51
|
Kral J, Korenkova V, Novosadova V, Langerova L, Schneiderova M, Liska V, Levy M, Veskrnova V, Spicak J, Opattova A, Jiraskova K, Vymetalkova V, Vodicka P, Slyskova J. Expression profile of miR-17/92 cluster is predictive of treatment response in rectal cancer. Carcinogenesis 2018; 39:1359-1367. [DOI: 10.1093/carcin/bgy100] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jan Kral
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vlasta Korenkova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Vendula Novosadova
- Laboratory of Transgenic Models of Diseases, Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Division BIOCEV, Vestec, Czech Republic
| | - Lucie Langerova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | | | - Vaclav Liska
- Department of Surgery, Teaching Hospital and Medical School of Charles University, Pilsen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Veronika Veskrnova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Julius Spicak
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alena Opattova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Katerina Jiraskova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Jana Slyskova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
52
|
Bharali D, Jebur HB, Baishya D, Kumar S, Sarma MP, Masroor M, Akhter J, Husain SA, Kar P. Expression Analysis of Serum microRNA-34a and microRNA-183 in Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2018; 19:2561-2568. [PMID: 30256056 PMCID: PMC6249442 DOI: 10.22034/apjcp.2018.19.9.2561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
Background/objective: HCC is a multistep process starting from chronic hepatitis that progress through cirrhosis to HCC. MicroRNA expression level was found to be deregulated in HCC. To find out whether the expression level of miR-34a and miR-183 was deregulated in HCC compared to controls without HCC. Methods: Real time quantitative PCR was done to find out the miRNA expression level in terms of Ct value followed by statistical analysis. Results: Over-expression of miR-183 and under-expression of miR-34a in HCC was detected. All changes in expression level of miR-34a and miR-183 were found to be due to HCC compared to controls without HCC. So both miR-34a and miR-183 were suitable to differentiate HCC from Cirrhosis and chronic hepatitis with an efficient diagnostic power of sensitivity, specificity and expression level. But they might not have any role in patients’ survival. Conclusion: miR- 34a and miR-183 might be considered as potential markers of HCC screening molecule in addition to other approved panel of marker. Our study warrants further expression level study.
Collapse
Affiliation(s)
- Dipu Bharali
- Department of Medicine, Maulana Azad Medical College, New Delhi, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Zakhari S, Hoek JB. Epidemiology of Moderate Alcohol Consumption and Breast Cancer: Association or Causation? Cancers (Basel) 2018; 10:E349. [PMID: 30249004 PMCID: PMC6210419 DOI: 10.3390/cancers10100349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Epidemiological studies have been used to show associations between modifiable lifestyle habits and the incidence of breast cancer. Among such factors, a history of alcohol use has been reported in multiple studies and meta-analyses over the past decades. However, associative epidemiological studies that were interpreted as evidence that even moderate alcohol consumption increases breast cancer incidence have been controversial. In this review, we consider the literature on the relationship between moderate or heavy alcohol use, both in possible biological mechanisms and in variations in susceptibility due to genetic or epigenetic factors. We argue that there is a need to incorporate additional approaches to move beyond the associations that are reported in traditional epidemiological analyses and incorporate information on molecular pathologic signatures as a requirement to posit causal inferences. In particular, we point to the efforts of the transdisciplinary field of molecular pathological epidemiology (MPE) to evaluate possible causal relationships, if any, of alcohol consumption and breast cancer. A wider application of the principles of MPE to this field would constitute a giant step that could enhance our understanding of breast cancer and multiple modifiable risk factors, a step that would be particularly suited to the era of "personalized medicine".
Collapse
Affiliation(s)
- Samir Zakhari
- Science Office, Distilled Spirits Council, Washington, DC 20005, USA.
| | - Jan B Hoek
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
54
|
Yin PT, Pongkulapa T, Cho HY, Han J, Pasquale NJ, Rabie H, Kim JH, Choi JW, Lee KB. Overcoming Chemoresistance in Cancer via Combined MicroRNA Therapeutics with Anticancer Drugs Using Multifunctional Magnetic Core-Shell Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26954-26963. [PMID: 30028120 DOI: 10.1021/acsami.8b09086] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we report the use of a multifunctional magnetic core-shell nanoparticle (MCNP), composed of a highly magnetic zinc-doped iron oxide (ZnFe2O4) core nanoparticle and a biocompatible mesoporous silica (mSi) shell, for the simultaneous delivery of let-7a microRNA (miRNA) and anticancer drugs (e.g., doxorubicin) to overcome chemoresistance in breast cancer. Owing to the ability of let-7a to repress DNA repair mechanisms (e.g., BRCA1 and BRCA2) and downregulate drug efflux pumps (e.g., ABCG2), delivery of let-7a could sensitize chemoresistant breast cancer cells (MDA-MB-231) to subsequent doxorubicin chemotherapy both in vitro and in vivo. Moreover, the multifunctionality of our MCNPs allows for the monitoring of in vivo delivery via magnetic resonance imaging. In short, we have developed a multifunctional MCNP-based therapeutic approach to provide an attractive method with which to enhance our ability not only to deliver combined miRNA therapeutics with small-molecule drugs in both selective and effective manner but also to sensitize cancer cells for the enhanced treatment via the combination of miRNA replacement therapy using a single nanoplatform.
Collapse
Affiliation(s)
| | | | - Hyeon-Yeol Cho
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Republic of Korea
| | - Jiyou Han
- Division of Biotechnology, Laboratory of Stem Cells and Tissue Regeneration, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
- Department of Biological Sciences, Laboratory of Stem Cell Research and Biotechnology , Hyupsung University , Hwaseong-si 18330 , Republic of Korea
| | | | | | - Jong-Hoon Kim
- Division of Biotechnology, Laboratory of Stem Cells and Tissue Regeneration, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Republic of Korea
| | - Ki-Bum Lee
- College of Pharmacy , Kyung Hee University , 26 Kyungheedae-ro , Dongdaemun-gu, Seoul 02447 , Republic of Korea
| |
Collapse
|
55
|
Pardini B, De Maria D, Francavilla A, Di Gaetano C, Ronco G, Naccarati A. MicroRNAs as markers of progression in cervical cancer: a systematic review. BMC Cancer 2018; 18:696. [PMID: 29945565 PMCID: PMC6020348 DOI: 10.1186/s12885-018-4590-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Invasive cervical cancer (ICC) is caused by high-risk human papillomavirus types (HR-HPVs) and is usually preceded by a long phase of intraepithelial neoplasia (CIN). Before invasion, (epi) genetic changes, potentially applicable as molecular markers within cervical screening, occur in HPV host cells. Epigenetic alterations, such as dysregulation of microRNA (miRNA) expression, are frequently observed in ICC. The mechanisms and role of miRNA dysregulation in cervical carcinogenesis are still largely unknown. METHODS We provide an overview of the studies investigating miRNA expression in relation to ICC progression, highlighting their common outcomes and their weaknesses/strengths. To achieve this, we systematically searched through Pubmed database all articles between January 2010 and December 2017. RESULTS From the 24 studies retrieved, miR-29a and miR-21 are the most frequently down- and up-regulated in ICC progression, respectively. Microarray-based studies show a small overlap, with miR-10a, miR-20b, miR-9, miR-16 and miR-106 found repeatedly dysregulated. miR-34a, miR-125 and miR-375 were also found dysregulated in cervical exfoliated cells in relation to cancer progression. CONCLUSIONS The pivotal role of miRNAs in ICC progression and initial development is becoming more and more relevant. Available studies are essentially based on convenience material, entailing possible selection bias, and frequently of small size: all these points still represent a limitation to a wide comprehension of miRNAs relevant for ICC. The targeted approach instead of a genome-wide investigation still precludes the identification of all the relevant miRNAs in the process. The implementation of deep sequencing on large scale population-based studies will help to discover and validate the relation between altered miRNA expression and CC progression for the identification of biomarkers. Optimally, once explored on a miRNome scale, small specific miRNA signatures maybe used in the context of screening.
Collapse
Affiliation(s)
- Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy.,Department of Medical Sciences, University of Turin, Via Santena 19, 10126, Turin, Italy
| | - Daniela De Maria
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy
| | - Antonio Francavilla
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy
| | - Cornelia Di Gaetano
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy.,Department of Medical Sciences, University of Turin, Via Santena 19, 10126, Turin, Italy
| | - Guglielmo Ronco
- Center for Cancer Epidemiology and Prevention, AO City of Health and Science, Via Cavour, 31 10123, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
56
|
Li SH, Li JP, Chen L, Liu JL. miR-146a induces apoptosis in neuroblastoma cells by targeting BCL11A. Med Hypotheses 2018; 117:21-27. [PMID: 30077189 DOI: 10.1016/j.mehy.2018.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/13/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
Abstract
Aberrant expression of miR-146a has been reported to be involved in the progression and metastasis of various types of human cancers; however, its potential role in human neuroblastoma is still poorly understood. The purpose of our study was to investigate the molecular mechanism and possible role of miR-146a in human neuroblastoma. In this study, targeted genes were predicted by bioinformatic analysis and confirmed by dual-Luciferase reporter assay. The expression level of miR-146a in the human neuroblastoma SK-N-SH cell line was detected by quantitative RT-PCR. We used flow cytometric analysis to determine apoptosis and necrosis of SK-N-SH cells after transfection with miR-146a inhibitor, miR-146a mimic, and negative controls. The expression level of target genes was detected by RT-PCR and Western blotting. We identified BCL11A as a target of miR-146a. Thus, miR-146a targets the 3'UTR of BCL11A and inhibits its mRNA and protein expression. Overexpression of miR-146a can inhibit the growth and promote the apoptosis of human neuroblastoma SK-N-SH cells through inhibiting the expression of BCL11A. Furthermore, we found that upregulation of BCL11A by miR-146a inhibitor can promote SK-N-SH cells growth and protect SK-N-SH cells against apoptosis. Our results showed that miR-146a is a potential tumor suppressor gene in human neuroblastoma via directly targeting BCL11A. These findings suggest that miR-146a might be a new candidate target for treatment of human neuroblastoma.
Collapse
Affiliation(s)
- Sheng-Hua Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jin-Pin Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Lan Chen
- Department of Internal Medicine, The Second Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jing-Li Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China.
| |
Collapse
|
57
|
Diao J, Su X, Cao L, Yang Y, Liu Y. MicroRNA‑874 inhibits proliferation and invasion of pancreatic ductal adenocarcinoma cells by directly targeting paired box 6. Mol Med Rep 2018; 18:1188-1196. [PMID: 29845293 DOI: 10.3892/mmr.2018.9069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/16/2018] [Indexed: 11/05/2022] Open
Abstract
Studies have demonstrated that a number of microRNAs (miRNAs) are dysregulated in pancreatic ductal adenocarcinoma (PDAC), and alterations in their expression may affect the onset and progression of PDAC. Therefore, the expression patterns, biological functions and associated molecular mechanisms of miRNAs in PDAC should be elucidated for the development of novel therapeutic methods. Previous studies reported significant miRNA‑874 (miR‑874) dysregulation in multiple types of human cancer. However, the expression pattern, possible roles and underlying mechanisms of miR‑874 in PDAC remain to be elucidated. This study evaluated miR‑874 expression in PDAC and examined its biological functions and underlying mechanism of action in PDAC progression. miR‑874 expression was downregulated in PDAC tissues and cell lines. Functional experiments demonstrated that upregulation of miR‑874 inhibited cell proliferation and invasion in PDAC. Additionally, paired box 6 (PAX6) was predicted as a putative target of miR‑874 using bioinformatics analysis. Further experiments demonstrated that PAX6 may be the direct target gene of miR‑874 in PDAC. PAX6 knockdown exhibited similar inhibitory effects to miR‑874 overexpression in PDAC cells. In addition, restored PAX6 expression may reverse the suppressive roles of miR‑874 overexpression in PDAC cells. The results demonstrated that miR‑874 may serve tumor suppressive roles in PDAC by directly targeting PAX6. Therefore, miR‑874 may exhibit potential applications for treatment of patients with PDAC.
Collapse
Affiliation(s)
- Jiandong Diao
- Department of Oncology and Hematology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xiaoyun Su
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Ling Cao
- Department of Radiation Oncology, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Yongjing Yang
- Department of Radiation Oncology, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Yanling Liu
- Department of Oncology, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
58
|
Xie G. Circular RNA hsa-circ-0012129 Promotes Cell Proliferation and Invasion in 30 Cases of Human Glioma and Human Glioma Cell Lines U373, A172, and SHG44, by Targeting MicroRNA-661 (miR-661). Med Sci Monit 2018; 24:2497-2507. [PMID: 29686222 PMCID: PMC5936050 DOI: 10.12659/msm.909229] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Circular RNA (circRNA) is a stable non-coding RNA without 5′-3′ polarity and without a poly-A tail, that contains response elements for microRNAs (miRNAs) such as miR-661. There have previously been few reported studies on the role of circRNAs in glioma. The aim of this study was to investigate the effects of the expression of the circRNA, hsa-circ-0012129, and miR-661 in human glioma tissue and human glioma cell lines. Material/Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of hsa-circ-0012129 and miR-661 in glioma tissues from 31 patients (WHO grades I–IV), compared with adjacent normal tissue, and in human glioma cell lines, U373, A172, and SHG44, compared with the normal human astrocyte cell line, NHA. The MTT assay, colony formation assay, transwell and wound scratch assays were performed to analyze and compare cell viability, cell migration, and invasion. Results Expression of hsa-circ-0012129 was significantly increased in glioma tissues and cell lines; hsa-circ-0012129 knockdown significantly suppressed the proliferation, migration, and invasion abilities of U373 and SHG44 cells. A dual-luciferase reporter assay showed that hsa-circ-0012129 contained the complementary binding region with miR-661 and that hsa-circ-0012129 expression negatively regulated miR-661. Rescue experiments showed that miR-661 could reverse the effects of hsa-circ-0012129 on cell viability, cell migration and invasion of glioma cells in vitro. Conclusions The findings of this study indicated that, in human glioma cells, the circRNA, hsa-circ-0012129 might act as a natural miR-661 sponge, and that miR-661 could have suppressive effects on the expression of circ-0012129.
Collapse
Affiliation(s)
- Gang Xie
- Dapartment of Neurosurgery, The Third Affiliated Hospital of Bengbu Medical College, Suzhou, Anhui, China (mainland)
| |
Collapse
|
59
|
Dihydroartemisinin suppresses pancreatic cancer cells via a microRNA-mRNA regulatory network. Oncotarget 2018; 7:62460-62473. [PMID: 27613829 PMCID: PMC5308739 DOI: 10.18632/oncotarget.11517] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 08/08/2016] [Indexed: 01/10/2023] Open
Abstract
Despite improvements in surgical procedures and chemotherapy, pancreatic cancer remains one of the most aggressive and fatal human malignancies, with a low 5-year survival rate of only 8%. Therefore, novel strategies for prevention and treatment are urgently needed. Here, we investigated the mechanisms underlying the anti-pancreatic cancer effects dihydroartemisinin (DHA). Microarray and systematic analysis showed that DHA suppressed proliferation, inhibited angiogenesis and promoted apoptosis in two different human pancreatic cancer cell lines, and that 5 DHA-regulated microRNAs and 11 of their target mRNAs were involved in these effects via 19 microRNA-mRNA interactions. Four of these microRNAs, 9 of the mRNAs and 17 of the interactions were experimentally verified. Furthermore, we found that the anti-pancreatic caner effects of DHA in vivo involved 4 microRNAs, 9 mRNAs and 17 microRNA-mRNA interactions. These results improve the understanding of the mechanisms by which DHA suppresses proliferation and angiogenesis and promotes apoptosis in pancreatic cancer cells and indicate that DHA, an effective antimalarial drug, might improve pancreatic cancer treatments.
Collapse
|
60
|
Ma L, Zhou Y, Luo X, Gao H, Deng X, Jiang Y. Long non-coding RNA XIST promotes cell growth and invasion through regulating miR-497/MACC1 axis in gastric cancer. Oncotarget 2018; 8:4125-4135. [PMID: 27911852 PMCID: PMC5354817 DOI: 10.18632/oncotarget.13670] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/19/2016] [Indexed: 01/23/2023] Open
Abstract
Abnormal expression of long non-coding RNA (lncRNAs) often contributes to unrestricted growth and invasion of cancer cells. LncRNA XIST expression is up-regulated in several cancers, however, its modulatory mechanism in gastric cancer (GC) has not been elucidated. In the present study, we found that XIST expression was significantly increased in GC tissues and cell lines. LncRNA XIST promoted cell cycle progression from the G1 phase to the S phase and protected cells from apoptosis, which contributed to GC cell growth. LncRNA XIST also contributed to GC cell invasion both in vitro and in vivo. We revealed that XIST functioned as competing endogenous RNA to repress miR-497, which controlled its down-stream target MACC1. We proposed that XIST was responsible for GC cell proliferation and invasion and XIST exerted its function through the miR-497/MACC1 axis. Our findings suggested that lncRNA XIST may be a candidate prognostic biomarker and a target for new therapies in GC patients.
Collapse
Affiliation(s)
- Lei Ma
- Cancer Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Gastroenterology, Guangzhou Medical University, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology, The First Hospital of Guangzhou, Guangzhou, China
| | - Xiaojun Luo
- Cancer Center, TCM-Integrated Hospital, Southern Medical University, Guangzhou, China
| | - Hai Gao
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China.,Xiamen Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Xiamen, China
| | - Xubin Deng
- Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingjie Jiang
- Department of Gastroenterology, The First Hospital of Guangzhou, Guangzhou, China
| |
Collapse
|
61
|
The miR-181 family promotes cell cycle by targeting CTDSPL, a phosphatase-like tumor suppressor in uveal melanoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:15. [PMID: 29382357 PMCID: PMC5791374 DOI: 10.1186/s13046-018-0679-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Background MicroRNAs (miRNAs) have been shown to function in many different cellular processes, including proliferation, apoptosis, differentiation and development. miR-181a, -181b, -181c and -181d are miR-181 members of the family, which has been rarely studied, especially uveal melanoma. Methods The expression level of miR-181 family in human uveal melanoma cell lines was measured via real-time PCR (RT-PCR). The function of miR-181 on cell cycle was detected through Flow Cytometry assay. Microarray assay and Bioinformatics analysis were used to find the potential target of miR-181b, and dual-luciferase reporter assays further identified the target gene. Results MiR-181 family members were found to be highly homologous across different species and their upregulation significantly induces UM cell cycle progression. Of the family members, miR-181b was significantly overexpressed in UM tissues and most UM cells. Bioinformatics and dual luciferase reporter assay confirmed CTDSPL as a target of miR-181b. miR-181b over-expression inhibited CTDSPL expression, which in turn led to the phosphorylation of RB and an accumulation of the downstream cell cycle effector E2F1, promoting cell cycle progression in UM cells. Knockdown CTDSPL using siRNAs showing the same effect, including increase of E2F1 and the progression of cell cycle. Conclusions MiR-181 family members are key negative regulators of CTDSPL-mediated cell cycle progression. These results highlight that miR-181 family members, especially miR-181b, may be useful in the development of miRNA-based therapies and may serve as novel diagnostic and therapeutic candidate for UM. Electronic supplementary material The online version of this article (10.1186/s13046-018-0679-5) contains supplementary material, which is available to authorized users.
Collapse
|
62
|
Zhang Q, Chen B, Liu P, Yang J. XIST promotes gastric cancer (GC) progression through TGF‐β1 via targeting miR‐185. J Cell Biochem 2017; 119:2787-2796. [DOI: 10.1002/jcb.26447] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/17/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Quan Zhang
- Department of OncologyThe First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Department of Radiation OncologyHuai'an First People's HospitalNanjing Medical UniversityHuai'anChina
| | - Baiyu Chen
- Department of General SurgeryLian Shui People's HospitalLianshuiJiangsuChina
| | - Ping Liu
- Department of OncologyThe First Affiliated HospitalNanjing Medical UniversityNanjingChina
| | - Jing Yang
- Department of Radiation OncologyHuai'an First People's HospitalNanjing Medical UniversityHuai'anChina
| |
Collapse
|
63
|
Qattan A, Intabli H, Alkhayal W, Eltabache C, Tweigieri T, Amer SB. Robust expression of tumor suppressor miRNA's let-7 and miR-195 detected in plasma of Saudi female breast cancer patients. BMC Cancer 2017; 17:799. [PMID: 29183284 PMCID: PMC5706292 DOI: 10.1186/s12885-017-3776-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022] Open
Abstract
Background Female breast cancer is frequently diagnosed at a later stage and the leading cause of cancer deaths world-wide. Levels of cell-free circulating microRNAs (miRNAs) can potentially be used as biomarkers to measure disease progression in breast cancer patients in a non-invasive way and are therefore of high clinical value. Methods Using quantitative RT-PCR, circulating miRNAs were measured in blood samples collected from disease-free individuals (n = 34), triple-negative breast tumours (TNBC) (n = 36) and luminal tumours (n = 57). In addition to intergroup comparisons, plasma miRNA expression levels of all groups were analyzed against RNASeq data from cancerous breast tissue via The Cancer Genome Atlas (TCGA). Results A differential set of 18 miRNAs were identified in the plasma of breast cancer patients and 10 miRNAs were uniquely identified based on ROC analysis. The most striking findings revealed elevated tumor suppressor let-7 miRNA in luminal breast cancer patients, irrespective of subtype, and elevated miR-195 in plasma of TNBC breast cancer patients. In contrast, hsa-miR-195 and let-7 miRNAs were absent from cancerous TCGA tissue and strongly expressed in surrounding non-tumor tissue indicating that cancerous cells may selectively export tumor suppressor hsa-miR-195 and let-7 miRNAs in order to maintain oncogenesis. Conclusions While studies have indicated that the restoration of let-7 and miR-195 may be a potential therapy for cancer, these results suggested that tumor cells may selectively export hsa-miR-195 and let-7 miRNAs thereby neutralizing their potential therapeutic effect. However, in order to facilitate earlier detection of breast cancer, blood based screening of hsa-miR-195 and let-7 may be beneficial in a female patient cohort. Electronic supplementary material The online version of this article (10.1186/s12885-017-3776-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amal Qattan
- Breast Cancer Research, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211, Saudi Arabia. .,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences (SMHS), George Washington University, 2600 Virginia Avenue, NW, Suite 300, Washington, DC, 20037, USA. .,College of Medicine, Alfaisal University, P.O.Box 50927, Riyadh, 11533, Saudi Arabia.
| | - Haya Intabli
- Breast Cancer Research, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211, Saudi Arabia.,College of Medicine, Alfaisal University, P.O.Box 50927, Riyadh, 11533, Saudi Arabia
| | - Wafa Alkhayal
- College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.,Department of Surgery, King Faisal Specialist Hospital and Research centre, Riyadh, Saudi Arabia
| | - Chafica Eltabache
- Breast Cancer Research, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211, Saudi Arabia
| | - Taher Tweigieri
- Department of Oncology, King Faisal Specialist Hospital and Research centre, Riyadh, Saudi Arabia
| | - Suad Bin Amer
- Breast Cancer Research, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
64
|
Hu Y, Deng C, Zhang H, Zhang J, Peng B, Hu C. Long non-coding RNA XIST promotes cell growth and metastasis through regulating miR-139-5p mediated Wnt/β-catenin signaling pathway in bladder cancer. Oncotarget 2017; 8:94554-94568. [PMID: 29212249 PMCID: PMC5706895 DOI: 10.18632/oncotarget.21791] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/22/2017] [Indexed: 12/03/2022] Open
Abstract
Bladder cancer is one of the most common urological malignancy all over the world. Recently, long non-coding RNA (lncRNA) XIST has been identified as an oncogenic gene in several type of cancers. However, the expression level and functional role of XIST in bladder cancer remain largely unknown. In the present study, we found that XIST was significantly up-regulated in bladder cancer tissues and cell lines, and was correlated with poor prognosis of bladder cancer patients. Furthermore, XIST knockdown significantly inhibited bladder cancer cell growth and metastasis in vitro and tumor growth in vivo. We also demonstrated that XIST acted as a competing endogenous RNA for miR-139-5p and repression of miR-139-5p could restore the inhibitory effects on bladder cancer cells induced by XIST shRNA. In addition, we identified that Wnt1 was a direct target of miR-139-5p, and XIST played the oncogenic role in bladder cancer by activating the Wnt/β-catenin signaling pathway. Taken together, our study suggested that lncRNA XIST may serve as a prognostic biomarker and a potential therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Yangyang Hu
- Department of Urology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China.,Department of First Clinical Medical College, Nanjing Medical University, Nanjing 211166, China
| | - Chao Deng
- Department of Urology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - He Zhang
- Department of Urology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Jing Zhang
- Department of Urology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Bo Peng
- Department of First Clinical Medical College, Nanjing Medical University, Nanjing 211166, China
| | - Chuanyi Hu
- Department of Urology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| |
Collapse
|
65
|
Liu J, Chen W, Zhang H, Liu T, Zhao L. miR-214 targets the PTEN-mediated PI3K/Akt signaling pathway and regulates cell proliferation and apoptosis in ovarian cancer. Oncol Lett 2017; 14:5711-5718. [PMID: 29113199 PMCID: PMC5661372 DOI: 10.3892/ol.2017.6953] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/03/2017] [Indexed: 11/09/2022] Open
Abstract
The present study aimed to investigate the potential role of microRNA (miR)-214 in targeting the phosphatase and tensin homolog (PTEN)-mediated phosphoinositide 3-kinase (PI3K)/Akt signaling pathway in ovarian cancer (OC). The target gene of miR-214 was determined by luciferase reporter gene assay and was indicated to be PTEN. Human SK-OV-3 cells were transfected with a miR-214 inhibitor and a miR-214 mimic, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect relative expression of miR-214. The MTT assay was performed to detect cell viability following transfection. Cell cycle and apoptosis were assessed by staining with propidium iodide (PI) and double staining with Annexin V/PI, respectively. The expression levels of PTEN and PI3K/Akt signaling pathway-associated proteins were detected by western blot analysis. The expression of miR-214 in tumor tissues and normal tissues was detected by RT-qPCR, and PTEN expression was detected by immunohistochemistry. SK-OV-3 cells transfected with a miR-214 inhibitor showed significantly inhibited cell viability and proliferation, and markedly increased apoptotic rate. SK-OV-3 cells transfected with miR-214 mimic showed significantly increased viability and proliferation, and markedly decreased apoptotic rate. The cells transfected with a miR-214 inhibitor exhibited significantly upregulated PTEN expression and significantly downregulated phosphatidylinositol (3,4,5)-trisphosphate (PIP3), phosphorylated (p)-Akt and p-glycogen synthase kinase (GSK)-3β expression. The cells transfected with miR-214 mimic exhibited significantly downregulated PTEN expression and significantly upregulated PIP3, p-Akt and p-GSK-3β expressions. The OC tissues exhibited an increased expression of miR-214 and a reduced positive rate of PTEN expression compared with adjacent normal tissues. miR-214 may activate the PI3K/Akt signaling pathway by downregulating the targeted PTEN, which may promote OC cell proliferation and inhibit apoptosis.
Collapse
Affiliation(s)
- Jing Liu
- Department of Gynecology, Linyi Tumor Hospital, Linyi, Shandong 276002, P.R. China
| | - Weiyan Chen
- Department of Gynecology, Linyi Tumor Hospital, Linyi, Shandong 276002, P.R. China
| | - Haiyan Zhang
- Department of Gynecology, Linyi Tumor Hospital, Linyi, Shandong 276002, P.R. China
| | - Ting Liu
- Department of Gynecology, Linyi Tumor Hospital, Linyi, Shandong 276002, P.R. China
| | - Lin Zhao
- Department of Gynecology, Linyi Tumor Hospital, Linyi, Shandong 276002, P.R. China
| |
Collapse
|
66
|
Abstract
MicroRNAs (miRNAs or miRs) are small 19-22 nucleotide long, noncoding, single-stranded, and multifunctional RNAs that regulate a diverse assortment of gene and protein functions that impact on a vast network of pathways. Lin-4, a noncoding transcript discovered in 1993 and named miRNA, initiated the exploration of research into these intriguing molecules identified in almost all organisms. miRNAs interfere with translation or posttranscriptional regulation of their target gene and regulate multiple biological actions exerted by these target genes. In cancer, they function as both oncogenes and tumor suppressor genes displaying differential activity in various cellular contexts. Although the role of miRNAs on target gene functions has been extensively investigated, less is currently known about the upstream regulatory molecules that regulate miRNAs. This chapter focuses on the factors and processes involved in miRNA regulation.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
67
|
Schwentner R, Herrero-Martin D, Kauer MO, Mutz CN, Katschnig AM, Sienski G, Alonso J, Aryee DNT, Kovar H. The role of miR-17-92 in the miRegulatory landscape of Ewing sarcoma. Oncotarget 2017; 8:10980-10993. [PMID: 28030800 PMCID: PMC5355239 DOI: 10.18632/oncotarget.14091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/16/2016] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs serve to fine-tune gene expression and play an important regulatory role in tissue specific gene networks. The identification and validation of miRNA target genes in a tissue still poses a significant problem since the presence of a seed sequence in the 3′UTR of an mRNA and its expression modulation upon ectopic expression of the miRNA do not reliably predict regulation under physiological conditions. The chimeric oncoprotein EWS-FLI1 is the driving pathogenic force in Ewing sarcoma. MiR-17-92, one of the most potent oncogenic miRNAs, was recently reported to be among the top EWS-FLI1 activated miRNAs. Using a combination of AGO2 pull-down experiments by PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation) and of RNAseq upon miRNA depletion by ectopic sponge expression, we aimed to identify the targetome of miR-17-92 in Ewing sarcoma. Intersecting both datasets we found an enrichment of PAR-CLIP hits for members of the miR-17-92 cluster in the 3′UTRs of genes up-regulated in response to mir-17-92 specific sponge expression. Strikingly, approximately a quarter of these genes annotate to the TGFB/BMP pathway, the majority mapping downstream of SMAD signaling. Testing for SMAD phosphorylation, we identify quiet but activatable TGFB signaling and cell autonomous activity of the BMP pathway resulting in the activation of the stemness regulatory transcriptional repressors ID1 and ID3. Taken together, our findings shed light on the complex miRegulatory landscape of Ewing Sarcoma pointing miR-17-92 as a key node connected to TGFB/BMP pathway.
Collapse
Affiliation(s)
- Raphaela Schwentner
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna 1090, Austria
| | - David Herrero-Martin
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna 1090, Austria.,Present address: Sarcoma research group, Molecular Oncology Lab, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat 08908, Barcelona, Spain
| | - Maximilian O Kauer
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna 1090, Austria
| | - Cornelia N Mutz
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna 1090, Austria
| | - Anna M Katschnig
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna 1090, Austria
| | - Grzegorz Sienski
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter Campus, 1030 Vienna, Austria.,Present address: Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, ISCIII, Ctra, Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Dave N T Aryee
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna 1090, Austria.,Department of Pediatrics, Medical University, Vienna 1090, Austria
| | - Heinrich Kovar
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna 1090, Austria.,Department of Pediatrics, Medical University, Vienna 1090, Austria
| |
Collapse
|
68
|
Abdel-Hafiz HA. Epigenetic Mechanisms of Tamoxifen Resistance in Luminal Breast Cancer. Diseases 2017; 5:E16. [PMID: 28933369 PMCID: PMC5622332 DOI: 10.3390/diseases5030016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is one of the most common cancers and the second leading cause of cancer death in the United States. Estrogen receptor (ER)-positive cancer is the most frequent subtype representing more than 70% of breast cancers. These tumors respond to endocrine therapy targeting the ER pathway including selective ER modulators (SERMs), selective ER downregulators (SERDs) and aromatase inhibitors (AIs). However, resistance to endocrine therapy associated with disease progression remains a significant therapeutic challenge. The precise mechanisms of endocrine resistance remain unclear. This is partly due to the complexity of the signaling pathways that influence the estrogen-mediated regulation in breast cancer. Mechanisms include ER modifications, alteration of coregulatory function and modification of growth factor signaling pathways. In this review, we provide an overview of epigenetic mechanisms of tamoxifen resistance in ER-positive luminal breast cancer. We highlight the effect of epigenetic changes on some of the key mechanisms involved in tamoxifen resistance, such as tumor-cell heterogeneity, ER signaling pathway and cancer stem cells (CSCs). It became increasingly recognized that CSCs are playing an important role in driving metastasis and tamoxifen resistance. Understanding the mechanism of tamoxifen resistance will provide insight into the design of novel strategies to overcome the resistance and make further improvements in breast cancer therapeutics.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Department of Medicine/Endocrinology, School of Medicine, University of Colorado, Ms 8106 PO Box 6511, 12801 E 17th Avenue, Aurora, Denver, CO 80010, USA; Tel.: +1-303-724-1013; Fax: +1-303-724-3920.
| |
Collapse
|
69
|
Lee G, Bang L, Kim SY, Kim D, Sohn KA. Identifying subtype-specific associations between gene expression and DNA methylation profiles in breast cancer. BMC Med Genomics 2017; 10:28. [PMID: 28589855 PMCID: PMC5461552 DOI: 10.1186/s12920-017-0268-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Breast cancer is a complex disease in which different genomic patterns exists depending on different subtypes. Recent researches present that multiple subtypes of breast cancer occur at different rates, and play a crucial role in planning treatment. To better understand underlying biological mechanisms on breast cancer subtypes, investigating the specific gene regulatory system via different subtypes is desirable. METHODS Gene expression, as an intermediate phenotype, is estimated based on methylation profiles to identify the impact of epigenomic features on transcriptomic changes in breast cancer. We propose a kernel weighted l1-regularized regression model to incorporate tumor subtype information and further reveal gene regulations affected by different breast cancer subtypes. For the proper control of subtype-specific estimation, samples from different breast cancer subtype are learned at different rate based on target estimates. Kolmogorov Smirnov test is conducted to determine learning rate of each sample from different subtype. RESULTS It is observed that genes that might be sensitive to breast cancer subtype show prediction improvement when estimated using our proposed method. Comparing to a standard method, overall performance is also enhanced by incorporating tumor subtypes. In addition, we identified subtype-specific network structures based on the associations between gene expression and DNA methylation. CONCLUSIONS In this study, kernel weighted lasso model is proposed for identifying subtype-specific associations between gene expressions and DNA methylation profiles. Identification of subtype-specific gene expression associated with epigenomic changes might be helpful for better planning treatment and developing new therapies.
Collapse
Affiliation(s)
- Garam Lee
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Lisa Bang
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA
| | - So Yeon Kim
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Dokyoon Kim
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA. .,The Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Kyung-Ah Sohn
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
70
|
MicroRNA expression levels as diagnostic biomarkers for intraductal papillary mucinous neoplasm. Oncotarget 2017; 8:58765-58770. [PMID: 28938594 PMCID: PMC5601690 DOI: 10.18632/oncotarget.17679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/10/2017] [Indexed: 12/31/2022] Open
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) are deadly exocrine mucinous tumors. Currently the molecular features and diagnostic markers of IPMNs are not well understood. In this study, we performed microRNA (miRNA) profiling assays to study the potential roles of miRNAs in IPMNs using 78 cases of IPMN patients and controls. When comparing the miRNA expression between IPMN patient samples and controls, we found that miR-210, miR-223, miR-221, miR-155 and miR-187 were differentially expressed in normal pancreas and IPMNs. We further studied the miRNA expression profiles in different pancreatic diseases and identified miRNA features that are associated with Chronic pancreatitis (CP), IPMN, and Pancreatic ductal adenocarcinoma (PDAC). Therefore, these miRNAs might serve as new risk biomarkers of IPMN and could be useful for future targeted therapies.
Collapse
|
71
|
Fu Y, Xiong J. MicroRNA-124 enhances response to radiotherapy in human epidermal growth factor receptor 2-positive breast cancer cells by targeting signal transducer and activator of transcription 3. Croat Med J 2017; 57:457-464. [PMID: 27815936 PMCID: PMC5141458 DOI: 10.3325/cmj.2016.57.457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aim To determine whether microRNA (miR)-124 enhances the response to radiotherapy in human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells by targeting signal transducer and activator of transcription 3 (Stat3). Methods miR-29b expression was measured in 80 pairs of breast tumor samples and adjacent normal tissues collected between January 2013 and July 2014. Activity changes of 50 canonical signaling pathways upon miR-124 overexpression were determined using Cignal Signal Transduction Reporter Array. Target gene of miR-124 was determined using Targetscan and validated by Western blotting and dual-luciferase assay. Cell death rate was assessed by propidium iodide (PI)/ Annexin V staining followed by flow cytometry analysis. Stat3 and miR-124 expression was further measured in 10 relapsed (non-responder) and 10 recurrence-free HER2-positive breast cancer patients. Results MiR-124 expression was down-regulated in HER2 positive breast cancers compared with normal tissues, and was negatively associated with tumor size. MiR-124 overexpression in HER2 positive breast cancer cell line SKBR3 significantly reduced the activity of Stat3 signaling pathway compared with control transfection (P < 0.001). Bioinformatic prediction and function assay suggested that miR-124 directly targeted Stat3, which is a key regulator of HER2 expression. MiR-124 overexpression down-regulated Stat3 and potently enhanced cell death upon irradiation. Consistently, chemical inhibitor of Stat3 also sensitized HER2-positive breast cancer cells to irradiation. Moreover, increased Stat3 expression and reduced miR-124 expression were associated with a poor response to radiotherapy in HER2-positive breast cancers. Conclusions Weak miR-124 expression might enhance Stat3 expression and radiotherapy resistance in HER2-positive breast cancer cells.
Collapse
Affiliation(s)
| | - Jianping Xiong
- Jianping Xiong, 17 Yongwaizheng rd, Nanchang, Jiangxi, China 330006,
| |
Collapse
|
72
|
Li C, Lu S, Shi Y. MicroRNA-187 promotes growth and metastasis of gastric cancer by inhibiting FOXA2. Oncol Rep 2017; 37:1747-1755. [PMID: 28098868 DOI: 10.3892/or.2017.5370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/14/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) play an active role in the pathogenesis of gastric cancer. The expression and biological function for miR-187 in gastric cancer remains unknow. In the present study, we demonstrated that miR-187 expression was increased in gastric cancer (GC) tissues and cells. Increased expression level of miR-187 was associated with adverse clinical features including tumor size, lymph metastasis and TNM stage, and decreased overall survival and disease-free survival of GC patients. Functionally, overexpression miR-187 could promote while inhibition of miR-187 could suppress, the proliferation, migration and invasion of GC cells in vitro. In vivo experiments showed that overexpression of miR-187 promoted the growth and lung metastasis of SGC-7901 cells in nude mice. Mechanically, we confirmed that FOXA2 was the downstream target of miR-187 in GC cells using luciferase assay, qRT-PCR and western blot analysis. Moreover, overexpression of FOXA2 abrogated the promoting effects of miR-187 overexpression on SGC-7901 cell proliferation, migration and invasion, while inhibition of FOXA2 reversed the inhibitory effects of miR-187 downregulation on these biological functions of AGS cells, suggesting that FOXA2 was a functional mediator of miR-187 in GC. Therefore, this study indicates that miR-187 is potentially a biomarker and treatment target for GC patients.
Collapse
Affiliation(s)
- Cong Li
- Department of Emergency Internal Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Sumei Lu
- Department of Internal Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yubin Shi
- Department of Emergency Internal Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
73
|
Zhao J, Zhang BC, Yu LF, Wang WX, Zhao Y, Rao ZG. Computational analysis reveals microRNA-mRNA regulatory network in esophageal squamous cell carcinoma. ACTA ACUST UNITED AC 2016; 36:834-838. [PMID: 27924512 DOI: 10.1007/s11596-016-1671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/12/2016] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) are known to regulate post-transcriptional gene expression. They are involved in carcinogenesis and tumor progression. The aim of this study was to explore the microRNA-mRNA regulatory network in esophageal squamous cell carcinoma (ESCC) using comprehensive computational approaches. In this study we have selected a total of 11 miRNAs from one previously reported study in ESCC. The mRNA targets of these miRNAs were predicted using various algorithms. The expression profiles of these mRNA targets were identified on DNA microarray experiment dataset across ESCC tissue samples. Based on the miRNA-mRNA regulatory relationships, the network was inferred. A total of 23 miRNA-mRNA regulatory interactions, with 11 miRNAs and 13 mRNA targets, were inferred in ESCC. The miRNA-mRNA regulatory network with increased confidence provides insights into the progression of ESCC and may serve as a biomarker for prognosis or the aggressiveness of ESCC. However, the results should be examined with further experimental validation.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Oncology, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, China
| | - Bi-Cheng Zhang
- Department of Oncology, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, China
| | - Li-Fang Yu
- Department of Oncology, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, China
| | - Wei-Xing Wang
- Department of Oncology, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, China
| | - Yong Zhao
- Department of Oncology, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, China
| | - Zhi-Guo Rao
- Department of Oncology, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, China.
| |
Collapse
|
74
|
Gajulapalli VNR, Malisetty VL, Chitta SK, Manavathi B. Oestrogen receptor negativity in breast cancer: a cause or consequence? Biosci Rep 2016; 36:e00432. [PMID: 27884978 PMCID: PMC5180249 DOI: 10.1042/bsr20160228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023] Open
Abstract
Endocrine resistance, which occurs either by de novo or acquired route, is posing a major challenge in treating hormone-dependent breast cancers by endocrine therapies. The loss of oestrogen receptor α (ERα) expression is the vital cause of establishing endocrine resistance in this subtype. Understanding the mechanisms that determine the causes of this phenomenon are therefore essential to reduce the disease efficacy. But how we negate oestrogen receptor (ER) negativity and endocrine resistance in breast cancer is questionable. To answer that, two important approaches are considered: (1) understanding the cellular origin of heterogeneity and ER negativity in breast cancers and (2) characterization of molecular regulators of endocrine resistance. Breast tumours are heterogeneous in nature, having distinct molecular, cellular, histological and clinical behaviour. Recent advancements in perception of the heterogeneity of breast cancer revealed that the origin of a particular mammary tumour phenotype depends on the interactions between the cell of origin and driver genetic hits. On the other hand, histone deacetylases (HDACs), DNA methyltransferases (DNMTs), miRNAs and ubiquitin ligases emerged as vital molecular regulators of ER negativity in breast cancers. Restoring response to endocrine therapy through re-expression of ERα by modulating the expression of these molecular regulators is therefore considered as a relevant concept that can be implemented in treating ER-negative breast cancers. In this review, we will thoroughly discuss the underlying mechanisms for the loss of ERα expression and provide the future prospects for implementing the strategies to negate ER negativity in breast cancers.
Collapse
Affiliation(s)
- Vijaya Narasihma Reddy Gajulapalli
- Department of Biochemistry, Molecular and Cellular Oncology Laboratory, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | - Suresh Kumar Chitta
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh 515002, India
| | - Bramanandam Manavathi
- Department of Biochemistry, Molecular and Cellular Oncology Laboratory, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
75
|
Paraskevopoulos K, Touplikioti P, Antoniades K. MicroRNA expression in patients with squamous cell carcinoma of the tongue. Hippokratia 2016; 20:317. [PMID: 29416308 PMCID: PMC5788234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- K Paraskevopoulos
- Department of Oral and Maxillofacial Surgery, 'G.Papanikolaou' General hospital, Thessaloniki, Greece
| | - P Touplikioti
- Department of Cytopathology, Theageneio Anticancer Hospital, Thessaloniki, Greece
| | - K Antoniades
- Department of Oral and Maxillofacial Surgery, 'G.Papanikolaou' General hospital, Thessaloniki, Greece
| |
Collapse
|
76
|
Ciesla M, Marona P, Kozakowska M, Jez M, Seczynska M, Loboda A, Bukowska-Strakova K, Szade A, Walawender M, Kusior M, Stepniewski J, Szade K, Krist B, Yagensky O, Urbanik A, Kazanowska B, Dulak J, Jozkowicz A. Heme Oxygenase-1 Controls an HDAC4-miR-206 Pathway of Oxidative Stress in Rhabdomyosarcoma. Cancer Res 2016; 76:5707-5718. [PMID: 27488535 DOI: 10.1158/0008-5472.can-15-1883] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 07/16/2016] [Indexed: 11/16/2022]
Abstract
Rhabdomyosarcoma (RMS) is an aggressive soft tissue cancer characterized by disturbed myogenic differentiation. Here we report a role for the oxidative stress response factor HO-1 in progression of RMS. We found that HO-1 was elevated and its effector target miR-206 decreased in RMS cell lines and clinical primary tumors of the more aggressive alveolar phenotype (aRMS). In embryonal RMS (eRMS), HO-1 expression was induced by Pax3/7-FoxO1, an aRMS hallmark oncogene, followed by a drop in miR-206 levels. Inhibition of HO-1 by tin protoporphyrin (SnPP) or siRNA downregulated Pax3/7-FoxO1 target genes and induced a myogenic program in RMS. These effects were not mediated by altered myoD expression; instead, cells with elevated HO-1 produced less reactive oxygen species, resulting in nuclear localization of HDAC4 and miR-206 repression. HO-1 inhibition by SnPP reduced growth and vascularization of RMS tumors in vivo accompanied by induction of miR-206. Effects of SnPP on miR-206 expression and RMS tumor growth were mimicked by pharmacologic inhibition of HDAC. Thus, HO-1 inhibition activates an miR-206-dependent myogenic program in RMS, offering a novel therapeutic strategy for treatment of this malignancy. Cancer Res; 76(19); 5707-18. ©2016 AACR.
Collapse
Affiliation(s)
- Maciej Ciesla
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Paulina Marona
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Jez
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Seczynska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Walawender
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Kusior
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jacek Stepniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bart Krist
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Oleksandr Yagensky
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Urbanik
- Department of Oncology, Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Bernarda Kazanowska
- Department of Oncology, Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland. International Associated Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
77
|
Zhao JJ, Wu ZF, Wang L, Feng DH, Cheng L. MicroRNA-145 Mediates Steroid-Induced Necrosis of the Femoral Head by Targeting the OPG/RANK/RANKL Signaling Pathway. PLoS One 2016; 11:e0159805. [PMID: 27459539 PMCID: PMC4961289 DOI: 10.1371/journal.pone.0159805] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 07/10/2016] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate the role of microRNA-145 (miR-145) in steroid-induced necrosis of the femoral head (SINFH) by evaluating its effects on the OPG/RANK/RANKL signaling pathway. Methods A rat model of SINFH was constructed via injection of the lentiviral vector pLV-shRNA-miR-145. Pathological observation was performed via tartrate-resistant acid phosphatase (TRAP) staining, and serum OPG levels were detected by ELISA. The mRNA expression levels of miR-145, OPG, RANK and RANKL in THP-1 cells were assessed by RT-PCR, and the protein expression levels of OPG, RANK and RANKL were assessed by western blotting. Results The expression of miR-145 in the lentivirus-mediated miR-145 group was significantly up-regulated compared with that in the control and normal groups (both P < 0.01). Serum OPG levels were decreased in SINFH rats compared with control and normal rats. The mRNA and protein expression levels of OPG in THP-1 cells decreased after transfection (all P < 0.05). By contrast, the mRNA and protein expression levels of RANK and RANKL in THP-1 cells increased after transfection (all P < 0.05). After transfection of 293T cells with an miR-145 overexpression vector, miR-145 expression in 293T cells increased significantly, while OPG mRNA and protein expression decreased significantly (all P < 0.05). Conclusion MiR-145 plays a role in the occurrence of SINFH by targeting the OPG/RANK/RANKL signaling pathway.
Collapse
Affiliation(s)
- Ji-Jun Zhao
- Department of Orthopedics, Wuxi People’s Hospital, Wuxi 214000, China
- * E-mail:
| | - Zhao-Feng Wu
- Department of Orthopedics, Wuxi People’s Hospital, Wuxi 214000, China
| | - Ling Wang
- Department of Orthopedics, Wuxi People’s Hospital, Wuxi 214000, China
| | - De-Hong Feng
- Department of Orthopedics, Wuxi People’s Hospital, Wuxi 214000, China
| | - Li Cheng
- Department of Orthopedics, Wuxi People’s Hospital, Wuxi 214000, China
| |
Collapse
|
78
|
Kuang X, Chi J, Wang L. Deregulated microRNA expression and its pathogenetic implications for myelodysplastic syndromes. ACTA ACUST UNITED AC 2016; 21:593-602. [PMID: 27357100 DOI: 10.1080/10245332.2016.1193962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Myelodysplastic syndromes (MDS) include a heterogeneous group of clonal hematological stem cell disorders characterized by ineffective hematopoiesis, cytopenias. MicroRNAs (miRNAs) are short non-coding RNA molecules that repress gene expression at the post-transcriptional level. In this review, we summarize advanced investigations that underscore deregulated miRNA expression in MDS, and discuss the implications of miRNAs in the molecular pathogenesis of MDS. METHODS Relevant English-language literatures were searched and retrieved from PubMed using the terms MDS and miRNAs. RESULTS The majority of studies have focused on profiling miRNA expression in MDS, only a small number of studies have investigated the exact pathogenic role of miRNAs in MDS. DISCUSSION In the hematopoietic system, miRNAs are critical regulators of the differentiation of hematopoietic stem/progenitor cells. Thus, it is not surprising that dysregulation of miRNAs can lead to hematopoietic stem cell anomalies and further cause MDS. Deregulated miRNA expression has been identified in MDS, and it contributes to the pathogenesis and progression of MDS. Chromosomal aberrations, hypermethylation of miRNA promoters, and mutations of miRNA genes may lead to dysregulation of miRNA in MDS. However, the complex regulatory networks between miRNAs and their potential target genes in MDS still need to be explored in further studies. CONCLUSIONS Although the function of miRNAs is not fully understood, these small non-coding RNAs represent novel pathogenetic and clinical implications in MDS. The studies of miRNAs may guide us towards a better understanding of this disease and shed light on the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Xingyi Kuang
- a Department of Hematology , The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016 , PR China
| | - Jianxiang Chi
- b The Center for the Study of Haematological Malignancies , 2032 Nicosia , Cyprus
| | - Li Wang
- a Department of Hematology , The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016 , PR China
| |
Collapse
|
79
|
Potenza N, Castiello F, Panella M, Colonna G, Ciliberto G, Russo A, Costantini S. Human MiR-544a Modulates SELK Expression in Hepatocarcinoma Cell Lines. PLoS One 2016; 11:e0156908. [PMID: 27275761 PMCID: PMC4898719 DOI: 10.1371/journal.pone.0156908] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/20/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a multi-factorial cancer with a very poor prognosis; therefore, there are several investigations aimed at the comprehension of the molecular mechanisms leading to development and progression of HCC and at the definition of new therapeutic strategies. We have recently evaluated the expression of selenoproteins in HCC cell lines in comparison with normal hepatocytes. Recent results have shown that some of them are down- and others up-regulated, including the selenoprotein K (SELK), whose expression was also induced by sodium selenite treatment on cells. However, so far very few studies have been dedicated to a possible effect of microRNAs on the expression of selenoproteins and their implication in HCC. In this study, the analysis of SELK 3'UTR by bioinformatics tools led to the identification of eight sites potentially targeted by human microRNAs. They were then subjected to a validation test based on luciferase reporter constructs transfected in HCC cell lines. In this functional screening, miR-544a was able to interact with SELK 3'UTR suppressing the reporter activity. Transfection of a miR-544a mimic or inhibitor was then shown to decrease or increase, respectively, the translation of the endogenous SELK mRNA. Intriguingly, miR-544a expression was found to be modulated by selenium treatment, suggesting a possible role in SELK induction by selenium.
Collapse
Affiliation(s)
- Nicoletta Potenza
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italia
| | - Filomena Castiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italia
| | - Marta Panella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italia
| | - Giovanni Colonna
- Servizio di Informatica Medica, Azienda Ospedaliera Universitaria, Seconda Università di Napoli, Napoli, Italia
| | - Gennaro Ciliberto
- Direttore Scientifico, Istituto Nazionale Tumori “Fondazione G. Pascale”- IRCCS, Napoli, Italia
| | - Aniello Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italia
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori “Fondazione G. Pascale”—IRCCS, Napoli, Italia
| |
Collapse
|
80
|
Khor ES, Noor SM, Wong PF. Expression of zTOR-associated microRNAs in zebrafish embryo treated with rapamycin. Life Sci 2016; 150:67-75. [PMID: 26916825 DOI: 10.1016/j.lfs.2016.02.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/17/2016] [Accepted: 02/21/2016] [Indexed: 01/24/2023]
Abstract
AIMS MicroRNAs (miRNAs) are vital in modulating lifespan and various biological processes including vascular function. The pivotal roles of mammalian target of rapamycin (mTOR) in regulating senescence and angiogenesis have been extensively described. However, the roles of its orthologue, zebrafish target of rapamycin (zTOR) in senescence and angiogenesis remain to be unravelled. In the present study, we aimed to investigate the role of zTOR and identify miRNAs associated with senescence and angiogenesis. MAIN METHODS Zebrafish embryos were treated with rapamycin and the inhibition of zTOR and its downstream proteins were validated by immunoblotting. Following the treatment, melanocyte density was quantitated, and senescence and angiogenic responses were determined by senescence-associated beta-galactosidase (SA-β-gal) and endogenous alkaline phosphatase (ALP) staining, respectively. Relative expression of microRNAs were determined by quantitative RT-PCR. KEY FINDINGS Rapamycin (400 nM) suppressed zTOR pathway by down-regulating the phosphorylation of zTOR-associated proteins such as P70S6K and S6K at both 4h post-fertilisation (hpf) and 8hpf while 4E-BP1 was only down-regulated at 8hpf when compared to their respective vehicle controls. Treatment with rapamycin also resulted in significant suppression of melanocyte development and senescence-associated beta-galactosidase (SA-β-gal) activity, and perturbed the development of intersegmental vessels (ISVs) of zebrafish embryos. In addition, the expressions of dre-miR-9-5p and -3p, dre-miR-25-3p and dre-miR-124-3p were significantly up-regulated in embryos treated with rapamycin from 4hpf. SIGNIFICANCE Our findings suggest the involvement of zTOR in embryonic senescence and angiogenesis which could be potentially mediated by selected miRNAs.
Collapse
Affiliation(s)
- Eng-Soon Khor
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
81
|
Ghose J, Bhattacharyya NP. Transcriptional regulation of microRNA-100, -146a, and -150 genes by p53 and NFκB p65/RelA in mouse striatal STHdh(Q7)/ Hdh(Q7) cells and human cervical carcinoma HeLa cells. RNA Biol 2016; 12:457-77. [PMID: 25757558 DOI: 10.1080/15476286.2015.1014288] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNA (miRNA) genes generally share many features common to those of protein coding genes. Various transcription factors (TFs) and co-regulators are also known to regulate miRNA genes. Here we identify novel p53 and NFκB p65/RelA responsive miRNAs and demonstrate that these 2 TFs bind to the regulatory sequences of miR-100, -146a and -150 in both mouse striatal and human cervical carcinoma cells and regulate their expression. p53 represses the miRNAs while NFκB p65/RelA induces them. Further, we provide evidence that exogenous p53 inhibits NFκB p65/RelA activity by reducing its nuclear content and competing with it for CBP binding. This suggests for the existence of a functional cross-talk between the 2 TFs in regulating miRNA expression. Moreover, promoter occupancy assay reveals that exogenous p53 excludes NFκB p65/RelA from its binding site in the upstream sequence of miR-100 gene thereby causing its repression. Thus, our work identifies novel p53 and NFκB p65/RelA responsive miRNAs in human and mouse and uncovers possible mechanisms of co-regulation of miR-100. It is to be mentioned here that cross-talks between p53 and NFκB p65/RelA have been observed to define the outcome of several biological processes and that the pro-apoptotic effect of p53 and the pro-survival functions of NFκB can be largely mediated via the biological roles of the miRNAs these TFs regulate. Our observation with cell lines thus provides an important platform upon which further work is to be done to establish the biological significance of such co-regulation of miRNAs by p53 and NFκB p65/RelA.
Collapse
Key Words
- ChIP, Chromatin immunoprecipitation
- Co-IP, Co-immunoprecipitation
- NFκB p65/RelA
- NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells
- RLU, Relative light unit
- RNA POL II, RNA Polymerase II
- RNA POL III, RNA Polymerase III
- RT-PCR, Reverse transcription polymerase chain reaction
- TF, Transcriptional factor
- TFBS
- Transcription factor binding site
- WB, Western blot
- miR-100
- miR-146a
- miR-150
- miRNA gene regulation
- miRNAs, microRNAs
- microRNA
- p53
- p53, tumor protein 53
- p65, RELA, RELA
- transcription factor
- v-rel avian reticuloendotheliosis viral oncogene homolog A
Collapse
Affiliation(s)
- Jayeeta Ghose
- a Crystallography and Molecular Biology Division; Saha Institute of Nuclear Physics ; Bidhannagar, Kolkata , India
| | | |
Collapse
|
82
|
Xu C, Li S, Chen T, Hu H, Ding C, Xu Z, Chen J, Liu Z, Lei Z, Zhang HT, Li C, Zhao J. miR-296-5p suppresses cell viability by directly targeting PLK1 in non-small cell lung cancer. Oncol Rep 2016; 35:497-503. [PMID: 26549165 DOI: 10.3892/or.2015.4392] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/06/2015] [Indexed: 01/17/2023] Open
Abstract
Polo-like kinase 1 (PLK1), a critical kinase for mitotic progression, is overexpressed in a wide range of cancers. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules and proposed to play important roles in the regulation of tumor progression and invasion. However, the relationship between PLK1 and miRNAs have remained unclear. In the present study, the association between PLK1 and miR-296-5p was investigated. The upregulation of PLK1 mRNA expression levels combined with the downregulation of miR-296-5p levels were detected in both non-small cell lung cancer (NSCLC) tissues and cell lines. Functional studies showed that knockdown of PLK1 by siRNA inhibited NSCLC cells proliferation. Impressively, overexpression of miR-296-5p showed the same phenocopy as the effect of PLK1 knockdown in NSCLC cells, indicating that PLK1 was a major target of miR-296-5p. Furthermore, using western blot analysis and luciferase reporter assay, PLK1 protein expression was proved to be regulated by miR-296-5p through binding to the putative binding sites in its 3'-untranslated region (3'-UTR). Taken together, the present study indicated that miR-296-5p regulated PLK1 expression and could function as a tumor suppressor in NSCLC progression, which provides a potential target for gene therapy of NSCLC.
Collapse
Affiliation(s)
- Chun Xu
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Sen Li
- Department of Thoracic Surgery, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu 215400, P.R. China
| | - Tengfei Chen
- Department of Thoracic Surgery, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu 215400, P.R. China
| | - Haibo Hu
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Cheng Ding
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhenlei Xu
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jun Chen
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zeyi Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhe Lei
- Suzhou Key Laboratory for Cancer Molecular Genetics, Suzhou, Jiangsu 215123, P.R. China
| | - Hong-Tao Zhang
- Suzhou Key Laboratory for Cancer Molecular Genetics, Suzhou, Jiangsu 215123, P.R. China
| | - Chang Li
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jun Zhao
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
83
|
Adams BD, Wali VB, Cheng CJ, Inukai S, Booth CJ, Agarwal S, Rimm DL, Győrffy B, Santarpia L, Pusztai L, Saltzman WM, Slack FJ. miR-34a Silences c-SRC to Attenuate Tumor Growth in Triple-Negative Breast Cancer. Cancer Res 2015; 76:927-39. [PMID: 26676753 DOI: 10.1158/0008-5472.can-15-2321] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with no clinically proven biologically targeted treatment options. The molecular heterogeneity of TNBC and lack of high frequency driver mutations other than TP53 have hindered the development of new and effective therapies that significantly improve patient outcomes. miRNAs, global regulators of survival and proliferation pathways important in tumor development and maintenance, are becoming promising therapeutic agents. We performed miRNA-profiling studies in different TNBC subtypes to identify miRNAs that significantly contribute to disease progression. We found that miR-34a was lost in TNBC, specifically within mesenchymal and mesenchymal stem cell-like subtypes, whereas expression of miR-34a targets was significantly enriched. Furthermore, restoration of miR-34a in cell lines representing these subtypes inhibited proliferation and invasion, activated senescence, and promoted sensitivity to dasatinib by targeting the proto-oncogene c-SRC. Notably, SRC depletion in TNBC cell lines phenocopied the effects of miR-34a reintroduction, whereas SRC overexpression rescued the antitumorigenic properties mediated by miR-34a. miR-34a levels also increased when cells were treated with c-SRC inhibitors, suggesting a negative feedback exists between miR-34a and c-SRC. Moreover, miR-34a administration significantly delayed tumor growth of subcutaneously and orthotopically implanted tumors in nude mice, and was accompanied by c-SRC downregulation. Finally, we found that miR-34a and SRC levels were inversely correlated in human tumor specimens. Together, our results demonstrate that miR-34a exerts potent antitumorigenic effects in vitro and in vivo and suggests that miR-34a replacement therapy, which is currently being tested in human clinical trials, represents a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Brian D Adams
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Vikram B Wali
- Yale Cancer Center Genetics and Genomics Program, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher J Cheng
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut. Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Sachi Inukai
- Institute for RNA Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Carmen J Booth
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Seema Agarwal
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Balázs Győrffy
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary. MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Libero Santarpia
- Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Lajos Pusztai
- Yale Cancer Center Genetics and Genomics Program, Yale University School of Medicine, New Haven, Connecticut
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Frank J Slack
- Institute for RNA Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
84
|
Jiang LH, Ge MH, Hou XX, Cao J, Hu SS, Lu XX, Han J, Wu YC, Liu X, Zhu X, Hong LL, Li P, Ling ZQ. miR-21 regulates tumor progression through the miR-21-PDCD4-Stat3 pathway in human salivary adenoid cystic carcinoma. J Transl Med 2015; 95:1398-408. [PMID: 26367487 DOI: 10.1038/labinvest.2015.105] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 05/11/2015] [Accepted: 05/11/2015] [Indexed: 01/07/2023] Open
Abstract
miR-21, which is a putative tumor onco-miR and frequently overexpressed microRNA in various tumors, has been linked to tumor progression through targeting of tumor-suppressor genes. In this study, we sought to determine whether miR-21 has any role on tumor progression of salivary adenoid cystic carcinoma (SACC) and the possible mechanisms. We found that the level of miR-21 expression was significantly higher in SACC than that in normal salivary tissues, and it is also higher in tumors with metastasis than that without metastasis. Using an anti-miR-21 inhibitor in an in vitro model, downregulation of miR-21 significantly decreased the capacity of invasion and migration of SACC cells, whereas a pre-miR-21 increased the capacity of invasion and migration of SACC cells. To explore the potential mechanisms by which miR-21 regulate invasion and migration, we identified one direct miR-21 target gene, programmed cell death 4 (PDCD4), which has been implicated in invasion and metastasis. The suppression of miR-21 in metastatic SACC-LM cells significantly increased the report activity of PDCD4 promoter and the expression of PDCD4 protein. This subsequently resulted in downregulation of the p-STAT3 protein. The level of miR-21 expression positively related to the expression of PDCD4 protein and negatively related to the expression of p-STAT3 protein in SACC specimens, respectively, indicating the potential role of the STAT3-miR-21-PDCD4 pathway in these tumors. Dysregulation of miR-21 has an important role in tumor growth and invasion by targeting PDCD4. Therefore, suppression of miR-21 may provide a potential approach for the treatment of advanced SACC patients.
Collapse
Affiliation(s)
- Lie-Hao Jiang
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China.,Department of Head and Neck Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Ming-Hua Ge
- Department of Head and Neck Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Xiu-Xiu Hou
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China.,Department of Head and Neck Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Jun Cao
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China.,Department of Head and Neck Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Si-Si Hu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China.,Department of Head and Neck Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Xiao-Xiao Lu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China.,Department of Head and Neck Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Jing Han
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| | - Yi-Chen Wu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| | - Xiang Liu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| | - Xin Zhu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| | - Lian-Lian Hong
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| |
Collapse
|
85
|
Enhancer of Rudimentary Homolog Affects the Replication Stress Response through Regulation of RNA Processing. Mol Cell Biol 2015; 35:2979-90. [PMID: 26100022 DOI: 10.1128/mcb.01276-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 06/11/2015] [Indexed: 12/21/2022] Open
Abstract
Accurate replication of DNA is imperative for the maintenance of genomic integrity. We identified Enhancer of Rudimentary Homolog (ERH) using a whole-genome RNA interference (RNAi) screen to discover novel proteins that function in the replication stress response. Here we report that ERH is important for DNA replication and recovery from replication stress. ATR pathway activity is diminished in ERH-deficient cells. The reduction in ATR signaling corresponds to a decrease in the expression of multiple ATR pathway genes, including ATR itself. ERH interacts with multiple RNA processing complexes, including splicing regulators. Furthermore, splicing of ATR transcripts is deficient in ERH-depleted cells. Transcriptome-wide analysis indicates that ERH depletion affects the levels of ∼1,500 transcripts, with DNA replication and repair genes being highly enriched among those with reduced expression. Splicing defects were evident in ∼750 protein-coding genes, which again were enriched for DNA metabolism genes. Thus, ERH regulation of RNA processing is needed to ensure faithful DNA replication and repair.
Collapse
|
86
|
Chen T, Zhou G, Zhou Q, Tang H, Ibe JCF, Cheng H, Gou D, Chen J, Yuan JXJ, Raj JU. Loss of microRNA-17∼92 in smooth muscle cells attenuates experimental pulmonary hypertension via induction of PDZ and LIM domain 5. Am J Respir Crit Care Med 2015; 191:678-92. [PMID: 25647182 DOI: 10.1164/rccm.201405-0941oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Recent studies suggest that microRNAs (miRNAs) play important roles in regulation of pulmonary artery smooth muscle cell (PASMC) phenotype and are implicated in pulmonary arterial hypertension (PAH). However, the underlying molecular mechanisms remain elusive. OBJECTIVES This study aims to understand the mechanisms regulating PASMC proliferation and differentiation by microRNA-17∼92 (miR-17∼92) and to elucidate its implication in PAH. METHODS We generated smooth muscle cell (SMC)-specific miR-17∼92 and PDZ and LIM domain 5 (PDLIM5) knockout mice and overexpressed miR-17∼92 and PDLIM5 by injection of miR-17∼92 mimics or PDLIM5-V5-His plasmids and measured their responses to hypoxia. We used miR-17∼92 mimics, inhibitors, overexpression vectors, small interfering RNAs against PDLIM5, Smad, and transforming growth factor (TGF)-β to determine the role of miR-17∼92 and its downstream targets in PASMC proliferation and differentiation. MEASUREMENTS AND MAIN RESULTS We found that human PASMC (HPASMC) from patients with PAH expressed decreased levels of the miR-17∼92 cluster, TGF-β, and SMC markers. Overexpression of miR-17∼92 increased and restored the expression of TGF-β3, Smad3, and SMC markers in HPASMC of normal subjects and patients with idiopathic PAH, respectively. Knockdown of Smad3 but not Smad2 prevented miR-17∼92-induced expression of SMC markers. SMC-specific knockout of miR-17∼92 attenuated hypoxia-induced pulmonary hypertension (PH) in mice, whereas reconstitution of miR-17∼92 restored hypoxia-induced PH in these mice. We also found that PDLIM5 is a direct target of miR-17/20a, and hypertensive HPASMC and mouse PASMC expressed elevated PDLIM5 levels. Suppression of PDLIM5 increased expression of SMC markers and enhanced TGF-β/Smad2/3 activity in vitro and enhanced hypoxia-induced PH in vivo, whereas overexpression of PDLIM5 attenuated hypoxia-induced PH. CONCLUSIONS We provided the first evidence that miR-17∼92 inhibits PDLIM5 to induce the TGF-β3/SMAD3 pathway, contributing to the pathogenesis of PAH.
Collapse
|
87
|
Zhu XP, Mou KJ, Xu QF, Tang JH, Huang GH, Xu JP, Li GH, Ai SJ, Hugnot JP, Zhou Z, Lv SQ. Microarray analysis of the aberrant microRNA expression pattern in gliomas of different grades. Oncol Rep 2015; 34:318-24. [PMID: 25954994 DOI: 10.3892/or.2015.3953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/17/2015] [Indexed: 11/05/2022] Open
Abstract
Previous studies have focused on miRNA expression in brain gliomas. However, both the expression pattern of miRNAs in gliomas of different grades and various miRNAs involved in malignant progression of gliomas are poorly understood. In the present study, we used miRNA microarray-based screening to investigate the miRNA expression profile in gliomas, which was further verified by qRT-PCR in selected miRNAs. In total, we found 13 differentially expressed miRNAs between gliomas and their matched surrounding tissues. Among them, 12 miRNAs were upregulated and only one (miR-4489) was downregulated compared with the control. Furthermore, the lower expression level of miR-4489 was confirmed by qRT-PCR in 26 glioma samples. Our microarray result revealed 8, 9 and 15 aberrantly expressed miRNAs in gliomas of World Health Organization (WHO) grade II-IV, respectively. Gene Ontology (GO) and Pathway analysis indicated that target genes of the 13 miRNAs were significantly enriched in central nervous system- and tumor-related biological processes and signaling pathways. The dysregulated miRNAs identified in the present study contribute to the tumorigenesis and malignant progression of gliomas and may serve as useful markers for advanced glioma pathological grading and prognosis.
Collapse
Affiliation(s)
- Xiao-Peng Zhu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Ke-Jie Mou
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Qing-Fu Xu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jun-Hai Tang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Guo-Hao Huang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jian-Ping Xu
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Guang-Hui Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Si-Jin Ai
- Department of Neurosurgery, China People's Liberation Army No. 94 Hospital, Nanchang, Jiangxi 330026, P.R. China
| | | | - Zheng Zhou
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
88
|
MicroRNA-383 expression regulates proliferation, migration, invasion, and apoptosis in human glioma cells. Tumour Biol 2015; 36:7743-53. [DOI: 10.1007/s13277-015-3378-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022] Open
|
89
|
Gao SL, Wang LZ, Liu HY, Liu DL, Xie LM, Zhang ZW. miR-200a inhibits tumor proliferation by targeting AP-2γ in neuroblastoma cells. Asian Pac J Cancer Prev 2015; 15:4671-6. [PMID: 24969902 DOI: 10.7314/apjcp.2014.15.11.4671] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNA-200a (miR-200a) has been reported to regulate tumour progression in several tumours but little is known about its role in neuroblastoma. Our aim was to investigate the potential role and mechanism of miR-200a in neuroblastomas. MATERIALS AND METHODS Expression levels of miR-200a in tissues were determined using RT-PCR. The effect of miR-200a and shAP-2γ on cell viability was evaluated using MTS assays, and target protein expression was determined using Western blotting and RT-PCR. Luciferase reporter plasmids were constructed to confirm direct targeting. RESULTS were reported as mean±S.E.M and differences were tested for significance using the 2-tailed Students t-test. RESULTS We determined that miR-200a expression was significantly lower in neuroblastoma tumors than the adjacent non-cancer tissue. Over-expression of miR-200 are reduced cell viability in neuroblastoma cells and inhibited tumor growth in mouse xenografts. We identified AP-2γ as a novel target for miR-200a in neuroblastoma cells. Thus miR-200a targets the 3'UTR of AP-2γ and inhibits its mRNA and protein expression. Furthermore, our result showed that shRNA knockdown of AP-2γ in neuroblastoma cells results in significant inhibit of cell proliferation and tumor growth in vitro, supporting an oncogenic role of AP-2γ in neuroblastoma. CONCLUSIONS Our study revealed that miR-200a is a candidate tumor suppressor in neuroblastoma, through direct targeting of AP-2γ. These findings re-enforce the proposal of AP-2γ as a therapeutic target in neuroblastoma.
Collapse
Affiliation(s)
- Shun-Li Gao
- Department of pediatrics, The First Affiliated Hospital, University of South China, Hengyang, China E-mail :
| | | | | | | | | | | |
Collapse
|
90
|
Yamamoto H, Imai K. Microsatellite instability: an update. Arch Toxicol 2015; 89:899-921. [PMID: 25701956 DOI: 10.1007/s00204-015-1474-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/09/2015] [Indexed: 02/08/2023]
Abstract
Deficient DNA mismatch repair (MMR) results in a strong mutator phenotype known as microsatellite instability (MSI), which is a hallmark of Lynch syndrome-associated cancers. MSI is characterized by length alterations within simple repeated sequences that are called microsatellites. Lynch syndrome is primarily caused by mutations in the MMR genes, mainly MLH1 and MSH2, and less frequently in MSH6, and rarely PMS2, and large genomic rearrangements account for 5-20 % of all mutations. Germ line hemiallelic methylations of MLH1 or MSH2 are termed as epimutations and have been identified as causative of Lynch syndrome. Moreover, germ line 3' deletions of EPCAM gene is involved in MSH2 methylation. MSI is also observed in about 15 % of sporadic colorectal cancer (CRC), gastric cancer (GC), and endometrial cancer (EC), and at lower frequencies in other cancers, often in association with hypermethylation of the MLH1 gene. Trimethylation of histone H3 on Lys36 (H3K36 me3) is an epigenetic histone mark that was required for DNA MMR in vivo. Thus, mutations in the H3K36 trimethyltransferase SETD2 have been reported as a potential cause of MSI. Genetic, epigenetic, and transcriptomic differences have been identified between cancers with and without MSI. Recent comprehensive molecular characterizations of CRC, EC, and GC by The Cancer Genome Atlas indicate that MSI+ cancers are distinct biological entities. The BRAF V600E mutation is specifically associated with sporadic MSI+ CRCs with methylated MLH1, but is not associated with Lynch syndrome-related CRCs. Accumulating evidence indicates a role of interactions between MSI and microRNA (miRNA) in the pathogenesis of MSI-positive (MSI+) cancer. As another new mechanism underlying MSI, overexpression of miR-155 or miR-21 has been shown to downregulate the expression of the MMR genes. Gene targets of frameshift mutations caused by MSI are involved in various cellular functions, including DNA repair (MSH3 and MSH6), cell signaling (TGFBR2 and ACVR2A), apoptosis (BAX), epigenetic regulation (HDAC2 and ARID1A), and miRNA processing (TARBP2 and XPO5), and a subset of MSI+ CRCs reportedly shows the mutated miRNA machinery phenotype. Moreover, microsatellite repeats in miRNA genes, such as hsa-miR-1273c, may be novel MSI targets for CRC, and mutations in noncoding regulatory regions of MRE11, BAX (BaxΔ2), and HSP110 (HSP110ΔE9) may affect the efficiency of chemotherapy. Thus, analyses of MSI and its related molecular alterations in cancers are increasingly relevant in clinical settings, and MSI is a useful screening marker for identifying patients with Lynch syndrome and a prognostic factor for chemotherapeutic interventions. In this review, we summarize recent advances in the pathogenesis of MSI and focus on genome-wide analyses that indicate the potential use of MSI and related alterations as biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan,
| | | |
Collapse
|
91
|
Morishita A, Masaki T. miRNA in hepatocellular carcinoma. Hepatol Res 2015; 45:128-41. [PMID: 25040738 DOI: 10.1111/hepr.12386] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Despite improvements in HCC therapy, the prognosis for HCC patients remains poor due to a high incidence of recurrence. An improved understanding of the pathogenesis of HCC development would facilitate the development of more effective outcomes for the diagnosis and treatment of HCC at earlier stages. miRNA are small, endogenous, non-coding, ssRNA that are 21-30 nucleotides in length and modulate the expression of various target genes at the post-transcriptional and translational levels. Aberrant expression of miRNA is common in various human malignancies and modulates cancer-associated genomic regions or fragile sites. As for the relationship between miRNA and HCC, several studies have demonstrated that the aberrant expression of specific miRNA can be detected in HCC cells and tissues. However, little is known about the mechanisms of miRNA-related cell proliferation and development. In this review, we summarize the central and potential roles of miRNA in the pathogenesis of HCC and elucidate new possibilities that may be useful as diagnostic and prognostic markers, as well as novel therapeutic targets in HCC.
Collapse
Affiliation(s)
- Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa, Japan
| |
Collapse
|
92
|
Lactate dehydrogenase 5: an old friend and a new hope in the war on cancer. Cancer Lett 2014; 358:1-7. [PMID: 25528630 DOI: 10.1016/j.canlet.2014.12.035] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/24/2014] [Accepted: 12/15/2014] [Indexed: 12/19/2022]
Abstract
A hallmark of most cancer cells is an altered metabolism involving a shift to aerobic glycolysis with lactate production coupled with a higher uptake of glucose as the main source of energy. Lactate dehydrogenase 5 (LDH-5) catalyzes the reduction of pyruvate by NADH to form lactate, thus determining the availability of NAD(+) to maintain the continuity of glycolysis. It is therefore an important control point in the system of cellular energy release. Its upregulation is common in many malignant tumors. Inhibiting LDH-5 activity has an anti-proliferative effect on cancer cells. It may reverse their resistance to conventional chemo- and radiotherapy. Recent research has renewed interest in LDH-5 as an anticancer drug target. This review summarizes recent studies exploring the role of LDH-5 in cancer growth, its utility as a tumor marker, and developments made in identifying and designing anti-LDH-5 therapeutic agents.
Collapse
|
93
|
Gao Y, Liu Y, Du L, Li J, Qu A, Zhang X, Wang L, Wang C. Down-regulation of miR-24-3p in colorectal cancer is associated with malignant behavior. Med Oncol 2014; 32:362. [DOI: 10.1007/s12032-014-0362-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/21/2023]
|
94
|
Lønvik K, Sørbye SW, Nilsen MN, Paulssen RH. Prognostic value of the MicroRNA regulators Dicer and Drosha in non-small-cell lung cancer: co-expression of Drosha and miR-126 predicts poor survival. BMC Clin Pathol 2014; 14:45. [PMID: 25525410 PMCID: PMC4269969 DOI: 10.1186/1472-6890-14-45] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/03/2014] [Indexed: 12/26/2022] Open
Abstract
Background Dicer and Drosha are important enzymes for processing microRNAs. Recent studies have exhibited possible links between expression of different miRNAs, levels of miRNA processing enzymes, and cancer prognosis. We have investigated the prognostic impact of Dicer and Drosha and their correlation with miR-126 expression in a large cohort of non-small cell lung cancer (NSCLC) patients. We aimed to find patient groups within the cohort that might have an advantage of receiving adjunctive therapies. Methods Dicer expression in the cytoplasm and Drosha expression in the nucleus were evaluated by manual immunohistochemistry of tissue microarrays (TMAs), including tumor tissue samples from 335 patients with resected stages I to IIIA NSCLC. In addition, in situ hybridizations of TMAs for visualization of miR-126 were performed. Kaplan–Meier analysis was performed, and the log-rank test via SPSS v.22 was used for estimating significance levels. Results In patients with normal performance status (ECOG = 0, n = 197), high Dicer expression entailed a significantly better prognosis than low Dicer expression (P = 0.024). Dicer had no significant prognostic value in patients with reduced performance status (ECOG = 1–2, n = 138). High Drosha expression was significantly correlated with high levels of the microRNA 126 (miR-126) (P = 0.004). Drosha/miR-126 co-expression had a significant negative impact on the disease-specific survival (DSS) rate (P < 0.001). Multivariate analyses revealed that the interaction Dicer*Histology (P = 0.049) and Drosha/miR-126 co-expression (P = 0.033) were independent prognostic factors. Conclusions In NSCLC patients with normal performance status, Dicer is a positive prognostic factor. The importance of Drosha as a prognostic factor in our material seems to be related to miR-126 and possibly other microRNAs. Electronic supplementary material The online version of this article (doi:10.1186/1472-6890-14-45) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kenneth Lønvik
- Department of Clinical Pathology, University Hospital of Northern Norway, N-9038 Tromsø, Norway ; Department of Medical Biology, Tromsø, Norway
| | - Sveinung W Sørbye
- Department of Clinical Pathology, University Hospital of Northern Norway, N-9038 Tromsø, Norway
| | | | - Ruth H Paulssen
- Department of Clinical Medicine, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
95
|
Edinger RS, Coronnello C, Bodnar AJ, Labarca M, Bhalla V, LaFramboise WA, Benos PV, Ho J, Johnson JP, Butterworth MB. Aldosterone regulates microRNAs in the cortical collecting duct to alter sodium transport. J Am Soc Nephrol 2014; 25:2445-57. [PMID: 24744440 PMCID: PMC4214524 DOI: 10.1681/asn.2013090931] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/05/2014] [Indexed: 12/26/2022] Open
Abstract
A role for microRNAs (miRs) in the physiologic regulation of sodium transport in the kidney has not been established. In this study, we investigated the potential of aldosterone to alter miR expression in mouse cortical collecting duct (mCCD) epithelial cells. Microarray studies demonstrated the regulation of miR expression by aldosterone in both cultured mCCD and isolated primary distal nephron principal cells. Aldosterone regulation of the most significantly downregulated miRs, mmu-miR-335-3p, mmu-miR-290-5p, and mmu-miR-1983 was confirmed by quantitative RT-PCR. Reducing the expression of these miRs separately or in combination increased epithelial sodium channel (ENaC)-mediated sodium transport in mCCD cells, without mineralocorticoid supplementation. Artificially increasing the expression of these miRs by transfection with plasmid precursors or miR mimic constructs blunted aldosterone stimulation of ENaC transport. Using a newly developed computational approach, termed ComiR, we predicted potential gene targets for the aldosterone-regulated miRs and confirmed ankyrin 3 (Ank3) as a novel aldosterone and miR-regulated protein. A dual-luciferase assay demonstrated direct binding of the miRs with the Ank3-3' untranslated region. Overexpression of Ank3 increased and depletion of Ank3 decreased ENaC-mediated sodium transport in mCCD cells. These findings implicate miRs as intermediaries in aldosterone signaling in principal cells of the distal kidney nephron.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John P Johnson
- Renal-Electrolyte Division, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael B Butterworth
- Renal-Electrolyte Division, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
96
|
DONG RUOFAN, QIU HAIFENG, DU GUIQIANG, WANG YUAN, YU JINJIN, MAO CAIPING. Restoration of microRNA-218 increases cellular chemosensitivity to cervical cancer by inhibiting cell-cycle progression. Mol Med Rep 2014; 10:3289-95. [DOI: 10.3892/mmr.2014.2622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 05/29/2014] [Indexed: 11/05/2022] Open
|
97
|
Hong CC, Chen PS, Chiou J, Chiu CF, Yang CY, Hsiao M, Chang YW, Yu YH, Hung MC, Hsu NW, Shiah SG, Hsu NY, Su JL. miR326 maturation is crucial for VEGF-C-driven cortactin expression and esophageal cancer progression. Cancer Res 2014; 74:6280-90. [PMID: 25205106 DOI: 10.1158/0008-5472.can-14-0524] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Esophageal cancer is an aggressive human malignancy with increasing incidence in the developed world. VEGF-C makes crucial contributions to esophageal cancer progression that are not well understood. Here, we report the discovery of regulatory relationship in esophageal cancers between the expression of VEGF-C and cortactin (CTTN), a regulator of the cortical actin cytoskeleton. Upregulation of CTTN expression by VEGF-C enhanced the invasive properties of esophageal squamous cell carcinoma in vitro and tumor metastasis in vivo. Mechanistic investigations showed that VEGF-C increased CTTN expression by downregulating Dicer-mediated maturation of miR326, thereby relieving the suppressive effect of miR326 on CTTN expression. Clinically, expression of Dicer and miR326 correlated with poor prognosis in patients with esophageal cancer. Our findings offer insights into how VEGF-C enhances the robust invasive and metastatic properties of esophageal cancer, which has potential implications for the development of new biomarkers or therapies in this setting.
Collapse
Affiliation(s)
- Chih-Chen Hong
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Pai-Sheng Chen
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan. The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jean Chiou
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan. The PhD. Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan. The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Feng Chiu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Michael Hsiao
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Wen Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan. The Genomics Research Center, Academia Sinica, Taipei, Taiwan. Graduate Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yang-Hao Yu
- Divisions of Pulmonary and Critical Care Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Mien-Chie Hung
- Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nai-Wen Hsu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan. Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Nan-Yung Hsu
- Division of Thoracic Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jen-Liang Su
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan. Department of Biotechnology, Asia University, Taichung, Taiwan. Graduate Institute of Cancer Biology, College of Medicine, China Medical University, Taichung, Taiwan. Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
98
|
Wang LL, Du LT, Li J, Liu YM, Qu AL, Yang YM, Zhang X, Zheng GX, Wang CX. Decreased expression of miR-133a correlates with poor prognosis in colorectal cancer patients. World J Gastroenterol 2014; 20:11340-11346. [PMID: 25170220 PMCID: PMC4145774 DOI: 10.3748/wjg.v20.i32.11340] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/24/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate microRNA-133a (miR-133a) expression in colorectal cancer (CRC) and its relationship with tumorigenesis and disease prognosis.
METHODS: Quantitative real-time polymerase chain reaction was used to measure levels of miR-133a in tumor samples and adjacent non-cancerous tissues from 169 patients undergoing radical resection for CRC. The associations between miR-133a expression and patient age, sex, as well as clinicopathologic parameters, such as tumor size, differentiation, location, invasion depth, metastasis, tumor-node-metastasis (TNM) stage and overall patient survival, were analyzed by Mann-Whitney U and Kruskal-Wallis tests. The Kaplan-Meier method and Cox proportional hazards regression analyses were performed to estimate the prognostic factors for patient survival prediction.
RESULTS: The expression of miR-133a was significantly downregulated in CRC tissues compared with adjacent non-cancerous tissues (P < 0.05). This reduction was associated with the depth of the local invasion, poor differentiation, lymph node metastasis and advanced disease (P < 0.05). Moreover, Kaplan-Meier analysis demonstrated that patients with low miR-133a expression had poorer overall survival (OS) than those with high miR-133a expression (P < 0.001). Univariate analysis revealed statistically significant correlations between OS and miR-133a level, tumor local invasion, lymph node metastasis and TNM stage (P < 0.001). Furthermore, miR-133a levels and TNM stage were independently associated with OS (HR = 0.590, 95%CI: 0.350-0.995, P < 0.05; and HR = 6.111, 95%CI: 1.029-36.278, P < 0.05, respectively).
CONCLUSION: The downregulation of miR-133a may play an important role in the progression of CRC and can be used as an independent factor to determine CRC prognosis.
Collapse
|
99
|
Abstract
Malignant neoplasms are consistently among the top four leading causes of death in all age groups in the United States, despite a concerted effort toward developing novel therapeutic approaches. Our understanding of and therapeutic strategy for treating each of these neoplastic diseases have been improved through decades of research on the genetics, signaling pathways, and cellular biology that govern tumor cell initiation, progression and maintenance. Much of this work has concentrated on post-translational modifications and abnormalities at the DNA level, including point mutations, amplifications/deletions, and chromosomal translocations, and how these aberrant events affect the expression and function of protein-coding genes. Only recently has a novel class of conserved gene regulatory molecules been identified as a major contributor to malignant neoplastic disease. This review focuses on how these small non-coding RNA molecules, termed microRNAs (miRNAs), can function as oncogenes or tumor suppressors, and how the misexpression of miRNAs and dysregulation of factors that regulate miRNAs contribute to the tumorigenic process. Specific focus is given to more recently discovered regulatory mechanisms that go awry in cancer, and how these changes alter miRNA expression, processing, and function.
Collapse
Affiliation(s)
- Brian D Adams
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Andrea L Kasinski
- Department of Biological Sciences, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Frank J Slack
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
100
|
|