51
|
Li Y, Liem Y, Dall'Ara E, Sullivan N, Ahmed H, Blom A, Sharif M. Subchondral bone microarchitecture and mineral density in human osteoarthritis and osteoporosis: A regional and compartmental analysis. J Orthop Res 2021; 39:2568-2580. [PMID: 33751647 DOI: 10.1002/jor.25018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) and osteoporosis (OP) are historically considered to be inversely correlated but there may be an overlap between the pathophysiology of the two diseases. This study aimed to investigate the subchondral bone microarchitecture and matrix mineralization, and the association between them in OA and OP in relation to the degree of cartilage degeneration. Fifty-six osteochondral plugs were collected from 16 OA femoral heads. They were graded on a regional basis according to the stages of cartilage degeneration, as evaluated by a new macroscopic and a modified microscopic grading system. Twenty-one plugs were collected from seven femoral heads with OP. Plugs were scanned by microcomputed tomography and the microarchitectural and mineral properties were obtained for both subchondral plate and trabecular bone. Microarchitecture and material and apparent densities of subchondral bone in OP were similar to regions with early cartilage degeneration but different from regions with advanced cartilage degradation in OA femoral heads. Subchondral trabecular bone was more mineralized than subchondral plate in both OP and OA, and this compartmental difference varied by severity of cartilage degradation. Furthermore, the relationship among trabecular bone volume fraction, tissue mineral density, and apparent bone density was similar in OP and different stages of OA. Subchondral bone microarchitecture and mineral properties in OP are different from OA in a regionalized manner in relation to stages of cartilage degeneration. Both regional and compartmental differences at structural, material, and cellular levels need to be studied to understand the transition of OA subchondral bone from being osteoporotic to sclerotic.
Collapse
Affiliation(s)
- Yunfei Li
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yulia Liem
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism and Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Niall Sullivan
- Department of Trauma and Orthopaedics, Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Haroon Ahmed
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashley Blom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Mohammed Sharif
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
52
|
Zhou X, Cao H, Wang M, Zou J, Wu W. Moderate-intensity treadmill running relieves motion-induced post-traumatic osteoarthritis mice by up-regulating the expression of lncRNA H19. Biomed Eng Online 2021; 20:111. [PMID: 34794451 PMCID: PMC8600697 DOI: 10.1186/s12938-021-00949-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/03/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The purpose of this study was to explore whether moderate-intensity exercise can alleviate motion-induced post-traumatic osteoarthritis (PTOA) and the expression change of lncRNA H19 during this progression. METHODS Twenty-week-old male C57BL/6 mice were randomly divided into five groups: model control group (MC group, n = 6), treadmill model group (M group, n = 6), rehabilitation control group (RC group, n = 6), treadmill model + rehabilitation training group (M + R group, n = 6) and treadmill model + convalescent group (M + C group, n = 6). Paraffin sections were used to observe the pathological changes in the mouse knee joint in each group. A micro-CT was used to scan the knee joint to obtain the morphological indexes of the tibial plateau bone. Real-time PCR was used to detect the mRNA levels of inflammatory factors, synthetic and catabolic factors in cartilage. RESULTS After high-intensity exercise for 4 weeks, the inflammation and catabolism of the mouse knee cartilage were enhanced, and the anabolism was weakened. Further study showed that these results were partially reversed after 4-week moderate-intensity training. The results of hematoxylin-eosin staining confirmed this finding. Meanwhile, high-intensity exercise reduced the expression of lncRNA H19 in cartilage, while the expression of lncRNA H19 increased after 4 weeks of moderate-intensity exercise. CONCLUSION High-intensity treadmill running can cause injury to the knee cartilage in C57BL/6 mice which leads to PTOA and a decrease of lncRNA H19 expression in cartilage. Moderate-intensity exercise can relieve PTOA and partially reverse lncRNA H19 expression.
Collapse
Affiliation(s)
- Xuchang Zhou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Miao Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Wei Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
53
|
Subchondral Bone Microarchitectural and Mineral Properties and Expression of Key Degradative Proteinases by Chondrocytes in Human Hip Osteoarthritis. Biomedicines 2021; 9:biomedicines9111593. [PMID: 34829822 PMCID: PMC8615609 DOI: 10.3390/biomedicines9111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
Background: The purpose of this study was to investigate the relationship between the expression of key degradative enzymes by chondrocytes and the microarchitectural and mineral properties of subchondral bone across different stages of cartilage degradation in human hip osteoarthritis (OA). Methods: Osteochondral samples at different stages of cartilage degradation were collected from 16 femoral heads with OA. Osteochondral samples with normal cartilage were collected from seven femoral heads with osteoporosis. Microcomputed tomography was used for the investigation of subchondral bone microarchitecture and mineral densities. Immunohistochemistry was used to study the expression and distribution of MMP13 and ADAMTS4 in cartilage. Results: The microarchitecture and mineral properties of the subchondral plate and trabecular bone in OA varied with the severity of the degradation of the overlying cartilage. Chondrocytes expressing MMP13 and ADAMTS4 are mainly located in the upper zone(s) of cartilage regardless of the histopathological grades. The zonal expression of these enzymes in OA (i.e., the percentage of positive cells in the superficial, middle, and deep zones), rather than their overall expression (the percentage of positive cells in the full thickness of the cartilage), exhibited significant variation in relation to the severity of cartilage degradation. The associations between the subchondral bone properties and zonal and overall expression of these enzymes in the cartilage were generally weak or nonsignificant. Conclusions: Phenotypic changes in chondrocytes and remodelling of subchondral bone proceed at different rates throughout the process of cartilage degradation. Biological influences are more important for cartilage degradation at early stages, while biomechanical damage to the compromised tissue may outrun the phenotypic change of chondrocytes and is critical in the advanced stages.
Collapse
|
54
|
Yajun W, Jin C, Zhengrong G, Chao F, Yan H, Weizong W, Xiaoqun L, Qirong Z, Huiwen C, Hao Z, Jiawei G, Xinchen Z, Shihao S, Sicheng W, Xiao C, Jiacan S. Betaine Attenuates Osteoarthritis by Inhibiting Osteoclastogenesis and Angiogenesis in Subchondral Bone. Front Pharmacol 2021; 12:723988. [PMID: 34658862 PMCID: PMC8511433 DOI: 10.3389/fphar.2021.723988] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/13/2021] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis with no effective therapy. Subchondral bone and overlying articular cartilage are closely associated and function as “osteo-chondral unit” in the joint. Abnormal mechanical load leads to activated osteoclast activity and increased bone resorption in the subchondral bone, which is implicated in the onset of OA pathogenesis. Thus, inhibiting subchondral bone osteoclast activation could prevent OA onset. Betaine, isolated from the Lycii Radicis Cortex (LRC), has been demonstrated to exert anti-inflammatory, antifibrotic and antiangiogenic properties. Here, we evaluated the effects of betaine on anterior cruciate ligament transection (ACLT)-induced OA mice. We observed that betaine decreased the number of matrix metalloproteinase 13 (MMP-13)-positive and collagen X (Col X)-positive cells, prevented articular cartilage proteoglycan loss and lowered the OARSI score. Betaine decreased the thickness of calcified cartilage and increased the expression level of lubricin. Moreover, betaine normalized uncoupled subchondral bone remodeling as defined by lowered trabecular pattern factor (Tb.pf) and increased subchondral bone plate thickness (SBP). Additionally, aberrant angiogenesis in subchondral bone was blunted by betaine treatment. Mechanistically, we demonstrated that betaine suppressed osteoclastogenesis in vitro by inhibiting reactive oxygen species (ROS) production and subsequent mitogen-activated protein kinase (MAPK) signaling. These data demonstrated that betaine attenuated OA progression by inhibiting hyperactivated osteoclastogenesis and maintaining microarchitecture in subchondral bone.
Collapse
Affiliation(s)
- Wang Yajun
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Cui Jin
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Gu Zhengrong
- Department of Orthopedics, Luodian Hospital, Shanghai, China
| | - Fang Chao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hu Yan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Weng Weizong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Xiaoqun
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhou Qirong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen Huiwen
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhang Hao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guo Jiawei
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhuang Xinchen
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng Shihao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wang Sicheng
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics, Zhongye Hospital, Shanghai, China
| | - Chen Xiao
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Su Jiacan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China.,Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China
| |
Collapse
|
55
|
Collagen orientation probed by polarized Raman spectra can serve as differential diagnosis indicator between different grades of meniscus degeneration. Sci Rep 2021; 11:20299. [PMID: 34645874 PMCID: PMC8514572 DOI: 10.1038/s41598-021-99569-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022] Open
Abstract
The purpose of the present study was to analyze normal and degenerated menisci with Raman methodology on thin sections of formalin fixed paraffin embedding tissues and to correlate the Raman findings with the grade of meniscus degeneration. Menisci (n = 27) were removed from human knee joints after total knee replacement or meniscectomy. Following routine histopathological analysis to determine the grade of meniscal lesions obtained from healthy and degenerated formaline fixed paraffin embedded (FFPE) meniscal sections, Raman polarization approach was applied to evaluate the orientation of collagen fibrils in different levels of the same 5 μm thick FFPE meniscal tissue sections, used for histopathological assessment. We collected Raman spectra in two different polarization geometries, v-HH and v-VV, and calculated the mean value of the v-HH/v-VV intensity ratio of two Raman bands, sensitive and non-sensitive to the molecular orientation. The collagen specific amide I band at 1665 cm-1, has the higher sensitivity dependence on the Raman polarization. The mean values of ratio v-HH/v-VV of the 1665 cm-1 peak intensity was significantly higher in healthy, mean ± SD: 2.56 ± 0.46, compared to degenerated menisci, mean ± SD: 1.85 ± 0.42 (p = 0.0014). The mean values of v-HH/v-VV intensity ratio were 2.18 and 1.50 for low and high degenerated menisci, respectively (p < 0.0001). The difference of peak intensities in the two laser polarizations is decreased in the degenerated meniscus; this difference is diminishing as the degeneration increases. The v-HH/v-VV ratio was also of significant difference in low as compared to control and high grade meniscus lesions (p = 0.036 and p < 0.0001, respectively) offering valuable information for the approach of its biology and function. In the present study we showed that the 5 μm thick sections can be used for Raman analysis of meniscal tissue with great reliability, in terms of sensitivity, specificity, false-negative and false-positive results. Our data introduce the interesting hypothesis that compact portable Raman microscopy on tissue sections can be used intra-operatively for fast diagnosis and hence, accurate procedure design in the operating room.
Collapse
|
56
|
Ziemian SN, Witkowski AM, Wright TM, Otero M, van der Meulen MCH. Early inhibition of subchondral bone remodeling slows load-induced posttraumatic osteoarthritis development in mice. J Bone Miner Res 2021; 36:2027-2038. [PMID: 34155675 PMCID: PMC8815449 DOI: 10.1002/jbmr.4397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 01/13/2023]
Abstract
Posttraumatic osteoarthritis (PTOA) is associated with abnormal and increased subchondral bone remodeling. Inhibiting altered remodeling immediately following joint damage can slow PTOA progression. Clinically, however, inhibiting remodeling when significant joint damage is already present has minimal effects in slowing further disease progression. We sought to determine the treatment window following PTOA initiation in which inhibiting remodeling can attenuate progression of joint damage. We hypothesized that the most effective treatment would be to inhibit remodeling immediately after PTOA initiation. We used an animal model in which a single bout of mechanical loading was applied to the left tibia of 26-week-old male C57Bl/6 mice at a peak load of 9 N to initiate load-induced PTOA development. Following loading, we inhibited bone remodeling using daily alendronate (ALN) treatment administered either immediately or with 1 or 2 weeks' delay up to 3 or 6 weeks post-loading. A vehicle (VEH) treatment group controlled for daily injections. Cartilage and subchondral bone morphology and osteophyte development were analyzed and compared among treatment groups. Inhibiting remodeling using ALN immediately after load-induced PTOA initiation reduced cartilage degeneration, slowed osteophyte formation, and preserved subchondral bone volume compared to VEH treatment. Delaying the inhibition of bone remodeling at 1 or 2 weeks similarly attenuated cartilage degeneration at 6 weeks, but did not slow the development of osteoarthritis (OA)-related changes in the subchondral bone, including osteophyte formation and subchondral bone erosions. Immediate inhibition of subchondral bone remodeling was most effective in slowing PTOA progression across the entire joint, indicating that abnormal bone remodeling within the first week following PTOA initiation played a critical role in subsequent cartilage damage, subchondral bone changes, and overall joint degeneration. These results highlight the potential of anti-resorptive drugs as preemptive therapies for limiting PTOA development after joint injury, rather than as disease-modifying therapies after joint damage is established. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sophia N Ziemian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ana M Witkowski
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Timothy M Wright
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,HSS Research Institute, Hospital for Special Surgery, New York, New York, USA.,Sibley School of Mechanical & Aerospace Engineering, Cornell University, New York, New York, USA
| |
Collapse
|
57
|
Bedingfield SK, Colazo JM, Di Francesco M, Yu F, Liu DD, Di Francesco V, Himmel LE, Gupta MK, Cho H, Hasty KA, Decuzzi P, Duvall CL. Top-Down Fabricated microPlates for Prolonged, Intra-articular Matrix Metalloproteinase 13 siRNA Nanocarrier Delivery to Reduce Post-traumatic Osteoarthritis. ACS NANO 2021; 15:14475-14491. [PMID: 34409835 PMCID: PMC9074946 DOI: 10.1021/acsnano.1c04005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) associated with joint injury triggers a degenerative cycle of matrix destruction and inflammatory signaling, leading to pain and loss of function. Here, prolonged RNA interference (RNAi) of matrix metalloproteinase 13 (MMP13) is tested as a PTOA disease modifying therapy. MMP13 is upregulated in PTOA and degrades the key cartilage structural protein type II collagen. Short interfering RNA (siRNA) loaded nanoparticles (siNPs) were encapsulated in shape-defined poly(lactic-co-glycolic acid) (PLGA) based microPlates (μPLs) to formulate siNP-μPLs that maintained siNPs in the joint significantly longer than delivery of free siNPs. Treatment with siNP-μPLs against MMP13 (siMMP13-μPLs) in a mechanical load-induced mouse model of PTOA maintained potent (65-75%) MMP13 gene expression knockdown and reduced MMP13 protein production in joint tissues throughout a 28-day study. MMP13 silencing reduced PTOA articular cartilage degradation/fibrillation, meniscal deterioration, synovial hyperplasia, osteophytes, and pro-inflammatory gene expression, supporting the therapeutic potential of long-lasting siMMP13-μPL therapy for PTOA.
Collapse
Affiliation(s)
- Sean K Bedingfield
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Juan M. Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States; Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Danielle D. Liu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States; Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Valentina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Lauren E. Himmel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Hongsik Cho
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center-Campbell Clinic, Memphis, Tennessee 38104, United States; Research 151, VA Medical Center, Memphis, Tennessee 38104, United States
| | - Karen A. Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center-Campbell Clinic, Memphis, Tennessee 38104, United States; Research 151, VA Medical Center, Memphis, Tennessee 38104, United States
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
58
|
Maerz T, Newton MD, Fleischer M, Hartner SE, Gawronski K, Junginger L, Baker KC. Traumatic joint injury induces acute catabolic bone turnover concurrent with articular cartilage damage in a rat model of posttraumatic osteoarthritis. J Orthop Res 2021; 39:1965-1976. [PMID: 33146410 DOI: 10.1002/jor.24903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/18/2020] [Accepted: 10/31/2020] [Indexed: 02/04/2023]
Abstract
Assess acute alterations in bone turnover, microstructure, and histomorphometry following noninvasive anterior cruciate ligament rupture (ACLR). Twelve female Lewis rats were randomized to receive noninvasive ACLR or Sham loading (n = 6/group). In vivo μCT was performed at 3, 7, 10, and 14 days postinjury to quantify compartment-dependent subchondral (SCB) and epiphyseal trabecular bone remodeling. Near-infrared (NIR) molecular imaging was used to measure in vivo bone anabolism (800 CW BoneTag) and catabolism (Cat K 680 FAST). Metaphyseal bone remodeling and articular cartilage morphology was quantified using ex vivo μCT and contrast-enhanced µCT, respectively. Calcein-based dynamic histomorphometry was used to quantify bone formation. OARSI scoring was used to assess joint degeneration, and osteoclast number was quantified on TRAP stained-sections. ACLR induced acute catabolic bone remodeling in subchondral, epiphyseal, and metaphyseal compartments. Thinning of medial femoral condyle (MFC) SCB was observed as early as 7 days postinjury, while lateral femoral condyles (LFCs) exhibited SCB gains. Trabecular thinning was observed in MFC epiphyseal bone, with minimal changes to LFC. NIR imaging demonstrated immediate and sustained reduction of bone anabolism (~15%-20%), and a ~32% increase in bone catabolism at 14 days, compared to contralateral limbs. These findings were corroborated by reduced bone formation rate and increased osteoclast numbers, observed histologically. ACLR-injured femora had significantly elevated OARSI score, cartilage thickness, and cartilage surface deviation. ACL rupture induces immediate and sustained reduction of bone anabolism and overactivation of bone catabolism, with mild-to-moderate articular cartilage damage at 14 days postinjury.
Collapse
Affiliation(s)
- Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael D Newton
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan, USA
| | | | - Samantha E Hartner
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan, USA
| | - Karissa Gawronski
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Lucas Junginger
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin C Baker
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan, USA
- Department of Orthopaedic Surgery, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| |
Collapse
|
59
|
Bedingfield SK, Colazo JM, Yu F, Liu DD, Jackson MA, Himmel LE, Cho H, Crofford LJ, Hasty KA, Duvall CL. Amelioration of post-traumatic osteoarthritis via nanoparticle depots delivering small interfering RNA to damaged cartilage. Nat Biomed Eng 2021; 5:1069-1083. [PMID: 34413494 PMCID: PMC8497446 DOI: 10.1038/s41551-021-00780-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/10/2021] [Indexed: 02/01/2023]
Abstract
The progression of osteoarthritis is associated with inflammation triggered by the enzymatic degradation of extracellular matrix in injured cartilage. Here we show that a locally injected depot of nanoparticles functionalized with an antibody targeting type II collagen and carrying small interfering RNA targeting the matrix metalloproteinase 13 gene (Mmp13), which breaks down type II collagen, substantially reduced the expression of MMP13 and protected cartilage integrity and overall joint structure in acute and severe mouse models of post-traumatic osteoarthritis. MMP13 inhibition suppressed clusters of genes associated with tissue restructuring, angiogenesis, innate immune responses and proteolysis. We also show that intra-articular injections of the nanoparticles led to greater reductions in disease progression than either a single injection or weekly injections of the steroid methylprednisolone. Sustained drug retention by targeting collagen in the damaged extracellular matrix of osteoarthritic cartilage may also be an effective strategy for the treatment of osteoarthritis with other disease-modifying drugs.
Collapse
Affiliation(s)
- Sean K Bedingfield
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Danielle D Liu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Meredith A Jackson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Lauren E Himmel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hongsik Cho
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center-Campbell Clinic, Memphis, TN, USA
- Department of Veterans Affairs Medical Center, Memphis, TN, USA
| | - Leslie J Crofford
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karen A Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center-Campbell Clinic, Memphis, TN, USA
- Department of Veterans Affairs Medical Center, Memphis, TN, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
60
|
Hopkins T, Wright KT, Kuiper NJ, Roberts S, Jermin P, Gallacher P, Kuiper JH. An In Vitro System to Study the Effect of Subchondral Bone Health on Articular Cartilage Repair in Humans. Cells 2021; 10:1903. [PMID: 34440671 PMCID: PMC8392168 DOI: 10.3390/cells10081903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Chondrocyte-based cartilage repair strategies, such as articular chondrocyte implantation, are widely used, but few studies addressed the communication between native subchondral bone cells and the transplanted chondrocytes. An indirect co-culture model was developed, representing a chondrocyte/scaffold-construct repair of a cartilage defect adjoining bone, where the bone could have varying degrees of degeneration. Human BM-MSCs were isolated from two areas of subchondral bone in each of five osteochondral tissue specimens from five patients undergoing knee arthroplasty. These two areas underlaid the macroscopically and histologically best and worst cartilage, representing early and late-stage OA, respectively. BM-MSCs were co-cultured with normal chondrocytes suspended in agarose, with the two cell types separated by a porous membrane. After 0, 7, 14 and 21 days, chondrocyte-agarose scaffolds were assessed by gene expression and biochemical analyses, and the abundance of selected proteins in conditioned media was assessed by ELISA. Co-culture with late-OA BM-MSCs resulted in a reduction in GAG deposition and a decreased expression of genes encoding matrix-specific proteins (COL2A1 and ACAN), compared to culturing with early OA BM-MSCs. The concentration of TGF-β1 was significantly higher in the early OA conditioned media. The results of this study have clinical implications for cartilage repair, suggesting that the health of the subchondral bone may influence the outcomes of chondrocyte-based repair strategies.
Collapse
Affiliation(s)
- Timothy Hopkins
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; (K.T.W.); (N.J.K.); (S.R.); (P.J.); (P.G.); (J.H.K.)
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire SY10 7AG, UK
| | - Karina T. Wright
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; (K.T.W.); (N.J.K.); (S.R.); (P.J.); (P.G.); (J.H.K.)
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire SY10 7AG, UK
| | - Nicola J. Kuiper
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; (K.T.W.); (N.J.K.); (S.R.); (P.J.); (P.G.); (J.H.K.)
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire SY10 7AG, UK
| | - Sally Roberts
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; (K.T.W.); (N.J.K.); (S.R.); (P.J.); (P.G.); (J.H.K.)
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire SY10 7AG, UK
| | - Paul Jermin
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; (K.T.W.); (N.J.K.); (S.R.); (P.J.); (P.G.); (J.H.K.)
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire SY10 7AG, UK
| | - Peter Gallacher
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; (K.T.W.); (N.J.K.); (S.R.); (P.J.); (P.G.); (J.H.K.)
| | - Jan Herman Kuiper
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; (K.T.W.); (N.J.K.); (S.R.); (P.J.); (P.G.); (J.H.K.)
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire SY10 7AG, UK
| |
Collapse
|
61
|
Li B, Chen K, Qian N, Huang P, Hu F, Ding T, Xu X, Zhou Q, Chen B, Deng L, Ye T, Guo L. Baicalein alleviates osteoarthritis by protecting subchondral bone, inhibiting angiogenesis and synovial proliferation. J Cell Mol Med 2021; 25:5283-5294. [PMID: 33939310 PMCID: PMC8178278 DOI: 10.1111/jcmm.16538] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is one of the most frequent chronic joint diseases with the increasing life expectancy. The main characteristics of the disease are loss of articular cartilage, subchondral bone sclerosis and synovium inflammation. Physical measures, drug therapy and surgery are the mainstay of treatments for OA, whereas drug therapies are mainly limited to analgesics, glucocorticoids, hyaluronic acids and some alternative therapies because of single therapeutic target of OA joints. Baicalein, a traditional Chinese medicine extracted from Scutellaria baicalensis Georgi, has been widely used in anti‐inflammatory therapies. Previous studies revealed that baicalein could alleviate cartilage degeneration effectively by acting on articular chondrocytes. However, the mechanisms involved in baicalein‐mediated protection of the OA are not completely understood in consideration of integrality of arthrosis. In this study, we found that intra‐articular injection of baicalein ameliorated subchondral bone remodelling. Further studies showed that baicalein could decrease the number of differentiated osteoblasts by inhibiting pre‐osteoblasts proliferation and promoting pre‐osteoblasts apoptosis. In addition, baicalein impaired angiogenesis of endothelial cells and inhibited proliferation of synovial cells. Taken together, these results implicated that baicalein might be an effective medicine for treating OA by regulating multiple targets.
Collapse
Affiliation(s)
- Bin Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaizhe Chen
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Niandong Qian
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangqiong Hu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Ding
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Xu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhou
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Chen
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianwen Ye
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lei Guo
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
62
|
Dai Y, Lu J, Li F, Yang G, Ji G, Wang F. Changes in cartilage and subchondral bone in a growing rabbit experimental model of developmental trochlear dysplasia of the knee. Connect Tissue Res 2021; 62:299-312. [PMID: 31829044 DOI: 10.1080/03008207.2019.1697245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Trochlear dysplasia is one of the most frequent lower extremities deformities. Aim of this research was to investigate the changes in cartilage and subchondral bone of trochlea after patellar dislocation in growing rabbits. Materials and Methods: Ninety-six knees from 48 one-month-old rabbits were divided into two groups (experimental, control). Lateral patellar dislocation was established in the experimental group and distal femurs were collected at 4, 8, 12 and 24-week time points, respectively. General examination and histological observations were conducted to research the anatomical structure of the trochlear cartilage and subchondral bone. Structural parameters of trochlear subchondral bone were measured by MicroCT. Subsequently, the expression of TRPV4, collagen II and MMP-13 in cartilage were detected by western blot and RT-PCR analysis, respectively.Results: Subchondral bone loss was found in experimental group from 4 weeks after patellar dislocation, accompanied by increased TRAP-positive osteoclasts in subchondral bone. The trochlear dysplasia model was well established from 8 weeks after patellar dislocation. In addition, degeneration of cartilage was found from 8 weeks, accompanied by decreased expression of mechanically sensitive TRPV4 and collagen II, and increased expression of MMP-13.Conclusions: This study proved that trochlear dysplasia can be caused by patellar dislocation in growing rabbits, accompanied by significant subchondral bone loss. What is more, this study also shows that degenerative cartilage changes occur in the patellar dislocation model and become aggravated with time, accompanied by decreased TRPV4 and collagen II, but increased MMP-13.
Collapse
Affiliation(s)
- Yike Dai
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Jiangfeng Lu
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Faquan Li
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Guangmin Yang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Gang Ji
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Fei Wang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
63
|
Cheng W, Gan D, Hu Y, Zheng Z, Zeng Q, Li L, Wang X, Zhang Y, Xu Z, Qin L, Zhang P. The effect and mechanism of QufengZhitong capsule for the treatment of osteoarthritis in a rat model. J Orthop Translat 2021; 28:65-73. [PMID: 33738239 PMCID: PMC7932897 DOI: 10.1016/j.jot.2020.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the therapeutic effects and mechanism of Qufeng Zhitong (QFZT)capsule for the treatment of osteoarthritis (OA) in a rat model. METHODS 8-10-week-old male Sprague-Dawley rats were randomly divided into the sham group (vehicle-treated), OA group (vehicle-treated), high-dose, middle-dose, low-dose of QFZT capsule-treated groups. OA was induced by transecting the medial collateral ligament and the medial meniscus in the right limb. The Sprague-Dawley rats were treated daily for 12 weeks with different concentrations of QFZT capsule: low (QFZT-L, 128 mg/kg), medium (QFZT-M, 256.5 mg/kg), and high (QFZT-H, 513 mg/kg) by gavage administration for a period of 4 and 12 weeks respectively. Vehicle-treated rats served as controls and administered 0.5% Carboxymethyl Cellulose Sodium (CMC-Na) by gavage on the same schedule. Weekly measurement of dynamic weight-bearing capacity, grip strength, joint swelling was were performed to monitor the progression of disease for 3 weeks. After euthanasia, the knee joints were articular cartilage changes. Pro-inflammatory gene expression in synovial joints was examined to assess the bone and cartilage changes. Gene expression of pro-inflammatory cytokines in synovial joints was measured to determine the therapeutic effect of QFZT. RESULTS 2 weeks after the treatment, the grip strength and weight-bearing capacity were significantly increased in the QFZT-M and QFZT-H groups, compared with the OA group. The joint widths were decreased significantly in the QFZT-L and QFZT- H groups, compared with the OA group as well. The mRNA level in the articular cartilage of knee joint of IL-1β in the QFZT-L group and IL-6 in the QFZT-H group was significantly suppressed at week 4, compared with the OA group. The radiology score was significantly decreased in the QFZT-H group compared with the OA group 12 weeks after treatment. Furthermore, the rats on QFZT treatment decreased the progression of OA, which was characterised by decreased cartilage degradation. However, the bone changes were no different in OA group and QFZT groups. CONCLUSION In a rat model of OA, QFZT capsule shows the tendency to reduce the destruction of cartilage, joint swelling and bone erosion which provides new evidence for the therapeutic potential of QFZT capsule in the treatment of OA in clinics. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE The QFZT capsule can improve the symptoms of the OA in rodent animal rats by attenuating pain and retarding cartilage damage. This study indicated that the QFZT capsule has the potential clinical application of in OA therapy.
Collapse
Affiliation(s)
- Wenxiang Cheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guandong, 518055, China
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, Guandong, 518055, China
| | - Donghao Gan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guandong, 518055, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Yiping Hu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guandong, 518055, China
| | - Zhengtan Zheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guandong, 518055, China
| | - Qingqiang Zeng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guandong, 518055, China
| | - Ling Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guandong, 518055, China
| | - Xinluan Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guandong, 518055, China
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, 999077, Hong Kong, China
| | - Yong Zhang
- Department of Rheumatology, Shenzhen Pingle Orthopaedic Hospital, Shenzhen, Guangdong, 518000, China
| | - Zhanwang Xu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Ling Qin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guandong, 518055, China
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, 999077, Hong Kong, China
| | - Peng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guandong, 518055, China
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, Guandong, 518055, China
| |
Collapse
|
64
|
Luna M, Guss JD, Vasquez-Bolanos LS, Alepuz AJ, Dornevil S, Strong J, Alabi D, Shi Q, Pannellini T, Otero M, Brito IL, van der Meulen MCH, Goldring SR, Hernandez CJ. Obesity and load-induced posttraumatic osteoarthritis in the absence of fracture or surgical trauma. J Orthop Res 2021; 39:1007-1016. [PMID: 32658313 PMCID: PMC7855296 DOI: 10.1002/jor.24799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 02/04/2023]
Abstract
Osteoarthritis is increasingly viewed as a heterogeneous disease with multiple phenotypic subgroups. Obesity enhances joint degeneration in mouse models of posttraumatic osteoarthritis (PTOA). Most models of PTOA involve damage to surrounding tissues caused by surgery/fracture; it is unclear if obesity enhances cartilage degeneration in the absence of surgery/fracture. We used a nonsurgical animal model of load-induced PTOA to determine the effect of obesity on cartilage degeneration 2 weeks after loading. Cartilage degeneration was caused by a single bout of cyclic tibial loading at either a high or moderate load magnitude in adult male mice with severe obesity (C57Bl6/J + high-fat diet), mild obesity (toll-like receptor 5 deficient mouse [TLR5KO]), or normal adiposity (C57Bl6/J mice + normal diet and TLR5KO mice in which obesity was prevented by manipulation of the gut microbiome). Two weeks after loading, cartilage degeneration occurred in limbs loaded at a high magnitude, as determined by OARSI scores (P < .001). However, the severity of cartilage damage did not differ among groups. Osteophyte width and synovitis of loaded limbs did not differ among groups. Furthermore, obesity did not enhance cartilage damage in limbs evaluated 6 weeks after loading. Constituents of the gut microbiota differed among groups. Our findings suggest that, in the absence of surgery/fracture, obesity may not influence cartilage loss after a single mechanical insult, suggesting that either damage to surrounding tissues or repeated mechanical insult is necessary for obesity to influence cartilage degeneration. These findings further illustrate heterogeneity in PTOA phenotypes and complex interactions between mechanical/metabolic factors in cartilage loss.
Collapse
Affiliation(s)
- Marysol Luna
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Jason D. Guss
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Adrian J. Alepuz
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Sophie Dornevil
- College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Jasmin Strong
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Denise Alabi
- College of Arts and Sciences, Cornell University, Ithaca, NY, USA
| | - Qiaojuan Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Marjolein C. H. van der Meulen
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Hospital for Special Surgery, New York, NY, USA
| | | | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
65
|
Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis 2021; 80:413-422. [PMID: 33158879 PMCID: PMC7958096 DOI: 10.1136/annrheumdis-2020-218089] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease in the elderly. Although OA has been considered as primarily a disease of the articular cartilage, the participation of subchondral bone in the pathogenesis of OA has attracted increasing attention. This review summarises the microstructural and histopathological changes in subchondral bone during OA progression that are due, at the cellular level, to changes in the interactions among osteocytes, osteoblasts, osteoclasts (OCs), endothelial cells and sensory neurons. Therefore, we focus on how pathological cellular interactions in the subchondral bone microenvironment promote subchondral bone destruction at different stages of OA progression. In addition, the limited amount of research on the communication between OCs in subchondral bone and chondrocytes (CCs) in articular cartilage during OA progression is reviewed. We propose the concept of 'OC-CC crosstalk' and describe the various pathways by which the two cell types might interact. Based on the 'OC-CC crosstalk', we elaborate potential therapeutic strategies for the treatment of OA, including restoring abnormal subchondral bone remodelling and blocking the bridge-subchondral type H vessels. Finally, the review summarises the current understanding of how the subchondral bone microenvironment is related to OA pain and describes potential interventions to reduce OA pain by targeting the subchondral bone microenvironment.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
66
|
Bahamondes MA, Valdés C, Moncada G. Effect of omega-3 on painful symptoms of patients with osteoarthritis of the synovial joints: systematic review and meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:297-306. [PMID: 34303654 DOI: 10.1016/j.oooo.2021.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The aim of this study was to determine the effect of omega-3 on the painful symptomatology of osteoarthritis (OA) in synovial joints. STUDY DESIGN An electronic/manual search was conducted (2004-2019). Using pain as a primary outcome and stiffness/function and swelling as secondary outcomes, based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria, Consolidated Standards of Reporting Trials (CONSORT) reporting quality, and Cochrane/RoB-2 risk of bias assessment. Data were processed using RevMan v5.2 (Cochrane Collaboration). RESULTS Six randomized controlled trials were selected. The study population included 454 patients with OA. In 4 studies the pain in the intervention group presented significant pain reduction compared with the control group (mean difference = 22.89; 95% confidence interval, 3.37-42.42). Studies did not stablish the effective anti-inflammatory dose. The number of studies on stiffness/function and inflammation was low (n = 2). The evidence and degree of recommendation was 2B. The randomized controlled trials presented high clinical and methodological variability. CONCLUSION Omega-3 can significantly reduce painful symptoms in patients suffering from OA in synovial joints. However, the limited number of studies, range of doses, intervention periods, baseline characteristics of patients, and asymmetry in reporting bias, combined with the heterogeneity in the combined effect of the studies, offer low-quality evidence on which clinical guidance cannot be based.
Collapse
Affiliation(s)
| | - Constanza Valdés
- Temporomandibular Disorders, Dental School, Facultad de Odontología, Universidad de Los Andes, Santiago, Chile
| | - Gustavo Moncada
- Oral Rehabilitation, Dental School, Facultad de Odontología, Universidad de Los Andes, Santiago, Chile.
| |
Collapse
|
67
|
Eriksen EF, Shabestari M, Ghouri A, Conaghan PG. Bisphosphonates as a treatment modality in osteoarthritis. Bone 2021; 143:115352. [PMID: 32247817 DOI: 10.1016/j.bone.2020.115352] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/15/2020] [Accepted: 03/31/2020] [Indexed: 01/09/2023]
Abstract
Osteoarthritis (OA) is affecting large proportions of the population worldwide. So far, no effective disease modifying drug has been developed for this disease, limiting the therapeutic options to pain medications, physiotherapy and ultimately surgical approaches, mainly joint implant surgery. In vitro and animal studies have demonstrated that bisphosphonates have the potential to become effective modalities for the treatment of OA. This group of pharmacological agents modulates crucial aspects of OA pathogenesis (subchondral bone turnover and loss, bone marrow edema formation, cartilage degeneration and synovitis), and have shown clear efficacy in animal models of OA. Human studies have, however, so far been disappointing with only one of six clinical studies showing clear short-term efficacy. Possible reasons for these discrepancies will be discussed.
Collapse
Affiliation(s)
- Erik Fink Eriksen
- Spesialistsenteret Pilestredet Park, Pilestredet Park 12A, NO-0176 Oslo, Norway; Institute for Clinical Dentistry, University of Oslo, Geitmyrsveien 71, 0455 Oslo, Norway.
| | - Maziar Shabestari
- Oral Health Centre of Expertise in Eastern Norway, Sørkedalsveien 10A, 0369 Oslo, Norway; Vinterbro Tannlegesenter, Sjøskogenveien 7, 1407 Vinterbro, Norway
| | - Asim Ghouri
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|
68
|
Yang J, Li Y, Liu Y, Zhang Q, Zhang Q, Chen J, Yan X, Yuan X. Role of the SDF-1/CXCR4 signaling pathway in cartilage and subchondral bone in temporomandibular joint osteoarthritis induced by overloaded functional orthopedics in rats. J Orthop Surg Res 2020; 15:330. [PMID: 32795379 PMCID: PMC7427765 DOI: 10.1186/s13018-020-01860-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To (i) use a mandibular advancement appliance in rats to investigate the role of the stromal cell-derived factor/CXC receptor 4 (SDF-1/CXCR4) signaling pathway in temporomandibular joint osteoarthritis (TMJ OA) induced by overloaded functional orthopedics (OFO) and (ii) provide a cellular and molecular basis for efficacious treatment of skeletal class-II malocclusion and avoidance of TMJ OA. METHOD Male Sprague-Dawley rats (6 weeks) were divided randomly into control + normal saline (NS), EXP + ADM3100 (SDF-1 antagonist), EXP + NS, and control + ADM3100 groups. Changes in articular cartilage and subchondral bone after TMJ OA in these four groups were observed by hematoxylin and eosin (H&E), immunofluorescence double staining (IDS), Safranin-O staining, immunohistochemical (IHC) staining, real-time polymerase chain reaction, and micro-computed tomography at 2, 4, and 8 weeks. RESULTS OFO led to increased expression of SDF-1, CXCR4, and matrix metalloproteinase (MMP) 13 and decreased expression of collagen II. The thickness of the hypertrophic cartilage layer was reduced at 4 weeks in the EXP + NS group, and damage to subchondral bone was observed at 2 weeks. Using ADM3100 to inhibit SDF-1 signaling could attenuate expression of MMP13, cartilage damage, and osteoblast differentiation. IDS showed that the areas of expression of SDF-1 and OSX in subchondral bone overlapped. CONCLUSIONS Overloaded functional orthopedics (OFO) induced TMJ OA. The destruction of subchondral bone in TMJ OA caused by OFO occurred before damage to cartilage. SDF-1/CXCR4 may induce the osteogenic differentiation and cause cartilage degradation in TMJ OA caused by OFO.
Collapse
Affiliation(s)
- Jing Yang
- Department of Orthodontics, Affiliated Hospital of Qingdao University, Qingdao University, Jiangsu Road No. 16, Qingdao, 266000, Shandong, People's Republic of China
- Qingdao Stomatological Hospital, Qingdao, Shandong, People's Republic of China
| | - Yazhen Li
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ying Liu
- Second Affiliated Hospital of Shandong University, Shandong University, Jinan, Shandong, People's Republic of China
| | - Qiang Zhang
- Department of Orthodontics, Affiliated Hospital of Qingdao University, Qingdao University, Jiangsu Road No. 16, Qingdao, 266000, Shandong, People's Republic of China
| | - Qi Zhang
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Junbo Chen
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xiao Yan
- Department of Orthodontics, Affiliated Hospital of Qingdao University, Qingdao University, Jiangsu Road No. 16, Qingdao, 266000, Shandong, People's Republic of China.
| | - Xiao Yuan
- Department of Orthodontics, Affiliated Hospital of Qingdao University, Qingdao University, Jiangsu Road No. 16, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
69
|
Zhang J, Pan J, Jing W. Motivating role of type H vessels in bone regeneration. Cell Prolif 2020; 53:e12874. [PMID: 33448495 PMCID: PMC7507571 DOI: 10.1111/cpr.12874] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coupling between angiogenesis and osteogenesis has an important role in both normal bone injury repair and successful application of tissue‐engineered bone for bone defect repair. Type H blood vessels are specialized microvascular components that are closely related to the speed of bone healing. Interactions between type H endothelial cells and osteoblasts, and high expression of CD31 and EMCN render the environment surrounding these blood vessels rich in factors conducive to osteogenesis and promote the coupling of angiogenesis and osteogenesis. Type H vessels are mainly distributed in the metaphysis of bone and densely surrounded by Runx2+ and Osterix+ osteoprogenitors. Several other factors, including hypoxia‐inducible factor‐1α, Notch, platelet‐derived growth factor type BB, and slit guidance ligand 3 are involved in the coupling of type H vessel formation and osteogenesis. In this review, we summarize the identification and distribution of type H vessels and describe the mechanism for type H vessel‐mediated modulation of osteogenesis. Type H vessels provide new insights for detection of the molecular and cellular mechanisms that underlie the crosstalk between angiogenesis and osteogenesis. As a result, more feasible therapeutic approaches for treatment of bone defects by targeting type H vessels may be applied in the future.
Collapse
Affiliation(s)
- Jiankang Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
70
|
Hu Y, Wu H, Xu T, Wang Y, Qin H, Yao Z, Chen P, Xie Y, Ji Z, Yang K, Chai Y, Zhang X, Yu B, Cui Z. Defactinib attenuates osteoarthritis by inhibiting positive feedback loop between H-type vessels and MSCs in subchondral bone. J Orthop Translat 2020; 24:12-22. [PMID: 32518750 PMCID: PMC7261948 DOI: 10.1016/j.jot.2020.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/24/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Abnormal bone formation in subchondral bone resulting from uncoupled bone remodeling is considered a central feature in osteoarthritis (OA) pathogenesis. H-type vessels can couple angiogenesis and osteogenesis. We previously revealed that elevated H-type vessels in subchondral bone were correlated with OA and focal adhesion kinase (FAK) in MSCs is critical for H-type vessel formation in osteoporosis. The aim of this study was to explore the correlation between H-type vessels and MSCs in OA pathogenesis through regulation of H-type vessel formation using defactinib (an FAK inhibitor). Methods In vivo: 3-month-old male C57BL/6J (WT) mice were randomly divided into three groups: sham controls, vehicle-treated ACLT mice, and defactinib-treated ACLT mice (25 mg/kg, intraperitoneally weekly). In vitro: we explored the role of conditioned medium (CM) of MSCs from subchondral bone of different groups on the angiogenesis of endothelial cells (ECs). Flow cytometry, Western blotting, ELISA, real time (RT)-PCR, immunostaining, CT-based microangiography, and bone micro-CT (μCT) were used to detect changes in relative cells and tissues. Results This study demonstrated that inhibition of H-type vessels with defactinib alleviated OA by inhibiting H-type vessel-linked MSCs in subchondral bone. During OA pathogenesis, H-type vessels and MSCs formed a positive feedback loop contributing to abnormal bone formation in subchondral bone. Elevated H-type vessels provided indispensable MSCs for abnormal bone formation in subchondral bone. Flow cytometry and immunostaining results confirmed that the amount of MSCs in subchondral bone was obviously higher in vehicle-treated ACLT mice than that in sham controls and defactinib-treated ACLT mice. In vitro, p-FAK in MSCs from subchondral bone of vehicle-treated ALCT mice increased significantly relative to other groups. Further, the CM from MSCs of vehicle-treated ACLT mice enhanced angiogenesis of ECs through FAK-Grb2-MAPK-linked VEGF expression. Conclusions Our results demonstrate that defactinib inhibits OA by suppressing the positive feedback loop between H-type vessels and MSCs in subchondral bone. The translational potential of this article Our results provide a mechanistic rationale for the use of defactinib as an effective candidate for OA treatment.
Collapse
Affiliation(s)
- Yanjun Hu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hangtian Wu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ting Xu
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yutian Wang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hanjun Qin
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zilong Yao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Peisheng Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, China
| | - Yongheng Xie
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhiguo Ji
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kaifan Yang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu Chai
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Department of Orthopedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xianrong Zhang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bin Yu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhuang Cui
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
71
|
Wu H, Xu T, Chen Z, Wang Y, Li K, Chen PS, Yao Z, Su J, Cheng C, Wu X, Zhang H, Chai Y, Zhang X, Hu Y, Yu B, Cui Z. Specific inhibition of FAK signaling attenuates subchondral bone deterioration and articular cartilage degeneration during osteoarthritis pathogenesis. J Cell Physiol 2020; 235:8653-8666. [PMID: 32324278 DOI: 10.1002/jcp.29709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA), a disease of the entire joint, is characterized by abnormal bone remodeling and coalescent degradation of articular cartilage. We have previously found that elevated levels of H-type vessels in subchondral bone correlate with OA and that focal adhesion kinase (FAK) is critical for H-type vessel formation in osteoporosis. However, the potential role of FAK in OA remains unexplored. Here, we demonstrate that the p-FAK level was dramatically elevated in subchondral bone following anterior cruciate ligament transection (ACLT) in rats. Specific inhibition of FAK signaling with Y15 in subchondral bone resulted in the suppression of subchondral bone deterioration and this effect was mediated by H-type vessel-induced ectopic bone formation. Further, articular cartilage degeneration was also alleviated after Y15 treatment. In vitro, the p-FAK level was significantly elevated in mesenchymal stem cells (MSCs) from vehicle-treated ACLT rats as compared to that in MSCs from sham controls and Y15-treated ACLT rats. Elevated p-FAK level in MSCs promoted vascular endothelial growth factor (VEGF) expression, as demonstrated from the high VEGF level in the blood, subchondral bone, and conditioned medium (CM) of MSCs from vehicle-treated ACLT rats. The CM of MSCs from vehicle-treated ACLT rats might promote the angiogenesis of endothelial cells and the catabolic response of chondrocytes through the FAK-growth factor receptor-bound protein 2-mitogen-activated protein kinase-mediated expression of VEGF. The effect of the CM from MSCs of Y15-treated ACLT rats or that treated with a VEGF-neutralizing antibody on vessel formation and the catabolic response was lowered. Thus, the specific inhibition of FAK signaling may be a promising avenue for the prevention or early treatment of OA.
Collapse
Affiliation(s)
- Hangtian Wu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Xu
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhigang Chen
- Department of Orthopaedics and Traumatology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yutian Wang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kaiqun Li
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Pei-Sheng Chen
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian, China
| | - Zilong Yao
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianwen Su
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Caiyu Cheng
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohu Wu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongan Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Chai
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Xianrong Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanjun Hu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuang Cui
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
72
|
Das Gupta S, Finnilä MA, Karhula SS, Kauppinen S, Joukainen A, Kröger H, Korhonen RK, Thambyah A, Rieppo L, Saarakkala S. Raman microspectroscopic analysis of the tissue-specific composition of the human osteochondral junction in osteoarthritis: A pilot study. Acta Biomater 2020; 106:145-155. [PMID: 32081781 DOI: 10.1016/j.actbio.2020.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
This study investigates the influence of osteoarthritis (OA) disease severity on the bio-composition of the osteochondral junction at the human tibial plateau using Raman microspectroscopy. We specifically aim to analyze the spatial composition of mineralized osteochondral tissues, i.e., calcified cartilage (CC) and subchondral bone plate (SBP) from unfixed, hydrated specimens. We hypothesize that the mineralization of CC and SBP decreases in advanced OA. Twenty-eight cylindrical osteochondral samples (d = 4 mm) from tibial plateaus of seven cadaveric donors were harvested and sorted into three groups following histopathological grading: healthy (n = 5), early OA (n = 8), and advanced OA (n = 15). Raman spectra were subjected to multivariate cluster analyses to identify different tissues. Finally, the tissue-specific composition was analyzed, and the impact of OA was statistically evaluated with linear mixed models. Cluster analyses of Raman spectra successfully distinguished CC and SBP as well as a tidemark region and uncalcified cartilage. CC was found to be more mineralized and the mineral was more crystalline compared with SBP. Both tissues exhibited similar compositional changes as a function of histopathological OA severity. In early OA, the mineralization tends to increase, and the mineral contains fewer carbonate substitutions. Compared with early OA, mineral crystals are rich in carbonate while the overall mineralization decreases in advanced OA. This Raman spectroscopic study advances the methodology for investigating the complex osteochondral junction from native tissue. The developed methodology can be used to elucidate detailed tissue-specific changes in the chemical composition with advancing OA. STATEMENT OF SIGNIFICANCE: In this study, Raman microspectroscopy was utilized to investigate the influence of osteoarthritic degeneration on the tissue-specific biochemical composition of the human osteochondral junction. Multivariate cluster analyses allowed us to characterize subtle compositional changes in the calcified cartilage and subchondral bone plate as well as in the tidemark region. The compositional differences found between the calcified cartilage and subchondral bone plate in both organic and mineral phases will serve as critical benchmark parameters when designing biomaterials for osteochondral repair. We found tissue-specific changes in the mineralization and carbonate substitution as a function of histopathological OA severity. Our developed methodology can be used to investigate the metabolic changes in the osteochondral junction associated with osteoarthritis.
Collapse
|
73
|
吴 元, 曾 羿, 李 明, 刘 渊, 杨 静, 沈 彬. [Expressions of Renin, angiotensin converting enzyme, angiotensin receptor 1, and angiotensin receptor 2 in synovial tissue of osteoarthritis at different stages]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:362-366. [PMID: 32174084 PMCID: PMC8171654 DOI: 10.7507/1002-1892.201904065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 01/02/2020] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To study the expressions of Renin, angiotensin converting enzyme (ACE), angiotensin receptor 1 (AT1R), and AT2R in synovial tissue of osteoarthritis (OA) at different stages. METHODS The patients who were treated with upper knee amputation because of trauma or total knee arthroplasty for OA between January 2018 and December 2018 were enrolled. Among them, 32 patients who met the selection criteria were included in the study. According to the Kellgren-Lawrence (K-L) X-ray classification, they were allocated to normal synovial group (group A, n=9), moderate OA synovial group (group B, n=11, K-L level 3), and advanced OA synovial group (group C, n=12, K-L level 4). The relative expressions of Renin, ACE, AT1R, and AT2R mRNAs and proteins were detected by real-time fluorescence quantitative PCR (qRT-PCR) and Western blot. RESULTS The relative expressions of Renin, ACE, and AT1R mRNAs and proteins were significantly higher in group B and group C than in group A ( P<0.05). The relative expressions of ACE and AT1R mRNAs and proteins and Renin protein were significantly higher in group C than in group B ( P<0.05). However, the relative expressions of AT2R mRNA and protein were lower in group B and group C than in group A ( P<0.05), and in group C than in group B ( P<0.05). CONCLUSION The expressions of Renin, ACE, and AT1R in synovial tissue of osteoarthritis significantly increase as the K-L level increased, and the expression of AT2R decreases. Renin, ACE, AT1R, and AT2R have a certain degree of correlation with the development of OA.
Collapse
Affiliation(s)
- 元刚 吴
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 羿 曾
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 明阳 李
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 渊 刘
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 静 杨
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 彬 沈
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
74
|
Chu L, Liu X, He Z, Han X, Yan M, Qu X, Li X, Yu Z. Articular Cartilage Degradation and Aberrant Subchondral Bone Remodeling in Patients with Osteoarthritis and Osteoporosis. J Bone Miner Res 2020; 35:505-515. [PMID: 31692085 DOI: 10.1002/jbmr.3909] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/06/2019] [Accepted: 10/23/2019] [Indexed: 01/19/2023]
Abstract
Osteoarthritis (OA) and osteoporosis (OP) are two skeletal disorders associated with joint structures. Occasionally, OA and OP occur in the same patient. However, the effect of OP changes on OA progression in patients with osteoporotic OA (OP-OA) has not been reported, especially the potential association between subchondral bone and articular cartilage. Thus we investigated the alterations in the microstructure, biomechanical properties, and remodeling of subchondral bone as well as their association with cartilage damage in the hip joint of patients with OP-OA. Thirty-nine femoral head specimens were obtained from patients who underwent total hip arthroplasty (OA group, n = 19; OP-OA group, n = 20), and healthy specimens from cadaver donors were used (control group, n = 10). The microstructure and biomechanical properties of subchondral bone were evaluated by micro-computed tomography and micro-finite-element analysis. Histology, histomorphometric measurements, and immunohistochemistry were used to assess subchondral bone remodeling and cartilage damage. Linear regression analysis was performed to elucidate the relationship between subchondral bone and articular cartilage. In the subchondral bone of the OP-OA group, compared with that of the OA group, aberrant bone remodeling leads to an inferior microstructure and worsening biomechanical properties, potentially affecting transmission of loading stress from the cartilage to the subchondral bone, and then resulting in accelerated OA progression in patients with OP-OA. The results indicate that changes in subchondral bone could affect OA development and the improvement in subchondral bone with bone-metabolism agents may help mitigate OA progression when OP and OA coexist in the same patients. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Linyang Chu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, the Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Zihao He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuequan Han
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengning Yan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaofeng Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, the Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
75
|
Mukherjee S, Nazemi M, Jonkers I, Geris L. Use of Computational Modeling to Study Joint Degeneration: A Review. Front Bioeng Biotechnol 2020; 8:93. [PMID: 32185167 PMCID: PMC7058554 DOI: 10.3389/fbioe.2020.00093] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA), a degenerative joint disease, is the most common chronic condition of the joints, which cannot be prevented effectively. Computational modeling of joint degradation allows to estimate the patient-specific progression of OA, which can aid clinicians to estimate the most suitable time window for surgical intervention in osteoarthritic patients. This paper gives an overview of the different approaches used to model different aspects of joint degeneration, thereby focusing mostly on the knee joint. The paper starts by discussing how OA affects the different components of the joint and how these are accounted for in the models. Subsequently, it discusses the different modeling approaches that can be used to answer questions related to OA etiology, progression and treatment. These models are ordered based on their underlying assumptions and technologies: musculoskeletal models, Finite Element models, (gene) regulatory models, multiscale models and data-driven models (artificial intelligence/machine learning). Finally, it is concluded that in the future, efforts should be made to integrate the different modeling techniques into a more robust computational framework that should not only be efficient to predict OA progression but also easily allow a patient’s individualized risk assessment as screening tool for use in clinical practice.
Collapse
Affiliation(s)
- Satanik Mukherjee
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Majid Nazemi
- GIGA in silico Medicine, University of Liège, Liège, Belgium
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium.,GIGA in silico Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
76
|
Renin-angiotensin system in osteoarthritis: A new potential therapy. Int Immunopharmacol 2019; 75:105796. [PMID: 31408841 DOI: 10.1016/j.intimp.2019.105796] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is one of the most common chronic joint diseases. However, the mechanism remains unclear. The traditional renin-angiotensin system (RAS) is an important system for regulating homeostasis and controlling balance. In recent years, RAS-related components have played an important role in the occurrence of OA. The purpose of this review is to summarize the research results of RAS-related components that are associated with OA. This study systematically searched e-medical databases such as PubMed, Embase, Medline, and Web of Science. The search targets included English publications describing the effects of RAS-related components in OA, including the role of renin, angiotensin-converting enzyme (ACE), Angiotensin II (Ang II), and angiotensin receptor (ATR). Additionally, this study summarizes the potential pathways for RAS-related components to intervene in OA. This study found that RAS-related components including renin, ACE, Ang II, AT1R and AT2R are involved in inflammation and chondrocyte hypertrophy in OA. RAS is involved in signaling pathways including the NF-κB, JNK, VEGFR/Tie-2, and the Axna2/Axna2R axis ones, which may be potential targets for the treatment of OA. Although there are few studies on RAS in the field of OA, the pathogenic effect of RAS-related components is still an important topic in OA treatment, and great progress may be made in this aspect in future studies.
Collapse
|
77
|
Li Y, Mu W, Xu B, Ren J, Wahafu T, Wuermanbieke S, Ma H, Gao H, Liu Y, Zhang K, Amat A, Cao L. Artesunate, an Anti-Malaria Agent, Attenuates Experimental Osteoarthritis by Inhibiting Bone Resorption and CD31 hiEmcn hi Vessel Formation in Subchondral Bone. Front Pharmacol 2019; 10:685. [PMID: 31258481 PMCID: PMC6587439 DOI: 10.3389/fphar.2019.00685] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common and debilitating joint disease worldwide without interventions available to reverse its progression. Artesunate (ART), an anti-malaria agent, possesses diverse biological activities, including the inhibition of osteoclastogenesis and angiogenesis in various cells, but its role in subchondral bone during OA progression is not known. Here, we explored the curative effects of ART on the pathogenesis of OA in anterior cruciate ligament transection (ACLT) mice models. We found that ART attenuated articular cartilage degeneration, defined by lowered histologic scoring of OA and retarded calcification of the cartilage zone. Moreover, ART improved the expression of lubricin and aggrecan and reduced the expression of collagen X (Col X) and matrix metalloproteinase-13 (MMP-13). In parallel, ART normalized abnormal subchondral bone remodeling by maintaining bone volume fraction (BV/TV) and subchondral bone plate thickness (SBP Th) and reducing trabecular pattern factor (Tb.pf) compared to the vehicle-treated mice. Our results indicated that ART suppressed osteoclastic bone resorption through regulating RANKL-OPG system, restored coupled bone remodeling by indirectly inhibiting TGF-β/Smad2/3 signaling. Additionally, ART abrogated CD31hiEmcnhi vessel formation via downregulating the expression of vascular endothelial growth factor (VEGF) and angiogenin-1 in subchondral bone. In conclusion, ART attenuates ACLT-induced OA by blocking bone resorption and CD31hiEmcnhi vessel formation in subchondral bone, indicating that this may be a new therapeutic alternative for OA.
Collapse
Affiliation(s)
- Yicheng Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenbo Mu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Boyong Xu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiangdong Ren
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tuerhongjiang Wahafu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shalitanati Wuermanbieke
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hairong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hongwei Gao
- School of Life Sciences, Ludong University, Jinan, China
| | - Yang Liu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Keyuan Zhang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Abdusami Amat
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
78
|
Contribution of Infrapatellar Fat Pad and Synovial Membrane to Knee Osteoarthritis Pain. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6390182. [PMID: 31049352 PMCID: PMC6462341 DOI: 10.1155/2019/6390182] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is the most common form of joint disease and a major cause of pain and disability in the adult population. Interestingly, there are patients with symptomatic OA displaying pain, while patients with asymptomatic OA that do not experience pain but show radiographic signs of joint damage. Pain is a complex experience integrating sensory, affective, and cognitive processes related to several peripheral and central nociceptive factors besides inflammation. During the last years, the role of infrapatellar fat pad (IFP), other than the synovial membrane, has been investigated as a potential source of pain in OA. Interestingly, new findings suggest that IFP and synovial membrane might act as a functional unit in OA pathogenesis and pain. The present review discuss the role of IFP and synovial membrane in the development of OA, with a particular focus on pain onset and the possible involved mediators that may play a role in OA pathology and pain mechanisms. Inflammation of IFP and synovial membrane may drive peripheral and central sensitization in KOA. Since sensitization is associated with pain severity in knee OA and may potentially contribute to the transition from acute to chronic, persistent pain in knee OA, preventing sensitization would be a potentially effective and novel means of preventing worsening of pain in knee OA.
Collapse
|
79
|
Lu M, Wang J, Tang F, Min L, Zhou Y, Zhang W, Tu C. A three-dimensional printed porous implant combined with bone grafting following curettage of a subchondral giant cell tumour of the proximal tibia: a case report. BMC Surg 2019; 19:29. [PMID: 30819160 PMCID: PMC6396545 DOI: 10.1186/s12893-019-0491-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/19/2019] [Indexed: 02/05/2023] Open
Abstract
Background Subchondral bone is commonly affected in cases of giant cell tumour (GCT) of the proximal tibia. Numerous studies have stated that retaining a sufficient subchondral bone layer could decrease the possibilities of postoperative degenerative changes and mechanical failure of the knee joint. However, the most commonly used methods of cement packing only or cement packing combined bone grafting have some limitations regarding the protection of subchondral bone after surgery. Our paper describes our attempt to reconstruct a tumorous defect associated with the subchondral area in the proximal tibia with a three-dimensional (3D)-printed porous implant combined with bone grafting and our evaluation of the short-term outcomes. Case presentation A 42-year-old man with a Campanacci grade II GCT visited our institution for initial assessment. Radiographs showed a tumour located at the epiphyseal part of the proximal tibia, and had invaded the subchondral area. Considering that the residual subchondral bone had to be protected, we used an autograft to ensure a high integration rate between the graft and host subchondral bone. We also used three-dimensional (3D) printing technology to design and fabricate a personalized porous implant to mechanically support the graft and subchondral area and help avoid degenerative changes and mechanical failure. At the last follow-up at 29 months postoperatively, the patient had satisfactory limb function and no further damage was seen to the subchondral area and articular surface. Conclusions The 3D-printed porous implant combined bone grafting may be a feasible option in the reconstruction of defects that are close to the subchondral area following extensive intracurettage of GCTs. Moreover, it can result in good postoperative function and low complication rates. However, consistent follow-up is required to clarify its long-term outcomes.
Collapse
Affiliation(s)
- Minxun Lu
- Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, 610041, People's Republic of China
| | - Jie Wang
- Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, 610041, People's Republic of China
| | - Fan Tang
- Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, 610041, People's Republic of China
| | - Li Min
- Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, 610041, People's Republic of China
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, 610041, People's Republic of China
| | - Wenli Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, 610041, People's Republic of China
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
80
|
Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12. Bone Res 2019; 7:5. [PMID: 30792936 PMCID: PMC6381187 DOI: 10.1038/s41413-018-0041-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 01/05/2023] Open
Abstract
Increasing evidences show that aberrant subchondral bone remodeling plays an important role in the development of osteoarthritis (OA). However, how subchondral bone formation is activated and the mechanism by which increased subchondral bone turnover promotes cartilage degeneration during OA remains unclear. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) pathway is activated in subchondral bone preosteoblasts (Osterix+) from OA patients and mice. Constitutive activation of mTORC1 in preosteoblasts by deletion of the mTORC1 upstream inhibitor, tuberous sclerosis 1, induced aberrant subchondral bone formation, and sclerosis with little-to-no effects on articular cartilage integrity, but accelerated post-traumatic OA development in mice. In contrast, inhibition of mTORC1 in preosteoblasts by disruption of Raptor (mTORC1-specific component) reduced subchondral bone formation and cartilage degeneration, and attenuated post-traumatic OA in mice. Mechanistically, mTORC1 activation promoted preosteoblast expansion and Cxcl12 secretion, which induced subchondral bone remodeling and cartilage degeneration during OA. A Cxcl12-neutralizing antibody reduced cartilage degeneration and alleviated OA in mice. Altogether, these findings demonstrate that mTORC1 activation in subchondral preosteoblasts is not sufficient to induce OA, but can induce aberrant subchondral bone formation and secrete of Cxcl12 to accelerate disease progression following surgical destabilization of the joint. Pharmaceutical inhibition of the pathway presents a promising therapeutic approach for OA treatment.
Collapse
|
81
|
Shu CC, Flannery CR, Little CB, Melrose J. Catabolism of Fibromodulin in Developmental Rudiment and Pathologic Articular Cartilage Demonstrates Novel Roles for MMP-13 and ADAMTS-4 in C-terminal Processing of SLRPs. Int J Mol Sci 2019; 20:ijms20030579. [PMID: 30700002 PMCID: PMC6386837 DOI: 10.3390/ijms20030579] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 01/27/2023] Open
Abstract
Background: Cartilage regeneration requires a balance of anabolic and catabolic processes. Aim: To examine the susceptibility of fibromodulin (FMOD) and lumican (LUM) to degradation by MMP-13, ADAMTS-4 and ADAMTS-5, the three major degradative proteinases in articular cartilage, in cartilage development and in osteoarthritis (OA). Methods: Immunolocalization of FMOD and LUM in fetal foot and adult knee cartilages using an FMOD matrix metalloprotease (MMP)-13 neoepitope antibody (TsYG11) and C-terminal anti-FMOD (PR184) and anti-LUM (PR353) antibodies. The in vitro digestion of knee cartilage with MMP-13, A Disintegrin and Metalloprotease with Thrompospondin motifs (ADAMTS)-4 and ADAMTS-5, to assess whether FMOD and LUM fragments observed in Western blots of total knee replacement specimens could be generated. Normal ovine articular cartilage explants were cultured with interleukin (IL)-1 and Oncostatin-M (OSM) ± PGE3162689, a broad spectrum MMP inhibitor, to assess FMOD, LUM and collagen degradation. Results and Discussion: FMOD and LUM were immunolocalized in metatarsal and phalangeal fetal rudiment cartilages and growth plates. Antibody TsYG11 localized MMP-13-cleaved FMOD in the hypertrophic chondrocytes of the metatarsal growth plates. FMOD was more prominently localized in the superficial cartilage of normal and fibrillated zones in OA cartilage. TsYG11-positive FMOD was located deep in the cartilage samples. Ab TsYG11 identified FMOD fragmentation in Western blots of normal and fibrillated cartilage extracts and total knee replacement cartilage. The C-terminal anti-FMOD, Ab PR-184, failed to identify FMOD fragmentation due to C-terminal processing. The C-terminal LUM, Ab PR-353, identified three LUM fragments in OA cartilages. In vitro digestion of human knee cartilage with MMP-13, ADAMTS-4 and ADAMTS-5 generated FMOD fragments of 54, 45 and 32 kDa similar to in blots of OA cartilage; LUM was less susceptible to fragmentation. Ab PR-353 detected N-terminally processed LUM fragments of 39, 38 and 22 kDa in 65–80-year-old OA knee replacement cartilage. FMOD and LUM were differentially processed in MMP-13, ADAMTS-4 and ADAMTS-5 digestions. FMOD was susceptible to degradation by MMP-13, ADAMTS-4 and to a lesser extent by ADAMTS-5; however, LUM was not. MMP-13-cleaved FMOD in metatarsal and phalangeal fetal rudiment and growth plate cartilages suggested roles in skeletogenesis and OA pathogenesis. Explant cultures of ovine cartilage stimulated with IL-1/OSM ± PGE3162689 displayed GAG loss on day 5 due to ADAMTS activity. However, by day 12, the activation of proMMPs occurred as well as the degradation of FMOD and collagen. These changes were inhibited by PGE3162689, partly explaining the FMOD fragments seen in OA and the potential therapeutic utility of PGE3162689.
Collapse
Affiliation(s)
- Cindy C Shu
- Raymond Purves Research Laboratory, Institute of Bone & Joint Research, North Sydney Area Health Authority, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| | - Carl R Flannery
- Bioventus LLC, 4721 Emperor Blvd., Suite 100, Durham, NC 27703, USA.
| | - Christopher B Little
- Raymond Purves Research Laboratory, Institute of Bone & Joint Research, North Sydney Area Health Authority, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
- Sydney Medical School, Northern, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| | - James Melrose
- Raymond Purves Research Laboratory, Institute of Bone & Joint Research, North Sydney Area Health Authority, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
- Sydney Medical School, Northern, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2033, Australia.
| |
Collapse
|
82
|
An Update on the Emerging Role of Resistin on the Pathogenesis of Osteoarthritis. Mediators Inflamm 2019; 2019:1532164. [PMID: 30809105 PMCID: PMC6369476 DOI: 10.1155/2019/1532164] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/19/2018] [Indexed: 12/19/2022] Open
Abstract
Background Resistin may be involved in the pathogenesis of osteoarthritis (OA), but a systematic understanding of the role of resistin in OA is lacking. Methods We reviewed studies that evaluated the role of resistin in OA. The expression levels of resistin in vitro experiments and OA/rheumatoid arthritis (RA) patients were analyzed. We also studied potential resistin receptors and the signaling pathways that these receptors activate, ultimately leading to cartilage degeneration. Results Resistin levels in both the serum and synovial fluid were higher in OA and RA patients than in healthy subjects. Overall, resistin levels are much higher in serum than in synovial fluid. In human cartilage, resistin induces the expression of proinflammatory factors such as degradative enzymes, leading to the inhibition of cartilage matrix synthesis, perhaps by binding to Toll-like receptor 4 and the adenylyl cyclase-associated protein 1 receptor, which then activates the p38-mitogen-activated phosphate kinase, protein kinase A–cyclic AMP, nuclear factor-κB, and C/enhancer-binding protein β signaling pathways. Conclusion Resistin levels are higher in OA patients than in healthy controls; however, the precise role of resistin in the pathogenesis of OA needs to be studied further. Resistin may be a novel therapeutic target in OA in the future.
Collapse
|
83
|
Li W, Zhao S, Yang H, Zhang C, Kang Q, Deng J, Xu Y, Ding Y, Li S. Potential Novel Prediction of TMJ-OA: MiR-140-5p Regulates Inflammation Through Smad/TGF-β Signaling. Front Pharmacol 2019; 10:15. [PMID: 30728776 PMCID: PMC6351446 DOI: 10.3389/fphar.2019.00015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/07/2019] [Indexed: 01/10/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ-OA), mainly exhibit extracellular matrix loss and condylar cartilage degradation, is the most common chronic and degenerative maxillofacial osteoarthritis; however, no efficient therapy for TMJ-OA exists due to the poor understanding of its pathological progression. MicroRNA (miR)-140-5p is a novel non-coding microRNAs (miRNAs) that expressed in osteoarthritis specifically. To investigate the molecular mechanisms of miR-140-5p in TMJ-OA, primary mandibular condylar chondrocytes (MCCs) from C57BL/6N mice were treated with interleukins (IL)-1β or transfected with miR-140-5p mimics or inhibitors, respectively. The expression of matrix metallopeptidase (MMP)-13, miR-140-5p, nuclear factor (NF)-kB, Smad3 and transforming growth factor (TGF)-β3 were examined by western blotting or quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The interaction between the potential binding sequence of miR-140-5p and the 3'-untranslated region (3'UTR) of Smad3 mRNA was testified by dual-luciferase assay. Small Interfering RNA of Smad3 (Si-Smad3) was utilized to further identify the role of Smad3 mediated by miR-140-5p. The data showed MMP13, miR-140-5p and NF-kB increased significantly in response to IL-1β inflammatory response in MCCs, meanwhile, Smad3 and TGF-β3 reduced markedly. Moreover, transfection of miR-140-5p mimics significantly suppressed the expression of Smad3 and TGF-β3 in MCCs, while miR-140-5p inhibitors acted in a converse manner. As the luciferase reporter of Smad3 mRNA observed active interaction with miR-140-5p, Smad3 was identified as a direct target of miR-140-5p. Additionally, the expression of TGF-β3 was regulated upon the activation of Smad3. Together, these data suggested that miR-140-5p may play a role in regulating mandibular condylar cartilage homeostasis and potentially serve as a novel prognostic factor of TMJ-OA-like pathology.
Collapse
Affiliation(s)
- Weihao Li
- Department of Dental Research, School of Stomatology, Kunming Medical University, Kunming, China
| | - Shurong Zhao
- Department of Dental Research, School of Stomatology, Kunming Medical University, Kunming, China
| | - Hefeng Yang
- Department of Dental Research, School of Stomatology, Kunming Medical University, Kunming, China
| | - Chao Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Qiang Kang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie Deng
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook, NY, United States
| | - Yanhua Xu
- Department of Dental Research, School of Stomatology, Kunming Medical University, Kunming, China
| | - Yu Ding
- Department of Dental Research, School of Stomatology, Kunming Medical University, Kunming, China
| | - Song Li
- Department of Dental Research, School of Stomatology, Kunming Medical University, Kunming, China
| |
Collapse
|
84
|
Kauppinen S, Karhula SS, Thevenot J, Ylitalo T, Rieppo L, Kestilä I, Haapea M, Hadjab I, Finnilä MA, Quenneville E, Garon M, Gahunia HK, Pritzker KPH, Buschmann MD, Saarakkala S, Nieminen HJ. 3D morphometric analysis of calcified cartilage properties using micro-computed tomography. Osteoarthritis Cartilage 2019; 27:172-180. [PMID: 30287395 DOI: 10.1016/j.joca.2018.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Our aim is to establish methods for quantifying morphometric properties of calcified cartilage (CC) from micro-computed tomography (μCT). Furthermore, we evaluated the feasibility of these methods in investigating relationships between osteoarthritis (OA), tidemark surface morphology and open subchondral channels (OSCCs). METHOD Samples (n = 15) used in this study were harvested from human lateral tibial plateau (n = 8). Conventional roughness and parameters assessing local 3-dimensional (3D) surface variations were used to quantify the surface morphology of the CC. Subchondral channel properties (percentage, density, size) were also calculated. As a reference, histological sections were evaluated using Histopathological osteoarthritis grading (OARSI) and thickness of CC and subchondral bone (SCB) was quantified. RESULTS OARSI grade correlated with a decrease in local 3D variations of the tidemark surface (amount of different surface patterns (rs = -0.600, P = 0.018), entropy of patterns (EP) (rs = -0.648, P = 0.018), homogeneity index (HI) (rs = 0.555, P = 0.032)) and tidemark roughness (TMR) (rs = -0.579, P = 0.024). Amount of different patterns (ADP) and EP associated with channel area fraction (CAF) (rp = 0.876, P < 0.0001; rp = 0.665, P = 0.007, respectively) and channel density (CD) (rp = 0.680, P = 0.011; rp = 0.582, P = 0.023, respectively). TMR was associated with CAF (rp = 0.926, P < 0.0001) and average channel size (rp = 0.574, P = 0.025). CC topography differed statistically significantly in early OA vs healthy samples. CONCLUSION We introduced a μ-CT image method to quantify 3D CC topography and perforations through CC. CC topography was associated with OARSI grade and OSCC properties; this suggests that the established methods can detect topographical changes in tidemark and CC perforations associated with OA.
Collapse
Affiliation(s)
- S Kauppinen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.
| | - S S Karhula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Infotech, University of Oulu, Finland.
| | - J Thevenot
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Infotech, University of Oulu, Finland.
| | - T Ylitalo
- Department of Physics, University of Helsinki, Helsinki, Finland.
| | - L Rieppo
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.
| | - I Kestilä
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.
| | - M Haapea
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | - I Hadjab
- Polytechnique Montreal, Montreal, Quebec, Canada; Biomomentum Inc., 970 Michelin St., Suite 200, Laval, Quebec H7L 5C1, Canada.
| | - M A Finnilä
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - E Quenneville
- Biomomentum Inc., 970 Michelin St., Suite 200, Laval, Quebec H7L 5C1, Canada.
| | - M Garon
- Biomomentum Inc., 970 Michelin St., Suite 200, Laval, Quebec H7L 5C1, Canada.
| | - H K Gahunia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - K P H Pritzker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, Mount Sinai Hospital, Toronto, ON, Canada.
| | | | - S Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | - H J Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Physics, University of Helsinki, Helsinki, Finland; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.
| |
Collapse
|
85
|
Fisher M, Ackley T, Richard K, Oei B, Dealy CN. Osteoarthritis at the Cellular Level: Mechanisms, Clinical Perspectives, and Insights From Development. ENCYCLOPEDIA OF BIOMEDICAL ENGINEERING 2019:660-676. [DOI: 10.1016/b978-0-12-801238-3.64119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
86
|
Seow D, Yasui Y, Hutchinson ID, Hurley ET, Shimozono Y, Kennedy JG. The Subchondral Bone Is Affected by Bone Marrow Stimulation: A Systematic Review of Preclinical Animal Studies. Cartilage 2019; 10:70-81. [PMID: 28573889 PMCID: PMC6376565 DOI: 10.1177/1947603517711220] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Despite the mechanical and biological roles of subchondral bone (SCB) in articular cartilage health, there remains no consensus on the postoperative morphological status of SCB following bone marrow stimulation (BMS). The purpose of this systematic review was to clarify the morphology of SCB following BMS in preclinical, translational animal models. DESIGN The MEDLINE and EMBASE databases were systematically reviewed using specific search terms on April 19, 2016 based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The morphology of the SCB was assessed using of microcomputed tomography (bone density) and histology (microscopic architecture). RESULTS Seventeen animal studies with 520 chondral lesions were included. The morphology of SCB did not recover following BMS. Compared with untreated chondral defects, BMS resulted in superior morphology of superficial SCB and cartilage but inferior morphology (specifically bone density, P < 0.05) of the deep SCB. Overall, the use of biological adjuvants during BMS resulted in the superior postoperative morphology of SCB. CONCLUSIONS Alterations in the SCB following BMS were confirmed. Biologics adjuvants may improve the postoperative morphology of both SCB and articular cartilage. Refinements of BMS techniques should incorporate consideration of SCB damage and restoration. Investigations to optimize BMS techniques incorporating both minimally invasive approaches and biologically augmented platforms are further warranted.
Collapse
Affiliation(s)
- Dexter Seow
- Hospital for Special Surgery, New York, NY, USA
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Youichi Yasui
- Hospital for Special Surgery, New York, NY, USA
- Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Ian D. Hutchinson
- Hospital for Special Surgery, New York, NY, USA
- Department of Orthopaedic Surgery, Albany Medical Center, Albany, NY, USA
| | - Eoghan T. Hurley
- Hospital for Special Surgery, New York, NY, USA
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Yoshiharu Shimozono
- Hospital for Special Surgery, New York, NY, USA
- Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
87
|
Speirs AD, Rakhra KS, Weir Weiss MJ, Beaulé PE. Bone density changes following surgical correction of femoroacetabular impingement deformities. Osteoarthritis Cartilage 2018; 26:1683-1690. [PMID: 30195848 DOI: 10.1016/j.joca.2018.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Femoroacetabular impingement (FAI) involves abnormal hip biomechanics due to deformities and is associated with osteoarthritis. Bone mineral density (BMD) in the acetabulum is higher in subjects with convex femoral (cam) FAI deformities compared to control subjects. The objective of this study was to assess post-operative changes of BMD with and without surgical correction of the cam deformity. DESIGN Thirteen patients with bilateral cam deformities but unilateral symptoms underwent pre-operative and follow-up computed tomography (CT) scans of both hips. The deformity was surgically removed from the symptomatic hip. BMD was measured in regions of interest (ROI) around the superior acetabulum from CT scans at both time points. The contralateral untreated hip was used as a within-patient control. Changes in BMD were assessed by two-way repeated measures ANOVA (side, time) and paired t-tests. RESULTS A greater BMD decrease was seen in the treated compared to the untreated hip (P < 0.0018). BMD within the superior acetabulum decreased by 39 mg/cc on the treated side (P < 0.0001) but only 9 mg/cc (P = 0.15) in the untreated contralateral hip. These changes represent 7.1% and 1.7% of the pre-operative BMD on the respective sides. CONCLUSIONS BMD decreased in the treated hip, suggesting a positive effect of surgical correction in relieving stresses within the hip joint. Longer term follow-up is required to assess the ultimate fate of the articular cartilage within the joint. This study showed that surgical correction of the cam deformity in patients with FAI may alter the pathological biomechanics within the joint.
Collapse
Affiliation(s)
- A D Speirs
- Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada.
| | - K S Rakhra
- Department of Medical Imaging, The Ottawa Hospital, Ottawa, ON, Canada.
| | - M-J Weir Weiss
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada.
| | - P E Beaulé
- Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada.
| |
Collapse
|
88
|
Favero M, Belluzzi E, Trisolino G, Goldring MB, Goldring SR, Cigolotti A, Pozzuoli A, Ruggieri P, Ramonda R, Grigolo B, Punzi L, Olivotto E. Inflammatory molecules produced by meniscus and synovium in early and end-stage osteoarthritis: a coculture study. J Cell Physiol 2018; 234:11176-11187. [PMID: 30456760 DOI: 10.1002/jcp.27766] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/30/2018] [Indexed: 01/15/2023]
Abstract
The aim of this study was to identify the molecules and pathways involved in the cross-talk between meniscus and synovium that may play a critical role in osteoarthritis (OA) pathophysiology. Samples of synovium and meniscus were collected from patients with early and end-stage OA and cultured alone or cocultured. Cytokines, chemokines, metalloproteases, and their inhibitors were evaluated at the gene and protein levels. The extracellular matrix (ECM) changes were also investigated. In early OA cultures, higher levels of interleukin-6 (IL-6) and IL-8 messenger RNA were expressed by synovium and meniscus in coculture compared with meniscus cultured alone. RANTES release was significantly increased when the two tissues were cocultured compared with meniscus cultured alone. Increased levels of matrix metalloproteinase-3 (MMP-3) and MMP-10 proteins, as well as increased release of glycosaminoglycans and aggrecan CS846 epitope, were observed when synovium was cocultured with meniscus. In end-stage OA cultures, increased levels of IL-8 and monocyte chemoattractant protein-1 (MCP-1) proteins were released in cocultures compared with cultures of meniscus alone. Chemokine (C-C motif) ligand 21 (CCL21) protein release was higher in meniscus cultured alone and in coculture compared with synovium cultured alone. Increased levels of MMP-3 and 10 proteins were observed when tissues were cocultured compared with meniscus cultured alone. Aggrecan CS846 epitope release was increased in cocultures compared with cultures of either tissue cultured alone. Our study showed the production of inflammatory molecules by synovium and meniscus which could trigger inflammatory signals in early OA patients, and induce ECM loss in the progressive and final stages of OA pathology.
Collapse
Affiliation(s)
- Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED, University Hospital of Padova, Padova, Italy.,RAMSES Laboratory, RIT Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Belluzzi
- Rheumatology Unit, Department of Medicine-DIMED, University Hospital of Padova, Padova, Italy.,Musculoskeletal Pathology and Oncology Laboratory, Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padova, Italy
| | - Giovanni Trisolino
- Department of Pediatric Orthopedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Mary B Goldring
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| | - Steven R Goldring
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| | - Augusto Cigolotti
- Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padova, Italy
| | - Assunta Pozzuoli
- Musculoskeletal Pathology and Oncology Laboratory, Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padova, Italy
| | - Pietro Ruggieri
- Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padova, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine-DIMED, University Hospital of Padova, Padova, Italy
| | - Brunella Grigolo
- RAMSES Laboratory, RIT Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Leonardo Punzi
- Rheumatology Unit, Department of Medicine-DIMED, University Hospital of Padova, Padova, Italy
| | - Eleonora Olivotto
- RAMSES Laboratory, RIT Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
89
|
Kiyan W, Nakagawa Y, Ito A, Iijima H, Nishitani K, Tanima-Nagai M, Mukai S, Tajino J, Yamaguchi S, Nakahata A, Zhang J, Aoyama T, Kuroki H. Ultrasound Parameters for Human Osteoarthritic Subchondral Bone ex Vivo: Comparison with Micro-Computed Tomography Parameters. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2115-2130. [PMID: 30064850 DOI: 10.1016/j.ultrasmedbio.2018.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to identify ultrasound parameters reflecting subchondral porosity (Po), subchondral plate thickness (Tpl) and bone volume fraction at the trabecular bone region (BV/TVTb). Sixteen osteoarthritic human lateral femoral condyles were evaluated ex vivo using a 15-MHz pulsed-echo ultrasound 3-D scanning system. The cartilage-subchondral bone (C-B) surface region (layer 1) and inner subchondral bone region (layer 2) were analyzed; we newly introduced entropy (ENT) and correlation (COR) of ultrasound texture parameters of the parallel (x) or perpendicular (z) direction to the C-B interface for this analysis. Po, Tpl and BV/TVTb were evaluated as reference measurements using micro-computed tomography. ENTL1x (ENT of layer 1, x-direction) and ENTL1z were significantly correlated with Po (both r values = 0.58), CORL2x with Tpl (r = -0.73) and CORL2z with BV/TVTb (r = -0.66). These are efficient indicators of the characteristics of osteoarthritis-related subchondral bone; the other texture parameters were not significant.
Collapse
Affiliation(s)
- Wataru Kiyan
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Researching Department, Furuno Electric Company, Ltd., Nishinomiya, Japan
| | - Yasuaki Nakagawa
- Department of Orthopaedic Surgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirotaka Iijima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of System Design Engineering, Keio University, Yokohama, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Momoko Tanima-Nagai
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shogo Mukai
- Department of Orthopaedic Surgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Junichi Tajino
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shoki Yamaguchi
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare, Narita, Chiba, Japan
| | - Akihiro Nakahata
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jue Zhang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
90
|
Aberrant activation of latent transforming growth factor-β initiates the onset of temporomandibular joint osteoarthritis. Bone Res 2018; 6:26. [PMID: 30210898 PMCID: PMC6131160 DOI: 10.1038/s41413-018-0027-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 02/05/2023] Open
Abstract
There is currently no effective medical treatment for temporomandibular joint osteoarthritis (TMJ-OA) due to a limited understanding of its pathogenesis. This study was undertaken to investigate the key role of transforming growth factor-β (TGF-β) signalling in the cartilage and subchondral bone of the TMJ using a temporomandibular joint disorder (TMD) rat model, an ageing mouse model and a Camurati–Engelmann disease (CED) mouse model. In the three animal models, the subchondral bone phenotypes in the mandibular condyles were evaluated by µCT, and changes in TMJ condyles were examined by TRAP staining and immunohistochemical analysis of Osterix and p-Smad2/3. Condyle degradation was confirmed by Safranin O staining, the Mankin and OARSI scoring systems and type X collagen (Col X), p-Smad2/3a and Osterix immunohistochemical analyses. We found apparent histological phenotypes of TMJ-OA in the TMD, ageing and CED animal models, with abnormal activation of TGF-β signalling in the condylar cartilage and subchondral bone. Moreover, inhibition of TGF-β receptor I attenuated TMJ-OA progression in the TMD models. Therefore, aberrant activation of TGF-β signalling could be a key player in TMJ-OA development. Blocking the activity of a critical growth factor could help treat degenerative disease of the jaw joint, according to experiments in three rodent models. Xuedong Zhou from Sichuan University in Chengdu, China, examined the cartilage and adjoining layer of bone found at the ends of the jawbone in a rat model of temporomandibular joint disorder and in two related mouse models. In all three, the researchers observed tissue abnormalities consistent with what’s seen in humans with osteoarthritis of the jaw joint, a condition with no effective therapeutic options. They showed that transforming growth factor-β, a master regulatory protein, displayed aberrant signalling patterns in these tissues and that blocking this protein’s receptor with a drug attenuated the disease process. The findings help explain what drives jaw joint osteoarthritis — and point to a strategy for treating it.
Collapse
|
91
|
Olivotto E, Merli G, Assirelli E, Cavallo C, Belluzzi E, Ramonda R, Favero M, Filardo G, Roffi A, Kon E, Grigolo B. Cultures of a human synovial cell line to evaluate platelet-rich plasma and hyaluronic acid effects. J Tissue Eng Regen Med 2018; 12:1835-1842. [PMID: 29770602 DOI: 10.1002/term.2704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 12/26/2022]
Abstract
Synovial inflammation plays an important role in osteoarthritis (OA) pathogenesis. Different biological compounds have been tested mainly on chondrocytes, to treat early stages of OA. However, because OA has been recently defined as "an organ" pathology, investigation on synoviocytes is also needed. Therefore, the aim of the present study was to validate a human fibroblast-like synoviocytes cell line (K4IM) to test the effects of platelet-rich plasma (PRP) and hyaluronan (HA) on anabolic and catabolic gene expression and on HA secretion from cell cultures. In order to determine the effect of PRP and HA, K4IM cells were maintained in culture with or without TNF-α stimulation. In the presence of PRP, unstimulated K4IM cells presented the same expression of IL1B, IL6, CXCL8, VEGF, TIMP1, and hyaluronic synthase isoform HAS3 as primary human synoviocytes, while HA addition did not change their expression pattern, which was similar to control cells. Stimulated cells expressed significantly higher values of IL1B, CXCL8, and VEGF compared with unstimulated ones. PRP did not show any modification, except for VEGF, while HA addition modulated IL1B expression. PRP did not modulate HA release of both stimulated and unstimulated cells. Our study showed the possibility to use K4IM synoviocytes as an in vitro model to test biological compounds useful for the treatment of early OA. Primary cells reflect the phenotype of cells in vivo, but limited recovery from biopsies and restricted lifespan makes experimental manipulation challenging. Therefore, despite cell lines present some limitations, they could be used as an alternative for preliminary experiments.
Collapse
Affiliation(s)
- E Olivotto
- RAMSES Laboratory, Research and Innovation Technology Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - G Merli
- Nano-Biotechnology Laboratory-NaBi, Research and Innovation Technology Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - E Assirelli
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - C Cavallo
- RAMSES Laboratory, Research and Innovation Technology Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - E Belluzzi
- Rheumatology Unit, University Hospital of Padova, Padova, Italy
| | - R Ramonda
- Rheumatology Unit, University Hospital of Padova, Padova, Italy
| | - M Favero
- RAMSES Laboratory, Research and Innovation Technology Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Rheumatology Unit, University Hospital of Padova, Padova, Italy
| | - G Filardo
- Nano-Biotechnology Laboratory-NaBi, Research and Innovation Technology Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - A Roffi
- Nano-Biotechnology Laboratory-NaBi, Research and Innovation Technology Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - E Kon
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - B Grigolo
- RAMSES Laboratory, Research and Innovation Technology Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
92
|
Histological Osteoarthritic Changes in the Human Cervical Spine Facet Joints Related to Age and Sex. Spine (Phila Pa 1976) 2018; 43:E689-E696. [PMID: 29135880 DOI: 10.1097/brs.0000000000002474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Cross-sectional autopsy study. OBJECTIVE Quantify histological changes in the lower cervical spine facet joints with regard to age and sex using systematic random sampling of entire joints. SUMMARY OF BACKGROUND DATA Neck pain is a common debilitating musculoskeletal condition and one of the highest ranked causes of years lived with disability. The cause of neck pain is multifactorial and osteoarthritis is one potential cause. The cervical spine facet joints have been implicated in the etiology of chronic neck pain. Hence, a detailed description of their anatomy and age- and sex-related changes is needed. METHODS The lower four cervical spine segments (C4-C7 included) were obtained from 72 subjects during autopsy; 29 women (median age 53 years [22-77]) and 43 men (median age 38 years [20-78]). A total of 1132 articular facets were embedded in toto in hard plastic and sliced into 3-mm thick sections from where 10 μm thick histological sections were produced. Morphological variables were evaluated microscopically and histomorphometric variables were retrieved using random sampling methods. Data were analyzed with a linear regression model. RESULTS Significant associations were found between increasing age and in particular splitting, fissures, osteophytes, thickness of the calcified cartilage, and subchondral bone plate. The thickness of the calcified cartilage and subchondral bone plate increased with increasing age, whereas the hyaline cartilage thickness decreased. Males had more extensive degenerative changes in the cartilage. CONCLUSION Using semiquantitative histological methods, degenerative findings were observed at all spinal levels involving the articular cartilage and the osseous structures of the cervical spine facet joints similar to those observed in larger weight-bearing joints. In particular, the thickening of the calcified cartilage and the subchondral bone identified the osteocartilaginous junction as an important area in osteoarthritis. These findings may be relevant for the pathogenesis of osteoarthritis. LEVEL OF EVIDENCE 3.
Collapse
|
93
|
Thomas S, Browne H, Mobasheri A, Rayman MP. What is the evidence for a role for diet and nutrition in osteoarthritis? Rheumatology (Oxford) 2018; 57:iv61-iv74. [PMID: 29684218 PMCID: PMC5905611 DOI: 10.1093/rheumatology/key011] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
As current treatment options in OA are very limited, OA patients would benefit greatly from some ability to self-manage their condition. Since diet may potentially affect OA, we reviewed the literature on the relationship between nutrition and OA risk or progression, aiming to provide guidance for clinicians. For overweight/obese patients, weight reduction, ideally incorporating exercise, is paramount. The association between metabolic syndrome, type-2 diabetes and OA risk or progression may partly explain the apparent benefit of dietary-lipid modification resulting from increased consumption of long-chain omega-3 fatty-acids from oily fish/fish oil supplements. A strong association between OA and raised serum cholesterol together with clinical effects in statin users suggests a potential benefit of reduction of cholesterol by dietary means. Patients should ensure that they meet the recommended intakes for micronutrients such as vitamin K, which has a role in bone/cartilage mineralization. Evidence for a role of vitamin D supplementation in OA is unconvincing.
Collapse
Affiliation(s)
- Sally Thomas
- Department of Nutritional Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Heather Browne
- Department of Nutritional Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Ali Mobasheri
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Centre for Musculoskeletal Ageing Research, Queen's Medical Centre, Nottingham, UK.,Department of Regenerative Medicine, State Research Institute, Centre for Innovative Medicine, Santariskiu 5, 08661 Vilnius, Republic of Lithuania
| | - Margaret P Rayman
- Department of Nutritional Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
94
|
Seow D, Yasui Y, Hurley ET, Ross AW, Murawski CD, Shimozono Y, Kennedy JG. Extracellular Matrix Cartilage Allograft and Particulate Cartilage Allograft for Osteochondral Lesions of the Knee and Ankle Joints: A Systematic Review. Am J Sports Med 2018; 46:1758-1766. [PMID: 28800402 DOI: 10.1177/0363546517717494] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Extracellular matrix cartilage allografts (EMCAs) and particulate cartilage allografts (PCAs) are relatively new biologics that may improve the quality of cartilage regeneration after bone marrow stimulation. The increasing popularity of these novel biologics in the treatment of osteochondral lesions (OCLs) of the knee and ankle joints prompts a systematic evaluation of their efficacies. PURPOSE The purpose of this systematic review was to clarify the effectiveness of EMCAs and PCAs on cartilage regeneration. STUDY DESIGN Systematic review; Level of evidence, IV. METHODS Two reviewers searched MEDLINE and Embase in February 2016 based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Predetermined variables from each study were extracted and analyzed. RESULTS For EMCAs, 1 in vitro study and 2 clinical studies for OCLs of the ankle joint were found. For PCAs, 3 in vitro studies, 5 clinical studies for OCLs of the knee joint, and 5 clinical studies for OCLs of the ankle joint were found. For all studies, in vitro chondrogenesis and clinical outcomes favored EMCAs and PCAs. However, the highest level of evidence was IV, and the methodological quality of evidence was indicated to be poor. CONCLUSION Both EMCAs and PCAs have yielded favorable outcomes in both in vitro and clinical studies. However, the available studies were of limited data with significant confounding factors. Therefore, it is unclear whether the effectiveness of these novel biologics is any greater than that of bone marrow stimulation alone in the repair of knee and ankle cartilage.
Collapse
Affiliation(s)
- Dexter Seow
- Hospital for Special Surgery, New York, New York, USA
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Youichi Yasui
- Hospital for Special Surgery, New York, New York, USA
- Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Eoghan T Hurley
- Hospital for Special Surgery, New York, New York, USA
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Andrew W Ross
- Hospital for Special Surgery, New York, New York, USA
| | - Christopher D Murawski
- Hospital for Special Surgery, New York, New York, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yoshiharu Shimozono
- Hospital for Special Surgery, New York, New York, USA
- Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
95
|
de Paula Gomes CAF, Leal-Junior ECP, Dibai-Filho AV, de Oliveira AR, Bley AS, Biasotto-Gonzalez DA, de Tarso Camillo de Carvalho P. Incorporation of photobiomodulation therapy into a therapeutic exercise program for knee osteoarthritis: A placebo-controlled, randomized, clinical trial. Lasers Surg Med 2018; 50:819-828. [DOI: 10.1002/lsm.22939] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 01/02/2023]
Affiliation(s)
| | - Ernesto C. P. Leal-Junior
- Laboratory of Phototherapy in Sports and Exercise; Postgraduate Program in Biophotonics Applied to Health Sciences; Nove de Julho University; São Paulo SP Brazil
| | - Almir V. Dibai-Filho
- Department of Physical Education; Federal University of Maranhão; São Luís MA Brazil
| | | | - André S. Bley
- Department of Physical Therapy; City of São Paulo University; São Paulo SP Brazil
| | | | | |
Collapse
|
96
|
Teng W, Lin P, Li Y, Yan X, Li H, Li B, Wang Z, Wu Y, Wang S, Zhou X, Wang Z, Ye Z. Bone combined cement grafting in giant cell tumor around the knee reduces mechanical failure. INTERNATIONAL ORTHOPAEDICS 2018; 43:475-482. [PMID: 29700587 PMCID: PMC6399200 DOI: 10.1007/s00264-018-3939-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022]
Abstract
Objectives The aims of our study are (1) to explore the risk factors of mechanical failure (MF), (2) to figure out an index to evaluate this risk, and (3) to select an optimal reconstruction strategy to reduce this risk. Methods We retrospectively reviewed 104 patients from Dec. 2008 to Mar. 2016, undergone extensive knee curettages in our institution. Radiographs and post-operative interviews were used to classified cases of MF. Relative factors (age, tumor location, the invaded area, etc.) were also collected and analyzed by SPSS software. Results Thick subchondral bony layer (p = 0.006) and combined grafting of the cement and bone (p = 0.006) had lower risk of mechanical failure. Mechanical failure appeared to happen in the femur (p = 0.012) more easily. The ROC curve (AUC = 0.722) reveals that less post-operative bony layer (≤ 3.3 mm) is more likely to cause mechanical failure. The Kaplan-Meier survival curve showing increased survival in those patients after a combination grafting surgery (HR, 3.799; p = 0.006). Conclusion Based on our study results, combined grafting of the cement and bone reduced the risk of mechanical failure in the knee due to the thin subchondral bone layer (SCB), especially in the femur.
Collapse
Affiliation(s)
- Wangsiyuan Teng
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine/Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Peng Lin
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine/Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yong Li
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine/Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiaobo Yan
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine/Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Hengyuan Li
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine/Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Binghao Li
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine/Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zhan Wang
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine/Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yan Wu
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine/Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Shengdong Wang
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine/Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xingzhi Zhou
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine/Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zenan Wang
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine/Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zhaoming Ye
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine/Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine, No.1511, Jianghong Road, Hangzhou, 310000, China.
| |
Collapse
|
97
|
Lindström E, Rizoska B, Tunblad K, Edenius C, Bendele AM, Maul D, Larson M, Shah N, Yoder Otto V, Jerome C, Grabowska U. The selective cathepsin K inhibitor MIV-711 attenuates joint pathology in experimental animal models of osteoarthritis. J Transl Med 2018. [PMID: 29523155 PMCID: PMC5845353 DOI: 10.1186/s12967-018-1425-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND MIV-711 is a highly potent and selective cathepsin K inhibitor. The current article summarizes the therapeutic effects of MIV-711 on joint pathology in rabbits subjected to anterior cruciate ligament transection (ACLT), and the prophylactic effects on joint pathology in dogs subjected to partial medial meniscectomy, two surgical models of osteoarthritis (OA). METHODS Starting 1 week after surgery, rabbits were dosed daily via oral gavage with either MIV-711 or vehicle (n = 7/group) for 7 weeks. The four treatment groups were: (1) sham + vehicle; (2) ACLT + vehicle; (3) ACLT + MIV-711, 30 µmol/kg and (4) ACLT + MIV-711, 100 µmol/kg. Subchondral bone and articular cartilage structures were assessed by µCT, histomorphometry, and scoring. Dogs subjected to partial medial meniscectomy received either MIV-711 (30 µmol/kg) or vehicle (n = 15/group) via oral gavage once daily, starting 1 day before meniscectomy, for 28 days. Cartilage degradation was assessed at the macroscopic and microscopic levels. The exposures of MIV-711 were assessed in both studies and biomarkers reflecting bone resorption (HP-1 in rabbits, CTX-I in dogs) and cartilage degradation (CTX-II) were measured. RESULTS In ACLT rabbits, MIV-711 decreased HP-1 levels by up to 72% (p < 0.001) and CTX-II levels by up to 74% (p < 0.001) compared to ACLT vehicle controls. ACLT surgery significantly reduced the total thickness of the subchondral bone plate and reduced trabecular bone volume in the femur and tibia. These effects were reversed by MIV-711. ACLT resulted in cartilage thickening, which was attenuated by MIV-711. MIV-711 did not affect osteophyte formation or Mankin scores. In dogs, MIV-711 reduced CTX-I and CTX-II levels by 86% (p < 0.001) and 80% (p < 0.001), respectively. Synovial CTX-II levels were reduced by 55-57% (p < 0.001) compared to baseline. MIV-711-treated animals had 25-37% lower macroscopic scores in the femur condyles and 13-33% lower macroscopic scores in the tibial plateaus. CONCLUSIONS MIV-711 prevents subchondral bone loss and partially attenuates cartilage pathology in two animal models of OA. These beneficial effects of MIV-711 on joint pathology are observed in conjunction with decreases in bone and cartilage biomarkers that have been shown to be clinically attainable in human. The data support the further development of MIV-711 for the treatment of OA.
Collapse
|
98
|
Ji B, Zhang Z, Guo W, Ma H, Xu B, Mu W, Amat A, Cao L. Isoliquiritigenin blunts osteoarthritis by inhibition of bone resorption and angiogenesis in subchondral bone. Sci Rep 2018; 8:1721. [PMID: 29379010 PMCID: PMC5788865 DOI: 10.1038/s41598-018-19162-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023] Open
Abstract
Isoliquiritigenin (ISL), a natural flavonoid extracted from licorice, has been demonstrated to exert attenuation of osteoclastogenesis and anti-angiogenesis activity in a wide variety of cells. Here, we first evaluated the effects of ISL on pathogenesis of osteoarthritis in a mouse model of OA. The data showed that ISL blunted progression of OA and lowered the Osteoarthritis Research Society International (OARSI)-Modified Making Score and protected the articular cartilage. The thickness of calcified cartilage zone was significantly decreased in ISL-treated ACLT mice compared with vehicle group. ISL increased expression level of lubricin and decreased collagen X (Col X), matrix metalloproteinase-13 (MMP-13). Moreover, ISL reduced aberrant active subchondral bone remodelling, including lowered trabecular pattern factor (Tb.pf) and increased bone volume/tissue volume (BV/TV, %) and thickness of subchondral bone plate (SBP) compared with vehicle-treated group. The results of immunostaining further revealed that ISL directly reduced RANKL-RANK-TRAF6 singling pathway induced osteoclastogenesis, prevented abnormal bone formation through indirect inhibition of TGF-β release. Additionally, ISL exerts anti-angiogenesis effects in subchondral bone through direct suppression of MMP-2. These results indicated that ISL attenuates progression of OA by inhibition of bone resorption and angiogenesis in subchondral bone, indicating that this may be a potential preventive therapy for OA.
Collapse
Affiliation(s)
- Baochao Ji
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Zhendong Zhang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Wentao Guo
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Hairong Ma
- Research Institute of Clinical Medicine, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Boyong Xu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Wenbo Mu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Abdusami Amat
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang, 830054, China.
| |
Collapse
|
99
|
Clinical Trials and Management of Osteochondral Lesions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:391-413. [DOI: 10.1007/978-3-319-76711-6_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
100
|
Ren J, Ma J, Zhang X, Aimaiti A, Saiyiti M, Chen Y, Cao L. Diagnostic value of combined serum marker changes and quantitative MRI evaluation of cartilage volume of tibial plateau in a surgically-induced osteoarthritis dog model. J Int Med Res 2017; 45:2023-2035. [PMID: 29125013 PMCID: PMC5805226 DOI: 10.1177/0300060517730452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective To evaluate the combined diagnostic value of two serum osteoarthritis (OA)
markers and quantitative magnetic resonance imaging (MRI) evaluation of the
cartilage volume of the tibial plateau in a canine model of experimental
OA. Methods A total of 18 male Beagle dogs were used in this longitudinal study. OA was
surgically induced via anterior cruciate ligament transection (ACLT) of the
right knee in 10 dogs. The remaining eight dogs formed the sham operation
control group and underwent the same procedure without ACLT. At various
times after surgery, enzyme-linked immunosorbent assay was used to measure
serum C-telopeptide of type II collagen (CTX-II) and type X collagen (ColX)
levels. Quantitative evaluation of the tibial plateau volume was undertaken
using MRI and ImageJ software. Results The serum CTX-II levels were significantly higher in the OA group at weeks 8,
12 and 16 after surgery, but not at week 4, compared with the control group.
The serum ColX levels in the OA group were significantly higher than in the
control group at weeks 8 and 12. The tibial plateau cartilage volumes in the
OA group were significantly lower than in the control group at weeks 8 and
16. Conclusion Serum CTX-II and ColX levels combined with quantitative MRI evaluation of the
tibial plateau cartilage volume in a canine model of OA demonstrated the
potential to detect and monitor OA progression.
Collapse
Affiliation(s)
- Jiangdong Ren
- 1 Department of Joint Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jinsai Ma
- 3 Department of Orthopaedics, Changji Branch of the First Affiliated Hospital of Xinjiang Medical University, Changji, China
| | - Xiaogang Zhang
- 1 Department of Joint Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Abdusami Aimaiti
- 1 Department of Joint Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Maimaitiming Saiyiti
- 2 Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuming Chen
- 4 Department of Pain Management, Changji Branch of the First Affiliated Hospital of Xinjiang Medical University, Changji, China
| | - Li Cao
- 1 Department of Joint Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|