51
|
Comas M, Gordon CJ, Oliver BG, Stow NW, King G, Sharma P, Ammit AJ, Grunstein RR, Phillips CL. A circadian based inflammatory response – implications for respiratory disease and treatment. SLEEP SCIENCE AND PRACTICE 2017. [DOI: 10.1186/s41606-017-0019-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
52
|
Koinuma S, Kori H, Tokuda IT, Yagita K, Shigeyoshi Y. Transition of phase response properties and singularity in the circadian limit cycle of cultured cells. PLoS One 2017; 12:e0181223. [PMID: 28715496 PMCID: PMC5513448 DOI: 10.1371/journal.pone.0181223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 06/28/2017] [Indexed: 11/21/2022] Open
Abstract
The circadian system has been regarded as a limit cycle oscillator constructed by the integrated interaction of clock genes and proteins. Here, we investigated a mammalian circadian oscillation geometrically before and after a perturbation. We detected the singular point and transition from a type 1 to type 0 phase response curve (PRC) and determined the embedding dimension to show how many variables are needed to describe the limit cycle oscillation and relaxation process after a perturbation. As a perturbation, forskolin (FK) was administered to Rat-1 cells expressing the Per2::luc gene. By broadly and finely changing the phase and strength of the perturbation, we detected the transition of the PRC from type 1 to type 0 and a possible singular transition point, the property of which agreed quite well with our numerical simulation of the noisy Goodwin model, a simple yet canonical model for the transcription-translation feedback loop of the core clock genes. Furthermore, we estimated the embedding dimension of the limit cycle before and after the perturbation. The trajectory of the limit cycle was embedded in two dimensions but with the perturbation of the state point moved out of the trajectory, the relaxation process was generally embedded in higher dimensions. The average number of embedding dimensions at each dose of FK increased as the FK dose increased but most of the relaxation process was generally embedded within four dimensions. These findings support the existence of a circadian limit cycle oscillator in mammalian cells and suggest that a small number of variables determine the relaxation process after a perturbation.
Collapse
Affiliation(s)
- Satoshi Koinuma
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- * E-mail: (SK); (YS)
| | - Hiroshi Kori
- Department of Information Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| | - Isao T. Tokuda
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kazuhiro Yagita
- Department of Neuroscience and Cell Biology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- * E-mail: (SK); (YS)
| |
Collapse
|
53
|
Dopamine 2 Receptor Activation Entrains Circadian Clocks in Mouse Retinal Pigment Epithelium. Sci Rep 2017; 7:5103. [PMID: 28698578 PMCID: PMC5505969 DOI: 10.1038/s41598-017-05394-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/24/2017] [Indexed: 01/11/2023] Open
Abstract
Many of the physiological, cellular, and molecular rhythms that are present within the eye are under the control of circadian clocks. Experimental evidence suggests that the retinal circadian clock, or its output signals (e.g., dopamine and melatonin), may contribute to eye disease and pathology. We recently developed a retinal pigment ephithelium (RPE)-choroid preparation to monitor the circadian clock using PERIOD2 (PER2)::LUC knock-in mouse. In this study we report that dopamine, but not melatonin, is responsible for entrainment of the PER2::LUC bioluminescence rhythm in mouse RPE-choroid. Dopamine induced phase-advances of the PER2::LUC bioluminescence rhythm during the subjective day and phase-delays in the late subjective night. We found that dopamine acts exclusively through Dopamine 2 Receptors to entrain the circadian rhythm in PER2::LUC bioluminescence. Finallly, we found that DA-induced expression of core circadian clock genes Period1 and Period2 accompanied both phase advances and phase delays of the RPE-choroid clock, thus suggesting that - as in other tissues - the rapid induction of these circadian clock genes drives the resetting process. Since the RPE cells persist for the entire lifespan of an organism, we believe that RPE-choroid preparation may represent a new and unique tool to study the effects of circadian disruption during aging.
Collapse
|
54
|
Akiyama T, Katsumura T, Nakagome S, Lee SI, Joh K, Soejima H, Fujimoto K, Kimura R, Ishida H, Hanihara T, Yasukouchi A, Satta Y, Higuchi S, Oota H. An ancestral haplotype of the human PERIOD2 gene associates with reduced sensitivity to light-induced melatonin suppression. PLoS One 2017. [PMID: 28650999 PMCID: PMC5484468 DOI: 10.1371/journal.pone.0178373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Humans show various responses to the environmental stimulus in individual levels as “physiological variations.” However, it has been unclear if these are caused by genetic variations. In this study, we examined the association between the physiological variation of response to light-stimulus and genetic polymorphisms. We collected physiological data from 43 subjects, including light-induced melatonin suppression, and performed haplotype analyses on the clock genes, PER2 and PER3, exhibiting geographical differentiation of allele frequencies. Among the haplotypes of PER3, no significant difference in light sensitivity was found. However, three common haplotypes of PER2 accounted for more than 96% of the chromosomes in subjects, and 1 of those 3 had a significantly low-sensitive response to light-stimulus (P < 0.05). The homozygote of the low-sensitive PER2 haplotype showed significantly lower percentages of melatonin suppression (P < 0.05), and the heterozygotes of the haplotypes varied their ratios, indicating that the physiological variation for light-sensitivity is evidently related to the PER2 polymorphism. Compared with global haplotype frequencies, the haplotype with a low-sensitive response was more frequent in Africans than in non-Africans, and came to the root in the phylogenetic tree, suggesting that the low light-sensitive haplotype is the ancestral type, whereas the other haplotypes with high sensitivity to light are the derived types. Hence, we speculate that the high light-sensitive haplotypes have spread throughout the world after the Out-of-Africa migration of modern humans.
Collapse
Affiliation(s)
- Tokiho Akiyama
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Takafumi Katsumura
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shigeki Nakagome
- Department of Mathematical Analysis and Statistical Inference, The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Sang-il Lee
- Department of Human Science, Faculty of Design, Kyushu University, Minami-ku Fukuoka, Japan
| | - Keiichiro Joh
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Science, Faculty of Medicine, Saga University, Nabeshima, Saga, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Science, Faculty of Medicine, Saga University, Nabeshima, Saga, Japan
| | - Kazuma Fujimoto
- Department of Internal Medicine, Faculty of Medicine, Saga University, Nabeshima, Saga, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Faculty of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Faculty of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| | - Tsunehiko Hanihara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Department of Biological Structure, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Akira Yasukouchi
- Department of Human Science, Faculty of Design, Kyushu University, Minami-ku Fukuoka, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Shigekazu Higuchi
- Department of Human Science, Faculty of Design, Kyushu University, Minami-ku Fukuoka, Japan
- * E-mail: (SH); (HO)
| | - Hiroki Oota
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Department of Biological Structure, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- * E-mail: (SH); (HO)
| |
Collapse
|
55
|
Hypothesis driven single cell dual oscillator mathematical model of circadian rhythms. PLoS One 2017; 12:e0177197. [PMID: 28486525 PMCID: PMC5423656 DOI: 10.1371/journal.pone.0177197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/24/2017] [Indexed: 01/17/2023] Open
Abstract
Molecular mechanisms responsible for 24 h circadian oscillations, entrainment to external cues, encoding of day length and the time-of-day effects have been well studied experimentally. However, it is still debated from the molecular network point of view whether each cell in suprachiasmatic nuclei harbors two molecular oscillators, where one tracks dawn and the other tracks dusk activities. A single cell dual morning and evening oscillator was proposed by Daan et al., based on the molecular network that has two sets of similar non-redundant per1/cry1 and per2/cry2 circadian genes and each can independently maintain their endogenous oscillations. Understanding of dual oscillator dynamics in a single cell at molecular level may provide insight about the circadian mechanisms that encodes day length variations and its response to external zeitgebers. We present here a realistic dual oscillator model of circadian rhythms based on the series of hypotheses proposed by Daan et al., in which they conjectured that the circadian genes per1/cry1 track dawn while per2/cry2 tracks dusk and they together constitute the morning and evening oscillators (dual oscillator). Their hypothesis also provides explanations about the encoding of day length in terms of molecular mechanisms of per/cry expression. We frame a minimal mathematical model with the assumption that per1 acts a morning oscillator and per2 acts as an evening oscillator and to support and interpret this assumption we fit the model to the experimental data of per1/per2 circadian temporal dynamics, phase response curves (PRC's), and entrainment phenomena under various light-dark conditions. We also capture different patterns of splitting phenomena by coupling two single cell dual oscillators with neuropeptides vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP) as the coupling agents and provide interpretation for the occurrence of splitting in terms of ME oscillators, though they are not required to explain the morning and evening oscillators. The proposed dual oscillator model based on Daan's hypothesis supports per1 and per2 playing the role of morning and evening oscillators respectively and this may be the first step towards the understanding of the core molecular mechanism responsible for encoding the day length.
Collapse
|
56
|
Bainier C, Mateo M, Felder-Schmittbuhl MP, Mendoza J. Circadian rhythms of hedonic drinking behavior in mice. Neuroscience 2017; 349:229-238. [DOI: 10.1016/j.neuroscience.2017.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/15/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
|
57
|
Mendoza-Viveros L, Chiang CK, Ong JLK, Hegazi S, Cheng AH, Bouchard-Cannon P, Fana M, Lowden C, Zhang P, Bothorel B, Michniewicz MG, Magill ST, Holmes MM, Goodman RH, Simonneaux V, Figeys D, Cheng HYM. miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock. Cell Rep 2017; 19:505-520. [PMID: 28423315 PMCID: PMC5864111 DOI: 10.1016/j.celrep.2017.03.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 01/11/2017] [Accepted: 03/17/2017] [Indexed: 02/04/2023] Open
Abstract
The central circadian pacemaker, the suprachiasmatic nucleus (SCN), encodes day length information by mechanisms that are not well understood. Here, we report that genetic ablation of miR-132/212 alters entrainment to different day lengths and non-24 hr day-night cycles, as well as photoperiodic regulation of Period2 expression in the SCN. SCN neurons from miR-132/212-deficient mice have significantly reduced dendritic spine density, along with altered methyl CpG-binding protein (MeCP2) rhythms. In Syrian hamsters, a model seasonal rodent, day length regulates spine density on SCN neurons in a melatonin-independent manner, as well as expression of miR-132, miR-212, and their direct target, MeCP2. Genetic disruption of Mecp2 fully restores the level of dendritic spines of miR-132/212-deficient SCN neurons. Our results reveal that, by regulating the dendritic structure of SCN neurons through a MeCP2-dependent mechanism, miR-132/212 affects the capacity of the SCN to encode seasonal time.
Collapse
Affiliation(s)
- Lucia Mendoza-Viveros
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Cheng-Kang Chiang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Jonathan L K Ong
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Sara Hegazi
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Arthur H Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Pascale Bouchard-Cannon
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Michael Fana
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Christopher Lowden
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Peng Zhang
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Béatrice Bothorel
- Institut des Neurosciences Cellulaires et Intégratives, UPR CNRS 3212, Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Matthew G Michniewicz
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Stephen T Magill
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Melissa M Holmes
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada; Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Richard H Goodman
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, UPR CNRS 3212, Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Canadian Institute for Advanced Research, 180 Dundas Street West, Toronto, ON M5G 1Z8, Canada
| | - Hai-Ying M Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
58
|
Gnocchi D, Bruscalupi G. Circadian Rhythms and Hormonal Homeostasis: Pathophysiological Implications. BIOLOGY 2017; 6:biology6010010. [PMID: 28165421 PMCID: PMC5372003 DOI: 10.3390/biology6010010] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Over recent years, a deeper comprehension of the molecular mechanisms that control biological clocks and circadian rhythms has been achieved. In fact, many studies have contributed to unravelling the importance of the molecular clock for the regulation of our physiology, including hormonal and metabolic homeostasis. Here we will review the structure, organisation and molecular machinery that make our circadian clock work, and its relevance for the proper functioning of physiological processes. We will also describe the interconnections between circadian rhythms and endocrine homeostasis, as well as the underlying consequences that circadian dysregulations might have in the development of several pathologic affections. Finally, we will discuss how a better knowledge of such relationships might prove helpful in designing new therapeutic approaches for endocrine and metabolic diseases.
Collapse
Affiliation(s)
- Davide Gnocchi
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm 14186, Sweden.
| | - Giovannella Bruscalupi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
59
|
Albers HE, Walton JC, Gamble KL, McNeill JK, Hummer DL. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol 2017; 44:35-82. [PMID: 27894927 PMCID: PMC5225159 DOI: 10.1016/j.yfrne.2016.11.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022]
Abstract
Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.
Collapse
Affiliation(s)
- H Elliott Albers
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States.
| | - James C Walton
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - John K McNeill
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Daniel L Hummer
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Department of Psychology, Morehouse College, Atlanta, GA 30314, United States
| |
Collapse
|
60
|
Rubinstein A, Bracha N, Rudner L, Zucker N, Sloin HE, Chor B. BioNSi: A Discrete Biological Network Simulator Tool. J Proteome Res 2016; 15:2871-80. [PMID: 27354160 DOI: 10.1021/acs.jproteome.6b00278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Modeling and simulation of biological networks is an effective and widely used research methodology. The Biological Network Simulator (BioNSi) is a tool for modeling biological networks and simulating their discrete-time dynamics, implemented as a Cytoscape App. BioNSi includes a visual representation of the network that enables researchers to construct, set the parameters, and observe network behavior under various conditions. To construct a network instance in BioNSi, only partial, qualitative biological data suffices. The tool is aimed for use by experimental biologists and requires no prior computational or mathematical expertise. BioNSi is freely available at http://bionsi.wix.com/bionsi , where a complete user guide and a step-by-step manual can also be found.
Collapse
Affiliation(s)
- Amir Rubinstein
- Blavatnik School of Computer Science, and ‡Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University , Tel Aviv, Israel
| | - Noga Bracha
- Blavatnik School of Computer Science, and ‡Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University , Tel Aviv, Israel
| | - Liat Rudner
- Blavatnik School of Computer Science, and ‡Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University , Tel Aviv, Israel
| | - Noga Zucker
- Blavatnik School of Computer Science, and ‡Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University , Tel Aviv, Israel
| | - Hadas E Sloin
- Blavatnik School of Computer Science, and ‡Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University , Tel Aviv, Israel
| | - Benny Chor
- Blavatnik School of Computer Science, and ‡Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University , Tel Aviv, Israel
| |
Collapse
|
61
|
Spoelstra K, Albrecht U, van der Horst GTJ, Brauer V, Daan S. Phase Responses to Light Pulses in Mice Lacking Functional per or cry Genes. J Biol Rhythms 2016; 19:518-29. [PMID: 15523113 DOI: 10.1177/0748730404268122] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The phase-resetting properties of the circadian system in mice with a functional deletion in mCry1, mCry2, mPer1, or mPer2 were studied in 2 experiments. In experiment 1, mCry1-/- and mCry2-/- mice as well as mPer1Brdm1 and mPer2Brdm1 mutant mice were exposed to 15-min light pulses during the 1st cycle following entrainment, either early (external time [ExT] 20) or late (ExT 4) in the subjective night. In experiment 2, a full PRC was measured for all these strains by exposure to light pulses of the same duration and intensity in free-running conditions in constant darkness. Directly after entrainment (experiment 1), mPer1Brdm1 animals did not show significant phase advances by a light pulse in the late subjective night (ExT 4), as in the study by Albrecht et al. In the same experiment, mPer2Brdm1 mice became arrhythmic too frequently to reliably measure their phase responses. Mice with a targeted gene disruption in mCry1 or mCry2 showed increased phase delays compared to wild type after exposure to a light pulse in the early subjective night (ExT 20). Otherwise, phase shifts were not significantly affected. In free run (experiment 2), all genotypes did show phase advances and phase delays. The mPer2Brdm1 mutant PRC was above the mPer1Brdm1 mutant and wild-type PRC (i.e., less delayed and more advanced) at most circadian phases. The mPer1Brdm1 mutant PRC was not distinguishable from the wildtype PRC. The mCry2-/- mice showed much smaller phase delays than did mCry1-/- mice in the subjective evening (delay phase). In general, mPer2Brdm1 mutant mice were more accelerated by light compared to mPer1Brdm1 and wildtype control mice, whereas mCry1-/- mice were more delayed by light than were mCry2-/- mice.
Collapse
Affiliation(s)
- Kamiel Spoelstra
- Zoological Laboratory, University of Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
62
|
Muñoz M, Peirson SN, Hankins MW, Foster RG. Long-Term Constant Light Induces Constitutive Elevated Expression of mPER2 Protein in the Murine SCN: A Molecular Basis for Aschoff’s Rule? J Biol Rhythms 2016; 20:3-14. [PMID: 15654066 DOI: 10.1177/0748730404272858] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Circadian rhythms in behavior, metabolism, and physiology are based upon transcriptional/translational feedback loops involving a core set of clock genes that interact to regulate their own expression. In mammals, the SCN is the site of a master biological clock regulating circadian locomotor rhythms. The products of the clock genes mPer1, mPer2, mCry1, and mCry2 form essential components of both negative and positive elements within the SCN oscillator. The primary aims of this study were to examine clock gene abundance under longterm LL in an attempt to provide molecular correlates of the lengthened tau and daily phase delays described by Aschoff’s rule. Wheel-running behavior was recorded frommice maintained in eitherDDor LLfor 50 days. The abundance of the clock genes mPer1, mPer2, mCry1, and mCry2 and their protein products was then examined (every ~4 h) within the SCN using in situ hybridization and immunocytochemistry. Under LL conditions, mPer1, mPer2, mCry1, and mCry2 messages remained rhythmic, although the waveform of mCry2 was altered compared to DD. In LL, mPER1, mCRY1, and mCRY2 protein levels were also rhythmic and comparable to the patterns observed in DD. However, mPER2 is elevated and constitutively expressed under LL. Thus, rhythmic expression of these clock genes is not dependent on the rhythmic production of mPER2, and the acute up-regulation of mPer1 and mPer2 described for short (nonparametric) light pulses is not sustained under LL conditions. These findings suggest that mPER2 is important for the generation of phase delays in the molecular clockwork, providing a possible molecular explanation for Aschoff’s rule: LL lengthens the circadian period by inhibiting the degeneration of mPER2, and constitutively elevated levels of mPER2 enhance the phase-delaying limb of the molecular oscillator.
Collapse
Affiliation(s)
- Marta Muñoz
- Department of Visual Neuroscience, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College, Charing Cross Hospital, London, UK
| | | | | | | |
Collapse
|
63
|
Chavan R, Feillet C, Costa SSF, Delorme JE, Okabe T, Ripperger JA, Albrecht U. Liver-derived ketone bodies are necessary for food anticipation. Nat Commun 2016; 7:10580. [PMID: 26838474 PMCID: PMC4742855 DOI: 10.1038/ncomms10580] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 12/30/2015] [Indexed: 12/16/2022] Open
Abstract
The circadian system has endowed animals with the ability to anticipate recurring food availability at particular times of day. As daily food anticipation (FA) is independent of the suprachiasmatic nuclei, the central pacemaker of the circadian system, questions arise of where FA signals originate and what role components of the circadian clock might play. Here we show that liver-specific deletion of Per2 in mice abolishes FA, an effect that is rescued by viral overexpression of Per2 in the liver. RNA sequencing indicates that Per2 regulates β-hydroxybutyrate (βOHB) production to induce FA leading to the conclusion that liver Per2 is important for this process. Unexpectedly, we show that FA originates in the liver and not in the brain. However, manifestation of FA involves processing of the liver-derived βOHB signal in the brain, indicating that the food-entrainable oscillator is not located in a single tissue but is of systemic nature.
Collapse
Affiliation(s)
- Rohit Chavan
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - Céline Feillet
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - Sara S Fonseca Costa
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - James E Delorme
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - Takashi Okabe
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - Jürgen A Ripperger
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - Urs Albrecht
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
64
|
Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health. Mol Metab 2016; 5:133-152. [PMID: 26977390 PMCID: PMC4770266 DOI: 10.1016/j.molmet.2015.12.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/15/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. SCOPE OF REVIEW This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively, can destroy synchrony between peripheral clocks and the central pacemaker in the brain as well as between peripheral clocks themselves. In addition, we review several studies looking at clock gene SNPs in humans and the metabolic phenotypes or tendencies associated with particular clock gene mutations. MAJOR CONCLUSIONS Targeted use of specific nutrients based on chronotype has the potential for immense clinical utility in the future. Macronutrients and micronutrients have the ability to function as zeitgebers for the clock by activating or modulating specific clock proteins or accessory proteins (such as nuclear receptors). Circadian clock control by nutrients can be tissue-specific. With a better understanding of the mechanisms that support nutrient-induced circadian control in specific tissues, human chronotype and SNP information might eventually be used to tailor nutritional regimens for metabolic disease treatment and thus be an important part of personalized medicine's future.
Collapse
|
65
|
Kim J, Kim H, Ku SY, Suh CS, Kim JH, Kim JG. Polymorphisms in period genes and bone response to hormone therapy in postmenopausal Korean women. Climacteric 2015; 19:85-90. [PMID: 26624862 DOI: 10.3109/13697137.2015.1115476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE In this study, we aimed to explore the association between polymorphisms in the period (PER) gene and bone response to hormone therapy (HT) in postmenopausal Korean women. METHODS The PER1 c.2284C > G, c.2247C > T, PER2 c.3731G > A, PER3 c.2592G > A, c.3083T > C polymorphisms, and PER3 54bp variable number of tandem repeats (VNTR) were analyzed in 509 postmenopausal Korean women who received HT. Bone mineral density (BMD) at the lumbar spine and femoral neck before and after 1 year of HT and serum levels of osteoprotegerin (OPG), soluble receptor activator of the nuclear factor-κB ligand (sRANKL) and bone turnover markers were measured after 6 months of HT. RESULTS The PER1 c.2884 C > G polymorphism and PER3 54bp VNTR were associated with annual percent changes in BMD of the femoral neck after 1 year of HT (p < 0.05). Changes in BMD at the femoral neck in the non-CC genotype of the PER1 c.2884C > G polymorphism and in the 4-repeat homozygote of PER3 54bp VNTR were significantly lower than those in CC genotype and non-4-repeat homozygote, respectively. The PER1 c.2884C > G polymorphism was associated with the non-response (>3% BMD loss/year after HT) of HT. The non-CC genotype of the PER1 c.2884C > G polymorphism showed a 1.92-times higher risk of non-response at the lumbar spine and/or femoral neck (p = 0.01) compared with the CC genotype. No significant changes in bone markers after 6 months of HT were noted according to the PER1 c.2884C > G polymorphism. CONCLUSIONS The PER1 c.2884C > G polymorphism may be associated with risk of non-response to HT in postmenopausal Korean women.
Collapse
Affiliation(s)
- J Kim
- a Department of Obstetrics and Gynecology, Cha Gangnam Hospital , Cha University , Seoul , Korea
| | - H Kim
- b Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Korea
- c Biomedical Research Institute , Seoul National University Hospital , Seoul , Korea
| | - S-Y Ku
- b Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Korea
- c Biomedical Research Institute , Seoul National University Hospital , Seoul , Korea
| | - C S Suh
- b Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Korea
- c Biomedical Research Institute , Seoul National University Hospital , Seoul , Korea
| | - J H Kim
- d Department of Anesthesiology and Pain Medicine, School of Medicine , Ewha Womans University , Seoul , Korea
| | - J G Kim
- b Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Korea
- d Department of Anesthesiology and Pain Medicine, School of Medicine , Ewha Womans University , Seoul , Korea
| |
Collapse
|
66
|
Abstract
Since the kidney is integral to maintenance of fluid and ion homeostasis, and therefore blood pressure regulation, its proper function is paramount. Circadian fluctuations in blood pressure, renal blood flow, glomerular filtration rate, and sodium and water excretion have been documented for decades, if not longer. Recent studies on the role of circadian clock proteins in the regulation of a variety of renal transport genes suggest that the molecular clock in the kidney controls circadian fluctuations in renal function. The circadian clock appears to be a critical regulator of renal function with important implications for the treatment of renal pathologies, which include chronic kidney disease and hypertension. The development, regulation, and mechanism of the kidney clock are reviewed here.
Collapse
Affiliation(s)
- Kristen Solocinski
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FloridaDepartment of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FloridaDepartment of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
67
|
Hughes ATL, Croft CL, Samuels RE, Myung J, Takumi T, Piggins HD. Constant light enhances synchrony among circadian clock cells and promotes behavioral rhythms in VPAC2-signaling deficient mice. Sci Rep 2015; 5:14044. [PMID: 26370467 PMCID: PMC4642707 DOI: 10.1038/srep14044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022] Open
Abstract
Individual neurons in the suprachiasmatic nuclei (SCN) contain an intracellular molecular clock and use intercellular signaling to synchronize their timekeeping activities so that the SCN can coordinate brain physiology and behavior. The neuropeptide vasoactive intestinal polypeptide (VIP) and its VPAC2 receptor form a key component of intercellular signaling systems in the SCN and critically control cellular coupling. Targeted mutations in either the intracellular clock or intercellular neuropeptide signaling mechanisms, such as VIP-VPAC2 signaling, can lead to desynchronization of SCN neuronal clocks and loss of behavioral rhythms. An important goal in chronobiology is to develop interventions to correct deficiencies in circadian timekeeping. Here we show that extended exposure to constant light promotes synchrony among SCN clock cells and the expression of ~24 h rhythms in behavior in mice in which intercellular signaling is disrupted through loss of VIP-VPAC2 signaling. This study highlights the importance of SCN synchrony for the expression of rhythms in behavior and reveals how non-invasive manipulations in the external environment can be used to overcome neurochemical communication deficits in this important brain system.
Collapse
Affiliation(s)
- Alun T L Hughes
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Cara L Croft
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Rayna E Samuels
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Jihwan Myung
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
68
|
Schnell A, Sandrelli F, Ranc V, Ripperger JA, Brai E, Alberi L, Rainer G, Albrecht U. Mice lacking circadian clock components display different mood-related behaviors and do not respond uniformly to chronic lithium treatment. Chronobiol Int 2015; 32:1075-89. [PMID: 26317159 DOI: 10.3109/07420528.2015.1062024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomic studies suggest an association of circadian clock genes with bipolar disorder (BD) and lithium response in humans. Therefore, we tested mice mutant in various clock genes before and after lithium treatment in the forced swim test (FST), a rodent behavioral test used for evaluation of depressive-like states. We find that expression of circadian clock components, including Per2, Cry1 and Rev-erbα, is affected by lithium treatment, and thus, these clock components may contribute to the beneficial effects of lithium therapy. In particular, we observed that Cry1 is important at specific times of the day to transmit lithium-mediated effects. Interestingly, the pathways involving Per2 and Cry1, which regulate the behavior in the FST and the response to lithium, are distinct as evidenced by the phosphorylation of GSK3β after lithium treatment and the modulation of dopamine levels in the striatum. Furthermore, we observed the co-existence of depressive and mania-like symptoms in Cry1 knock-out mice, which resembles the so-called mixed state seen in BD patients. Taken together our results strengthen the concept that a defective circadian timing system may impact directly or indirectly on mood-related behaviors.
Collapse
Affiliation(s)
- Anna Schnell
- a Department of Biology, Unit of Biochemistry , University of Fribourg , Fribourg , Switzerland
| | - Federica Sandrelli
- a Department of Biology, Unit of Biochemistry , University of Fribourg , Fribourg , Switzerland .,b Department of Biology , University of Padova , Padova , Italy
| | - Vaclav Ranc
- c Department of Medicine , Unit of Physiology, University of Fribourg , Fribourg , Switzerland , and
| | - Jürgen A Ripperger
- a Department of Biology, Unit of Biochemistry , University of Fribourg , Fribourg , Switzerland
| | - Emanuele Brai
- d Department of Medicine , Unit of Anatomy, University of Fribourg , Fribourg , Switzerland
| | - Lavinia Alberi
- d Department of Medicine , Unit of Anatomy, University of Fribourg , Fribourg , Switzerland
| | - Gregor Rainer
- c Department of Medicine , Unit of Physiology, University of Fribourg , Fribourg , Switzerland , and
| | - Urs Albrecht
- a Department of Biology, Unit of Biochemistry , University of Fribourg , Fribourg , Switzerland
| |
Collapse
|
69
|
Schmutz I, Chavan R, Ripperger JA, Maywood ES, Langwieser N, Jurik A, Stauffer A, Delorme JE, Moosmang S, Hastings MH, Hofmann F, Albrecht U. A specific role for the REV-ERBα-controlled L-Type Voltage-Gated Calcium Channel CaV1.2 in resetting the circadian clock in the late night. J Biol Rhythms 2015; 29:288-98. [PMID: 25238857 DOI: 10.1177/0748730414540453] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Within the suprachiasmatic nucleus (SCN) of the hypothalamus, circadian timekeeping and resetting have been shown to be largely dependent on both membrane depolarization and intracellular second-messenger signaling. In both of these processes, voltage-gated calcium channels (VGCCs) mediate voltage-dependent calcium influx, which propagates neural impulses by stimulating vesicle fusion and instigates intracellular pathways resulting in clock gene expression. Through the cumulative actions of these processes, the phase of the internal clock is modified to match the light cycle of the external environment. To parse out the distinct roles of the L-type VGCCs, we analyzed mice deficient in Cav1.2 (Cacna1c) in brain tissue. We found that mice deficient in the Cav1.2 channel exhibited a significant reduction in their ability to phase-advance circadian behavior when subjected to a light pulse in the late night. Furthermore, the study revealed that the expression of Cav1.2 mRNA was rhythmic (peaking during the late night) and was regulated by the circadian clock component REV-ERBα. Finally, the induction of clock genes in both the early and late subjective night was affected by the loss of Cav1.2, with reductions in Per2 and Per1 in the early and late night, respectively. In sum, these results reveal a role of the L-type VGCC Cav1.2 in mediating both clock gene expression and phase advances in response to a light pulse in the late night.
Collapse
Affiliation(s)
- Isabelle Schmutz
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Rohit Chavan
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Jürgen A Ripperger
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | | | - Nicole Langwieser
- Institute of Pharmacology and Toxicology, TU Munich, Munich, Germany
| | - Angela Jurik
- Institute of Pharmacology and Toxicology, TU Munich, Munich, Germany
| | - Anja Stauffer
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - James E Delorme
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Sven Moosmang
- Institute of Pharmacology and Toxicology, TU Munich, Munich, Germany
| | | | - Franz Hofmann
- Institute of Pharmacology and Toxicology, TU Munich, Munich, Germany
| | - Urs Albrecht
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
70
|
Pritchett D, Jagannath A, Brown LA, Tam SKE, Hasan S, Gatti S, Harrison PJ, Bannerman DM, Foster RG, Peirson SN. Deletion of Metabotropic Glutamate Receptors 2 and 3 (mGlu2 & mGlu3) in Mice Disrupts Sleep and Wheel-Running Activity, and Increases the Sensitivity of the Circadian System to Light. PLoS One 2015; 10:e0125523. [PMID: 25950516 PMCID: PMC4423919 DOI: 10.1371/journal.pone.0125523] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/14/2015] [Indexed: 12/22/2022] Open
Abstract
Sleep and/or circadian rhythm disruption (SCRD) is seen in up to 80% of schizophrenia patients. The co-morbidity of schizophrenia and SCRD may in part stem from dysfunction in common brain mechanisms, which include the glutamate system, and in particular, the group II metabotropic glutamate receptors mGlu2 and mGlu3 (encoded by the genes Grm2 and Grm3). These receptors are relevant to the pathophysiology and potential treatment of schizophrenia, and have also been implicated in sleep and circadian function. In the present study, we characterised the sleep and circadian rhythms of Grm2/3 double knockout (Grm2/3-/-) mice, to provide further evidence for the involvement of group II metabotropic glutamate receptors in the regulation of sleep and circadian rhythms. We report several novel findings. Firstly, Grm2/3-/- mice demonstrated a decrease in immobility-determined sleep time and an increase in immobility-determined sleep fragmentation. Secondly, Grm2/3-/- mice showed heightened sensitivity to the circadian effects of light, manifested as increased period lengthening in constant light, and greater phase delays in response to nocturnal light pulses. Greater light-induced phase delays were also exhibited by wildtype C57Bl/6J mice following administration of the mGlu2/3 negative allosteric modulator RO4432717. These results confirm the involvement of group II metabotropic glutamate receptors in photic entrainment and sleep regulation pathways. Finally, the diurnal wheel-running rhythms of Grm2/3-/- mice were perturbed under a standard light/dark cycle, but their diurnal rest-activity rhythms were unaltered in cages lacking running wheels, as determined with passive infrared motion detectors. Hence, when assessing the diurnal rest-activity rhythms of mice, the choice of assay can have a major bearing on the results obtained.
Collapse
Affiliation(s)
- David Pritchett
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Aarti Jagannath
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
- F.Hoffman-La Roche, Neuroscience, Ophthalmology & Rare Diseases (NORD), Pharma Research & Early Development (pRED) Innovation Centre, Basel, Switzerland
| | - Laurence A. Brown
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Shu K. E. Tam
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Sibah Hasan
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Silvia Gatti
- F.Hoffman-La Roche, Neuroscience, Ophthalmology & Rare Diseases (NORD), Pharma Research & Early Development (pRED) Innovation Centre, Basel, Switzerland
| | - Paul J. Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, United Kingdom
| | - David M. Bannerman
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, United Kingdom
| | - Russell G. Foster
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
- * E-mail: (RGF); (SNP)
| | - Stuart N. Peirson
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
- * E-mail: (RGF); (SNP)
| |
Collapse
|
71
|
Cao R, Gkogkas CG, de Zavalia N, Blum ID, Yanagiya A, Tsukumo Y, Xu H, Lee C, Storch KF, Liu AC, Amir S, Sonenberg N. Light-regulated translational control of circadian behavior by eIF4E phosphorylation. Nat Neurosci 2015; 18:855-62. [PMID: 25915475 PMCID: PMC4446158 DOI: 10.1038/nn.4010] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022]
Abstract
The circadian (~24 h) clock is continuously entrained (reset) by ambient light so that endogenous rhythms are synchronized with daily changes in the environment. Light-induced gene expression is thought to be the molecular mechanism underlying clock entrainment. mRNA translation is a key step of gene expression, but how clock entrainment is controlled at the mRNA translation level is not understood. Here we report that a light- and circadian clock-regulated MAPK/MNK pathway leads to phosphorylation of the cap-binding protein eIF4E in the mouse suprachiasmatic nucleus (SCN) of the hypothalamus, the locus of the master circadian clock in mammals. Phosphorylation of eIF4E specifically promotes translation of Period (Per) 1 and 2 mRNAs and increases the abundance of basal and inducible PER proteins, which facilitates circadian clock resetting and precise timekeeping. Together, these results highlight a critical role for light-regulated translational control in the physiology of the circadian clock.
Collapse
Affiliation(s)
- Ruifeng Cao
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Canada
| | - Christos G Gkogkas
- Patrick Wild Centre, Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Nuria de Zavalia
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Canada
| | - Ian D Blum
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Akiko Yanagiya
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Canada
| | - Yoshinori Tsukumo
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Canada
| | - Haiyan Xu
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA
| | - Choogon Lee
- Department of Biomedical Sciences, Neuroscience Program, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Kai-Florian Storch
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Andrew C Liu
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA
| | - Shimon Amir
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Canada
| |
Collapse
|
72
|
Li Z, Wang Y, Sun KK, Wang K, Sun ZS, Zhao M, Wang J. Sex-related difference in food-anticipatory activity of mice. Horm Behav 2015; 70:38-46. [PMID: 25736535 DOI: 10.1016/j.yhbeh.2015.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
Abstract
The expression of food-anticipatory activity (FAA) is induced by restricted feeding (RF), and its entrainment requires food-entrainable oscillators, the neuroanatomical basis of which is currently unclear. Although RF impacts various hormones, sex-related differences in FAA are unclear. 'Here, we report significantly more food-anticipatory wheel-running activity in male than in female mice during RF. In parallel with the sex-related difference in FAA, male and female mice display different food intake and body weight in response to RF. Since gonadal hormones could be involved in the sex-specific difference in FAA, we compared sham and gonadectomized male and female wild-type mice. In gonadectomized mice, the sex difference in FAA was abolished, indicating a role for gonadal hormones in FAA. Further, plasma concentrations of the hormone ghrelin were higher in female than in male mice during ad libitum (AL) feeding, and RF induced a temporal advance in its peak in both sexes. RF also shifted the expression peak of the circadian gene mPer1 in the hippocampus and liver, although no sex difference was found in either the level or the cyclic phase of its expression. Per1(Brdm1) mutant mice were still sexually dimorphic for FAA, but diminished FAA was noted in both male and female Per2(Brdm1) mutant mice. In summary, our results imply that gonadal hormones contribute to the sex difference in FAA, possibly through modulating ghrelin activity.
Collapse
Affiliation(s)
- Zhigang Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu 030801, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Kangli Wang
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou 325000, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou 325000, China.
| | - Mei Zhao
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
73
|
Pritchett D, Hasan S, Tam SKE, Engle SJ, Brandon NJ, Sharp T, Foster RG, Harrison PJ, Bannerman DM, Peirson SN. d-amino acid oxidase knockout (Dao(-/-) ) mice show enhanced short-term memory performance and heightened anxiety, but no sleep or circadian rhythm disruption. Eur J Neurosci 2015; 41:1167-79. [PMID: 25816902 PMCID: PMC4744680 DOI: 10.1111/ejn.12880] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 02/10/2015] [Accepted: 02/23/2015] [Indexed: 12/21/2022]
Abstract
d-amino acid oxidase (DAO, DAAO) is an enzyme that degrades d-serine, the primary endogenous co-agonist of the synaptic N-methyl-d-aspartate receptor. Convergent evidence implicates DAO in the pathophysiology and potential treatment of schizophrenia. To better understand the functional role of DAO, we characterized the behaviour of the first genetically engineered Dao knockout (Dao(-/-) ) mouse. Our primary objective was to assess both spatial and non-spatial short-term memory performance. Relative to wildtype (Dao(+/+) ) littermate controls, Dao(-/-) mice demonstrated enhanced spatial recognition memory performance, improved odour recognition memory performance, and enhanced spontaneous alternation in the T-maze. In addition, Dao(-/-) mice displayed increased anxiety-like behaviour in five tests of approach/avoidance conflict: the open field test, elevated plus maze, successive alleys, light/dark box and novelty-suppressed feeding. Despite evidence of a reciprocal relationship between anxiety and sleep and circadian function in rodents, we found no evidence of sleep or circadian rhythm disruption in Dao(-/-) mice. Overall, our observations are consistent with, and extend, findings in the natural mutant ddY/Dao(-) line. These data add to a growing body of preclinical evidence linking the inhibition, inactivation or deletion of DAO with enhanced cognitive performance. Our results have implications for the development of DAO inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- David Pritchett
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Kim SH, Lee KH, Kim DY, Kwak E, Kim S, Kim KT. Rhythmic control of mRNA stability modulates circadian amplitude of mouse Period3 mRNA. J Neurochem 2015; 132:642-56. [PMID: 25581122 DOI: 10.1111/jnc.13027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/31/2022]
Abstract
The daily oscillations observed in most living organisms are endogenously generated with a period of 24 h, and the underlying structure of periodic oscillation is an autoregulatory transcription-translation feedback loop. The mechanisms of untranslated region (UTR)-mediated post-transcriptional regulation (e.g., mRNA degradation and internal ribosomal entry site (IRES)-mediated translation) have been suggested to fine-tune the expression of clock genes. Mouse Period3 (mPer3) is one of the paralogs of Period gene and its function is important in peripheral clocks and sleep physiology. mPer3 mRNA displays a circadian oscillation as well as a circadian phase-dependent stability, while the stability regulators still remain unknown. In this study, we identify three proteins - heterogeneous nuclear ribonucleoprotein (hnRNP) K, polypyrimidine tract-binding protein (PTB), and hnRNP D - that bind to mPer3 mRNA 3'-UTR. We show that hnRNP K is a stabilizer that increases the amplitude of circadian mPer3 mRNA oscillation and hnRNP D is a destabilizer that decreases it, while PTB exhibits no effect on mPer3 mRNA expression. Our experiments describe their cytoplasmic roles for the mRNA stability regulation and the circadian amplitude formation. Moreover, our mathematical model suggests a mechanism through which post-transcriptional mRNA stability modulation provides not only the flexibility of oscillation amplitude, but also the robustness of the period and the phase for circadian mPer3 expression. Mouse Period3 (mPer3) is one of well-known clock genes. We identified three 3'-UTR-binding proteins that modulate the mRNA stability, and they influenced to the amplitude of circadian mPer3 mRNA oscillation. Our mathematical model not only showed the relationship between mRNA stability and its oscillation profile but provided the molecular mechanism for the robustness of the period and the phase in circadian oscillation. hnK, heterogeneous nuclear ribonucleoprotein (hnRNP) K; hnD, hnRNP D; PTB, polypyrimidine tract-binding protein.
Collapse
Affiliation(s)
- Sung-Hoon Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | | | | | | | | | | |
Collapse
|
75
|
Magnone MC, Langmesser S, Bezdek AC, Tallone T, Rusconi S, Albrecht U. The Mammalian circadian clock gene per2 modulates cell death in response to oxidative stress. Front Neurol 2015; 5:289. [PMID: 25628599 PMCID: PMC4292776 DOI: 10.3389/fneur.2014.00289] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/19/2014] [Indexed: 11/23/2022] Open
Abstract
Living in the earth’s oxygenated environment forced organisms to develop strategies to cope with the damaging effects of molecular oxygen known as reactive oxygen species (ROS). Here, we show that Per2, a molecular component of the mammalian circadian clock, is involved in regulating a cell’s response to oxidative stress. Mouse embryonic fibroblasts (MEFs) containing a mutation in the Per2 gene are more resistant to cytotoxic effects mediated by ROS than wild-type cells, which is paralleled by an altered regulation of bcl-2 expression in Per2 mutant MEFs. The elevated survival rate and alteration of NADH/NAD+ ratio in the mutant cells is reversed by introduction of the wild-type Per2 gene. Interestingly, clock synchronized cells display a time dependent sensitivity to paraquat, a ROS inducing agent. Our observations indicate that the circadian clock is involved in regulating the fate of a cell to survive or to die in response to oxidative stress, which could have implications for cancer development and the aging process.
Collapse
Affiliation(s)
- Maria Chiara Magnone
- Department of Biology, Division of Biochemistry, University of Fribourg , Fribourg , Switzerland
| | - Sonja Langmesser
- Department of Biology, Division of Biochemistry, University of Fribourg , Fribourg , Switzerland
| | - April Candice Bezdek
- Department of Biology, Division of Biochemistry, University of Fribourg , Fribourg , Switzerland
| | - Tiziano Tallone
- Department of Biology, Division of Biochemistry, University of Fribourg , Fribourg , Switzerland
| | - Sandro Rusconi
- Department of Biology, Division of Biochemistry, University of Fribourg , Fribourg , Switzerland
| | - Urs Albrecht
- Department of Biology, Division of Biochemistry, University of Fribourg , Fribourg , Switzerland
| |
Collapse
|
76
|
Kim H, Koh H, Ku SY, Kim SH, Kim JH, Kim JG. Association between polymorphisms in period genes and bone density in postmenopausal Korean women. Climacteric 2014; 17:605-612. [PMID: 24678593 DOI: 10.3109/13697137.2014.905527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE In the present study, we aimed to investigate the association between genetic polymorphisms in period (PER) genes and bone mineral density (BMD) in postmenopausal Korean women. METHODS The PER1 c.2247C> T and c.2884C> G polymorphisms; the PER2 c.661G> A and c.3731G> A polymorphisms; the PER3 c.2592G> A, c.3029C> T, c.3035C> T, and c.3083T> C polymorphisms, and the 54 bp variable number tandem repeats polymorphism were analyzed in 551 postmenopausal Korean women. Serum leptin, soluble leptin receptor, osteoprotegerin, soluble receptor activator of the nuclear factor-κB ligand, and bone markers including bone alkaline phosphatase and carboxy-terminal telopeptide of type I collagen were measured, and the lumbar spine and femoral neck BMDs were also determined. RESULTS The PER2 c.661G> A, PER3 c.3029C> T and c.3035C> T polymorphisms were not observed. The PER2 and PER3 polymorphisms evaluated were not related to BMD, whereas associations of the c.2247C> T and c.2884C> G polymorphisms in PER1 with the lumbar spine BMD were observed both singly and in combination. The CC haplotype homozygotes showed significantly lower lumbar spine BMD than participants with other genotypes. Additionally, 2.01-fold higher odds for osteoporosis of the lumbar spine were found in the CC haplotype homozygotes compared to women not carrying the haplotype CC allele. No significant differences in bone markers were detected according to the PER1 haplotype genotype. CONCLUSIONS Our results suggest that both the PER1 c.2247C> T and c.2884C> G polymorphisms may be genetic factors affecting the lumbar spine BMD in postmenopausal Korean women.
Collapse
Affiliation(s)
- H Kim
- * Department of Obstetrics and Gynecology, Seoul National University College of Medicine , Seoul , Korea
| | | | | | | | | | | |
Collapse
|
77
|
Hasegawa Y, Arita M. Optimal implementations for reliable circadian clocks. PHYSICAL REVIEW LETTERS 2014; 113:108101. [PMID: 25238386 DOI: 10.1103/physrevlett.113.108101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 06/03/2023]
Abstract
Circadian rhythms are acquired through evolution to increase the chances for survival through synchronizing with the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. We find by using a phase model with multiple inputs that achieving the maximal limit of regularity and entrainability entails many inherent features of the circadian mechanism. At the molecular level, we demonstrate the role sharing of two light inputs, phase advance and delay, as is well observed in mammals. At the behavioral level, the optimal phase-response curve inevitably contains a dead zone, a time during which light pulses neither advance nor delay the clock. We reproduce the results of phase-controlling experiments entrained by two types of periodic light pulses. Our results indicate that circadian clocks are designed optimally for reliable clockwork through evolution.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masanori Arita
- Center for Information Biology, National Institute of Genetics, Shizuoka 411-8540, Japan and RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| |
Collapse
|
78
|
Ruby CL, Vadnie CA, Hinton DJ, Abulseoud OA, Walker DL, O'Connor KM, Noterman MF, Choi DS. Adenosinergic regulation of striatal clock gene expression and ethanol intake during constant light. Neuropsychopharmacology 2014; 39:2432-40. [PMID: 24755889 PMCID: PMC4138755 DOI: 10.1038/npp.2014.94] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/09/2014] [Accepted: 04/17/2014] [Indexed: 01/19/2023]
Abstract
Circadian rhythm and sleep disruptions occur frequently in individuals with alcohol use disorders (AUD) and present significant barriers to treatment. Recently, a variant of adenosine transporter, equilibrative nucleoside transporter 1 (ENT1), was associated with the co-occurrence of sleep problems and AUD. We have previously shown that mice lacking ENT1 (ENT1 KO) have reduced adenosine levels in the striatum and drink more alcohol compared with wild types (WT). However, it is unknown whether ENT1 deletion disrupts circadian rhythms, which may contribute to alcohol preference in ENT1 KO mice. Here we used these mice to determine whether endogenous adenosine regulates circadian genetic and behavioral rhythms and influences alcohol intake during chronodisruption. We examined circadian locomotor activity in ENT1 KO vs WT littermates and found that ENT1 KO mice were both active earlier and hyperactive compared with WT mice at night. We used real-time PCR and immunohistochemistry to estimate striatal clock gene levels and found that PER2 expression in the striatum was blunted by ENT1 deletion or A2A receptor (A2AR) antagonism. Next, we exposed ENT1 KO and WT mice to constant light (LL) and found further elevation in ethanol intake in ENT1 KO, but not in WT mice, supporting the notion that circadian dysfunction may contribute to increased alcohol intake in ENT1 KO mice. Finally, we showed that A2AR agonist administration normalized PER1 and PER2 expression and circadian locomotor activity in ENT1 KO mice. Together, our results demonstrate that adenosine signaling regulates cellular and behavioral circadian timing and influences alcohol intake during chronodisruption.
Collapse
Affiliation(s)
- Christina L Ruby
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | - Chelsea A Vadnie
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - David J Hinton
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Osama A Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Denise L Walker
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Katheryn M O'Connor
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Maria F Noterman
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA,Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA, Tel: +1 507 284 5602, Fax: +1 507 266 0824, E-mail:
| |
Collapse
|
79
|
Mulder CK, Papantoniou C, Gerkema MP, Van Der Zee EA. Neither the SCN nor the adrenals are required for circadian time-place learning in mice. Chronobiol Int 2014; 31:1075-92. [PMID: 25083974 PMCID: PMC4219850 DOI: 10.3109/07420528.2014.944975] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During Time-Place Learning (TPL), animals link biological significant events (e.g. encountering predators, food, mates) with the location and time of occurrence in the environment. This allows animals to anticipate which locations to visit or avoid based on previous experience and knowledge of the current time of day. The TPL task applied in this study consists of three daily sessions in a three-arm maze, with a food reward at the end of each arm. During each session, mice should avoid one specific arm to avoid a foot-shock. We previously demonstrated that, rather than using external cue-based strategies, mice use an internal clock (circadian strategy) for TPL, referred to as circadian TPL (cTPL). It is unknown in which brain region(s) or peripheral organ(s) the consulted clock underlying cTPL resides. Three candidates were examined in this study: (a) the suprachiasmatic nucleus (SCN), a light entrainable oscillator (LEO) and considered the master circadian clock in the brain, (b) the food entrainable oscillator (FEO), entrained by restricted food availability, and (c) the adrenal glands, harboring an important peripheral oscillator. cTPL performance should be affected if the underlying oscillator system is abruptly phase-shifted. Therefore, we first investigated cTPL sensitivity to abrupt light and food shifts. Next we investigated cTPL in SCN-lesioned- and adrenalectomized mice. Abrupt FEO phase-shifts (induced by advancing and delaying feeding time) affected TPL performance in specific test sessions while a LEO phase-shift (induced by a light pulse) more severely affected TPL performance in all three daily test sessions. SCN-lesioned mice showed no TPL deficiencies compared to SHAM-lesioned mice. Moreover, both SHAM- and SCN-lesioned mice showed unaffected cTPL performance when re-tested after bilateral adrenalectomy. We conclude that, although cTPL is sensitive to timing manipulations with light as well as food, neither the SCN nor the adrenals are required for cTPL in mice.
Collapse
|
80
|
Avitabile D, Genovese L, Ponti D, Ranieri D, Raffa S, Calogero A, Torrisi MR. Nucleolar localization and circadian regulation of Per2S, a novel splicing variant of the Period 2 gene. Cell Mol Life Sci 2014; 71:2547-59. [PMID: 24202686 PMCID: PMC11113094 DOI: 10.1007/s00018-013-1503-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/26/2013] [Accepted: 10/17/2013] [Indexed: 12/14/2022]
Abstract
In this work, we show for the first time that a second splicing variant of the core clock gene Period 2 (Per2), Per2S, is expressed at both the mRNA and protein levels in human keratinocytes and that it localizes in the nucleoli. Moreover, we show that a reversible perturbation of the nucleolar structure acts as a resetting stimulus for the cellular clock. Per2S expression and periodic oscillation upon dexamethasone treatment were assessed by qRT-PCR using specific primers. Western blot (WB) analysis using an antibody against the recombinant human PER2 (abRc) displayed an intense band at a molecular weight of ~55 kDa, close to the predicted size of Per2S, and a weaker band at the expected size of Per2 (~140 kDa). The antibody raised against PER2 pS662 (abS662), an epitope absent in PER2S, detected only the higher band. Immunolocalization studies with abRc revealed a peculiar nucleolar signal colocalizing with the nucleolar marker nucleophosmin, whereas with abS662 the signal was predominantly diffuse all over the nucleus and partially colocalized with abRc in the nucleolus. The analysis of cell fractions by WB confirmed the enrichment of PER2S and the presence of PER2 in the nucleolar compartment. Finally, a pulse (1 h) of actinomycin D (0.01 μg/ml) induced reversible nucleolar disruption, PER2S de-localization and circadian synchronization of clock and Per2S genes. Our work represents the first evidence that the Per2S splicing isoform is a clock component expressed in human cells localizing in the nucleolus. These results suggest a critical role for the nucleolus in the process of circadian synchronization in human keratinocytes.
Collapse
Affiliation(s)
- Daniele Avitabile
- Department of Clinical and Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Via di Grottarossa 1035, 00189, Rome, Italy,
| | | | | | | | | | | | | |
Collapse
|
81
|
Agapito MA, Zhang C, Murugan S, Sarkar DK. Fetal alcohol exposure disrupts metabolic signaling in hypothalamic proopiomelanocortin neurons via a circadian mechanism in male mice. Endocrinology 2014; 155:2578-88. [PMID: 24797626 PMCID: PMC4060182 DOI: 10.1210/en.2013-2030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Early-life ethanol feeding (ELAF) alters the metabolic function of proopiomelanocortin (POMC)-producing neurons and the circadian expression of clock regulatory genes in the hypothalamus. We investigated whether the circadian mechanisms control the action of ELAF on metabolic signaling genes in POMC neurons. Gene expression measurements of Pomc and a selected group of metabolic signaling genes, Stat3, Sirt1, Pgc1-α, and Asb4 in laser-captured microdissected POMC neurons in the hypothalamus of POMC-enhanced green fluorescent protein mice showed circadian oscillations under light/dark and constant darkness conditions. Ethanol programmed these neurons such that the adult expression of Pomc, Stat3, Sirt, and Asb4 gene transcripts became arrhythmic. In addition, ELAF dampened the circadian peak of gene expression of Bmal1, Per1, and Per2 in POMC neurons. We crossed Per2 mutant mice with transgenic POMC-enhanced green fluorescent protein mice to determine the role of circadian mechanism in ELAF-altered metabolic signaling in POMC neurons. We found that ELAF failed to alter arrhythmic expression of most circadian genes, with the exception of the Bmal1 gene and metabolic signaling regulating genes in Per2 mutant mice. Comparison of the ELAF effects on the circadian blood glucose in wild-type and Per2 mutant mice revealed that ELAF dampened the circadian peak of glucose, whereas the Per2 mutation shifted the circadian cycle and prevented the ELAF dampening of the glucose peak. These data suggest the possibility that the Per2 gene mutation may regulate the ethanol actions on Pomc and the metabolic signaling genes in POMC neurons in the hypothalamus by blocking circadian mechanisms.
Collapse
Affiliation(s)
- Maria A Agapito
- Endocrine Program (M.A.A., C.Z., S.M., D.K.S.), Graduate Program in Neuroscience (M.A.A.), Graduate Program in Endocrinology and Animal Biosciences (C.Z.), and Department of Animal Sciences (S.M., D.K.S.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | | | | | | |
Collapse
|
82
|
Brooks E, Patel D, Canal MM. Programming of mice circadian photic responses by postnatal light environment. PLoS One 2014; 9:e97160. [PMID: 24842115 PMCID: PMC4026311 DOI: 10.1371/journal.pone.0097160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/15/2014] [Indexed: 01/04/2023] Open
Abstract
Early life programming has important consequences for future health and wellbeing. A key new aspect is the impact of perinatal light on the circadian system. Postnatal light environment will program circadian behavior, together with cell morphology and clock gene function within the suprachiasmatic nucleus (SCN) of the hypothalamus, the principal circadian clock in mammals. Nevertheless, it is still not clear whether the observed changes reflect a processing of an altered photic input from the retina, rather than an imprinting of the intrinsic molecular clock mechanisms. Here, we addressed the issue by systematically probing the mouse circadian system at various levels. Firstly, we used electroretinography, pupillometry and histology protocols to show that gross retinal function and morphology in the adult are largely independent of postnatal light experiences that modulate circadian photosensitivity. Secondly, we used circadian activity protocols to show that only the animal's behavioral responses to chronic light exposure, but not to constant darkness or the acute responses to a light stimulus depend on postnatal light experience. Thirdly, we used real-time PER2::LUC rhythm recording to show long-term changes in clock gene expression in the SCN, but also heart, lung and spleen. The data showed that perinatal light mainly targets the long-term adaptive responses of the circadian clock to environmental light, rather than the retina or intrinsic clock mechanisms. Finally, we found long-term effects on circadian peripheral clocks, suggesting far-reaching consequences for the animal's overall physiology.
Collapse
Affiliation(s)
- Elisabeth Brooks
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Dhruval Patel
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Maria Mercè Canal
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
83
|
Nam HJ, Boo K, Kim D, Han DH, Choe HK, Kim CR, Sun W, Kim H, Kim K, Lee H, Metzger E, Schuele R, Yoo SH, Takahashi JS, Cho S, Son GH, Baek SH. Phosphorylation of LSD1 by PKCα is crucial for circadian rhythmicity and phase resetting. Mol Cell 2014; 53:791-805. [PMID: 24582500 DOI: 10.1016/j.molcel.2014.01.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/19/2013] [Accepted: 01/22/2014] [Indexed: 12/22/2022]
Abstract
The circadian clock is a self-sustaining oscillator that controls daily rhythms. For the proper circadian gene expression, dynamic changes in chromatin structure are important. Although chromatin modifiers have been shown to play a role in circadian gene expression, the in vivo role of circadian signal-modulated chromatin modifiers at an organism level remains to be elucidated. Here, we provide evidence that the lysine-specific demethylase 1 (LSD1) is phosphorylated by protein kinase Cα (PKCα) in a circadian manner and the phosphorylated LSD1 forms a complex with CLOCK:BMAL1 to facilitate E-box-mediated transcriptional activation. Knockin mice bearing phosphorylation-defective Lsd1(SA/SA) alleles exhibited altered circadian rhythms in locomotor behavior with attenuation of rhythmic expression of core clock genes and impaired phase resetting of circadian clock. These data demonstrate that LSD1 is a key component of the molecular circadian oscillator, which plays a pivotal role in rhythmicity and phase resetting of the circadian clock.
Collapse
Affiliation(s)
- Hye Jin Nam
- Creative Research Initiatives Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Kyungjin Boo
- Creative Research Initiatives Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Dongha Kim
- Creative Research Initiatives Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Dong-Hee Han
- Department of Neuroscience, Neurodegeneration Control Research Center, Kyung Hee University School of Medicine, Seoul 130-701, South Korea
| | - Han Kyoung Choe
- Brain Research Center for the 21st Frontier Program in Neuroscience, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Chang Rok Kim
- Creative Research Initiatives Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Seoul 136-705, South Korea
| | - Hyun Kim
- Department of Anatomy, Korea University College of Medicine, Seoul 136-705, South Korea
| | - Kyungjin Kim
- Brain Research Center for the 21st Frontier Program in Neuroscience, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Ho Lee
- Division of Basic and Applied Sciences, National Cancer Center, Gyeonggi-do 410-769, South Korea
| | - Eric Metzger
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, DKTK Standort Freiburg, BIOSS Centre of Biological Signaling Studies, Albert-Ludwigs-University, 79106 Freiburg, Germany
| | - Roland Schuele
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, DKTK Standort Freiburg, BIOSS Centre of Biological Signaling Studies, Albert-Ludwigs-University, 79106 Freiburg, Germany
| | - Seung-Hee Yoo
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph S Takahashi
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sehyung Cho
- Department of Neuroscience, Neurodegeneration Control Research Center, Kyung Hee University School of Medicine, Seoul 130-701, South Korea
| | - Gi Hoon Son
- Department of Legal Medicine, Korea University College of Medicine, Seoul 136-705, South Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea.
| |
Collapse
|
84
|
Stöhr R, Marx N, Federici M. Tick-tock: is your cardiometabolic risk on the clock? Diab Vasc Dis Res 2014; 11:66-74. [PMID: 24396116 DOI: 10.1177/1479164113516348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Governing a large amount of cellular processes in mammalian cells is a 24-h regulatory mechanism known as the circadian clock. Through the release of neurohormonal factors, the master central clock is able to regulate the otherwise independent peripheral clocks situated in all vital organs. It has recently been shown that forced misalignment of the circadian cycles, often as a consequence of lifestyle factors, is an independent cardiometabolic risk factor and may thus potentially predispose certain groups, such as nightshift workers, to cardiovascular disease. In this review, we will analyse some of the recent advances regarding circadian clock dysfunction and the development of cardiovascular diseases. Finally, we will touch on the developing link between circadian dysfunction and myocardial infarctions.
Collapse
Affiliation(s)
- Robert Stöhr
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | |
Collapse
|
85
|
Spoelstra K, Comas M, Daan S. Compression of daily activity time in mice lacking functionalPerorCrygenes. Chronobiol Int 2014; 31:645-54. [DOI: 10.3109/07420528.2014.885529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- K Spoelstra
- Unit of Chronobiology, University of Groningen , Groningen , The Netherlands
| | | | | |
Collapse
|
86
|
McMahon DG, Iuvone PM, Tosini G. Circadian organization of the mammalian retina: from gene regulation to physiology and diseases. Prog Retin Eye Res 2013; 39:58-76. [PMID: 24333669 DOI: 10.1016/j.preteyeres.2013.12.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 01/27/2023]
Abstract
The retinal circadian system represents a unique structure. It contains a complete circadian system and thus the retina represents an ideal model to study fundamental questions of how neural circadian systems are organized and what signaling pathways are used to maintain synchrony of the different structures in the system. In addition, several studies have shown that multiple sites within the retina are capable of generating circadian oscillations. The strength of circadian clock gene expression and the emphasis of rhythmic expression are divergent across vertebrate retinas, with photoreceptors as the primary locus of rhythm generation in amphibians, while in mammals clock activity is most robust in the inner nuclear layer. Melatonin and dopamine serve as signaling molecules to entrain circadian rhythms in the retina and also in other ocular structures. Recent studies have also suggested GABA as an important component of the system that regulates retinal circadian rhythms. These transmitter-driven influences on clock molecules apparently reinforce the autonomous transcription-translation cycling of clock genes. The molecular organization of the retinal clock is similar to what has been reported for the SCN although inter-neural communication among retinal neurons that form the circadian network is apparently weaker than those present in the SCN, and it is more sensitive to genetic disruption than the central brain clock. The melatonin-dopamine system is the signaling pathway that allows the retinal circadian clock to reconfigure retinal circuits to enhance light-adapted cone-mediated visual function during the day and dark-adapted rod-mediated visual signaling at night. Additionally, the retinal circadian clock also controls circadian rhythms in disk shedding and phagocytosis, and possibly intraocular pressure. Emerging experimental data also indicate that circadian clock is also implicated in the pathogenesis of eye disease and compelling experimental data indicate that dysfunction of the retinal circadian system negatively impacts the retina and possibly the cornea and the lens.
Collapse
Affiliation(s)
- Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, 30310 GA, USA.
| |
Collapse
|
87
|
Baidanoff FM, Plano SA, Doctorovich F, Suárez SA, Golombek DA, Chiesa JJ. N-nitrosomelatonin enhances photic synchronization of mammalian circadian rhythms. J Neurochem 2013; 129:60-71. [PMID: 24261470 DOI: 10.1111/jnc.12613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022]
Abstract
Most physiological processes in mammals are synchronized to the daily light:dark cycle by a circadian clock located in the hypothalamic suprachiasmatic nucleus. Signal transduction of light-induced phase advances of the clock is mediated through a neuronal nitric oxide synthase-guanilyl cyclase pathway. We have employed a novel nitric oxide-donor, N-nitrosomelatonin, to enhance the photic synchronization of circadian rhythms in hamsters. The intraperitoneal administration of this drug before a sub-saturating light pulse at circadian time 18 generated a twofold increase of locomotor rhythm phase-advances, having no effect over saturating light pulses. This potentiation was also obtained even when inhibiting suprachiasmatic nitric oxide synthase activity. However, N-nitrosomelatonin had no effect on light-induced phase delays at circadian time 14. The photic-enhancing effects were correlated with an increased suprachiasmatic immunoreactivity of FBJ murine osteosarcoma viral oncogene and period1. Moreover, in vivo nitric oxide release by N-nitrosomelatonin was verified by measuring nitrate and nitrite levels in suprachiasmatic nuclei homogenates. The compound also accelerated resynchronization to an abrupt 6-h advance in the light:dark cycle (but not resynchronization to a 6-h delay). Here, we demonstrate the chronobiotic properties of N-nitrosomelatonin, emphasizing the importance of nitric oxide-mediated transduction for circadian phase advances.
Collapse
Affiliation(s)
- Fernando M Baidanoff
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Bernal, Argentina
| | | | | | | | | | | |
Collapse
|
88
|
Tong X, Yin L. Circadian rhythms in liver physiology and liver diseases. Compr Physiol 2013; 3:917-40. [PMID: 23720334 DOI: 10.1002/cphy.c120017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In mammals, circadian rhythms function to coordinate a diverse panel of physiological processes with environmental conditions such as food and light. As the driving force for circadian rhythmicity, the molecular clock is a self-sustained transcription-translational feedback loop system consisting of transcription factors, epigenetic modulators, kinases/phosphatases, and ubiquitin E3 ligases. The molecular clock exists not only in the suprachiasmatic nuclei of the hypothalamus but also in the peripheral tissues to regulate cellular and physiological function in a tissue-specific manner. The circadian clock system in the liver plays important roles in regulating metabolism and energy homeostasis. Clock gene mutant animals display impaired glucose and lipid metabolism and are susceptible to diet-induced obesity and metabolic dysfunction, providing strong evidence for the connection between the circadian clock and metabolic homeostasis. Circadian-controlled hepatic metabolism is partially achieved by controlling the expression and/or activity of key metabolic enzymes, transcription factors, signaling molecules, and transporters. Reciprocally, intracellular metabolites modulate the molecular clock activity in response to the energy status. Although still at the early stage, circadian clock dysfunction has been implicated in common chronic liver diseases. Circadian dysregulation of lipid metabolism, detoxification, reactive oxygen species (ROS) production, and cell-cycle control might contribute to the onset and progression of liver steatosis, fibrosis, and even carcinogenesis. In summary, these findings call for a comprehensive study of the function and mechanisms of hepatic circadian clock to gain better understanding of liver physiology and diseases.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
89
|
Aramendy M, Seibert S, Treppmann P, Richter K, Ahnert-Hilger G, Albrecht U. Synaptophysin is involved in resetting of the mammalian circadian clock. J Circadian Rhythms 2013; 11:11. [PMID: 24083423 PMCID: PMC3851196 DOI: 10.1186/1740-3391-11-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mammals can adapt to changing light/dark conditions by advancing or delaying their circadian clock phase. Light pulses evoke changes in gene expression and neuronal activity in the suprachiasmatic nuclei (SCN), the central pacemaker of the circadian system. Alterations in neuronal activity are partially mediated by changes in synaptic vesicle (SV) fusion at the presynaptic membrane, which modulates release of neurotransmitters. METHODS Male synaptophysin (Syp) knock-out and littermate control wild type mice were tested in an Aschoff type I resetting paradigm. Additionally, gene expression of cFos, Per1 and Per2 was assessed in the SCN. Finally, complexes between the synaptic vesicle proteins Syp and synaptobrevin (Syb) were studied in order to correlate behavior with protein complexes at synaptic vesicles. RESULTS Here we show that mice lacking Syp, a modulator of neurotransmitter release, are defective in delaying clock phase. In contrast, clock phase advances as well as clock period are normal in Syp-/- knock-out mice. This correlates with the formation of Syp/Syb complexes. CONCLUSIONS Our findings suggest that Syp is involved specifically in the response to a nocturnal light pulse occurring in the early night. It appears that the SV component Syp is critically involved in the delay portion of the resetting mechanism of the circadian clock.
Collapse
Affiliation(s)
- Marie Aramendy
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland.
| | | | | | | | | | | |
Collapse
|
90
|
Richards J, Jeffers LA, All SC, Cheng KY, Gumz ML. Role of Per1 and the mineralocorticoid receptor in the coordinate regulation of αENaC in renal cortical collecting duct cells. Front Physiol 2013; 4:253. [PMID: 24062694 PMCID: PMC3775537 DOI: 10.3389/fphys.2013.00253] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/28/2013] [Indexed: 11/22/2022] Open
Abstract
Renal function and blood pressure (BP) exhibit a circadian pattern of variation, but the molecular mechanism underlying this circadian regulation is not fully understood. We have previously shown that the circadian clock protein Per1 positively regulates the basal and aldosterone-mediated expression of the alpha subunit of the renal epithelial sodium channel (αENaC). The mechanism of this regulation has not been determined however. To further elucidate the mechanism of mineralocorticoid receptor (MR) and Per1 action, site-directed mutagenesis, DNA pull-down assays and chromatin immunoprecipitation (ChIP) methods were used to investigate the coordinate regulation of αENaC by Per1 and MR. Mutation of two circadian response E-boxes in the human αENaC promoter abolished both basal and aldosterone-mediated promoter activity. DNA pull down assays demonstrated the interaction of both MR and Per1 with the E-boxes from the αENaC promoter. These observations were corroborated by ChIP experiments showing increased occupancy of MR and Per1 on an E-box of the αENaC promoter in the presence of aldosterone. This is the first report of an aldosterone-mediated increase in Per1 on a target gene promoter. Taken together, these results demonstrate the novel finding that Per1 and MR mediate the aldosterone response of αENaC through DNA/protein interaction in renal collecting duct cells.
Collapse
Affiliation(s)
- Jacob Richards
- Department of Medicine, University of Florida Gainesville, FL, USA ; Department of Biochemistry and Molecular Biology, University of Florida Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
91
|
Miki T, Chen-Goodspeed M, Zhao Z, Lee CC. Circadian behavior of mice deficient in PER1/PML or PER2/PML. J Circadian Rhythms 2013; 11:9. [PMID: 23984853 PMCID: PMC3765970 DOI: 10.1186/1740-3391-11-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/26/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Our recent studies demonstrate that the murine homolog of the human tumor suppressor promyelocytic leukemia (PML) regulates circadian behavior of mice. To further gather insight into PML's contribution to circadian behavior, we generated two strains of mice deficient in one of the two period (Per) genes and the PML gene, with Per1-/-/Pml-/- and Per2-/-/Pml-/- genotypes. RESULTS Here we report the circadian behavior of these mice based on wheel-running behavioral analysis. In a free-running environment, the Per1-/-/Pml-/- mice maintained circadian rhythm but displayed a significantly shorter period of 22.2 h. In addition, these mice displayed significantly enhanced phase response to a light pulse given at zeitgeber time (ZT) 14 and 22. The Per2-/-/Pml-/- mice lose persistent rhythm when in a free-running environment, as also the case for Per2-/- mice. A transient post-light pulse rhythm seen in the arrhythmic Per2-/- mice was less apparent in Per2-/-/Pml-/- mice. Both the Per1-/-/Pml-/- and Per2-/-/Pml-/- mice displayed a more advanced phase angle of entrainment activity during light-dark cycles than the single gene deficient mice. CONCLUSIONS Beyond merely regulating PER1 and PER2, the current behavioral studies suggest PML has additional roles in mouse circadian behavior.
Collapse
Affiliation(s)
- Takao Miki
- Department of Biochemistry and Molecular Biology, Medical School, University of Texas Health Science Center-Houston, Houston, TX, 77030, USA.
| | | | | | | |
Collapse
|
92
|
Hut RA, Paolucci S, Dor R, Kyriacou CP, Daan S. Latitudinal clines: an evolutionary view on biological rhythms. Proc Biol Sci 2013; 280:20130433. [PMID: 23825204 PMCID: PMC3712436 DOI: 10.1098/rspb.2013.0433] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/03/2013] [Indexed: 11/12/2022] Open
Abstract
Properties of the circadian and annual timing systems are expected to vary systematically with latitude on the basis of different annual light and temperature patterns at higher latitudes, creating specific selection pressures. We review literature with respect to latitudinal clines in circadian phenotypes as well as in polymorphisms of circadian clock genes and their possible association with annual timing. The use of latitudinal (and altitudinal) clines in identifying selective forces acting on biological rhythms is discussed, and we evaluate how these studies can reveal novel molecular and physiological components of these rhythms.
Collapse
Affiliation(s)
- Roelof A Hut
- Chronobiology unit, Centre for Behaviour and Neuroscience, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
93
|
Cheon S, Park N, Cho S, Kim K. Glucocorticoid-mediated Period2 induction delays the phase of circadian rhythm. Nucleic Acids Res 2013; 41:6161-74. [PMID: 23620290 PMCID: PMC3695510 DOI: 10.1093/nar/gkt307] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 11/21/2022] Open
Abstract
Glucocorticoid (GC) signaling synchronizes the circadian rhythm of individual peripheral cells and induces the expression of circadian genes, including Period1 (Per1) and Period2 (Per2). However, no GC response element (GRE) has been reported in the Per2 promoter region. Here we report the molecular mechanisms of Per2 induction by GC signaling and its relevance to the regulation of circadian timing. We found that GC prominently induced Per2 expression and delayed the circadian phase. The overlapping GRE and E-box (GE2) region in the proximal Per2 promoter was responsible for GC-mediated Per2 induction. The GRE in the Per2 promoter was unique in that brain and muscle ARNT-like protein-1 (BMAL1) was essential for GC-induced Per2 expression, whereas other GRE-containing promoters, such as Per1 and mouse mammary tumor virus, responded to dexamethasone in the absence of BMAL1. This specialized regulatory mechanism was mediated by BMAL1-dependent binding of the GC receptor to GRE in Per2 promoter. When Per2 induction was abrogated by the mutation of the GRE or E-box, the circadian oscillation phase failed to be delayed compared with that of the wild-type. Therefore, the current study demonstrates that the rapid Per2 induction mediated by GC is crucial for delaying the circadian rhythm.
Collapse
Affiliation(s)
- Solmi Cheon
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 151-742, Korea, Brain Research Center for the 21st Century Frontier R&D Program in Neuroscience, Seoul 151-742, Korea, Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Department of Physiology, Neurodegeneration Control Research Center, Kyung Hee University School of Medicine, Seoul 130-701, Korea
| | - Noheon Park
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 151-742, Korea, Brain Research Center for the 21st Century Frontier R&D Program in Neuroscience, Seoul 151-742, Korea, Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Department of Physiology, Neurodegeneration Control Research Center, Kyung Hee University School of Medicine, Seoul 130-701, Korea
| | - Sehyung Cho
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 151-742, Korea, Brain Research Center for the 21st Century Frontier R&D Program in Neuroscience, Seoul 151-742, Korea, Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Department of Physiology, Neurodegeneration Control Research Center, Kyung Hee University School of Medicine, Seoul 130-701, Korea
| | - Kyungjin Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 151-742, Korea, Brain Research Center for the 21st Century Frontier R&D Program in Neuroscience, Seoul 151-742, Korea, Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Department of Physiology, Neurodegeneration Control Research Center, Kyung Hee University School of Medicine, Seoul 130-701, Korea
| |
Collapse
|
94
|
Saini C, Liani A, Curie T, Gos P, Kreppel F, Emmenegger Y, Bonacina L, Wolf JP, Poget YA, Franken P, Schibler U. Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks. Genes Dev 2013; 27:1526-36. [PMID: 23824542 PMCID: PMC3713432 DOI: 10.1101/gad.221374.113] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/05/2013] [Indexed: 11/24/2022]
Abstract
The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) in the hypothalamus, which is thought to set the phase of slave oscillators in virtually all body cells. However, due to the lack of appropriate in vivo recording technologies, it has been difficult to study how the SCN synchronizes oscillators in peripheral tissues. Here we describe the real-time recording of bioluminescence emitted by hepatocytes expressing circadian luciferase reporter genes in freely moving mice. The technology employs a device dubbed RT-Biolumicorder, which consists of a cylindrical cage with reflecting conical walls that channel photons toward a photomultiplier tube. The monitoring of circadian liver gene expression revealed that hepatocyte oscillators of SCN-lesioned mice synchronized more rapidly to feeding cycles than hepatocyte clocks of intact mice. Hence, the SCN uses signaling pathways that counteract those of feeding rhythms when their phase is in conflict with its own phase.
Collapse
Affiliation(s)
- Camille Saini
- Department of Molecular Biology, Sciences III, University of Geneva, 1211 Geneva, Switzerland
- National Centre of Competence in Research Frontiers in Genetics, 1211 Geneva, Switzerland
| | - André Liani
- Department of Molecular Biology, Sciences III, University of Geneva, 1211 Geneva, Switzerland
- National Centre of Competence in Research Frontiers in Genetics, 1211 Geneva, Switzerland
| | - Thomas Curie
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pascal Gos
- Department of Molecular Biology, Sciences III, University of Geneva, 1211 Geneva, Switzerland
- National Centre of Competence in Research Frontiers in Genetics, 1211 Geneva, Switzerland
| | - Florian Kreppel
- Department of Gene Therapy, University of Ulm, D-89081 Ulm, Germany
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Luigi Bonacina
- GAP-Biophotonics, University of Geneva, 1211 Geneva, Switzerland
| | - Jean-Pierre Wolf
- GAP-Biophotonics, University of Geneva, 1211 Geneva, Switzerland
| | - Yves-Alain Poget
- Department of Molecular Biology, Sciences III, University of Geneva, 1211 Geneva, Switzerland
- National Centre of Competence in Research Frontiers in Genetics, 1211 Geneva, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ueli Schibler
- Department of Molecular Biology, Sciences III, University of Geneva, 1211 Geneva, Switzerland
- National Centre of Competence in Research Frontiers in Genetics, 1211 Geneva, Switzerland
| |
Collapse
|
95
|
Abstract
Circadian rhythms occur in almost all species and control vital aspects of our physiology, from sleeping and waking to neurotransmitter secretion and cellular metabolism. Epidemiological studies from recent decades have supported a unique role for circadian rhythm in metabolism. As evidenced by individuals working night or rotating shifts, but also by rodent models of circadian arrhythmia, disruption of the circadian cycle is strongly associated with metabolic imbalance. Some genetically engineered mouse models of circadian rhythmicity are obese and show hallmark signs of the metabolic syndrome. Whether these phenotypes are due to the loss of distinct circadian clock genes within a specific tissue versus the disruption of rhythmic physiological activities (such as eating and sleeping) remains a cynosure within the fields of chronobiology and metabolism. Becoming more apparent is that from metabolites to transcription factors, the circadian clock interfaces with metabolism in numerous ways that are essential for maintaining metabolic homeostasis.
Collapse
|
96
|
Ait-Hmyed O, Felder-Schmittbuhl MP, Garcia-Garrido M, Beck S, Seide C, Sothilingam V, Tanimoto N, Seeliger M, Bennis M, Hicks D. Mice lacking Period 1 and Period 2 circadian clock genes exhibit blue cone photoreceptor defects. Eur J Neurosci 2013; 37:1048-60. [PMID: 23351077 DOI: 10.1111/ejn.12103] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 11/08/2012] [Accepted: 11/19/2012] [Indexed: 12/13/2022]
Abstract
Many aspects of retinal physiology are modulated by circadian clocks, but it is unclear whether clock malfunction impinges directly on photoreceptor survival, differentiation or function. Eyes from wild-type (WT) and Period1 (Per1) and Period2 (Per2) mutant mice (Per1(Brdm1) Per2(Brdm1) ) were examined for structural (histology, in vivo imaging), phenotypical (RNA expression, immunohistochemistry) and functional characteristics. Transcriptional levels of selected cone genes [red/green opsin (Opn1mw), blue cone opsin (Opn1sw) and cone arrestin (Arr3)] and one circadian clock gene (RORb) were quantified by real-time polymerase chain reaction. Although there were no changes in general retinal histology or visual responses (electroretinograms) between WT and Per1(Brdm1) Per2(Brdm1) mice, compared with age-matched controls, Per1(Brdm1) Per2(Brdm1) mice showed scattered retinal deformations by fundus inspection. Also, mRNA expression levels and immunostaining of blue cone opsin were significantly reduced in mutant mice. Especially, there was an alteration in the dorsal-ventral patterning of blue cones. Decreased blue cone opsin immunoreactivity was present by early postnatal stages, and remained throughout maturation. General photoreceptor differentiation was retarded in young mutant mice. In conclusion, deletion of both Per1 and Per2 clock genes leads to multiple discrete changes in retina, notably patchy tissue disorganization, reductions in cone opsin mRNA and protein levels, and altered distribution. These data represent the first direct link between Per1 and Per2 clock genes, and cone photoreceptor differentiation and function.
Collapse
Affiliation(s)
- Ouafa Ait-Hmyed
- Department of Neurobiology of Rhythms, CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
The mPer2 clock gene modulates cocaine actions in the mouse circadian system. Behav Brain Res 2013; 243:255-60. [PMID: 23333842 DOI: 10.1016/j.bbr.2013.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 12/28/2022]
Abstract
Cocaine is a potent disruptor of photic and non-photic pathways for circadian entrainment of the master circadian clock of the suprachiasmatic nucleus (SCN). These actions of cocaine likely involve its modulation of molecular (clock gene) components for SCN clock timekeeping. At present, however, the physiological basis of such an interaction is unclear. To address this question, we compared photic and non-photic phase-resetting responses between wild-type (WT) and Per2 mutant mice expressing nonfunctional PER2 protein to systemic and intra-SCN cocaine administrations. In the systemic trials, cocaine was administered i.p. (20 mg/kg) either at midday or prior to a light pulse in the early night to assess its non-photic and photic behavioral phase-resetting actions, respectively. In the intra-SCN trial, cocaine was administered by reverse microdialysis at midday to determine if the SCN is a direct target for its non-photic phase-resetting action. Non-photic phase-advancing responses to i.p. cocaine at midday were significantly (∼3.5-fold) greater in Per2 mutants than WTs. However, the phase-advancing action of intra-SCN cocaine perfusion at midday did not differ between genotypes. In the light pulse trial, Per2 mutants exhibited larger photic phase-delays than did WTs, and the attenuating action of cocaine on this response was proportionately larger than in WTs. These data indicate that the Per2 clock gene is a potent modulator of cocaine's actions in the circadian system. With regard to non-photic phase-resetting, the SCN is confirmed as a direct target of cocaine action; however, Per2 modulation of this effect likely occurs outside of the SCN.
Collapse
|
98
|
Xu CX, Wang C, Krager SL, Bottum KM, Tischkau SA. Aryl hydrocarbon receptor activation attenuates Per1 gene induction and influences circadian clock resetting. Toxicol Sci 2013; 132:368-78. [PMID: 23291558 DOI: 10.1093/toxsci/kfs345] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Light-stimulated adjustment of the circadian clock is an important adaptive physiological response that allows maintenance of behavioral synchrony with solar time. Our previous studies indicate that the aryl hydrocarbon receptor (AhR) agonist 2,3,7,8- tetrachlorodibenzo-p-dioxin attenuates light-induced phase resetting in early night. However, the mechanism of inhibition remains unclear. In this study, we showed that another potent AhR agonist-β-naphthoflavone (BNF)-significantly decreased light-induced phase shifts in wild-type (WT) mice, whereas AhR knockout mice had an enhanced response to light that was unaffected by BNF. Mechanistically, BNF blocked light induction of the Per1 transcript in suprachiasmatic nucleus and liver in WT mice, and BNF blocked forskolin (FSK)-induced Per1 transcripts in Hepa-1c1c7 (c7) cells. An E-box decoy did not affect BNF inhibition of FSK-induced Per1 transcripts in c7 cells. cAMP-response element (CRE)-dependent induction of Per1 promoter activity in response to FSK in combination with phorbol 12-tetradecanoate 13-acetate was suppressed in cells that expressed high levels of AhR (c7) compared with cells lacking functional AhR activity (c12). In addition, the inhibitory effect of BNF on FSK-induced Per1 was dependent on phosphorylation of JNK. Together, these results suggest that AhR activation inhibits light-induced phase resetting through the activation of JNK, negative regulation of CREs in the Per1 promoter, and suppression of Per1.
Collapse
Affiliation(s)
- Can-Xin Xu
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62702, USA
| | | | | | | | | |
Collapse
|
99
|
Abstract
Circadian clocks are endogenous oscillators that drive the rhythmic expression of a broad array of genes that orchestrate metabolism and physiology. Recent evidence indicates that posttranscriptional and posttranslational mechanisms play essential roles in modulating circadian gene expression, particularly for the molecular mechanism of the clock. In contrast to genetic technologies that have long been used to study circadian biology, proteomic approaches have so far been limited and, if applied at all, have used two-dimensional gel electrophoresis (2-DE). Here, we review the proteomics approaches applied to date in the circadian field, and we also discuss the exciting potential of using cutting-edge proteomics technology in circadian biology. Large-scale, quantitative protein abundance measurements will help to understand to what extent the circadian clock drives system wide rhythms of protein abundance downstream of transcription regulation.
Collapse
Affiliation(s)
- Maria S Robles
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | | |
Collapse
|
100
|
Miki T, Matsumoto T, Zhao Z, Lee CC. p53 regulates Period2 expression and the circadian clock. Nat Commun 2013; 4:2444. [PMID: 24051492 PMCID: PMC3798035 DOI: 10.1038/ncomms3444] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/15/2013] [Indexed: 02/06/2023] Open
Abstract
The mechanistic interconnectivity between circadian regulation and the genotoxic stress response remains poorly understood. Here we show that the expression of Period 2 (Per2), a circadian regulator, is directly regulated by p53 binding to a response element in the Per2 promoter. This p53 response element is evolutionarily conserved and overlaps with the E-Box element critical for BMAL1/CLOCK binding and its transcriptional activation of Per2 expression. Our studies reveal that p53 blocks BMAL1/CLOCK binding to the Per2 promoter, leading to repression of Per2 expression. In the suprachiasmatic nucleus (SCN), p53 expression and its binding to the Per2 promoter are under circadian control. Per2 expression in the SCN is altered by p53 deficiency or stabilization of p53 by Nutlin-3. Behaviourally, p53⁻/⁻ mice have a shorter period length that lacks stability, and they exhibit impaired photo-entrainment to a light pulse under a free-running state. Our studies demonstrate that p53 modulates mouse circadian behaviour.
Collapse
Affiliation(s)
- Takao Miki
- Department of Biochemistry and Molecular Biology, Medical School, University of Texas Health Science Center-Houston, Houston, Texas 77030
| | - Tomoko Matsumoto
- Department of Biochemistry and Molecular Biology, Medical School, University of Texas Health Science Center-Houston, Houston, Texas 77030
| | - Zhaoyang Zhao
- Department of Biochemistry and Molecular Biology, Medical School, University of Texas Health Science Center-Houston, Houston, Texas 77030
| | - Cheng Chi Lee
- Department of Biochemistry and Molecular Biology, Medical School, University of Texas Health Science Center-Houston, Houston, Texas 77030
| |
Collapse
|