PMCID: PMC8910503 DOI: 10.3390/ijms23052701] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Age-related chronic diseases are an enormous burden to modern societies worldwide. Among these, osteoporosis, a condition that predisposes individuals to an increased risk of fractures, substantially contributes to increased mortality and health-care costs in elderly. It is now well accepted that advanced chronical age is one of the main risk factors for chronical diseases. Hence, targeting fundamental aging mechanisms such as senescence has become a promising option in the treatment of these diseases. Moreover, for osteoporosis, the main pathophysiological concepts arise from menopause causing estrogen deficiency, and from aging. Here, we focus on recent advances in the understanding of senescence-related mechanisms contributing to age-related bone loss. Furthermore, treatment options for senile osteoporosis targeting senescent cells are reviewed.
Collapse
Affiliation(s)
- Ursula Föger-Samwald
- Medical Science and Human Medicine Study Programme, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
- Correspondence:
| | | | - Maria Butylina
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (M.B.); (P.P.)
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (M.B.); (P.P.)
| |
Collapse
|
57
|
Khosla S, Farr JN, Monroe DG. Cellular senescence and the skeleton: pathophysiology and therapeutic implications. J Clin Invest 2022; 132:154888. [PMID: 35104801 PMCID: PMC8803328 DOI: 10.1172/jci154888] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a fundamental aging mechanism that is currently the focus of considerable interest as a pathway that could be targeted to ameliorate aging across multiple tissues, including the skeleton. There is now substantial evidence that senescent cells accumulate in the bone microenvironment with aging and that targeting these cells prevents age-related bone loss, at least in mice. Cellular senescence also plays important roles in mediating the skeletal fragility associated with diabetes mellitus, radiation, and chemotherapy. As such, there are ongoing efforts to develop "senolytic" drugs that kill senescent cells by targeting key survival mechanisms in these cells without affecting normal cells. Because senescent cells accumulate across tissues with aging, senolytics offer the attractive possibility of treating multiple age-related comorbidities simultaneously.
Collapse
|
58
|
BMP3 Affects Cortical and Trabecular Long Bone Development in Mice. Int J Mol Sci 2022; 23:ijms23020785. [PMID: 35054971 PMCID: PMC8775420 DOI: 10.3390/ijms23020785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/15/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have a major role in tissue development. BMP3 is synthesized in osteocytes and mature osteoblasts and has an antagonistic effect on other BMPs in bone tissue. The main aim of this study was to fully characterize cortical bone and trabecular bone of long bones in both male and female Bmp3−/− mice. To investigate the effect of Bmp3 from birth to maturity, we compared Bmp3−/− mice with wild-type littermates at the following stages of postnatal development: 1 day (P0), 2 weeks (P14), 8 weeks and 16 weeks of age. Bmp3 deletion was confirmed using X-gal staining in P0 animals. Cartilage and bone tissue were examined in P14 animals using Alcian Blue/Alizarin Red staining. Detailed long bone analysis was performed in 8-week-old and 16-week-old animals using micro-CT. The Bmp3 reporter signal was localized in bone tissue, hair follicles, and lungs. Bone mineralization at 2 weeks of age was increased in long bones of Bmp3−/− mice. Bmp3 deletion was shown to affect the skeleton until adulthood, where increased cortical and trabecular bone parameters were found in young and adult mice of both sexes, while delayed mineralization of the epiphyseal growth plate was found in adult Bmp3−/− mice.
Collapse
|
59
|
Richardson KK, Ling W, Krager K, Fu Q, Byrum SD, Pathak R, Aykin-Burns N, Kim HN. Ionizing Radiation Activates Mitochondrial Function in Osteoclasts and Causes Bone Loss in Young Adult Male Mice. Int J Mol Sci 2022; 23:675. [PMID: 35054859 PMCID: PMC8775597 DOI: 10.3390/ijms23020675] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
The damaging effects of ionizing radiation (IR) on bone mass are well-documented in mice and humans and are most likely due to increased osteoclast number and function. However, the mechanisms leading to inappropriate increases in osteoclastic bone resorption are only partially understood. Here, we show that exposure to multiple fractions of low-doses (10 fractions of 0.4 Gy total body irradiation [TBI]/week, i.e., fractionated exposure) and/or a single exposure to the same total dose of 4 Gy TBI causes a decrease in trabecular, but not cortical, bone mass in young adult male mice. This damaging effect was associated with highly activated bone resorption. Both osteoclast differentiation and maturation increased in cultures of bone marrow-derived macrophages from mice exposed to either fractionated or singular TBI. IR also increased the expression and enzymatic activity of mitochondrial deacetylase Sirtuin-3 (Sirt3)-an essential protein for osteoclast mitochondrial activity and bone resorption in the development of osteoporosis. Osteoclast progenitors lacking Sirt3 exposed to IR exhibited impaired resorptive activity. Taken together, targeting impairment of osteoclast mitochondrial activity could be a novel therapeutic strategy for IR-induced bone loss, and Sirt3 is likely a major mediator of this effect.
Collapse
Affiliation(s)
- Kimberly K. Richardson
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| | - Wen Ling
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| | - Kimberly Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.); (R.P.); (N.A.-B.)
| | - Qiang Fu
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.); (R.P.); (N.A.-B.)
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.); (R.P.); (N.A.-B.)
| | - Ha-Neui Kim
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| |
Collapse
|
60
|
Artsi H, Cohen-Kfir E, Shahar R, Kalish-Achrai N, Lishinsky N, Dresner-Pollak R. SIRT1 haplo-insufficiency results in reduced cortical bone thickness, increased porosity and decreased estrogen receptor alpha in bone in adult 129/Sv female mice. Front Endocrinol (Lausanne) 2022; 13:1032262. [PMID: 36568088 PMCID: PMC9768543 DOI: 10.3389/fendo.2022.1032262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Sirtuin 1 (SIRT1) is a key player in aging and metabolism and regulates bone mass and architecture. Sexual dimorphism in skeletal effects of SIRT1 has been reported, with an unfavorable phenotype primarily in female mice. METHODS To investigate the mechanisms of gender differences in SIRT1 skeletal effect, we investigated femoral and vertebral cortical and cancellous bone in global Sirt1 haplo-insufficient 129/Sv mice aged 2,7,12 months lacking Sirt1 exons 5,6,7 (Sirt1+/Δ ) and their wild type (WT) counterparts. RESULTS In females, femoral bone mineral content, peak cortical thickness, and trabecular bone volume (BV/TV%), number and thickness were significantly lower in Sirt1+/Δ compared to WT mice. Increased femoral cortical porosity was observed in 7-month-old Sirt1+/Δ compared to WT female mice, accompanied by reduced biomechanical strength. No difference in vertebral indices was detected between Sirt1+/Δ and WT female mice. SIRT1 decreased with aging in WT female mice and was lower in vertebrae and femur in 18- and 30- versus 3-month-old 129/Sv and C57BL/6J female mice, respectively. Decreased bone estrogen receptor alpha (ERα) was observed in Sirt1+/Δ compared to WT female mice and was significantly higher in Sirt1 over-expressing C3HT101/2 murine mesenchymal stem cells. In males no difference in femoral indices was detected in Sirt1+/Δ versus WT mice, however vertebral BV/TV%, trabecular number and thickness were higher in Sirt1+/Δ vs. WT mice. No difference in androgen receptor (AR) was detected in bone in Sirt1+/Δ vs. WT male mice. Bone SIRT1 was significantly lower in male compared to female WT mice, suggesting that SIRT1 maybe more significant in female than male skeleton. DISCUSSION These findings demonstrate that 50% reduction in SIRT1 is sufficient to induce the hallmarks of skeletal aging namely, decreased cortical thickness and increased porosity in female mice, highlighting the role of SIRT1 as a regulator of cortical bone quantity and quality. The effects of SIRT1 in cortical bone are likely mediated in part by its regulation of ERα. The age-associated decline in bone SIRT1 positions SIRT1 as a potential therapeutic target to ameliorate age-related cortical bone deterioration in females. The crosstalk between ERα, AR and SIRT1 in the bone microenvironment remains to be further investigated.
Collapse
Affiliation(s)
- Hanna Artsi
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einav Cohen-Kfir
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Shahar
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | - Noga Kalish-Achrai
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | - Natan Lishinsky
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Dresner-Pollak
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Rivka Dresner-Pollak,
| |
Collapse
|
61
|
Bouchard AL, Dsouza C, Julien C, Rummler M, Gaumond MH, Cermakian N, Willie BM. Bone adaptation to mechanical loading in mice is affected by circadian rhythms. Bone 2022; 154:116218. [PMID: 34571201 DOI: 10.1016/j.bone.2021.116218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
Physical forces are critical for successful function of many organs including bone. Interestingly, the timing of exercise during the day alters physiology and gene expression in many organs due to circadian rhythms. Circadian clocks in tissues, such as bone, express circadian clock genes that target tissue-specific genes, resulting in tissue-specific rhythmic gene expression (clock-controlled genes). We hypothesized that the adaptive response of bone to mechanical loading is regulated by circadian rhythms. First, mice were sham loaded and sacrificed 8 h later, which amounted to tissues being collected at zeitgeber time (ZT)2, 6, 10, 14, 18, and 22. Cortical bone of the tibiae collected from these mice displayed diurnal expression of core clock genes and key osteocyte and osteoblast-related genes, such as the Wnt-signaling inhibitors Sost and Dkk1, indicating these are clock-controlled genes. Serum bone turnover markers did not display rhythmicity. Second, mice underwent a single bout of in vivo loading at either ZT2 or ZT14 and were sacrificed 1, 8, or 24 h after loading. Loading at ZT2 resulted in Sost upregulation, while loading at ZT14 led to Sost and Dkk1 downregulation. Third, mice underwent daily in vivo tibial loading over 2 weeks administered either in the morning, (ZT2, resting phase) or evening (ZT14, active phase). In vivo microCT was performed at days 0, 5, 10, and 15 and conventional histomorphometry was performed at day 15. All outcome measures indicated a robust response to loading, but only microCT-based time-lapse morphometry showed that loading at ZT14 resulted in a greater endocortical bone formation response compared to mice loaded at ZT2. The decreased Sost and Dkk1 expression coincident with the modest, but significant time-of-day specific increase in adaptive bone formation, suggests that circadian clocks influence bone mechanoresponse.
Collapse
Affiliation(s)
- Alice L Bouchard
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Chrisanne Dsouza
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Maximilian Rummler
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Marie-Hélène Gaumond
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Research Centre, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada.
| |
Collapse
|
62
|
Zhou X, Yuan W, Xiong X, Zhang Z, Liu J, Zheng Y, Wang J, Liu J. HO-1 in Bone Biology: Potential Therapeutic Strategies for Osteoporosis. Front Cell Dev Biol 2021; 9:791585. [PMID: 34917622 PMCID: PMC8669958 DOI: 10.3389/fcell.2021.791585] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis is a prevalent bone disorder characterized by bone mass reduction and deterioration of bone microarchitecture leading to bone fragility and fracture risk. In recent decades, knowledge regarding the etiological mechanisms emphasizes that inflammation, oxidative stress and senescence of bone cells contribute to the development of osteoporosis. Studies have demonstrated that heme oxygenase 1 (HO-1), an inducible enzyme catalyzing heme degradation, exhibits anti-inflammatory, anti-oxidative stress and anti-apoptosis properties. Emerging evidence has revealed that HO-1 is critical in the maintenance of bone homeostasis, making HO-1 a potential target for osteoporosis treatment. In this Review, we aim to provide an introduction to current knowledge of HO-1 biology and its regulation, focusing specifically on its roles in bone homeostasis and osteoporosis. We also examine the potential of HO-1-based pharmacological therapeutics for osteoporosis and issues faced during clinical translation.
Collapse
Affiliation(s)
- Xueman Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenxiu Yuan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiong
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhenzhen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yingcheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Liu
- Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
63
|
Age-related accumulation of advanced oxidation protein products promotes osteoclastogenesis through disruption of redox homeostasis. Cell Death Dis 2021; 12:1160. [PMID: 34907153 PMCID: PMC8671415 DOI: 10.1038/s41419-021-04441-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022]
Abstract
Enhanced osteoclastogenesis is one of the major causes of age-related bone loss. Aging is accompanied by accumulation of advanced oxidation protein products (AOPPs). However, whether AOPPs accumulation contributing to the osteoclastogenesis with aging remains unclear. Here, we showed that AOPPs accumulation was associated with the enhanced osteoclastogenesis and deterioration of bone microstructure in aged mice. In vitro, AOPPs directly induced osteoclastogenesis by interaction with receptor activator of nuclear factor κ B (RANK) and the receptor for advanced glycation end products (RAGE) in the primary bone marrow monocytes. Bindings of AOPPs to RANK and RAGE were able to activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, trigger generation of reactive oxygen species, then induce phosphorylation of mitogen-activated protein kinases and c-fos, upregulation of the nuclear factor of activated T cell c1, eventually induce bone marrow monocytes to differentiate into mature osteoclasts. Chronic exposure to AOPPs enhanced osteoclastogenesis and bone loss in mice, which could be alleviated by NADPH oxidase inhibitor apocynin. Local injection of AOPPs into subperiosteal area induced bone resorption at the site of administration, which was similar to the effect of RANK ligand. Together, these results suggested that AOPPs could serve as a novel regulator of osteoclastogenesis and AOPPs accumulation might play an important role in the development of age-related bone loss.
Collapse
|
64
|
Xu Y, Xin R, Sun H, Long D, Li Z, Liao H, Xue T, Zhang Z, Kang Y, Mao G. Long Non-coding RNAs LOC100126784 and POM121L9P Derived From Bone Marrow Mesenchymal Stem Cells Enhance Osteogenic Differentiation via the miR-503-5p/SORBS1 Axis. Front Cell Dev Biol 2021; 9:723759. [PMID: 34746123 PMCID: PMC8570085 DOI: 10.3389/fcell.2021.723759] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play pivotal roles in mesenchymal stem cell differentiation. However, the mechanisms by which non-coding RNA (ncRNA) networks regulate osteogenic differentiation remain unclear. Therefore, our aim was to identify RNA-associated gene and transcript expression profiles during osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Using transcriptome sequencing for differentially expressed ncRNAs and mRNAs between days 0 and 21 of osteogenic differentiation of BMSCs, we found that the microRNA (miRNA) miR-503-5p was significantly downregulated. However, the putative miR-503-5p target, sorbin and SH3 domain containing 1 (SORBS1), was significantly upregulated in osteogenesis. Moreover, through lncRNA-miRNA-mRNA interaction analyses and loss- and gain-of-function experiments, we discovered that the lncRNAs LOC100126784 and POM121L9P were abundant in the cytoplasm and enhanced BMSC osteogenesis by promoting SORBS1 expression. In contrast, miR-503-5p reversed this effect. Ago2 RNA-binding protein immunoprecipitation and dual-luciferase reporter assays further validated the direct binding of miR-503-5p to LOC100126784 and POM121L9P. Furthermore, SORBS1 knockdown suppressed early osteogenic differentiation in BMSCs, and co-transfection with SORBS1 small interfering RNAs counteracted the BMSCs’ osteogenic capacity promoted by LOC100126784- and POM121L9P-overexpressing lentivirus plasmids. Thus, the present study demonstrated that the lncRNAs LOC100126784 and POM121L9P facilitate the osteogenic differentiation of BMSCs via the miR-503-5p/SORBS1 axis, providing potential therapeutic targets for treating osteoporosis and bone defects.
Collapse
Affiliation(s)
- Yiyang Xu
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China.,Department of Orthopedics, Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Ruobing Xin
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Hong Sun
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University Guiyang, Guizhou, China
| | - Dianbo Long
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Zhiwen Li
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Hongyi Liao
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Ting Xue
- Fujian Provincial Hospital South Branch, Center of Health Management, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Yan Kang
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Guping Mao
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| |
Collapse
|
65
|
Batoon L, Millard SM, Raggatt LJ, Wu AC, Kaur S, Sun LWH, Williams K, Sandrock C, Ng PY, Irvine KM, Bartnikowski M, Glatt V, Pavlos NJ, Pettit AR. Osteal macrophages support osteoclast-mediated resorption and contribute to bone pathology in a postmenopausal osteoporosis mouse model. J Bone Miner Res 2021; 36:2214-2228. [PMID: 34278602 DOI: 10.1002/jbmr.4413] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/08/2022]
Abstract
Osteal macrophages (osteomacs) support osteoblast function and promote bone anabolism, but their contribution to osteoporosis has not been explored. Although mouse ovariectomy (OVX) models have been repeatedly used, variation in strain, experimental design and assessment modalities have contributed to no single model being confirmed as comprehensively replicating the full gamut of osteoporosis pathological manifestations. We validated an OVX model in adult C3H/HeJ mice and demonstrated that it presents with human postmenopausal osteoporosis features with reduced bone volume in axial and appendicular bone and bone loss in both trabecular and cortical bone including increased cortical porosity. Bone loss was associated with increased osteoclasts on trabecular and endocortical bone and decreased osteoblasts on trabecular bone. Importantly, this OVX model was characterized by delayed fracture healing. Using this validated model, we demonstrated that osteomacs are increased post-OVX on both trabecular and endocortical bone. Dual F4/80 (pan-macrophage marker) and tartrate-resistant acid phosphatase (TRAP) staining revealed osteomacs frequently located near TRAP+ osteoclasts and contained TRAP+ intracellular vesicles. Using an in vivo inducible macrophage depletion model that does not simultaneously deplete osteoclasts, we observed that osteomac loss was associated with elevated extracellular TRAP in bone marrow interstitium and increased serum TRAP. Using in vitro high-resolution confocal imaging of mixed osteoclast-macrophage cultures on bone substrate, we observed macrophages juxtaposed to osteoclast basolateral functional secretory domains scavenging degraded bone byproducts. These data demonstrate a role for osteomacs in supporting osteoclastic bone resorption through phagocytosis and sequestration of resorption byproducts. Overall, our data expose a novel role for osteomacs in supporting osteoclast function and provide the first evidence of their involvement in osteoporosis pathogenesis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lena Batoon
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Susan M Millard
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Liza J Raggatt
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Andy C Wu
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Simranpreet Kaur
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Lucas W H Sun
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Kyle Williams
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Cheyenne Sandrock
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Pei Ying Ng
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Katharine M Irvine
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Michal Bartnikowski
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Vaida Glatt
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,Orthopaedic Surgery Department, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Nathan J Pavlos
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
66
|
Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res 2021; 9:41. [PMID: 34508069 PMCID: PMC8433460 DOI: 10.1038/s41413-021-00164-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023] Open
Abstract
Emerging insights into cellular senescence highlight the relevance of senescence in musculoskeletal disorders, which represent the leading global cause of disability. Cellular senescence was initially described by Hayflick et al. in 1961 as an irreversible nondividing state in in vitro cell culture studies. We now know that cellular senescence can occur in vivo in response to various stressors as a heterogeneous and tissue-specific cell state with a secretome phenotype acquired after the initial growth arrest. In the past two decades, compelling evidence from preclinical models and human data show an accumulation of senescent cells in many components of the musculoskeletal system. Cellular senescence is therefore a defining feature of age-related musculoskeletal disorders, and targeted elimination of these cells has emerged recently as a promising therapeutic approach to ameliorate tissue damage and promote repair and regeneration of the skeleton and skeletal muscles. In this review, we summarize evidence of the role of senescent cells in the maintenance of bone homeostasis during childhood and their contribution to the pathogenesis of chronic musculoskeletal disorders, including osteoporosis, osteoarthritis, and sarcopenia. We highlight the diversity of the senescent cells in the microenvironment of bone, joint, and skeletal muscle tissue, as well as the mechanisms by which these senescent cells are involved in musculoskeletal diseases. In addition, we discuss how identifying and targeting senescent cells might positively affect pathologic progression and musculoskeletal system regeneration.
Collapse
|
67
|
Doolittle ML, Monroe DG, Farr JN, Khosla S. The role of senolytics in osteoporosis and other skeletal pathologies. Mech Ageing Dev 2021; 199:111565. [PMID: 34499959 DOI: 10.1016/j.mad.2021.111565] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
The skeletal system undergoes irreversible structural deterioration with aging, leading to increased fracture risk and detrimental changes in mobility, posture, and gait. This state of low bone mass and microarchitectural changes, diagnosed as osteoporosis, affects millions of individuals worldwide and has high clinical and economic burdens. Recently, pre-clinical studies have linked the onset of age-related bone loss with an accumulation of senescent cells in the bone microenvironment. These senescent cells appear to be causal to age-related bone loss, as targeted clearance of these cells leads to improved bone mass and microarchitecture in old mice. Additionally, other pathologies leading to bone loss that result from DNA damage, such as cancer treatments, have shown improvements after clearance of senescent cells. The development of new therapies that clear senescent cells, termed "senolytics", is currently underway and may allow for the modulation of bone loss that results from states of high senescent cell burden, such as aging.
Collapse
Affiliation(s)
- Madison L Doolittle
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States
| | - David G Monroe
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States
| | - Joshua N Farr
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
68
|
Ono R, Abe M, Koike N, Inokawa H, Tsuchiya Y, Umemura Y, Sasawaki Y, Yamamoto T, Wakisaka S, Kanamura N, Yagita K. Quantitative morphometric analysis of molar teeth and alveolar bone using micro-computed tomography in aged mice. J Oral Biosci 2021; 63:265-270. [PMID: 34358700 DOI: 10.1016/j.job.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Irreversible morphological regressions of the teeth or related structures in older people can diminish their overall health. However, research on human aging in dentistry is complicated by several confounding factors. In this study, we conducted a morphometric analysis of the mandibular second molars and surrounding alveolar bone in C57BL/6 mice to evaluate age-related changes in the oral cavity. METHODS The animals were divided into five groups based on their age: 4 weeks (juvenile mice; n=5); 20 weeks (n=7), 50 weeks (n=5), 77 weeks (n=7), and 100 weeks (n=5); changes were evaluated using micro-computed tomography. RESULTS The molars of juvenile mice had sharp and pointed cusps and presented maximum heights. With age and occlusal wear, the cusp heights demonstrated a significant decrease (up to 75%) until the last stage of life. Conversely, apparent lesions were not observed on the basal portion of the crown, even in the most heavily worn teeth. The roots of the molars continued to grow in length at 4 weeks of age. Alveolar bone resorption begins to occur in middle age and continues throughout life. The proportion of vertical bone loss reached approximately 40% of the entire root length, demonstrating a remarkable increase between weeks 77 and 100. CONCLUSIONS Overall, these morphological changes were similar to those observed in humans. Therefore, it might be appropriate to use aged mice as an experimental model for basic and clinical research in geriatric dentistry.
Collapse
Affiliation(s)
- Ryutaro Ono
- Department of Dental Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan; Department of Physiology and Systems Bioscience, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Makoto Abe
- Department of Oral Anatomy and Developmental Biology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hitoshi Inokawa
- Department of Physiology and Systems Bioscience, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan; Department of Human Nutrition, Faculty of Contemporary Human Life Science, Chugoku Gakuen University, 83 Niwase, Kita-ku, Okayama, 701-0197, Japan
| | - Yoshiki Tsuchiya
- Department of Physiology and Systems Bioscience, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yasuhiro Umemura
- Department of Physiology and Systems Bioscience, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuh Sasawaki
- Department of Physiology and Systems Bioscience, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Satoshi Wakisaka
- Department of Oral Anatomy and Developmental Biology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
69
|
Isojima T, Sims NA. Cortical bone development, maintenance and porosity: genetic alterations in humans and mice influencing chondrocytes, osteoclasts, osteoblasts and osteocytes. Cell Mol Life Sci 2021; 78:5755-5773. [PMID: 34196732 PMCID: PMC11073036 DOI: 10.1007/s00018-021-03884-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Cortical bone structure is a crucial determinant of bone strength, yet for many years studies of novel genes and cell signalling pathways regulating bone strength have focused on the control of trabecular bone mass. Here we focus on mechanisms responsible for cortical bone development, growth, and degeneration, and describe some recently described genetic-driven modifications in humans and mice that reveal how these processes may be controlled. We start with embryonic osteogenesis of preliminary bone structures preceding the cortex and describe how this structure consolidates then matures to a dense, vascularised cortex containing an increasing proportion of lamellar bone. These processes include modelling-induced, and load-dependent, asymmetric cortical expansion, which enables the cortex's transition from a highly porous woven structure to a consolidated and thickened highly mineralised lamellar bone structure, infiltrated by vascular channels. Sex-specific differences emerge during this process. With aging, the process of consolidation reverses: cortical pores enlarge, leading to greater cortical porosity, trabecularisation and loss of bone strength. Each process requires co-ordination between bone formation, bone mineralisation, vascularisation, and bone resorption, with a need for locational-, spatial- and cell-specific signalling pathways to mediate this co-ordination. We will discuss these processes, and a number of cell-signalling pathways identified in both murine and human genetic studies to regulate cortical bone mass, including signalling through gp130, STAT3, PTHR1, WNT16, NOTCH, NOTUM and sFRP4.
Collapse
Affiliation(s)
- Tsuyoshi Isojima
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3122, Australia
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3122, Australia.
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
70
|
Palmieri M, Almeida M, Nookaew I, Gomez‐Acevedo H, Joseph TE, Que X, Tsimikas S, Sun X, Manolagas SC, Witztum JL, Ambrogini E. Neutralization of oxidized phospholipids attenuates age-associated bone loss in mice. Aging Cell 2021; 20:e13442. [PMID: 34278710 PMCID: PMC8373359 DOI: 10.1111/acel.13442] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022] Open
Abstract
Oxidized phospholipids (OxPLs) are pro‐inflammatory molecules that affect bone remodeling under physiological conditions. Transgenic expression of a single‐chain variable fragment (scFv) of the antigen‐binding domain of E06, an IgM natural antibody that recognizes the phosphocholine (PC) moiety of OxPLs, increases trabecular and cortical bone in adult male and female mice by increasing bone formation. OxPLs increase with age, while natural antibodies decrease. Age‐related bone loss is associated with increased oxidative stress and lipid peroxidation and is characterized by a decline in osteoblast number and bone formation, raising the possibility that increased OxPLs, together with the decline of natural antibodies, contribute to age‐related bone loss. We show here that transgenic expression of E06‐scFv attenuated the age‐associated loss of spinal, femoral, and total bone mineral density in both female and male mice aged up to 22 and 24 months, respectively. E06‐scFv attenuated the age‐associated decline in trabecular bone, but not cortical bone, and this effect was associated with an increase in osteoblasts and a decrease in osteoclasts. Furthermore, RNA‐seq analysis showed that E06‐scFv increased Wnt10b expression in vertebral bone in aged mice, indicating that blocking OxPLs increases Wnt signaling. Unlike age‐related bone loss, E06‐scFv did not attenuate the bone loss caused by estrogen deficiency or unloading in adult mice. These results demonstrate that OxPLs contribute to age‐associated bone loss. Neutralization of OxPLs, therefore, is a promising therapeutic target for senile osteoporosis, as well as atherosclerosis and non‐alcoholic steatohepatitis (NASH), two other conditions shown to be attenuated by E06‐scFv in mice.
Collapse
Affiliation(s)
- Michela Palmieri
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases and Center for Musculoskeletal Disease Research University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System Little Rock AR USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases and Center for Musculoskeletal Disease Research University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System Little Rock AR USA
| | - Intawat Nookaew
- Department of Biomedical Informatics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Horacio Gomez‐Acevedo
- Department of Biomedical Informatics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Teenamol E. Joseph
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases and Center for Musculoskeletal Disease Research University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System Little Rock AR USA
| | - Xuchu Que
- Division of Endocrinology and Metabolism Department of Medicine University of California San Diego La Jolla CA USA
| | - Sotirios Tsimikas
- Department of Medicine Division of Cardiology University of California San Diego La Jolla CA USA
| | - Xiaoli Sun
- Division of Endocrinology and Metabolism Department of Medicine University of California San Diego La Jolla CA USA
| | - Stavros C. Manolagas
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases and Center for Musculoskeletal Disease Research University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System Little Rock AR USA
| | - Joseph L. Witztum
- Division of Endocrinology and Metabolism Department of Medicine University of California San Diego La Jolla CA USA
| | - Elena Ambrogini
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases and Center for Musculoskeletal Disease Research University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System Little Rock AR USA
| |
Collapse
|
71
|
Montoya‐Sanhueza G, Bennett NC, Oosthuizen MK, Dengler‐Crish CM, Chinsamy A. Bone remodeling in the longest living rodent, the naked mole-rat: Interelement variation and the effects of reproduction. J Anat 2021; 239:81-100. [PMID: 33554344 PMCID: PMC8197955 DOI: 10.1111/joa.13404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The pattern of bone remodeling of one of the most peculiar mammals in the world, the naked mole-rat (NMR), was assessed. NMRs are known for their long lifespans among rodents and for having low metabolic rates. We assessed long-term in vivo bone labeling of subordinate individuals, as well as the patterns of bone resorption and bone remodeling in a large sample including reproductive and non-reproductive individuals (n = 70). Over 268 undecalcified thin cross-sections from the midshaft of humerus, ulna, femur and tibia were analyzed with confocal fluorescence and polarized light microscopy. Fluorochrome analysis revealed low osteogenesis, scarce bone resorption and infrequent formation of secondary osteons (Haversian systems) (i.e., slow bone turnover), thus most likely reflecting the low metabolic rates of this species. Secondary osteons occurred regardless of reproductive status. However, considerable differences in the degree of bone remodeling were found between breeders and non-breeders. Pre-reproductive stages (subordinates) exhibited quite stable skeletal homeostasis and bone structure, although the attainment of sexual maturity and beginning of reproductive cycles in female breeders triggered a series of anabolic and catabolic processes that up-regulate bone turnover, most likely associated with the increased metabolic rates of reproduction. Furthermore, bone remodeling was more frequently found in stylopodial elements compared to zeugopodial elements. Despite the limited bone remodeling observed in NMRs, the variation in the pattern of skeletal homeostasis (interelement variation) reported here represents an important aspect to understand the skeletal dynamics of a small mammal with low metabolic rates. Given the relevance of the remodeling process among mammals, this study also permitted the comparison of such process with the well-documented histomorphology of extinct therapsids (i.e., mammalian precursors), thus evidencing that bone remodeling and its endocortical compartmentalization represent ancestral features among the lineage that gave rise to mammals. It is concluded that other factors associated with development (and not uniquely related to biomechanical loading) can also have an important role in the development of bone remodeling.
Collapse
Affiliation(s)
- Germán Montoya‐Sanhueza
- Department of Biological SciencesUniversity of Cape TownCape TownSouth Africa
- Department of ZoologyFaculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Nigel C. Bennett
- Department of Zoology and EntomologyMammal Research InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Maria K. Oosthuizen
- Department of Zoology and EntomologyMammal Research InstituteUniversity of PretoriaPretoriaSouth Africa
| | | | - Anusuya Chinsamy
- Department of Biological SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
72
|
Metzger CE, Swallow EA, Stacy AJ, Allen MR. Strain-specific alterations in the skeletal response to adenine-induced chronic kidney disease are associated with differences in parathyroid hormone levels. Bone 2021; 148:115963. [PMID: 33878503 PMCID: PMC8102422 DOI: 10.1016/j.bone.2021.115963] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
UNLABELLED Chronic kidney disease (CKD) leads to loss of cortical bone through cortical thinning and the development of cortical porosity. The goal of this current study was to assess cortical bone alterations to adenine-induced chronic kidney disease (CKD) in two strains of mice with known genetic differences in cortical thickness. We hypothesized that C3H mice with thicker cortices and baseline levels of intracortical remodeling would have greater cortical porosity in response to adenine-induced CKD compared to B6 animals. METHODS Female C57BL/6 J (B6) and C3H/Hej (C3H) at 16-weeks of age were given a diet with 0.2% adenine to induce CKD for 6 weeks followed by a control diet for 4 weeks. Age- and strain-matched controls were fed the control diet without adenine for the 10-week period (n = 8 per group per strain). RESULTS Both strains of adenine-fed mice had elevated blood urea nitrogen, demonstrating compromised kidney function, compared to strain-matched controls, but only B6 adenine mice had statistically higher parathyroid hormone (PTH), greater cortical porosity, high bone turnover rate, a greater percentage of osteocytes positive for RANKL and IL-17, and lower osteocyte apoptosis compared to B6 controls. C3H mice had intracortical remodeling present in both control and adenine mice, while B6 mice had intracortical remodeling present only in adenine mice. Adenine mice of both strains had lower cortical thickness and a higher percentage of osteocytes positive for TNF-α compared to controls. CONCLUSION While both strains of mice had biochemical markers of kidney disease, only B6 mice developed a phenotype with significantly elevated PTH, high bone turnover, and cortical porosity development. This work, in a model of progressive CKD, further confirms the role of chronically elevated PTH in the development of cortical porosity and demonstrates adenine-induced increases in PTH contribute to intracortical remodeling in B6 mice. Adenine-induced changes that occurred in both strains of mice, notably lower cortical thickness and a higher percentage of osteocytes expressing TNF-α, indicate potential PTH-independent responses to CKD.
Collapse
Affiliation(s)
- Corinne E Metzger
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Elizabeth A Swallow
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Alexander J Stacy
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Matthew R Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States.
| |
Collapse
|
73
|
Ling W, Krager K, Richardson KK, Warren AD, Ponte F, Aykin-Burns N, Manolagas SC, Almeida M, Kim HN. Mitochondrial Sirt3 contributes to the bone loss caused by aging or estrogen deficiency. JCI Insight 2021; 6:146728. [PMID: 33878033 PMCID: PMC8262324 DOI: 10.1172/jci.insight.146728] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
Altered mitochondria activity in osteoblasts and osteoclasts has been implicated in the loss of bone mass associated with aging and estrogen deficiency — the 2 most common causes of osteoporosis. However, the mechanisms that control mitochondrial metabolism in bone cells during health or disease remain unknown. The mitochondrial deacetylase sirtuin-3 (Sirt3) has been earlier implicated in age-related diseases. Here, we show that deletion of Sirt3 had no effect on the skeleton of young mice but attenuated the age-related loss of bone mass in both sexes. This effect was associated with impaired bone resorption. Osteoclast progenitors from aged Sirt3-null mice were able to differentiate into osteoclasts, though the differentiated cells exhibited impaired polykaryon formation and resorptive activity, as well as decreased oxidative phosphorylation and mitophagy. The Sirt3 inhibitor LC-0296 recapitulated the effects of Sirt3 deletion in osteoclast formation and mitochondrial function, and its administration to aging mice increased bone mass. Deletion of Sirt3 also attenuated the increase in bone resorption and loss of bone mass caused by estrogen deficiency. These findings suggest that Sirt3 inhibition and the resulting impairment of osteoclast mitochondrial function could be a novel therapeutic intervention for the 2 most important causes of osteoporosis.
Collapse
Affiliation(s)
- Wen Ling
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine
| | - Kimberly Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kimberly K Richardson
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine
| | - Aaron D Warren
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Filipa Ponte
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Stavros C Manolagas
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.,Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Maria Almeida
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.,Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ha-Neui Kim
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
74
|
Brunauer R, Xia IG, Asrar SN, Dawson LA, Dolan CP, Muneoka K. Aging delays epimorphic regeneration in mice. J Gerontol A Biol Sci Med Sci 2021; 76:1726-1733. [PMID: 33970250 DOI: 10.1093/gerona/glab131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 11/14/2022] Open
Abstract
Epimorphic regeneration is a multi-tissue regeneration process where amputation does not lead to scarring, but blastema formation and patterned morphogenesis for which cell plasticity and concerted cell-cell interactions are pivotal. Tissue regeneration declines with aging, yet if and how aging impairs epimorphic regeneration is unknown. Here we show for the first time that aging derails the spatiotemporal regulation of epimorphic regeneration in mammals, first, by exacerbating tissue histolysis and delaying wound closure, and second, by impairing blastema differentiation and skeletal regrowth. Surprisingly, aging did not limit stem cell availability in the blastema, but reduced osteoblast-dependent bone formation. Our data suggest that aging delays regeneration not by stem cell exhaustion, but functional defects of differentiated cells that may be driven by an aged wound environment and alterations in the spatiotemporal regulation of regeneration events. Our findings emphasize the importance of accurate timing of signaling events for regeneration, and highlight the need for carefully timed interventions in regenerative medicine.
Collapse
Affiliation(s)
- Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ian G Xia
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Shabistan N Asrar
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
75
|
Lee SY, Park KH, Lee G, Kim SJ, Song WH, Kwon SH, Koh JT, Huh YH, Ryu JH. Hypoxia-inducible factor-2α mediates senescence-associated intrinsic mechanisms of age-related bone loss. Exp Mol Med 2021; 53:591-604. [PMID: 33811248 PMCID: PMC8102580 DOI: 10.1038/s12276-021-00594-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 02/01/2023] Open
Abstract
Aging is associated with cellular senescence followed by bone loss leading to bone fragility in humans. However, the regulators associated with cellular senescence in aged bones need to be identified. Hypoxia-inducible factor (HIF)-2α regulates bone remodeling via the differentiation of osteoblasts and osteoclasts. Here, we report that HIF-2α expression was highly upregulated in aged bones. HIF-2α depletion in male mice reversed age-induced bone loss, as evidenced by an increase in the number of osteoblasts and a decrease in the number of osteoclasts. In an in vitro model of doxorubicin-mediated senescence, the expression of Hif-2α and p21, a senescence marker gene, was enhanced, and osteoblastic differentiation of primary mouse calvarial preosteoblast cells was inhibited. Inhibition of senescence-induced upregulation of HIF-2α expression during matrix maturation, but not during the proliferation stage of osteoblast differentiation, reversed the age-related decrease in Runx2 and Ocn expression. However, HIF-2α knockdown did not affect p21 expression or senescence progression, indicating that HIF-2α expression upregulation in senescent osteoblasts may be a result of aging rather than a cause of cellular senescence. Osteoclasts are known to induce a senescent phenotype during in vitro osteoclastogenesis. Consistent with increased HIF-2α expression, the expression of p16 and p21 was upregulated during osteoclastogenesis of bone marrow macrophages. ChIP following overexpression or knockdown of HIF-2α using adenovirus revealed that p16 and p21 are direct targets of HIF-2α in osteoclasts. Osteoblast-specific (Hif-2αfl/fl;Col1a1-Cre) or osteoclast-specific (Hif-2αfl/fl;Ctsk-Cre) conditional knockout of HIF-2α in male mice reversed age-related bone loss. Collectively, our results suggest that HIF-2α acts as a senescence-related intrinsic factor in age-related dysfunction of bone homeostasis.
Collapse
Affiliation(s)
- Sun Young Lee
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Ka Hyon Park
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Gyuseok Lee
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Su-Jin Kim
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.14005.300000 0001 0356 9399Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Won-Hyun Song
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.14005.300000 0001 0356 9399Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Seung-Hee Kwon
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.14005.300000 0001 0356 9399Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jeong-Tae Koh
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.14005.300000 0001 0356 9399Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Yun Hyun Huh
- grid.61221.360000 0001 1033 9831School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Republic of Korea
| | - Je-Hwang Ryu
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.14005.300000 0001 0356 9399Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
76
|
Pignolo RJ, Law SF, Chandra A. Bone Aging, Cellular Senescence, and Osteoporosis. JBMR Plus 2021; 5:e10488. [PMID: 33869998 PMCID: PMC8046105 DOI: 10.1002/jbm4.10488] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in aging bone that lead to osteoporosis are mediated at multiple levels, including hormonal alterations, skeletal unloading, and accumulation of senescent cells. This pathological interplay is superimposed upon medical conditions, potentially bone-wasting medications, modifiable and unmodifiable personal risk factors, and genetic predisposition that accelerate bone loss with aging. In this study, the focus is on bone hemostasis and its dysregulation with aging. The major physiological changes with aging in bone and the role of cellular senescence in contributing to age-related osteoporosis are summarized. The aspects of bone aging are reviewed including remodeling deficits, uncoupling phenomena, inducers of cellular senescence related to bone aging, roles of the senescence-associated secretory phenotype, radiation-induced bone loss as a model for bone aging, and the accumulation of senescent cells in the bone microenvironment as a predominant mechanism for age-related osteoporosis. The study also addresses the rationale and potential for therapeutic interventions based on the clearance of senescent cells or suppression of the senescence-associated secretory phenotype. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Susan F Law
- Department of MedicineMayo ClinicRochesterMNUSA
| | - Abhishek Chandra
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
77
|
Kim HN, Ponte F, Warren A, Ring R, Iyer S, Han L, Almeida M. A decrease in NAD + contributes to the loss of osteoprogenitors and bone mass with aging. NPJ Aging Mech Dis 2021; 7:8. [PMID: 33795658 PMCID: PMC8016898 DOI: 10.1038/s41514-021-00058-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Age-related osteoporosis is caused by a deficit in osteoblasts, the cells that secrete bone matrix. The number of osteoblast progenitors also declines with age associated with increased markers of cell senescence. The forkhead box O (FoxO) transcription factors attenuate Wnt/β-catenin signaling and the proliferation of osteoprogenitors, thereby decreasing bone formation. The NAD+-dependent Sirtuin1 (Sirt1) deacetylates FoxOs and β-catenin in osteoblast progenitors and, thereby, increases bone mass. However, it remains unknown whether the Sirt1/FoxO/β-catenin pathway is dysregulated with age in osteoblast progenitors. We found decreased levels of NAD+ in osteoblast progenitor cultures from old mice, associated with increased acetylation of FoxO1 and markers of cell senescence. The NAD+ precursor nicotinamide riboside (NR) abrogated FoxO1 and β-catenin acetylation and several marker of cellular senescence, and increased the osteoblastogenic capacity of cells from old mice. Consistent with these effects, NR administration to C57BL/6 mice counteracted the loss of bone mass with aging. Attenuation of NAD+ levels in osteoprogenitor cultures from young mice inhibited osteoblastogenesis in a FoxO-dependent manner. In addition, mice with decreased NAD+ in cells of the osteoblast lineage lost bone mass at a young age. Together, these findings suggest that the decrease in bone formation with old age is due, at least in part, to a decrease in NAD+ and dysregulated Sirt1/FoxO/β-catenin pathway in osteoblast progenitors. NAD+ repletion, therefore, represents a rational therapeutic approach to skeletal involution.
Collapse
Affiliation(s)
- Ha-Neui Kim
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Filipa Ponte
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aaron Warren
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rebecca Ring
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Srividhya Iyer
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Li Han
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maria Almeida
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR, USA. .,Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
78
|
Evans DS, O'Leary MN, Murphy R, Schmidt M, Koenig K, Presley M, Garrett B, Kim H, Han L, Academia EC, Laye MJ, Edgar D, Zambataro CA, Barhydt T, Dewey CM, Mayfield J, Wilson J, Alavez S, Lucanic M, Kennedy BK, Almeida M, Andersen JK, Kapahi P, Lithgow GJ, Melov S. Longitudinal Functional Study of Murine Aging: A Resource for Future Study Designs. JBMR Plus 2021; 5:e10466. [PMID: 33778327 PMCID: PMC7990142 DOI: 10.1002/jbm4.10466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/17/2021] [Indexed: 01/12/2023] Open
Abstract
Aging is characterized by systemic declines in tissue and organ functions. Interventions that slow these declines represent promising therapeutics to protect against age-related disease and improve the quality of life. In this study, several interventions associated with lifespan extension in invertebrates or improvement of age-related disease were tested in mouse models to determine if they were effective in slowing tissue aging in a broad spectrum of functional assays. Benzoxazole, which extends the lifespan of Caenorhabditis elegans, slowed age-related femoral bone loss in mice. Rates of change were established for clinically significant parameters in untreated mice, including kyphosis, blood glucose, body composition, activity, metabolic measures, and detailed parameters of skeletal aging in bone. These findings have implications for the study of preclinical physiological aging and therapies targeting aging. Finally, an online application was created that includes the calculated rates of change and that enables power and variance to be calculated for many clinically important metrics of aging with an emphasis on bone. This resource will help in future study designs employing novel interventions in aging mice. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Daniel S Evans
- California Pacific Medical Center Research InstituteSan FranciscoCAUSA
| | | | - Ryan Murphy
- The Buck Institute for Research on AgingNovatoCAUSA
| | | | | | | | | | - Ha‐Neui Kim
- University of Arkansas for Medical SciencesLittle RockARUSA
| | - Li Han
- University of Arkansas for Medical SciencesLittle RockARUSA
| | | | - Matt J Laye
- The Buck Institute for Research on AgingNovatoCAUSA
| | - Daniel Edgar
- The Buck Institute for Research on AgingNovatoCAUSA
| | | | | | | | | | - Joy Wilson
- The Buck Institute for Research on AgingNovatoCAUSA
| | | | | | | | - Maria Almeida
- University of Arkansas for Medical SciencesLittle RockARUSA
| | | | | | | | - Simon Melov
- The Buck Institute for Research on AgingNovatoCAUSA
| |
Collapse
|
79
|
Metzger CE, Swallow EA, Stacy AJ, Tippen SP, Hammond MA, Chen NX, Moe SM, Allen MR. Reversing cortical porosity: Cortical pore infilling in preclinical models of chronic kidney disease. Bone 2021; 143:115632. [PMID: 32927105 PMCID: PMC7770083 DOI: 10.1016/j.bone.2020.115632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Chronic kidney disease (CKD) patients have a high incidence of fracture due in part to cortical porosity. The goal of this study was to study cortical pore infilling utilizing two rodent models of progressive CKD. METHODS Exp 1: Female C57Bl/6J mice (16-week-old) were given dietary adenine (0.2%) to induce CKD for 10 weeks after which calcium water supplementation (Ca-H2O; 1.5% and 3%) was given to suppress PTH for another 4 weeks. Exp 2: Male Cy/+ rats were aged to ~30 weeks with baseline porosity assessed using in vivo μCT. A second in vivo scan followed 5-weeks of Ca-H2O (3%) supplementation. RESULTS Exp 1: Untreated adenine mice had elevated blood urea nitrogen (BUN), parathyroid hormone (PTH), and cortical porosity (~2.6% porosity) while Ca-H2O lowered PTH and cortical porosity (0.5-0.8% porosity). Exp 2: Male Cy/+ rats at baseline had variable porosity (0.5%-10%), but after PTH suppression via Ca-H2O, cortical porosity in all rats was lower than 0.5%. Individual pore dynamics measured via a custom MATLAB code demonstrated that 85% of pores infilled while 12% contracted in size. CONCLUSION Ca-H2O supplementation causes net cortical pore infilling over time and imparted mechanical benefits. While calcium supplementation is not a viable clinical treatment for CKD, these data demonstrate pore infilling is possible and further research is required to examine clinically relevant therapeutics that may cause net pore infilling in CKD.
Collapse
Affiliation(s)
- Corinne E Metzger
- Department of Anatomy, Cell Biology, Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Elizabeth A Swallow
- Department of Anatomy, Cell Biology, Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Alexander J Stacy
- Department of Anatomy, Cell Biology, Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Samantha P Tippen
- Department of Anatomy, Cell Biology, Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Max A Hammond
- Department of Anatomy, Cell Biology, Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Neal X Chen
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sharon M Moe
- Department of Anatomy, Cell Biology, Physiology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Matthew R Allen
- Department of Anatomy, Cell Biology, Physiology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States.
| |
Collapse
|
80
|
Li Q, Cheng JC, Jiang Q, Lee WY. Role of sirtuins in bone biology: Potential implications for novel therapeutic strategies for osteoporosis. Aging Cell 2021; 20:e13301. [PMID: 33393735 PMCID: PMC7884050 DOI: 10.1111/acel.13301] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
The decline in bone mass and bone strength and musculoskeletal problems associated with aging constitute a major challenge for affected individuals and the healthcare system globally. Sirtuins 1-7 (SIRT1-SIRT7) are a family of nicotinamide adenine dinucleotide-dependent deacetylases with remarkable abilities to promote longevity and counteract age-related diseases. Sirtuin knockout and transgenic models have provided novel insights into the function and signaling of these proteins in bone homeostasis. Studies have revealed that sirtuins play a critical role in normal skeletal development and homeostasis through their direct action on bone cells and that their dysregulation might contribute to different bone diseases. Preclinical studies have demonstrated that mice treated with sirtuin agonists show protection against age-related, postmenopausal, and immobilization-induced osteoporosis. These findings suggest that sirtuins could be potential targets for the modulation of the imbalance in bone remodeling and treatment of osteoporosis and other bone disorders. The aim of this review was to provide a comprehensive updated review of the current knowledge on sirtuin biology, focusing specifically on their roles in bone homeostasis and osteoporosis, and potential pharmacological interventions targeting sirtuins for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qiangqiang Li
- SH Ho Scoliosis Research LaboratoryDepartment of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing UniversityThe Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Jack Chun‐yiu Cheng
- SH Ho Scoliosis Research LaboratoryDepartment of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing UniversityThe Chinese University of Hong KongHong Kong SARChina
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive SurgeryDrum Tower Hospital affiliated to Medical School of Nanjing UniversityNanjingChina
| | - Wayne Yuk‐wai Lee
- SH Ho Scoliosis Research LaboratoryDepartment of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing UniversityThe Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
81
|
Hua R, Zhang J, Riquelme MA, Jiang JX. Connexin Gap Junctions and Hemichannels Link Oxidative Stress to Skeletal Physiology and Pathology. Curr Osteoporos Rep 2021; 19:66-74. [PMID: 33403446 PMCID: PMC8174533 DOI: 10.1007/s11914-020-00645-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The goal of this review is to provide an overview of the impact and underlying mechanism of oxidative stress on connexin channel function, and their roles in skeletal aging, estrogen deficiency, and glucocorticoid excess associated bone loss. RECENT FINDINGS Connexin hemichannel opening is increased under oxidative stress conditions, which confers a cell protective role against oxidative stress-induced cell death. Oxidative stress acts as a key contributor to aging, estrogen deficiency, and glucocorticoid excess-induced osteoporosis and impairs osteocytic network and connexin gap junction communication. This paper reviews the current knowledge for the role of oxidative stress and connexin channels in the pathogenesis of osteoporosis and physiological and pathological responses of connexin channels to oxidative stress. Oxidative stress decreases osteocyte viability and impairs the balance of anabolic and catabolic responses. Connexin 43 (Cx43) channels play a critical role in bone remodeling, mechanotransduction, and survival of osteocytes. Under oxidative stress conditions, there is a consistent reduction of Cx43 expression, while the opening of Cx43 hemichannels protects osteocytes against cell injury caused by oxidative stress.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jingruo Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
82
|
Walker EC, McGregor NE, Chan ASM, Sims NA. Measuring Bone Volume at Multiple Densities by Micro-computed Tomography. Bio Protoc 2021; 11:e3873. [PMID: 33732762 PMCID: PMC7953249 DOI: 10.21769/bioprotoc.3873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/24/2020] [Indexed: 11/02/2022] Open
Abstract
Bone strength is controlled by both bone mass, and the organization and quality of the bone material. The current standard method for measuring bone mass in mouse and rat studies is micro-computed tomography. This method typically uses a single threshold to identify bone material in the cortical and trabecular regions. However, this single threshold method obscures information about the mineral content of the bone material and depends on normal morphology to separately analyze cortical and trabecular structures. To extend this method to identify bone mass at multiple density levels, we have established a protocol for unbiased selection and application of multiple thresholds using a standard laboratory-based micro-computed tomography instrument. This non-invasive method can be applied to longitudinal studies and archived samples and provides additional information about bone structure and strength.
Collapse
Affiliation(s)
- Emma C. Walker
- Bone Cell Biology and Disease Unit, St. Vincent’s Institute of Medical Research, Melbourne, Australia
| | - Narelle E. McGregor
- Bone Cell Biology and Disease Unit, St. Vincent’s Institute of Medical Research, Melbourne, Australia
| | - Audrey S. M. Chan
- Centre for Muscle Research, The University of Melbourne, Melbourne, Australia
| | - Natalie A. Sims
- Bone Cell Biology and Disease Unit, St. Vincent’s Institute of Medical Research, Melbourne, Australia
- Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
83
|
Palmieri M, Kim HN, Gomez-Acevedo H, Que X, Tsimikas S, Jilka RL, Manolagas SC, Witztum JL, Ambrogini E. A Neutralizing Antibody Targeting Oxidized Phospholipids Promotes Bone Anabolism in Chow-Fed Young Adult Mice. J Bone Miner Res 2021; 36:170-185. [PMID: 32990984 PMCID: PMC7855899 DOI: 10.1002/jbmr.4173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 12/16/2022]
Abstract
Oxidized phospholipids containing phosphocholine (OxPL) are pro-inflammatory lipid peroxidation products that bind to scavenger receptors (SRs), such as Scarb1, and toll-like receptors (TLRs). Excessive OxPL, as found in oxidized low-density lipoprotein (OxLDL), overwhelm these defense mechanisms and become pathogenic in atherosclerosis, nonalcoholic steatohepatitis (NASH), and osteoporosis. We previously reported that the innate IgM natural antibody E06 binds to OxPL and neutralizes their deleterious effects; expression of the single-chain (scFv) form of the antigen-binding domain of E06 (E06-scFv) as a transgene increases trabecular bone in male mice. We show herein that E06-scFv increases trabecular and cortical bone in female and male mice by increasing bone formation and decreasing osteoblast apoptosis in vivo. Homozygous E06-scFv mice have higher bone mass than hemizygous, showing a dose effect of the transgene. To investigate how OxPL restrain bone formation under physiologic conditions, we measured the levels of SRs and TLRs that bind OxPL. We found that osteoblastic cells primarily express Scarb1. Moreover, OxLDL-induced apoptosis and reduced differentiation were prevented in bone marrow-derived or calvaria-derived osteoblasts from Scarb1 knockout mice. Because Scarb1-deficient mice are reported to have high bone mass, our results suggest that E06 may promote bone anabolism in healthy young mice, at least in part, by neutralizing OxPL, which in turn promote Scarb1-mediated apoptosis of osteoblasts or osteoblast precursors. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..
Collapse
Affiliation(s)
- Michela Palmieri
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases and Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Ha-Neui Kim
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases and Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Horacio Gomez-Acevedo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xuchu Que
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sotirios Tsimikas
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Robert L Jilka
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases and Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases and Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Elena Ambrogini
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases and Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|
84
|
Oka S, Li X, Taguchi C, Wang C, Tewari N, Arikawa K, Liu Y, Bhawal UK. Treatment with 50 μM Sodium Fluoride Suppresses Aging-Induced Alveolar Bone Resorption in Mice. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shunichi Oka
- Department of Anesthesiology, Nihon University School of Dentistry
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology
| | - Chieko Taguchi
- Department of Oral Health, Nihon University School of Dentistry at Matsudo
| | - Chen Wang
- Department of Histology and Embryology, Nihon University School of Dentistry at Matsudo
| | - Nitesh Tewari
- Division of Pedodontics and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences
| | - Kazumune Arikawa
- Department of Oral Health, Nihon University School of Dentistry at Matsudo
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology
| | - Ujjal K. Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
85
|
He C, He W, Hou J, Chen K, Huang M, Yang M, Luo X, Li C. Bone and Muscle Crosstalk in Aging. Front Cell Dev Biol 2020; 8:585644. [PMID: 33363144 PMCID: PMC7758235 DOI: 10.3389/fcell.2020.585644] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis and sarcopenia are two age-related diseases that affect the quality of life in the elderly. Initially, they were thought to be two independent diseases; however, recently, increasing basic and clinical data suggest that skeletal muscle and bone are both spatially and metabolically connected. The term "osteosarcopenia" is used to define a condition of synergy of low bone mineral density with muscle atrophy and hypofunction. Bone and muscle cells secrete several factors, such as cytokines, myokines, and osteokines, into the circulation to influence the biological and pathological activities in local and distant organs and cells. Recent studies reveal that extracellular vesicles containing microRNAs derived from senescent skeletal muscle and bone cells can also be transported and aid in regulating bone-muscle crosstalk. In this review, we summarize the age-related changes in the secretome and extracellular vesicle-microRNAs secreted by the muscle and bone, and discuss their interactions between muscle and bone cells during aging.
Collapse
Affiliation(s)
- Chen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
86
|
Kaur J, Farr JN. Cellular senescence in age-related disorders. Transl Res 2020; 226:96-104. [PMID: 32569840 PMCID: PMC7572662 DOI: 10.1016/j.trsl.2020.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Much of the population is now faced with an enormous burden of age-associated chronic diseases. Recent discoveries in geroscience indicate that healthspan in model organisms such as mice can be manipulated by targeting cellular senescence, a hallmark mechanism of aging, defined as an irreversible proliferative arrest that occurs when cells experience oncogenic or other diverse forms of damage. Senescent cells and their proinflammatory secretome have emerged as contributors to age-related tissue dysfunction and morbidity. Cellular senescence has causal roles in mediating osteoporosis, frailty, cardiovascular diseases, osteoarthritis, pulmonary fibrosis, renal diseases, neurodegenerative diseases, hepatic steatosis, and metabolic dysfunction. Therapeutically targeting senescent cells in mice can prevent, delay, or alleviate each of these conditions. Therefore, senotherapeutic approaches, including senolytics and senomorphics, that either selectively eliminate senescent cells or interfere with their ability to promote tissue dysfunction, are gaining momentum as potential realistic strategies to abrogate human senescence to thereby compress morbidity and extend healthspan.
Collapse
Affiliation(s)
- Japneet Kaur
- Division of Endocrinology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester Minnesota; Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic, Rochester Minnesota
| | - Joshua N Farr
- Division of Endocrinology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester Minnesota; Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic, Rochester Minnesota; Division of Physiology and Biomedical Engineering; Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
87
|
Al‐Bari AA, Al Mamun A. Current advances in regulation of bone homeostasis. FASEB Bioadv 2020; 2:668-679. [PMID: 33205007 PMCID: PMC7655096 DOI: 10.1096/fba.2020-00058] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Bone homeostasis is securely controlled by the dynamic well-balanced actions among osteoclasts, osteoblasts and osteocytes. Osteoclasts are large multinucleated cells that degrade bone matrix and involve in the bone remodelling in conjunction with other bone cells, osteoblasts and osteocytes, the completely matured form of osteoblasts. Disruption of this controlling balance among these cells or any disparity in bone remodelling caused by a higher rate of resorption by osteoclasts over construction of bone by osteoblasts results in a reduction of bone matrix including bone mineral density (BMD) and bone marrow cells (BMCs). The dominating effect of osteoclasts results in advanced risk of bone crack and joint destruction in several diseases including osteoporosis and rheumatoid arthritis (RA). However, the boosted osteoblastic activity produces osteosclerotic phenotype and weakened its action primes to osteomalacia or rickets. On the other hand, senescent osteocytes predominately progress the senescence associated secretory phenotype (SASP) and may contribute to age related bone loss. Here, we discuss an advanced level work on newly identified cellular mechanisms controlling the remodelling of bone and crosstalk among bone cells as these relate to the therapeutic targeting of the skeleton.
Collapse
Affiliation(s)
| | - Abdullah Al Mamun
- Department of Genetic Engineering and BiotechnologyShahjalal University of Science and TechnologySylhetBangladesh
| |
Collapse
|
88
|
Almeida M, Kim H, Han L, Zhou D, Thostenson J, Porter RM, Ambrogini E, Manolagas SC, Jilka RL. Increased marrow adipogenesis does not contribute to age-dependent appendicular bone loss in female mice. Aging Cell 2020; 19:e13247. [PMID: 33048436 PMCID: PMC7681065 DOI: 10.1111/acel.13247] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/14/2020] [Accepted: 08/30/2020] [Indexed: 01/13/2023] Open
Abstract
Marrow adipocytes and osteoblasts differentiate from common mesenchymal progenitors in a mutually exclusive manner, and diversion of these progenitors toward adipocytes in old age has been proposed to account for the decline in osteoblasts and the development of involutional osteoporosis. This idea has been supported by evidence that thiazolidinedione (TZD)‐induced activation of PPARγ, the transcription factor required for adipocyte differentiation, increases marrow fat and causes bone loss. We functionally tested this hypothesis using C57BL/6J mice with conditional deletion of PPARγ from early mesenchymal progenitors targeted by the Prx1‐Cre transgene. Using a longitudinal littermate‐controlled study design, we observed that PPARγ is indispensable for TZD‐induced increase in marrow adipocytes in 6‐month‐old male mice, and age‐associated increase in marrow adipocytes in 22‐month‐old female mice. In contrast, PPARγ is dispensable for the loss of cortical and trabecular bone caused by TZD or old age. Instead, PPARγ restrains age‐dependent development of cortical porosity. These findings do not support the long‐standing hypothesis that increased marrow adipocyte differentiation contributes to bone loss in old age but reveal a novel role of mesenchymal cell PPARγ in the maintenance of cortical integrity.
Collapse
Affiliation(s)
- Maria Almeida
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
| | - Ha‐Neui Kim
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
| | - Li Han
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
| | - Daohong Zhou
- Department of Pharmacodynamics College of Pharmacy University of Florida Gainesville FL USA
| | - Jeff Thostenson
- Department of Biostatistics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Ryan M. Porter
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
| | - Elena Ambrogini
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
- The Central Arkansas Veterans Healthcare System Little Rock AR USA
| | - Stavros C. Manolagas
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
- The Central Arkansas Veterans Healthcare System Little Rock AR USA
| | - Robert L. Jilka
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
- The Central Arkansas Veterans Healthcare System Little Rock AR USA
| |
Collapse
|
89
|
Osteocyte apoptosis: the roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis 2020; 11:846. [PMID: 33046704 PMCID: PMC7552426 DOI: 10.1038/s41419-020-03059-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
Vital osteocytes have been well known to function as an important orchestrator in the preservation of robustness and fidelity of the bone remodeling process. Nevertheless, some key pathological factors, such as sex steroid deficiency and excess glucocorticoids, and so on, are implicated in inducing a bulk of apoptotic osteocytes, subsequently resulting in resorption-related bone loss. As much, osteocyte apoptosis, under homeostatic conditions, is in an optimal state of balance tightly controlled by pro- and anti-apoptotic mechanism pathways. Importantly, there exist many essential signaling proteins in the process of osteocyte apoptosis, which has a crucial role in maintaining a homeostatic environment. While increasing in vitro and in vivo studies have established, in part, key signaling pathways and cross-talk mechanism on osteocyte apoptosis, intrinsic and complex mechanism underlying osteocyte apoptosis occurs in various states of pathologies remains ill-defined. In this review, we discuss not only essential pro- and anti-apoptotic signaling pathways and key biomarkers involved in these key mechanisms under different pathological agents, but also the pivotal role of apoptotic osteocytes in osteoclastogenesis-triggered bone loss, hopefully shedding new light on the attractive and proper actions of pharmacotherapeutics of targeting apoptosis and ensuing resorption-related bone diseases such as osteoporosis and fragility fractures.
Collapse
|
90
|
Martiniakova M, Sarocka A, Kovacova V, Kapusta E, Goc Z, Gren A, Formicki G, Omelka R. Antagonistic Impact of Acrylamide and Ethanol on Biochemical and Morphological Parameters Consistent with Bone Health in Mice. Animals (Basel) 2020; 10:ani10101835. [PMID: 33050161 PMCID: PMC7600557 DOI: 10.3390/ani10101835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Alcohol consumption, the drinking of beverages containing ethanol, represents a growing problem worldwide. Alcohol intake is often combined with an improper diet based on highly processed starch products that are rich in acrylamide. Both acrylamide and alcohol have a harmful impact on bone health. We previously demonstrated that adverse effects of ethanol on cortical bone structure were partly reduced by a relatively high dose of acrylamide in mice after one remodelling cycle. The present research was designated to reveal whether the antagonistic impact of both aforementioned toxins can also be achieved using a lower dose of acrylamide. According to our results, individual administrations of acrylamide and ethanol had adverse impacts on biochemical and morphological parameters consistent with bone health in mice. However, the most detrimental effects of ethanol were again alleviated by acrylamide at the dose used in this study. Abstract The aim of present study was to verify antagonistic effect of acrylamide (AA) and ethanol (Et) on bone quality parameters. Adult mice (n = 20) were segregated into four groups following 2 weeks administration of toxins: group E1, which received AA (20 mg/kg body weight daily); group E2, which received 15% Et (1.7 g 100% Et/kg body weight daily); group E12, which received simultaneously both toxins; and a control group. An insignificant impact of individual applications of AA, Et or their simultaneous supplementation on the total body weight of mice and the length and weight of their femoral bones was identified. In group E1, higher levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), a decreased level of glutathione (GSH) and elevated endocortical bone remodelling were determined. A significantly lower relative volume of cortical bone, bone mineral density (BMD), elevated endocortical bone remodelling and cortical porosity, higher levels of ALT, AST, lower values for total proteins (TP), GSH, alkaline phosphatase (ALP), calcium, and phosphorus were recorded in group E2. In the mice from group E12, the highest endocortical bone remodelling, decreased values for BMD, TP, GSH and ALP and increased levels of ALT and AST were found. Our findings confirmed the antagonistic impact of AA and Et at doses used in this study on biochemical and morphological parameters consistent with bone health in an animal model.
Collapse
Affiliation(s)
- Monika Martiniakova
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (A.S.); (V.K.)
- Correspondence: (M.M.); (R.O.); Tel.: +421-376-408-718 (M.M.)
| | - Anna Sarocka
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (A.S.); (V.K.)
| | - Veronika Kovacova
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (A.S.); (V.K.)
| | - Edyta Kapusta
- Faculty of Exact and Natural Sciences, Pedagogical University of Cracow, 30 084 Cracow, Poland; (E.K.); (Z.G.); (A.G.); (G.F.)
| | - Zofia Goc
- Faculty of Exact and Natural Sciences, Pedagogical University of Cracow, 30 084 Cracow, Poland; (E.K.); (Z.G.); (A.G.); (G.F.)
| | - Agnieszka Gren
- Faculty of Exact and Natural Sciences, Pedagogical University of Cracow, 30 084 Cracow, Poland; (E.K.); (Z.G.); (A.G.); (G.F.)
| | - Grzegorz Formicki
- Faculty of Exact and Natural Sciences, Pedagogical University of Cracow, 30 084 Cracow, Poland; (E.K.); (Z.G.); (A.G.); (G.F.)
| | - Radoslav Omelka
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (A.S.); (V.K.)
- Correspondence: (M.M.); (R.O.); Tel.: +421-376-408-718 (M.M.)
| |
Collapse
|
91
|
Kim HN, Xiong J, MacLeod RS, Iyer S, Fujiwara Y, Cawley KM, Han L, He Y, Thostenson JD, Ferreira E, Jilka RL, Zhou D, Almeida M, O'Brien CA. Osteocyte RANKL is required for cortical bone loss with age and is induced by senescence. JCI Insight 2020; 5:138815. [PMID: 32870816 PMCID: PMC7566701 DOI: 10.1172/jci.insight.138815] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
In aging mice, osteoclast number increases in cortical bone but declines in trabecular bone, suggesting that different mechanisms underlie age-associated bone loss in these 2 compartments. Osteocytes produce the osteoclastogenic cytokine RANKL, encoded by Tnfsf11. Tnfsf11 mRNA increases in cortical bone of aged mice, suggesting a mechanism underlying the bone loss. To address this possibility, we aged mice lacking RANKL in osteocytes. Whereas control mice lost cortical bone between 8 and 24 months of age, mice lacking RANKL in osteocytes gained cortical bone during this period. Mice of both genotypes lost trabecular bone with age. Osteoclasts increased with age in cortical bone of control mice but not in RANKL conditional knockout mice. Induction of cellular senescence increased RANKL production in murine and human cell culture models, suggesting an explanation for elevated RANKL levels with age. Overexpression of the senescence-associated transcription factor Gata4 stimulated Tnfsf11 expression in cultured murine osteoblastic cells. Finally, elimination of senescent cells from aged mice using senolytic compounds reduced Tnfsf11 mRNA in cortical bone. Our results demonstrate the requirement of osteocyte-derived RANKL for age-associated cortical bone loss and suggest that increased Tnfsf11 expression with age results from accumulation of senescent cells in cortical bone.
Collapse
Affiliation(s)
- Ha-Neui Kim
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and
| | - Jinhu Xiong
- Center for Musculoskeletal Disease Research.,Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ryan S MacLeod
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and
| | - Srividhya Iyer
- Center for Musculoskeletal Disease Research.,Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Yuko Fujiwara
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and
| | - Keisha M Cawley
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and
| | - Li Han
- Division of Endocrinology, Department of Internal Medicine, and
| | - Yonghan He
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Jeff D Thostenson
- Center for Musculoskeletal Disease Research.,Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Elisabeth Ferreira
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and
| | - Robert L Jilka
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Maria Almeida
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and.,Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Charles A O'Brien
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and.,Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
92
|
Abstract
PURPOSE OF REVIEW Senescent cells are now known to accumulate in multiple tissues with aging and through their inflammation (the senescence-associated secretory phenotype, SASP) contribute to aging and chronic diseases. Here, we review the roles of senescent osteocytes in the context of bone loss. RECENT FINDINGS Numerous studies have established that senescent osteocytes accumulate in the bone microenvironment with aging in mice and in humans. Moreover, at least in mice, elimination of senescent cells results in attenuation of age-related bone loss. Osteocyte senescence also occurs in response to other cellular stressors, including radiotherapy, chemotherapy, and metabolic dysfunction, where it appears to mediate skeletal deterioration. Osteocyte senescence is linked to bone loss associated with aging and other conditions. Senescent osteocytes are potential therapeutic targets to alleviate skeletal dysfunction. Additional studies better defining the underlying mechanisms as well as translating these exciting findings from mouse models to humans are needed.
Collapse
Affiliation(s)
- Joshua N Farr
- Division of Endocrinology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Japneet Kaur
- Division of Endocrinology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Madison L Doolittle
- Division of Endocrinology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
93
|
Sclerostin expression in trabecular bone is downregulated by osteoclasts. Sci Rep 2020; 10:13751. [PMID: 32792620 PMCID: PMC7426814 DOI: 10.1038/s41598-020-70817-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
Bone tissues have trabecular bone with a high bone turnover and cortical bone with a low turnover. The mechanisms by which the turnover rate of these bone tissues is determined remain unclear. Osteocytes secrete sclerostin, a Wnt/β-catenin signaling antagonist, and inhibit bone formation. We found that sclerostin expression in cortical bone is more marked than in trabecular bone in Sost reporter mice. Leukemia inhibitory factor (LIF) secreted from osteoclasts reportedly suppressed sclerostin expression and promoted bone formation. Here, we report that osteoclasts downregulate sclerostin expression in trabecular bone and promote bone turnover. Treatment of C57BL/6 mice with an anti-RANKL antibody eliminated the number of osteoclasts and LIF-positive cells in trabecular bone. The number of sclerostin-positive cells was increased in trabecular bone, while the number of β-catenin-positive cells and bone formation were decreased in trabecular bone. Besides, Tnfsf11 heterozygous (Rankl+/−) mice exhibited a decreased number of LIF-positive cells and increased number of sclerostin-positive cells in trabecular bone. Rankl+/− mice exhibited a decreased number of β-catenin-positive cells and reduced bone formation in trabecular bone. Furthermore, in cultured osteoclasts, RANKL stimulation increased Lif mRNA expression, suggesting that RANKL signal increased LIF expression. In conclusion, osteoclasts downregulate sclerostin expression and promote trabecular bone turnover.
Collapse
|
94
|
Föger-Samwald U, Dovjak P, Azizi-Semrad U, Kerschan-Schindl K, Pietschmann P. Osteoporosis: Pathophysiology and therapeutic options. EXCLI JOURNAL 2020; 19:1017-1037. [PMID: 32788914 PMCID: PMC7415937 DOI: 10.17179/excli2020-2591] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a metabolic bone disease that, on a cellular level, results from osteoclastic bone resorption not compensated by osteoblastic bone formation. This causes bones to become weak and fragile, thus increasing the risk of fractures. Traditional pathophysiological concepts of osteoporosis focused on endocrine mechanisms such as estrogen or vitamin D deficiency as well as secondary hyperparathyroidism. However, research over the last decades provided exiting new insights into mechanisms contributing to the onset of osteoporosis, which go far beyond this. Selected mechanisms such as interactions between bone and the immune system, the gut microbiome, and cellular senescence are reviewed in this article. Furthermore, an overview on currently available osteoporosis medications including antiresorptive and bone forming drugs is provided and an outlook on potential future treatment options is given.
Collapse
Affiliation(s)
- Ursula Föger-Samwald
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Dovjak
- Department of Acute Geriatrics, Salzkammergut Klinikum Gmunden, Gmunden, Austria
| | - Ursula Azizi-Semrad
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Katharina Kerschan-Schindl
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
95
|
Effects and Mechanisms of Five Psoralea Prenylflavonoids on Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2128513. [PMID: 32655760 PMCID: PMC7320294 DOI: 10.1155/2020/2128513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
During the aging process, senescent cells gradually accumulate in the organs; they secrete proinflammatory cytokines and other factors, collectively known as the senescence-associated secretory phenotype (SASP). SASP secretions contribute to “inflammaging,” which is a state of chronic, systemic, sterility, low-grade inflammatory microenvironment and a key risk factor in the development of aging-related diseases. Fructus psoraleae is a traditional Chinese medical herb best known for delaying aging and treating osteoporosis. Prenylflavonoids from fructus psoraleae are the main bioactive compounds responsible for its pharmacological applications, such as beaching, bavachinin, bavachalcone, isobavachalcone, and neobavaisoflavone. In previous decades, there have been some promising studies on the pharmacology of fructus psoraleae. Here, we focus on the anti-inflammatory and antiaging diseases of five psoralea prenylflavonoids, such as cardiovascular protection, diabetes and obesity intervention, neuroprotection, and osteoporosis, and discuss the mechanism of these active ingredients for better understanding the material basis and drug application of fructus psoraleae in Chinese medicine.
Collapse
|
96
|
Corrado A, Cici D, Rotondo C, Maruotti N, Cantatore FP. Molecular Basis of Bone Aging. Int J Mol Sci 2020; 21:ijms21103679. [PMID: 32456199 PMCID: PMC7279376 DOI: 10.3390/ijms21103679] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
A decline in bone mass leading to an increased fracture risk is a common feature of age-related bone changes. The mechanisms underlying bone senescence are very complex and implicate systemic and local factors and are the result of the combination of several changes occurring at the cellular, tissue and structural levels; they include alterations of bone cell differentiation and activity, oxidative stress, genetic damage and the altered responses of bone cells to various biological signals and to mechanical loading. The molecular mechanisms responsible for these changes remain greatly unclear and many data derived from in vitro or animal studies appear to be conflicting and heterogeneous, probably due to the different experimental approaches; nevertheless, understanding the main physio-pathological processes that cause bone senescence is essential for the development of new potential therapeutic options for treating age-related bone loss. This article reviews the current knowledge concerning the molecular mechanisms underlying the pathogenesis of age-related bone changes.
Collapse
|
97
|
Khosla S, Farr JN, Tchkonia T, Kirkland JL. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 2020; 16:263-275. [PMID: 32161396 PMCID: PMC7227781 DOI: 10.1038/s41574-020-0335-y] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
With the ageing of the global population, interest is growing in the 'geroscience hypothesis', which posits that manipulation of fundamental ageing mechanisms will delay (in parallel) the appearance or severity of multiple chronic, non-communicable diseases, as these diseases share the same underlying risk factor - namely, ageing. In this context, cellular senescence has received considerable attention as a potential target in preventing or treating multiple age-related diseases and increasing healthspan. Here we review mechanisms of cellular senescence and approaches to target this pathway therapeutically using 'senolytic' drugs that kill senescent cells or inhibitors of the senescence-associated secretory phenotype (SASP). Furthermore, we highlight the evidence that cellular senescence has a causative role in multiple diseases associated with ageing. Finally, we focus on the role of cellular senescence in a number of endocrine diseases, including osteoporosis, metabolic syndrome and type 2 diabetes mellitus, as well as other endocrine conditions. Although much remains to be done, considerable preclinical evidence is now leading to the initiation of proof-of-concept clinical trials using senolytics for several endocrine and non-endocrine diseases.
Collapse
Affiliation(s)
- Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - Joshua N Farr
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
98
|
Varga P, Willie BM, Stephan C, Kozloff KM, Zysset PK. Finite element analysis of bone strength in osteogenesis imperfecta. Bone 2020; 133:115250. [PMID: 31981754 PMCID: PMC7383936 DOI: 10.1016/j.bone.2020.115250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
As a dedicated experimentalist, John Currey praised the high potential of finite element (FE) analysis but also recognized its critical limitations. The application of the FE methodology to bone tissue is reviewed in the light of his enthusiastic and colorful statements. In the past decades, FE analysis contributed substantially to the understanding of structure-function properties in the hierarchical organization of bone and to the simulation of bone adaptation. The systematic experimental validation of FE analysis of bone strength in anatomical locations at risk of fracture led to its application in clinical studies to evaluate efficacy of antiresorptive or anabolic treatment of bone fragility. Beyond the successful analyses of healthy or osteoporotic bone, FE analysis becomes increasingly involved in the investigation of other fragility-related bone diseases. The case of osteogenesis imperfecta (OI) is exposed, the multiscale alterations of the bone tissue and the effect of treatment summarized. A few FE analyses attempting to answer open questions in OI are then reported. An original study is finally presented that explored the structural properties of the Brtl/+ murine model of OI type IV subjected to sclerostin neutralizing antibody treatment using microFE analysis. The use of identical material properties in the four-point bending FE simulations of the femora reproduced not only the experimental values but also the statistical comparisons examining the effect of disease and treatment. Further efforts are needed to build upon the extraordinary legacy of John Currey and clarify the impact of different bone diseases on the hierarchical mechanical properties of bone.
Collapse
Affiliation(s)
- Peter Varga
- AO Research Institute Davos, Davos, Switzerland.
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Chris Stephan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, USA
| | - Philippe K Zysset
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
99
|
Iyer S, Melendez-Suchi C, Han L, Baldini G, Almeida M, Jilka RL. Elevation of the unfolded protein response increases RANKL expression. FASEB Bioadv 2020; 2:207-218. [PMID: 32259048 PMCID: PMC7133738 DOI: 10.1096/fba.2019-00032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/12/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
Increased production of the osteoclastogenic cytokine RANKL is a common feature of pathologic bone loss, but the underlying cause of this increase is poorly understood. The unfolded protein response (UPR) is activated in response to accumulation of misfolded proteins in the endoplasmic reticulum (ER). Failure to resolve misfolding results in excess UPR signaling that stimulates cytokine production and cell death. We therefore investigated whether RANKL is one of the cytokines stimulated in response to elevated UPR in bone cells. Pharmacologic induction of UPR with tunicamycin (Tm)-stimulated RANKL expression in cultures of primary osteoblastic cells and in osteoblast and osteocyte cell lines. Pharmacologic inhibition of the UPR blunted Tm-induced RANKL production. Silencing Edem1 or Sel1l, proteins that aid in degradation of misfolded proteins, also induced UPR and increased RANKL mRNA. Moreover, Tm or hypoxia increased RANKL and bone resorption in cultures of neonatal murine calvaria. Administration of Tm to adult mice caused dilation of ER in osteoblasts and osteocytes, elevated the UPR, and increased RANKL expression and osteoclast number. These findings support the hypothesis that excessive UPR signaling stimulates the expression of RANKL by osteoblasts and osteocytes, and thereby facilitates excessive bone resorption and bone loss in pathologic conditions.
Collapse
Affiliation(s)
- Srividhya Iyer
- Department of Orthopaedic Surgery University of Arkansas Medical Sciences Little Rock AR USA
| | | | - Li Han
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas Medical Sciences Little Rock AR USA
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology University of Arkansas Medical Sciences Little Rock AR USA
| | - Maria Almeida
- Department of Orthopaedic Surgery University of Arkansas Medical Sciences Little Rock AR USA
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas Medical Sciences Little Rock AR USA
| | - Robert L Jilka
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas Medical Sciences Little Rock AR USA
- Central Arkansas Veterans Healthcare System Little Rock AR USA
| |
Collapse
|
100
|
Bellido T, Delgado-Calle J. Ex Vivo Organ Cultures as Models to Study Bone Biology. JBMR Plus 2020; 4:JBM410345. [PMID: 32161838 PMCID: PMC7059827 DOI: 10.1002/jbm4.10345] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
The integrity of the skeleton is maintained by the coordinated and balanced activities of the bone cells. Osteoclasts resorb bone, osteoblasts form bone, and osteocytes orchestrate the activities of osteoclasts and osteoblasts. A variety of in vitro approaches has been used in an attempt to reproduce the complex in vivo interactions among bone cells under physiological as well as pathological conditions and to test new therapies. Most cell culture systems lack the proper extracellular matrix, cellular diversity, and native spatial distribution of the components of the bone microenvironment. In contrast, ex vivo cultures of fragments of intact bone preserve key cell-cell and cell-matrix interactions and allow the study of bone cells in their natural 3D environment. Further, bone organ cultures predict the in vivo responses to genetic and pharmacologic interventions saving precious time and resources. Moreover, organ cultures using human bone reproduce human conditions and are a useful tool to test patient responses to therapeutic agents. Thus, these ex vivo approaches provide a platform to perform research in bone physiology and pathophysiology. In this review, we describe protocols optimized in our laboratories to establish ex vivo bone organ cultures and provide technical hints and suggestions. In addition, we present examples on how this technical approach can be employed to study osteocyte biology, drug responses in bone, cancer-induced bone disease, and cross-talk between bone and other organs © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Teresita Bellido
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA.,Division of Endocrinology, Department of Medicine Indiana University School of Medicine Indianapolis IN USA.,Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA.,Richard L. Roudebush Veterans Affairs Medical Center Indianapolis IN USA
| | - Jesus Delgado-Calle
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA.,Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA.,Richard L. Roudebush Veterans Affairs Medical Center Indianapolis IN USA.,Division of Hematology/Oncology, Department of Medicine Indiana University School of Medicine Indianapolis IN USA
| |
Collapse
|