51
|
Ankathil R, Azlan H, Dzarr AA, Baba AA. Pharmacogenetics and the treatment of chronic myeloid leukemia: how relevant clinically? An update. Pharmacogenomics 2018; 19:475-393. [PMID: 29569526 DOI: 10.2217/pgs-2017-0193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite the excellent efficacy and improved clinical responses obtained with imatinib mesylate (IM), development of resistance in a significant proportion of chronic myeloid leukemia (CML) patients on IM therapy have emerged as a challenging problem in clinical practice. Resistance to imatinib can be due to heterogeneous array of factors involving BCR/ABL-dependent and BCR/ABL-independent pathways. Although BCR/ABL mutation is the major contributory factor for IM resistance, reduced bio-availability of IM in leukemic cells is also an important pharmacokinetic factor that contributes to development of resistance to IM in CML patients. The contribution of polymorphisms of the pharmacogenes in relation to IM disposition and treatment outcomes have been studied by various research groups in numerous population cohorts. However, the conclusions arising from these studies have been highly inconsistent. This review encompasses an updated insight into the impact of pharmacogenetic variability on treatment response of IM in CML patients.
Collapse
Affiliation(s)
- Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Husin Azlan
- Haemato-Oncology Unit & Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abu Abdullah Dzarr
- Haemato-Oncology Unit & Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Baba
- Department of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
52
|
Washio I, Nakanishi T, Ishiguro N, Yamamura N, Tamai I. Impact of Breast Cancer Resistance Protein Expression on the In Vitro Efficacy of Anticancer Drugs in Pancreatic Cancer Cell Lines. Drug Metab Dispos 2018; 46:214-222. [PMID: 29246888 DOI: 10.1124/dmd.117.078402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
Breast cancer resistance protein (BCRP) overexpression confers multidrug resistance to cancer cells, and the efficacy of anticancer drugs has been reported to be significantly affected by BCRP in cell lines transfected with BCRP or selected with drugs. It is unclear whether the in vitro efficacy of anticancer drugs is affected by endogenous BCRP, although cancer cell line panels consisting of defined tumor cell lines with endogenous BCRP have been used to screen for anticancer drugs in the pharmaceutical industry. We assessed the impact of BCRP expression on efficacy of anticancer drugs using pancreatic cancer cell lines expressing varying levels of endogenous BCRP. Pancreatic cancer cell lines were selected from the Cancer Cell Line Encyclopedia (CCLE). The EC50 of 7-ethyl-10-hydroxycamptothecin (SN-38), topotecan, and mitoxantrone decreased in the presence of a BCRP inhibitor in PANC-1 and AsPC-1 cells, which exhibit high BCRP expression. However, no significant alterations in EC50 were observed in HPAF-II, SW 1990, and MIA PaCa-2, which show moderate or low BCRP expression. The shift of EC50 of anticancer drugs with and without a BCRP inhibitor increased with an increase of BCRP mRNA expression levels; however, the shift was obvious only in cells highly expressing BCRP. Thus, the in vitro efficacy of anticancer drugs on cell proliferation may be minimally affected by BCRP in most pancreatic cancer cell lines, considering that 72% of pancreatic cancer cell lines in CCLE show moderate or low BCRP expression. The effect of BCRP should be carefully evaluated in pancreatic cell lines that highly express BCRP.
Collapse
Affiliation(s)
- Ikumi Washio
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.W., T.N., I.T.); and Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (I.W., N.I., N.Y.)
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.W., T.N., I.T.); and Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (I.W., N.I., N.Y.)
| | - Naoki Ishiguro
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.W., T.N., I.T.); and Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (I.W., N.I., N.Y.)
| | - Norio Yamamura
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.W., T.N., I.T.); and Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (I.W., N.I., N.Y.)
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.W., T.N., I.T.); and Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (I.W., N.I., N.Y.)
| |
Collapse
|
53
|
Arrigoni E, Del Re M, Galimberti S, Restante G, Rofi E, Crucitta S, Baratè C, Petrini M, Danesi R, Di Paolo A. Concise Review: Chronic Myeloid Leukemia: Stem Cell Niche and Response to Pharmacologic Treatment. Stem Cells Transl Med 2018; 7:305-314. [PMID: 29418079 PMCID: PMC5827745 DOI: 10.1002/sctm.17-0175] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/09/2018] [Indexed: 12/27/2022] Open
Abstract
Nowadays, more than 90% of patients affected by chronic myeloid leukemia (CML) survive with a good quality of life, thanks to the clinical efficacy of tyrosine kinase inhibitors (TKIs). Nevertheless, point mutations of the ABL1 pocket occurring during treatment may reduce binding of TKIs, being responsible of about 20% of cases of resistance among CML patients. In addition, the presence of leukemic stem cells (LSCs) represents the most important event in leukemia progression related to TKI resistance. LSCs express stem cell markers, including active efflux pumps and genetic and epigenetic alterations together with deregulated cell signaling pathways involved in self-renewal, such as Wnt/β-catenin, Notch, and Hedgehog. Moreover, the interaction with the bone marrow microenvironment, also known as hematopoietic niche, may influence the phenotype of surrounding cells, which evade mechanisms controlling cell proliferation and are less sensitive or frankly resistant to TKIs. This Review focuses on the role of LSCs and stem cell niche in relation to response to pharmacological treatments. A literature search from PubMed database was performed until April 30, 2017, and it has been analyzed according to keywords such as chronic myeloid leukemia, stem cell, leukemic stem cells, hematopoietic niche, tyrosine kinase inhibitors, and drug resistance. Stem Cells Translational Medicine 2018;7:305-314.
Collapse
Affiliation(s)
- Elena Arrigoni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giuliana Restante
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Eleonora Rofi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Claudia Baratè
- Unit of Hematology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Mario Petrini
- Unit of Hematology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Antonello Di Paolo
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|
54
|
Schöning JP, Monteiro M, Gu W. Drug resistance and cancer stem cells: the shared but distinct roles of hypoxia-inducible factors HIF1α and HIF2α. Clin Exp Pharmacol Physiol 2017; 44:153-161. [PMID: 27809360 DOI: 10.1111/1440-1681.12693] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022]
Abstract
Chemotherapy resistance is a major contributor to poor treatment responses and tumour relapse, the development of which has been strongly linked to the action of cancer stem cells (CSCs). Mounting evidence suggests that CSCs are reliant on low oxygen conditions and hypoxia-inducible factors 1α and 2α (HIF1α and HIF2α) to maintain their stem cell features. Research in the last decade has begun to clarify the functional differences between the two HIFα subtypes (HIFαs). Here, we review and discuss these differences in relation to CSC-associated drug resistance. Both HIFαs contribute to CSC survival but play different roles -HIF1α being more responsible for survival functions and HIF2α for stemness traits such as self-renewal - and are sensitive to different degrees of hypoxia. Failure to account for physiologically relevant oxygen concentrations in many studies may influence the current understanding of the roles of HIFαs. We also discuss how hypoxia and HIFαs contribute to CSC drug resistance via promotion of ABC drug transporters Breast cancer resistance protein (BCRP), MDR1, and MRP1 and through maintenance of quiescence. Additionally, we explore the PI3K/AKT cell survival pathway that may support refractory cancer by promoting CSCs and activating both HIF1α and HIF2α. Accordingly, HIF1α and HIF2α inhibition, potentially via PI3K/AKT inhibitors, could reduce chemotherapy resistance and prevent cancer relapse.
Collapse
Affiliation(s)
- Jennifer Petra Schöning
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
55
|
Gao X, Zhang J, Huang Z, Zuo T, Lu Q, Wu G, Shen Q. Reducing Interstitial Fluid Pressure and Inhibiting Pulmonary Metastasis of Breast Cancer by Gelatin Modified Cationic Lipid Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29457-29468. [PMID: 28799743 DOI: 10.1021/acsami.7b05119] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interstitial fluid pressure (IFP) in tumor is much higher than that in normal tissue, and it constitutes a great obstacle for the delivery of antitumor drugs, thus becoming a potential target for cancer therapy. In this study, cationic nanostructured lipid carriers (NLCs) were modified by low molecular weight gelatin to achieve the desirable reduction of tumor IFP and improve the drug delivery. In this way, the chemotherapy of formulations on tumor proliferation and pulmonary metastasis was further improved. The nanoparticles were used to load three drugs, docetaxel (DTX), quercetin (Qu), and imatinib (IMA), with high encapsulation efficiency of 89.54%, 96.45%, and 60.13%, respectively. GNP-DTX/Qu/IMA nanoparticles exhibited an enzyme-sensitive drug release behavior, and the release rate could be mediated by matrix metalloproteinases (MMP-9). Cellular uptake and MTT assays showed that the obtained GNP-DTX/Qu/IMA could be internalized into human breast 4T1 cells effectively and exhibited the strongest cytotoxicity. Moreover, GNP-DTX/Qu/IMA demonstrated obvious advantages in inducing apoptosis and mediating the expression of apoptosis-related proteins (Caspase 3, Caspase 9, and bcl-2). In the wound-healing assay, GNP-DTX/Qu/IMA exhibited evidently inhibition of cell migration. The benefits of tumor IFP reduction induced by GNP-DTX/Qu/IMA were further proved after a continuous administration to 4T1 tumor-bearing mice. Finally, in the in vivo antitumor assays, GNP-DTX/Qu/IMA displayed stronger antitumor efficiency as well as suppression on pulmonary metastasis. In conclusion, the GNP-DTX/Qu/IMA system might be a promising strategy for metastatic breast cancer treatment.
Collapse
Affiliation(s)
- Xuan Gao
- School of Pharmacy, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Zun Huang
- School of Pharmacy, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Tiantian Zuo
- School of Pharmacy, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Qing Lu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , 160 Pujian Road, Shanghai 200127, China
| | - Guangyu Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , 160 Pujian Road, Shanghai 200127, China
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
56
|
Atilano-Roque A, Roda G, Fogueri U, Kiser JJ, Joy MS. Effect of Disease Pathologies on Transporter Expression and Function. J Clin Pharmacol 2017; 56 Suppl 7:S205-21. [PMID: 27385176 DOI: 10.1002/jcph.768] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022]
Abstract
Transporters are important determinants of drug absorption, distribution, and excretion. The clinical relevance of drug transporters in drug disposition and toxicology depends on their localization in liver, kidney, and brain. There has been growing evidence regarding the importance of disease status on alterations in metabolizing enzymes and transporter proteins. This review focuses on uptake and efflux transporter proteins in liver, kidney, and brain and discusses mechanisms of altered transporter expression and function secondary to disease.
Collapse
Affiliation(s)
- Amandla Atilano-Roque
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Gavriel Roda
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Uma Fogueri
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Jennifer J Kiser
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.,Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
57
|
Beretta GL, Cassinelli G, Pennati M, Zuco V, Gatti L. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem 2017; 142:271-289. [PMID: 28851502 DOI: 10.1016/j.ejmech.2017.07.062] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022]
Abstract
Resistance to conventional and target specific antitumor drugs still remains one of the major cause of treatment failure and patience death. This condition often involves ATP-binding cassette (ABC) transporters that, by pumping the drugs outside from cancer cells, attenuate the potency of chemotherapeutics and negatively impact on the fate of anticancer therapy. In recent years, several tyrosine kinase inhibitors (TKIs) (e.g., imatinib, nilotinib, dasatinib, ponatinib, gefitinib, erlotinib, lapatinib, vandetanib, sunitinib, sorafenib) have been reported to interact with ABC transporters (e.g., ABCB1, ABCC1, ABCG2, ABCC10). This finding disclosed a very complex scenario in which TKIs may behave as substrates or inhibitors depending on the expression of specific pumps, drug concentration, affinity for transporters and types of co-administered agents. In this context, in-depth investigation on TKI chemosensitizing functions might provide a strong rationale for combining TKIs and conventional therapeutics in specific malignancies. The reposition of TKIs as antagonists of ABC transporters opens a new way towards anticancer therapy and clinical strategies aimed at counteracting drug resistance. This review will focus on some paradigmatic examples of the complex and not yet fully elucidated interaction between clinical available TKIs (e.g. BCR-ABL, EGFR, VEGFR inhibitors) with the main ABC transporters implicated in multidrug resistance.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Marzia Pennati
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Laura Gatti
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| |
Collapse
|
58
|
Mlejnek P, Kosztyu P, Dolezel P, Bates SE, Ruzickova E. Reversal of ABCB1 mediated efflux by imatinib and nilotinib in cells expressing various transporter levels. Chem Biol Interact 2017. [PMID: 28623111 DOI: 10.1016/j.cbi.2017.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, it has been suggested that imatinib (IM) and nilotinib (NIL) could be studied beyond their original application, as inhibitors of the drug efflux pump ABCB1 (P-glycoprotein, MDR1). Since the reversal of ABCB1-mediated resistance has never been successfully demonstrated in the clinic, we addressed the question of whether IM and NIL may actually serve as efficient inhibitors of ABCB1. Here we define an efficient inhibitor as a compound that achieves full (90-100%) reversal of drug efflux at a concentration that does not exhibit significant off-target toxicity in vitro. In this study, human leukemia K562 cells expressing various levels of ABCB1 were used. We observed that cells expressing higher ABCB1 levels required higher concentrations of IM and NIL to achieve full reversal of drug efflux. Among the well-known ABCB1 inhibitors, a similar effect was found for cyclosporin A (CsA) but not for zosuquidar. IM was efficient only in cells with the low and moderate ABCB1 expression at high concentrations that were cytotoxic in the absence of Bcr-Abl. In contrast, NIL was as efficient an inhibitor of ABCB1 as CsA. Low and moderate expression levels of ABCB1 could be efficiently inhibited by NIL concentrations without cytotoxic effects in the absence of Bcr-Abl. However, high expression levels of ABCB1 required higher NIL concentrations with off-target cytotoxic effects. In conclusion, application of NIL, but not of IM, in clinics is promising, however, only in cells with low ABCB1 expression levels. We hypothesize that some patients may benefit from an inhibitor exhibiting an ABCB1 expression-dependent effect.
Collapse
Affiliation(s)
- Petr Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic.
| | - Petr Kosztyu
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Petr Dolezel
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Susan E Bates
- Hematology and Oncology, Columbia University, Herbert Irving Pavilion, 9th Floor, 161 Fort Washington Ave., New York, NY 10032, USA
| | - Eliska Ruzickova
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| |
Collapse
|
59
|
Ankathil R. ABCB1 genetic variants in leukemias: current insights into treatment outcomes. Pharmgenomics Pers Med 2017; 10:169-181. [PMID: 28546766 PMCID: PMC5438075 DOI: 10.2147/pgpm.s105208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite improvements in treatment of different types of leukemia, not all patients respond optimally for a particular treatment. Some treatments will work better for some, while being harmful or ineffective for others. This is due to genetic variation in the form of single-nucleotide polymorphisms (SNPs) that affect gene expression or function and cause inherited interindividual differences in the metabolism and disposition of drugs. Drug transporters are one of the determinants governing the pharmacokinetic profile of chemotherapeutic drugs. The ABCB1 transporter gene transports a wide range of drugs, including drugs used in leukemia treatment. Polymorphisms in the ABCB1 gene do affect intrinsic resistance and pharmacokinetics of several drugs used in leukemia treatment protocols and thereby affect the efficacy of treatment and event-free survival. This review focuses on the impact of three commonly occurring SNPs (1236C>T, 2677G>T/A, and 3435C>T) of ABCB1 on treatment response of various types of leukemia. From the literature available, some of the genotypes and haplotypes of these SNPs have been found to be potential determinants of interindividual variability in drug disposition and pharmacologic response in different types of leukemia. However, due to inconsistencies in the results observed across the studies, additional studies, considering novel genomic methodologies, comprehensive definition of clinical phenotypes, adequate sample size, and uniformity in all the confounding factors, are warranted.
Collapse
Affiliation(s)
- Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
60
|
Sadovnik I, Herrmann H, Eisenwort G, Blatt K, Hoermann G, Mueller N, Sperr WR, Valent P. Expression of CD25 on leukemic stem cells in BCR-ABL1 + CML: Potential diagnostic value and functional implications. Exp Hematol 2017; 51:17-24. [PMID: 28457753 DOI: 10.1016/j.exphem.2017.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022]
Abstract
Chronic myeloid leukemia (CML) is a stem cell-derived leukemia in which neoplastic cells exhibit the Philadelphia chromosome and the related oncoprotein BCR-ABL1. The disease is characterized by an accumulation of myeloid precursor cells in the peripheral blood and bone marrow (BM). A small fraction of neoplastic cells in the CML clone supposedly exhibits self-renewal and thus long-term disease-propagating ability. However, so far, little is known about the phenotype, function, and target expression profiles of these leukemic stem cells (LSCs). Recent data suggest that CML LSCs aberrantly express the interleukin-2 receptor alpha chain CD25. Whereas normal CD34+/CD38- BM stem cells display only low amounts of CD25 or lack CD25 altogether, CD34+/CD38- LSCs express CD25 strongly in more than 90% of all patients with untreated CML. As a result, CD25 can be used to identify and quantify CML LSCs. In addition, it has been shown that CD25 serves as a negative growth regulator of CML LSCs. Here, we review the value of CD25 as a novel marker and potential drug target in CML LSCs.
Collapse
Affiliation(s)
- Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Harald Herrmann
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria; Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Katharina Blatt
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Niklas Mueller
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
61
|
Liu K, Zhu J, Huang Y, Li C, Lu J, Sachar M, Li S, Ma X. Metabolism of KO143, an ABCG2 inhibitor. Drug Metab Pharmacokinet 2017; 32:193-200. [PMID: 28619281 DOI: 10.1016/j.dmpk.2017.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/20/2016] [Accepted: 02/24/2017] [Indexed: 11/25/2022]
Abstract
The ATP-binding cassette sub-family G member 2 (ABCG2) plays an important role in modulating drug disposition and endobiotic homeostasis. KO143 is a potent and relatively selective ABCG2 inhibitor. We found that the metabolic stability of KO143 was very poor in human liver microsomes (HLM). Our further studies illustrated that the tert-butyl ester group in KO143 can be rapidly hydrolyzed and removed by carboxylesterase 1. This metabolic pathway was confirmed as a major pathway of KO143 metabolism in both HLM and mice. K1 is an analog of KO143 without the ester group. We found that the metabolic stability of K1 was significantly improved in HLM when compared to KO143. These data suggest that the ester group in KO143 is the major cause of the poor metabolic stability of KO143. The data from this study can be used to guide the development of KO143 analogs with better metabolic properties.
Collapse
Affiliation(s)
- Ke Liu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chaoyue Li
- Department of Neurosurgery, Henan People's Hospital, Zhengzhou, China
| | - Jie Lu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madhav Sachar
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
62
|
Mohamad Fairus AK, Choudhary B, Hosahalli S, Kavitha N, Shatrah O. Dihydroorotate dehydrogenase (DHODH) inhibitors affect ATP depletion, endogenous ROS and mediate S-phase arrest in breast cancer cells. Biochimie 2017; 135:154-163. [PMID: 28196676 DOI: 10.1016/j.biochi.2017.02.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/10/2017] [Indexed: 11/17/2022]
Abstract
Dihydroorotate dehydrogenase (DHODH) is the key enzyme in de novo biosynthesis of pyrimidine in both prokaryotes and eukaryotes. The de novo pathway of pyrimidine biosynthesis is essential in cancer cells proliferation. Leflunomide is an approved DHODH inhibitor that has been widely used for the treatment of arthritis. Similarly, brequinar sodium is another DHODH inhibitor that showed anti-tumour effect in MC38 colon carcinoma cells when used in combination with fluorouracil. Despite the potential role of DHODH inhibitors in cancer therapy, their mechanisms of action remain obscure and await further elucidation. Here, we evaluated the effect of DHODH inhibitors on the production of ATP and ROS in sensitive and non-sensitive breast cancer cells. Subsequently, the effects of DHODH inhibitors on cell cycle as well as on signalling molecules such as p53, p65 and STAT6 were evaluated in sensitive T-47D and non-sensitive MDAMB-436 cells. The correlations between DHODH protein expression, proliferation speed and sensitivity to DHODH inhibitors were also investigated in a panel of cancer cell lines. DHODH inhibitors-sensitive T-47D and MDAMB-231 cells appeared to preserve ROS production closely to endogenous ROS level whereas the opposite was observed in non-sensitive MDAMB-436 and W3.006 cells. In addition, we observed approximately 90% of intracellular ATP depletion in highly sensitive T-47D and MDAMB-231 cells compared to non-sensitive MDAMB-436 cells. There was significant over-expression of p53, p65 and STAT6 signalling molecules in sensitive cells which may be involved in mediating the S-phase arrest in cell cycle progression. The current study suggests that DHODH inhibitors are most effective in cells that express high levels of DHODH enzyme. The inhibition of cell proliferation by these inhibitors appears to be accompanied by ROS production as well as ATP depletion. The increase in expression of signalling molecules observed may be due to pyrimidine depletion which subsequently leads to cell cycle arrest at S-phase.
Collapse
Affiliation(s)
- A K Mohamad Fairus
- Aurigene Discovery Technologies (M) Sdn. Bhd., Level 2, Research Management and Innovation Complex, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - B Choudhary
- Aurigene Discovery Technologies (M) Sdn. Bhd., Level 2, Research Management and Innovation Complex, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - S Hosahalli
- Institute of Transdisciplinary Health Sciences and Technology (TDU) #74/2, Jarakabande Kaval, Post Attur via Yelahanka, Bangalore, 560 064 Karnataka, India.
| | - N Kavitha
- Aurigene Discovery Technologies Limited, 39-40, KIADB Industrial Area, Electronic City Phase II, Hosur Road, Bangalore, 560100 Karnataka, India.
| | - O Shatrah
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
63
|
da Cunha Vasconcelos F, Mauricio Scheiner MA, Moellman-Coelho A, Mencalha AL, Renault IZ, Rumjanek VM, Maia RC. Low ABCB1 and high OCT1 levels play a favorable role in the molecular response to imatinib in CML patients in the community clinical practice. Leuk Res 2016; 51:3-10. [DOI: 10.1016/j.leukres.2016.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/22/2016] [Accepted: 10/09/2016] [Indexed: 12/23/2022]
|
64
|
Effect of ceritinib (LDK378) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Oncotarget 2016; 6:44643-59. [PMID: 26556876 PMCID: PMC4792582 DOI: 10.18632/oncotarget.5989] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/01/2015] [Indexed: 12/02/2022] Open
Abstract
Multidrug resistance (MDR) is the leading cause of treatment failure in cancer chemotherapy. The overexpression of ATP-binding cassette (ABC) transporters, particularly ABCB1, ABCC1 and ABCG2, play a key role in mediating MDR by pumping anticancer drugs out from cancer cells. Ceritinib (LDK378) is a second-generation tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK) currently in phase III clinical trial for the treatment of non-small cell lung cancer. Here, we found that ceritinib remarkably enhanced the efficacy of chemotherapeutic drugs in ABCB1 or ABCG2 over-expressing cancer cells in vitro and in vivo. Ceritinib significantly increased the intracellular accumulation of chemotherapeutic agents such as doxorubicin (DOX) by inhibiting ABCB1 or ABCG2-mediated drug efflux in the transporters-overexpressing cells. Mechanistically, ceritinib is likely a competitive inhibitor of ABCB1 and ABCG2 because it competed with [125I]-iodoarylazidoprazosin for photo affinity labeling of the transporters. On the other hand, at the transporters-inhibiting concentrations, ceritinib did not alter the expression level of ABCB1 and ABCG2, and phosphorylation status of AKT and ERK1/2. Thus the findings advocate further clinical investigation of combination chemotherapy of ceritinib and other conventional chemotherapeutic drugs in chemo-refractory cancer patients.
Collapse
|
65
|
Chen S, Sutiman N, Chowbay B. Pharmacogenetics of drug transporters in modulating imatinib disposition and treatment outcomes in chronic myeloid leukemia & gastrointestinal stromal tumor patients. Pharmacogenomics 2016; 17:1941-1955. [DOI: 10.2217/pgs-2016-0124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of imatinib in the treatment of BCR-ABL-positive chronic myeloid leukemia and gastrointestinal stromal tumors has significantly improved survival outcomes in patients afflicted by these malignancies. However, a substantial proportion of imatinib-treated patients still experience treatment failure. Suboptimal concentrations of imatinib have been postulated to contribute at least partially to the development of resistance against imatinib. Indeed, variations in the genes encoding drug transporters have been reported to markedly influence imatinib disposition and treatment outcomes in various populations. This review aims to consolidate and critically assess the studies conducted to date which have investigated the influence of pharmacogenetic variants in drug transporters on the disposition of imatinib and treatment outcomes in Asians and other populations.
Collapse
Affiliation(s)
- Sylvia Chen
- Laboratory of Clinical Pharmacology, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore
| | | | - Balram Chowbay
- Laboratory of Clinical Pharmacology, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore
- SingHealth Clinical Pharmacology, Singapore
- Office of Clinical Sciences, Duke-NUS Medical School, Singapore
| |
Collapse
|
66
|
Récoché I, Rousseau V, Bourrel R, Lapeyre-Mestre M, Chebane L, Despas F, Montastruc JL, Bondon-Guitton E. Drug-drug interactions with imatinib: An observational study. Medicine (Baltimore) 2016; 95:e5076. [PMID: 27749579 PMCID: PMC5059082 DOI: 10.1097/md.0000000000005076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many patients treated with imatinib, used in cancer treatment, are using several other drugs that could interact with imatinib. Our aim was to study all the drug-drug interactions (DDIs) observed in patients treated with imatinib.We performed 2 observational studies, between the 1st January 2012 and the 31st August 2015 in the Midi-Pyrénées area (South Western France), using the French health insurance reimbursement database and then the French Pharmacovigilance Database (FPVD).A total of 544 patients received at least 1 reimbursement for imatinib. Among them, 486 (89.3%) had at least 1 drug that could potentially interact with imatinib. Paracetamol was the most frequent drug involved (77.4%). Proton pump inhibitors, dexamethasone and levothyroxine, were found in >10% of patients. In the FPVD, among a total of 25 reports of ADRs with imatinib recorded in the Midi-Pyrénées area, 10 (40%) had potential DDIs with imatinib. Imatinib was most frequently prescribed by hospital physicians and drugs interacting with imatinib, by general practitioners.Our study showed that at least 40% of the patients treated with imatinib were at risk of DDIs and that all prescribers must be cautious with DDIs in patients treated with imatinib. During imatinib treatment, we particularly recommend to limit the dose of paracetamol at 1300 mg per day, to avoid the use of dexamethasone, and to double the dose of levothyroxine.
Collapse
Affiliation(s)
- Isabelle Récoché
- Laboratoire de Pharmacologie Médicale et Clinique, Faculté de Médecine de l’Université de Toulouse and Service de Pharmacologie Clinique, Centre Midi-Pyrénées de PharmacoVigilance, de PharmacoEpidémiologie et d’Informations sur le Médicament, Centre Hospitalier Universitaire
| | - Vanessa Rousseau
- Laboratoire de Pharmacologie Médicale et Clinique, Faculté de Médecine de l’Université de Toulouse and Service de Pharmacologie Clinique, Centre Midi-Pyrénées de PharmacoVigilance, de PharmacoEpidémiologie et d’Informations sur le Médicament, Centre Hospitalier Universitaire
| | - Robert Bourrel
- Echelon Régional du Service Médical de la CNAM-TS Midi-Pyrénées
| | - Maryse Lapeyre-Mestre
- Laboratoire de Pharmacologie Médicale et Clinique, Equipe de PharmacoEpidémiologie, Faculté de Médecine de l’Université de Toulouse and Service de Pharmacologie Clinique, Centre Hospitalier Universitaire, Toulouse, France
| | - Leila Chebane
- Laboratoire de Pharmacologie Médicale et Clinique, Faculté de Médecine de l’Université de Toulouse and Service de Pharmacologie Clinique, Centre Midi-Pyrénées de PharmacoVigilance, de PharmacoEpidémiologie et d’Informations sur le Médicament, Centre Hospitalier Universitaire
| | - Fabien Despas
- Laboratoire de Pharmacologie Médicale et Clinique, Equipe de PharmacoEpidémiologie, Faculté de Médecine de l’Université de Toulouse and Service de Pharmacologie Clinique, Centre Hospitalier Universitaire, Toulouse, France
| | - Jean-Louis Montastruc
- Laboratoire de Pharmacologie Médicale et Clinique, Faculté de Médecine de l’Université de Toulouse and Service de Pharmacologie Clinique, Centre Midi-Pyrénées de PharmacoVigilance, de PharmacoEpidémiologie et d’Informations sur le Médicament, Centre Hospitalier Universitaire
| | - Emmanuelle Bondon-Guitton
- Laboratoire de Pharmacologie Médicale et Clinique, Faculté de Médecine de l’Université de Toulouse and Service de Pharmacologie Clinique, Centre Midi-Pyrénées de PharmacoVigilance, de PharmacoEpidémiologie et d’Informations sur le Médicament, Centre Hospitalier Universitaire
- Correspondence: Emmanuelle Bondon-Guitton, Laboratoire de Pharmacologie Médicale et Clinique, Faculté de Médecine, Toulouse, France (e-mail: )
| |
Collapse
|
67
|
Neul C, Schaeffeler E, Sparreboom A, Laufer S, Schwab M, Nies AT. Impact of Membrane Drug Transporters on Resistance to Small-Molecule Tyrosine Kinase Inhibitors. Trends Pharmacol Sci 2016; 37:904-932. [PMID: 27659854 DOI: 10.1016/j.tips.2016.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/21/2022]
Abstract
Small-molecule inhibitors of tyrosine kinases (TKIs) are the mainstay of treatment for many malignancies and represent novel treatment options for other diseases such as idiopathic pulmonary fibrosis. Twenty-five TKIs are currently FDA-approved and >130 are being evaluated in clinical trials. Increasing evidence suggests that drug exposure of TKIs may significantly contribute to drug resistance, independently from somatic variation of TKI target genes. Membrane transport proteins may limit the amount of TKI reaching the target cells. This review highlights current knowledge on the basic and clinical pharmacology of membrane transporters involved in TKI disposition and their contribution to drug efficacy and adverse drug effects. In addition to non-genetic and epigenetic factors, genetic variants, particularly rare ones, in transporter genes are promising novel factors to explain interindividual variability in the response to TKI therapy.
Collapse
Affiliation(s)
- Claudia Neul
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| | - Alex Sparreboom
- Division of Pharmaceutics, College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - Stefan Laufer
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany; Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| |
Collapse
|
68
|
Damaraju VL, Weber D, Kuzma M, Cass CE, Sawyer MB. Selective Inhibition of Human Equilibrative and Concentrative Nucleoside Transporters by BCR-ABL Kinase Inhibitors: IDENTIFICATION OF KEY hENT1 AMINO ACID RESIDUES FOR INTERACTION WITH BCR-ABL KINASE INHIBITORS. J Biol Chem 2016; 291:18809-17. [PMID: 27432881 DOI: 10.1074/jbc.m116.741074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Indexed: 01/10/2023] Open
Abstract
Human nucleoside transporters (hNTs) mediate cellular influx of anticancer nucleoside drugs, including cytarabine, cladribine, and fludarabine. BCR-ABL tyrosine kinase inhibitors (TKIs) imatinib and dasatinib inhibit fludarabine and cytarabine uptake. We assessed interactions of bosutinib, dasatinib, imatinib, nilotinib, and ponatinib with recombinant hNTs (hENT1, 2; hCNT1, -2, and -3) produced individually in yeast Saccharomyces cerevisiae Nilotinib inhibited hENT1-mediated uridine transport most potently (IC50 value, 0.7 μm) followed by ponatinib > bosutinib > dasatinib > imatinib. Imatinib inhibited hCNT2 with an IC50 value of 2.3 μm Ponatinib inhibited all five hNTs with the greatest effect seen for hENT1 (IC50 value, 9 μm). TKIs inhibited [(3)H]uridine uptake in a competitive manner. Studies in yeast with mutants at two amino acid residues of hENT1 (L442I, L442T, M33A, M33A/L442I) previously shown to be involved in uridine and dipyridamole binding, suggested that BCR-ABL TKIs interacted with Met(33) (TM1) and Leu(442) (TM11) residues of hENT1. In cultured human CEM lymphoblastoid cells, which possess a single hNT type (hENT1), accumulation of [(3)H]cytarabine, [(3)H]cladribine, or [(3)H]fludarabine was reduced by each of the five TKIs, and also caused a reduction in cell surface expression of hENT1 protein. In conclusion, BCR-ABL TKIs variously inhibit five different hNTs, cause a decrease in cell surface hENT1 expression, and decrease uridine accumulation when presented together with uridine or when given before uridine. In experiments with mutant hENT1, we showed for the first time interaction of Met(33) (involved in dipyridamole binding) with BCR-ABL inhibitors and reduced interaction with M33A mutant hENT1.
Collapse
Affiliation(s)
- Vijaya L Damaraju
- From the Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Dwayne Weber
- From the Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Michelle Kuzma
- From the Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Carol E Cass
- From the Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Michael B Sawyer
- From the Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
69
|
Malhotra H, Sharma P, Malhotra B, Bhargava S, Jasuja S, Kumar M. Molecular response to imatinib & its correlation with mRNA expression levels of imatinib influx & efflux transporters in patients with chronic myeloid leukaemia in chronic phase. Indian J Med Res 2016; 142:175-82. [PMID: 26354214 PMCID: PMC4613438 DOI: 10.4103/0971-5916.164250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background & objectives: Imatinib is the standard first-line treatment for chronic myeloid leukaemia (CML) patients. About 20 to 30 per cent patients develop resistance to imatinib and fail imatinib treatment. One of the mechanisms proposed is varying expression levels of the drug transporters. This study was aimed to determine the expression levels of imatinib transporter genes (OCT1, ABCB1, ABCG2) in CML patients and to correlate these levels with molecular response. Methods: Sixty three CML chronic phase patients who were on 400 mg/day imatinib for more than two years were considered for gene expression analysis study for OCT1, ABCB1 and ABCG2 genes. These were divided into responders and non-responders. The relative transcript expression levels of the three genes were compared between these two categories. The association between the expression values of these three genes was also determined. Results: No significant difference in the expression levels of OCT1, ABCB1 and ABCG2 was found between the two categories. The median transcript expression levels of OCT1, ABCB1 and ABCG2 genes in responders were 26.54, 10.78 and 0.64 versus 33.48, 7.09 and 0.53 in non-responders, respectively. A positive association was observed between the expression of the ABCB1 and ABCG2 transporter genes (r=0.407, P<0.05) while no association was observed between the expression of either of the ABC transporter genes with the OCT1 gene. Interpretation & conclusions: Our findings demonstrated that the mRNA expression levels of imatinib transporter genes were not correlated with molecular response in CML patients. Further studies need to be done on a large sample of CML patients to confirm these findings.
Collapse
Affiliation(s)
- Hemant Malhotra
- Division of Medical Oncology, Department of Medicine, University of Rajasthan, Jaipur, India
| | | | | | | | | | | |
Collapse
|
70
|
Stagno F, Stella S, Spitaleri A, Pennisi MS, Di Raimondo F, Vigneri P. Imatinib mesylate in chronic myeloid leukemia: frontline treatment and long-term outcomes. Expert Rev Anticancer Ther 2016; 16:273-8. [DOI: 10.1586/14737140.2016.1151356] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
71
|
Efflux transport of chrysin and apigenin sulfates in HEK293 cells overexpressing SULT1A3: The role of multidrug resistance-associated protein 4 (MRP4/ABCC4). Biochem Pharmacol 2015; 98:203-14. [DOI: 10.1016/j.bcp.2015.08.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022]
|
72
|
Polillo M, Galimberti S, Baratè C, Petrini M, Danesi R, Di Paolo A. Pharmacogenetics of BCR/ABL Inhibitors in Chronic Myeloid Leukemia. Int J Mol Sci 2015; 16:22811-29. [PMID: 26402671 PMCID: PMC4613337 DOI: 10.3390/ijms160922811] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 01/29/2023] Open
Abstract
Chronic myeloid leukemia was the first haematological neoplasia that benefited from a targeted therapy with imatinib nearly 15 years ago. Since then, several studies have investigated the role of genes, their variants (i.e., polymorphisms) and their encoded proteins in the pharmacokinetics and pharmacodynamics of BCR-ABL1 tyrosine kinase activity inhibitors (TKIs). Transmembrane transporters seem to influence in a significant manner the disposition of TKIs, especially that of imatinib at both cellular and systemic levels. In particular, members of the ATP-binding cassette (ABC) family (namely ABCB1 and ABCG2) together with solute carrier (SLC) transporters (i.e., SLC22A1) are responsible for the differences in drug pharmacokinetics. In the case of the newer TKIs, such as nilotinib and dasatinib, the substrate affinity of these drugs for transporters is variable but lower than that measured for imatinib. In this scenario, the investigation of genetic variants as possible predictive markers has led to some discordant results. With the partial exception of imatinib, these discrepancies seem to limit the application of discovered biomarkers in the clinical settings. In order to overcome these issues, larger prospective confirmative trials are needed.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Biological Transport
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Organic Cation Transport Proteins/genetics
- Organic Cation Transport Proteins/metabolism
- Pharmacogenetics
- Protein Kinase Inhibitors/pharmacokinetics
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Marialuisa Polillo
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Via Roma 57, 56126 Pisa, Italy.
| | - Claudia Baratè
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Via Roma 57, 56126 Pisa, Italy.
| | - Mario Petrini
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Via Roma 57, 56126 Pisa, Italy.
| | - Romano Danesi
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
73
|
Burger H, den Dekker AT, Segeletz S, Boersma AWM, de Bruijn P, Debiec-Rychter M, Taguchi T, Sleijfer S, Sparreboom A, Mathijssen RHJ, Wiemer EAC. Lysosomal Sequestration Determines Intracellular Imatinib Levels. Mol Pharmacol 2015; 88:477-487. [PMID: 26108972 DOI: 10.1124/mol.114.097451] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/24/2015] [Indexed: 11/22/2022] Open
Abstract
The intracellular uptake and retention (IUR) of imatinib is reported to be controlled by the influx transporter SLC22A1 (organic cation transporter 1). We recently hypothesized that alternative uptake and/or retention mechanisms exist that determine intracellular imatinib levels. Here, we systematically investigate the nature of these mechanisms. Imatinib uptake in cells was quantitatively determined by liquid chromatography-tandem mass spectrometry. Fluorescent microscopy was used to establish subcellular localization of imatinib. Immunoblotting, cell cycle analyses, and apoptosis assays were performed to evaluate functional consequences of imatinib sequestration. Uptake experiments revealed high intracellular imatinib concentrations in HEK293, the leukemic cell lines K562 and SD-1, and a gastrointestinal stromal tumor cell line GIST-T1. We demonstrated that imatinib IUR is time-, dose-, temperature-, and energy-dependent and provide evidence that SLC22A1 and other potential imatinib transporters do not substantially contribute to the IUR of imatinib. Prazosin, amantadine, NH4Cl, and the vacuolar ATPase inhibitor bafilomycin A1 significantly decreased the IUR of imatinib and likely interfere with lysosomal retention and accumulation of imatinib. Costaining experiments with LysoTracker Red confirmed lysosomal sequestration of imatinib. Inhibition of the lysosomal sequestration had no effect on the inhibition of c-Kit signaling and imatinib-mediated cell cycle arrest but significantly increased apoptosis in imatinib-sensitive GIST-T1 cells. We conclude that intracellular imatinib levels are primarily determined by lysosomal sequestration and do not depend on SLC22A1 expression.
Collapse
Affiliation(s)
- Herman Burger
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Alexander T den Dekker
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Sandra Segeletz
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Antonius W M Boersma
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Maria Debiec-Rychter
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Takahiro Taguchi
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Alex Sparreboom
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Erik A C Wiemer
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| |
Collapse
|
74
|
Redaelli S, Perini P, Ceccon M, Piazza R, Rigolio R, Mauri M, Boschelli F, Giannoudis A, Gambacorti-Passerini C. In vitro and in vivo identification of ABCB1 as an efflux transporter of bosutinib. J Hematol Oncol 2015; 8:81. [PMID: 26149173 PMCID: PMC4491863 DOI: 10.1186/s13045-015-0179-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/24/2015] [Indexed: 11/13/2022] Open
Abstract
Background Bosutinib is a recently approved ABL inhibitor. In spite of the well-documented effectiveness of BCR-ABL inhibitors in treating chronic myeloid leukemia, development of resistance is a continuous clinical challenge. Transporters that facilitate drug uptake and efflux have been proposed as one potential source of resistance to tyrosine kinase inhibitor treatment. Our aim was to determine which carriers are responsible for bosutinib transport. Methods K562S cells overexpressing the drug transporters ABCB1, ABCG2, and SLC22A1 were generated, characterized and used in proliferation assay and intracellular uptake and retention assay (IUR). In vivo experiments were performed in nude mice injected with K562S, K562DOX cells (overexpressing ABCB1), and K562DOX silenced for ABCB1 (K562DOX/sh P-GP). Results The IUR assay using C-14 bosutinib showed that only ABCB1 was responsible for active bosutinib transport. K562DOX cells showed the lowest intracellular level of bosutinib, while K562DOX cells treated with the ABCB1 inhibitor verapamil showed intracellular bosutinib levels comparable with parental K562S. Proliferation assays demonstrated that K562DOX are resistant to bosutinib treatment while verapamil is able to restore the sensitivity to the drug. Nude mice injected with K562DOX and treated with bosutinib showed very limited response and quickly relapsed after stopping treatment while K562S as well as K562DOX/sh P-GP remained tumor-free. Conclusions Our data suggest that the analysis of ABCB1 expression levels might help determine treatment options for patients exhibiting resistance to bosutinib. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0179-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Redaelli
- Department of Health sciences, University of Milano-Bicocca, S.Gerardo Hospital, Monza, Italy.
| | - Pietro Perini
- Department of Health sciences, University of Milano-Bicocca, S.Gerardo Hospital, Monza, Italy.
| | - Monica Ceccon
- Department of Health sciences, University of Milano-Bicocca, S.Gerardo Hospital, Monza, Italy.
| | - Rocco Piazza
- Department of Health sciences, University of Milano-Bicocca, S.Gerardo Hospital, Monza, Italy.
| | - Roberta Rigolio
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy.
| | - Mario Mauri
- Department of Health sciences, University of Milano-Bicocca, S.Gerardo Hospital, Monza, Italy.
| | - Frank Boschelli
- Department of Oncology, Pfizer Research, Pearl River, New City, NY, USA.
| | - Athina Giannoudis
- Institute of Translational Medicine, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
75
|
Ames E, Canter RJ, Grossenbacher SK, Mac S, Smith RC, Monjazeb AM, Chen M, Murphy WJ. Enhanced targeting of stem-like solid tumor cells with radiation and natural killer cells. Oncoimmunology 2015; 4:e1036212. [PMID: 26405602 DOI: 10.1080/2162402x.2015.1036212] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes postulated to mediate resistance against primary haematopoietic but not solid tumor malignancies. Cancer stem cells (CSCs) are a small subset of malignant cells with stem-like properties which are resistant to chemo- and radiotherapies and are able to repopulate a tumor after cytoreductive treatments. We observed increased frequencies of stem-like tumor cells after irradiation, with increased expression of stress ligands on surviving stem-like cells. Ex vivo NK cells activated by low dose IL2 in vitro and IL15 in vivo displayed an increased ability to target solid tumor stem-like cells both in vitro and in vivo after irradiation. Mechanistically, both upregulation of stress-related ligands on the stem-like cells as well as debulking of non-stem populations contributed to these effects as determined by data from cell lines, primary tumor samples, and most relevant patient derived specimens. In addition, pretreatment of tumor-bearing mice with local radiation prior to NK transfer resulted in significantly longer survival indicating that radiation therapy in conjunction with NK cell adoptive immunotherapy targeting stem-like cancer cells may offer a promising novel radio-immunotherapy approach in the clinic.
Collapse
Affiliation(s)
- Erik Ames
- Department of Dermatology; Davis School of Medicine; University of California ; Sacramento, CA, USA
| | - Robert J Canter
- Department of Surgery; Division of Surgical Oncology; Davis School of Medicine; University of California ; Sacramento, CA, USA
| | - Steven K Grossenbacher
- Department of Dermatology; Davis School of Medicine; University of California ; Sacramento, CA, USA
| | - Stephanie Mac
- Department of Dermatology; Davis School of Medicine; University of California ; Sacramento, CA, USA
| | - Rachel C Smith
- Department of Dermatology; Davis School of Medicine; University of California ; Sacramento, CA, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology; Davis School of Medicine; University of California ; Sacramento, CA, USA
| | - Mingyi Chen
- Department of Pathology; Davis School of Medicine; University of California ; Sacramento, CA, USA
| | - William J Murphy
- Department of Dermatology; Davis School of Medicine; University of California ; Sacramento, CA, USA ; Department of Internal Medicine; Division of Hematology and Oncology; Davis Medical Center; University of California ; Sacramento, CA, USA
| |
Collapse
|
76
|
Khurana V, Minocha M, Pal D, Mitra AK. Role of OATP-1B1 and/or OATP-1B3 in hepatic disposition of tyrosine kinase inhibitors. ACTA ACUST UNITED AC 2015; 29:179-90. [PMID: 24643910 DOI: 10.1515/dmdi-2013-0062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/12/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND The metabolism of tyrosine kinase inhibitors (TKIs) is mainly mediated via hepatic route, but the mechanism responsible for their hepatocellular accumulation is still unknown. This study was designed to understand the contribution of organic anion transporting polypeptides (OATPs) in the hepatic uptake of selected TKIs - pazopanib, canertinib, erlotinib, vandetanib and nilotinib. METHODS Michaelis-Menten (MM) kinetic parameters for TKIs were determined by concentration-dependent cellular accumulation of selected TKIs using Chinese hamster ovary cells - wild type as well as transfected with humanized OATP-1B1 and OATP-1B3 transporter proteins. RESULTS The MM constant (Km) values of OATP-1B1 for nilotinib and vandetanib are 10.14±1.91 and 2.72±0.25 μM, respectively, and Vmax values of OATP-1B1 for nilotinib and vandetanib were 6.95±0.47 and 75.95±1.99 nmol/mg protein per minute, respectively. Likewise, Km values of OATP-1B3 for canertinib, nilotinib and vandetanib were 12.18±3.32, 7.84±1.43 and 4.37±0.79 μM, respectively, and Vmax values of OATP-1B3 for canertinib, nilotinib and vandetanib were 15.34±1.59, 6.75±0.42 and 194.64±10.58 nmol/mg protein per minute, respectively. Canertinib did not exhibit any substrate specificity toward OATP-1B1. Also, erlotinib and pazopanib did not exhibit any substrate specificity toward OATP-1B1 and -1B3. CONCLUSIONS Because selected TKIs are the substrates of OATP-1B1 and -1B3 expressed in hepatic tissue, these compounds can be regarded as molecular targets for transporter-mediated drug-drug interactions (DDIs). Any alteration in the function of these hepatic OATPs might account for the pharmacokinetic variability of TKIs.
Collapse
|
77
|
Pollyea DA, Gutman JA, Gore L, Smith CA, Jordan CT. Targeting acute myeloid leukemia stem cells: a review and principles for the development of clinical trials. Haematologica 2015; 99:1277-84. [PMID: 25082785 DOI: 10.3324/haematol.2013.085209] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite an increasingly rich understanding of its pathogenesis, acute myeloid leukemia remains a disease with poor outcomes, overwhelmingly due to disease relapse. In recent years, work to characterize the leukemia stem cell population, the disease compartment most difficult to eliminate with conventional therapy and most responsible for relapse, has been undertaken. This, in conjunction with advances in drug development that have allowed for increasingly targeted therapies to be engineered, raises the hope that we are entering an era in which the leukemia stem cell population can be eliminated, resulting in therapeutic cures for acute myeloid leukemia patients. For these therapies to become available, they must be tested in the setting of clinical trials. A long-established clinical trials infrastructure has been employed to shepherd new therapies from proof-of-concept to approval. However, due to the unique features of leukemia stem cells, drugs that are designed to specifically eliminate this population may not be adequately tested when applied to this model. Therefore, in this review article, we seek to identify the relevant features of acute myeloid leukemia stem cells for clinical trialists, discuss potential strategies to target leukemia stem cells, and propose a set of guidelines outlining the necessary elements of clinical trials to allow for the successful testing of stem cell-directed therapies.
Collapse
Affiliation(s)
- Daniel A Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Jonathan A Gutman
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Lia Gore
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Clayton A Smith
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Craig T Jordan
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
78
|
Quan E, Wang H, Dong D, Zhang X, Wu B. Characterization of chrysin glucuronidation in UGT1A1-overexpressing HeLa cells: elucidating the transporters responsible for efflux of glucuronide. Drug Metab Dispos 2015; 43:433-43. [PMID: 25595598 DOI: 10.1124/dmd.114.061598] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Active transport of glucuronide out of cells is a critical process in elimination of drugs via the glucuronidation pathway. Here, HeLa cells were stably transfected with UGT1A1 and the contributions of BCRP and MRP family transporters to the cellular efflux of chrysin glucuronide (CG) were determined. The cDNA of UGT1A1 was introduced into HeLa cells using the lentiviral transfection method. The modified cells were functional in generation of the glucuronide from chrysin. Ko143 at 10-20 μM (a dual inhibitor of BCRP and UGT1A1) caused a marked decrease (51.3%-59.7%, P < 0.01) in the excretion rate and efflux clearance of CG. Likewise, MK-571 at 5-20 μM (an inhibitor of MRPs but an activator of UGT1A1) resulted in a significant reduction in the excretion rate (18.2%-64.0%, P < 0.01) and efflux clearance (37.0%-90.2%, P < 0.001). By contrast, dipyridamole and leukotriene C4 showed no inhibitory effects on CG excretion. The chemical inhibition indicated that excretion of CG was contributed by the MRP family transporters, whereas the role of BCRP was unclear. Furthermore, short hairpin RNA-mediated silencing of a target transporter led to a marked reduction in the excretion rate of CG (38.6% for BCRP, 39.3% for MRP1, 36.4% for MRP3, and 28.7% for MRP4; P < 0.01). Transporter silencing also led to substantial decreases in the efflux clearance (44.7% for BCRP, 60.4% for MRP1, 36.7% for MRP3, and 28.7% for MRP4; P < 0.01). The gene silencing results suggested that BCRP, MRP1, MRP3, and MRP4 were significant contributors to excretion of CG.
Collapse
Affiliation(s)
- Enxi Quan
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China (E.Q., X.Z., B.W.); and Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China (H.W., D.D.)
| | - Huailing Wang
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China (E.Q., X.Z., B.W.); and Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China (H.W., D.D.)
| | - Dong Dong
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China (E.Q., X.Z., B.W.); and Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China (H.W., D.D.)
| | - Xingwang Zhang
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China (E.Q., X.Z., B.W.); and Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China (H.W., D.D.)
| | - Baojian Wu
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China (E.Q., X.Z., B.W.); and Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China (H.W., D.D.)
| |
Collapse
|
79
|
Influence of HIV antiretrovirals on methadone N-demethylation and transport. Biochem Pharmacol 2015; 95:115-25. [PMID: 25801005 DOI: 10.1016/j.bcp.2015.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/12/2015] [Indexed: 02/02/2023]
Abstract
Drug interactions involving methadone and/or HIV antiretrovirals can be problematic. Mechanisms whereby antiretrovirals induce clinical methadone clearance are poorly understood. Methadone is N-demethylated to 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) by CYP2B6 and CYP3A4 in vitro, but by CYP2B6 in vivo. This investigation evaluated human hepatocytes as a model for methadone induction, and tested the hypothesis that methadone and EDDP are substrates for human drug transporters. Human hepatocyte induction by several antiretrovirals of methadone N-demethylation, and CYP2B6 and CYP3A4 transcription, protein expression and catalytic activity, and pregnane X receptor (PXR) activation were evaluated. Methadone and EDDP uptake and efflux by overexpressed transporters were also determined. Methadone N-demethylation was generally not significantly increased by the antiretrovirals. CYP2B6 mRNA and activity (bupropion N-demethylation) were induced by several antiretrovirals, as were CYP3A4 mRNA and protein expression, but only indinavir increased CYP3A activity (alfentanil dealkylation). CYP upregulation appeared related to PXR activation. Methadone was not a substrate for uptake (OCT1, OCT2, OCT3, OATP1A2, OATP1B1, OATP1B3, OATP2B1) or efflux (P-gp, BCRP) transporters. EDDP was a good substrate for P-gp, BCRP, OCT1, OCT3, OATP1A2, and OATP1B1. OATP1A2- and OCT3-mediated EDDP uptake, and BCRP-mediated EDDP efflux transport, was inhibited by several antiretrovirals. Results show that hepatocyte methadone N-demethylation resembles expressed and liver microsomal metabolism more than clinical metabolism. Compared with clinical studies, hepatocytes underreport induction of methadone metabolism by HIV drugs. Hepatocytes are not a good predictive model for clinical antiretroviral induction of methadone metabolism and not a substitute for clinical studies. EDDP is a transporter substrate, and is susceptible to transporter-mediated interactions.
Collapse
|
80
|
Alves R, Fonseca AR, Gonçalves AC, Ferreira-Teixeira M, Lima J, Abrantes AM, Alves V, Rodrigues-Santos P, Jorge L, Matoso E, Carreira IM, Botelho MF, Sarmento-Ribeiro AB. Drug transporters play a key role in the complex process of Imatinib resistance in vitro. Leuk Res 2015; 39:355-60. [DOI: 10.1016/j.leukres.2014.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/29/2014] [Accepted: 12/14/2014] [Indexed: 11/27/2022]
|
81
|
Lu L, Saunders VA, Leclercq TM, Hughes TP, White DL. Ponatinib is not transported by ABCB1, ABCG2 or OCT-1 in CML cells. Leukemia 2015; 29:1792-4. [PMID: 25676419 DOI: 10.1038/leu.2015.35] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- L Lu
- 1] Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia [2] Discipline of Medicine, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - V A Saunders
- Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - T M Leclercq
- 1] Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia [2] Discipline of Medicine, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - T P Hughes
- 1] Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia [2] Discipline of Medicine, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia [3] Department of Haematology, SA Pathology, Adelaide, South Australia, Australia
| | - D L White
- 1] Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia [2] Discipline of Medicine, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia [3] Discipline of Paediatrics, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
82
|
Hegedüs C, Hegedüs T, Sarkadi B. The Role of ABC Multidrug Transporters in Resistance to Targeted Anticancer Kinase Inhibitors. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-09801-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
83
|
Bircsak KM, Aleksunes LM. Interaction of Isoflavones with the BCRP/ABCG2 Drug Transporter. Curr Drug Metab 2015; 16:124-40. [PMID: 26179608 PMCID: PMC4713194 DOI: 10.2174/138920021602150713114921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 03/03/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022]
Abstract
This review will provide a comprehensive overview of the interactions between dietary isoflavones and the ATP-binding cassette (ABC) G2 efflux transporter, which is also named the breast cancer resistance protein (BCRP). Expressed in a variety of organs including the liver, kidneys, intestine, and placenta, BCRP mediates the disposition and excretion of numerous endogenous chemicals and xenobiotics. Isoflavones are a class of naturallyoccurring compounds that are found at high concentrations in commonly consumed foods and dietary supplements. A number of isoflavones, including genistein and daidzein and their metabolites, interact with BCRP as substrates, inhibitors, and/or modulators of gene expression. To date, a variety of model systems have been employed to study the ability of isoflavones to serve as substrates and inhibitors of BCRP; these include whole cells, inverted plasma membrane vesicles, in situ organ perfusion, as well as in vivo rodent and sheep models. Evidence suggests that BCRP plays a role in mediating the disposition of isoflavones and in particular, their conjugated forms. Furthermore, as inhibitors, these compounds may aid in reversing multidrug resistance and sensitizing cancer cells to chemotherapeutic drugs. This review will also highlight the consequences of altered BCRP expression and/or function on the pharmacokinetics and toxicity of chemicals following isoflavone exposure.
Collapse
Affiliation(s)
| | - Lauren M Aleksunes
- Dept. of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd. Piscataway, NJ 08854, USA.
| |
Collapse
|
84
|
Sato H, Siddig S, Uzu M, Suzuki S, Nomura Y, Kashiba T, Gushimiyagi K, Sekine Y, Uehara T, Arano Y, Yamaura K, Ueno K. Elacridar enhances the cytotoxic effects of sunitinib and prevents multidrug resistance in renal carcinoma cells. Eur J Pharmacol 2015; 746:258-66. [DOI: 10.1016/j.ejphar.2014.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 01/16/2023]
|
85
|
Damaraju VL, Kuzma M, Mowles D, Cass CE, Sawyer MB. Interactions of Multitargeted Kinase Inhibitors and Nucleoside Drugs: Achilles Heel of Combination Therapy? Mol Cancer Ther 2014; 14:236-45. [DOI: 10.1158/1535-7163.mct-14-0337] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
86
|
Kim YK, Lee SS, Jeong SH, Ahn JS, Yang DH, Lee JJ, Shin MG, Kim HJ. OCT-1, ABCB1, and ABCG2 Expression in Imatinib-Resistant Chronic Myeloid Leukemia Treated with Dasatinib or Nilotinib. Chonnam Med J 2014; 50:102-11. [PMID: 25568846 PMCID: PMC4276791 DOI: 10.4068/cmj.2014.50.3.102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 12/21/2022] Open
Abstract
This study explored drug transporter expression levels and their impact on clinical response to imatinib and second-generation tyrosine kinase inhibitors (TKIs) in imatinib- resistant chronic myeloid leukemia (CML). Imatinib-resistant chronic phase CML patients treated with dasatinib (n=10) and nilotinib (n=12) were enrolled. The mRNA expression of the OCT-1, ABCG2, and ABCB1 genes was quantified by using paired bone marrow samples obtained before administering imatinib and at the point of detecting imatinib resistance (just before starting second-generation TKIs). The expression levels of OCT-1 and ABCG2 were lower in follow-up than in imatinib-naïve samples. ABCB1 revealed highly variable expression levels before and after imatinib treatment. In addition, median ABCB1 expression in follow-up samples was lower in patients achieving complete cytogenetic response or major molecular response during imatinib treatment than in failed patients. Higher ABCG2 expression in imatinib-exposed samples showed a negative impact on optimal response to dasatinib. Patients with higher ABCG2 expression in imatinib-exposed samples also had shorter progression- free survival with dasatinib treatment. However, no significant correlation was found between these drug transporter expression levels in imatinib-naïve or imatinib- exposed samples and responses to nilotinib. In imatinib-resistant CML, OCT-1 and ABCG2 mRNA expression decreased after imatinib treatment. Patients with higher ABCG2 expression in imatinib-exposed samples showed poor treatment outcome with dasatinib. On the other hand, a higher expression level of ABCB1 in imatinib-exposed samples did not affect second-generation TKI responses but was correlated with poor imatinib responses.
Collapse
Affiliation(s)
- Yeo-Kyeoung Kim
- Department of Hematology-Oncology, Hematology Clinics, Chonnam National University Hwasun Hospital, Gwangju, Korea
| | - Seung-Shin Lee
- Department of Hematology-Oncology, Hematology Clinics, Chonnam National University Hwasun Hospital, Gwangju, Korea
| | - Sung-Hoon Jeong
- Department of Hematology-Oncology, Hematology Clinics, Chonnam National University Hwasun Hospital, Gwangju, Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Hematology Clinics, Chonnam National University Hwasun Hospital, Gwangju, Korea
| | - Deok-Hwan Yang
- Department of Hematology-Oncology, Hematology Clinics, Chonnam National University Hwasun Hospital, Gwangju, Korea
| | - Je-Jung Lee
- Department of Hematology-Oncology, Hematology Clinics, Chonnam National University Hwasun Hospital, Gwangju, Korea
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Hematology Clinics, Chonnam National University Hwasun Hospital, Gwangju, Korea
- Genome Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
87
|
Namisaki T, Schaeffeler E, Fukui H, Yoshiji H, Nakajima Y, Fritz P, Schwab M, Nies AT. Differential expression of drug uptake and efflux transporters in Japanese patients with hepatocellular carcinoma. Drug Metab Dispos 2014; 42:2033-2040. [PMID: 25231932 DOI: 10.1124/dmd.114.059832] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Targeted chemotherapy for hepatocellular carcinoma (HCC) is impaired by intrinsic and/or acquired drug resistance. Because drugs used in HCC therapy (e.g., anthracyclines or the tyrosine kinase inhibitor sorafenib) are substrates of uptake and/or efflux transporters, variable expression of these transporters at the plasma membrane of tumor cells may contribute to drug resistance and subsequent clinical response. In this study, the variability of expression of uptake transporters [organic cation transporter (OCT) 1 and OCT3] and efflux transporters [multidrug resistance 1 (MDR1)/P-glycoprotein, multidrug resistance protein (MRP) 1, MRP2, and breast cancer resistance protein (BCRP)], selected for their implication in transporting drugs used in HCC therapy, was investigated. HCC and corresponding nontumor tissue samples were collected from 24 Japanese patients at the time of surgery. Protein expression was determined by immunohistochemistry. Expression data were correlated with clinicopathological characteristics and patients' outcome (median follow-up, 53 months). Generally, expression was highly variable among individual tumor samples. Yet median expression of OCT1, OCT3, and MDR1 in HCC was significantly lower (1.4-, 2.7-, and 2-fold, respectively) than in nontumor tissue, while expression of MRP2 persisted and BCRP showed a trend of increased levels in HCC. Patients with low BCRP expression had significantly shorter overall and recurrence-free survival times. Results suggest different expression patterns of drug transporters in HCC, which are associated only in part with clinicopathological characteristics. Detailed information on expression of drug transporters in HCC may be promising for individualization and optimization of drug therapy for liver cancer.
Collapse
Affiliation(s)
- Tadashi Namisaki
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| | - Hiroshi Fukui
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| | - Hitoshi Yoshiji
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| | - Yoshiyuki Nakajima
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| | - Peter Fritz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (T.N., E.S., P.F., M.S., A.T.N.); Third Department of Internal Medicine (T.N., H.F., H.Y.) and Department of Surgery (Y.N.), Nara Medical University, Kashihara, Japan; and Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany (M.S.)
| |
Collapse
|
88
|
Association of ABCG2 polymorphism with clinical efficacy of imatinib in patients with gastrointestinal stromal tumor. Cancer Chemother Pharmacol 2014; 75:173-82. [DOI: 10.1007/s00280-014-2630-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 11/14/2014] [Indexed: 12/29/2022]
|
89
|
Zheng Q, Wu H, Yu Q, Kim DHD, Lipton JH, Angelini S, Soverini S, Vivona D, Takahashi N, Cao J. ABCB1 polymorphisms predict imatinib response in chronic myeloid leukemia patients: a systematic review and meta-analysis. THE PHARMACOGENOMICS JOURNAL 2014; 15:127-34. [PMID: 25245580 DOI: 10.1038/tpj.2014.54] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/18/2014] [Accepted: 08/13/2014] [Indexed: 12/17/2022]
Abstract
Imatinib mesylate, a competitive tyrosine kinase inhibitor, is considered the first-line therapy drug for Ph+ chronic myeloid leukemia (CML). Three single-nucleotide polymorphisms (SNPs) in the ATP-binding cassette, subfamily B (MDR/TAP), member 1 gene (ABCB1/MDR1), c.1236C>T, c.2677G>T/A and c.3435C>T, have been shown to affect cellular transport/metabolism of imatinib. The associations between these SNPs and imatinib response in CML patients have been widely evaluated, but the results were inconsistent. To derive a conclusive assessment of the associations, we performed a meta-analysis by combining data from a total of 12 reports including 1826 patients. The results showed that the 2677G allele or 3435T allele predicted a worse response to imatinib in CML patients, whereas 1236CC genotype was associated with better response in CML patients from Asian region. In conclusion, this meta-analysis suggests that c.1236C>T, c.2677G>T/A and c.3435C>T can be served as predictive markers for the therapeutical use of imatinib in CML patients.
Collapse
Affiliation(s)
- Q Zheng
- Clinical Research Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - H Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Q Yu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - D H Dennis Kim
- Chronic Myelogenous Leukemia Group, Princess Margaret Cancer Centre, University Health Network University of Toronto, Toronto, Ontario, Canada
| | - J H Lipton
- Chronic Myelogenous Leukemia Group, Princess Margaret Cancer Centre, University Health Network University of Toronto, Toronto, Ontario, Canada
| | - S Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - S Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology, University of Bologna, Bologna, Italy
| | - D Vivona
- Departmento de Análises Clínicas e Toxicológicas da Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | - N Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - J Cao
- Clinical Research Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
90
|
Mao Q, Unadkat JD. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS JOURNAL 2014; 17:65-82. [PMID: 25236865 DOI: 10.1208/s12248-014-9668-6] [Citation(s) in RCA: 439] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/03/2014] [Indexed: 01/12/2023]
Abstract
The human breast cancer resistance protein (BCRP, gene symbol ABCG2) is an ATP-binding cassette (ABC) efflux transporter. It was so named because it was initially cloned from a multidrug-resistant breast cancer cell line where it was found to confer resistance to chemotherapeutic agents such as mitoxantrone and topotecan. Since its discovery in 1998, the substrates of BCRP have been rapidly expanding to include not only therapeutic agents but also physiological substances such as estrone-3-sulfate, 17β-estradiol 17-(β-D-glucuronide) and uric acid. Likewise, at least hundreds of BCRP inhibitors have been identified. Among normal human tissues, BCRP is highly expressed on the apical membranes of the placental syncytiotrophoblasts, the intestinal epithelium, the liver hepatocytes, the endothelial cells of brain microvessels, and the renal proximal tubular cells, contributing to the absorption, distribution, and elimination of drugs and endogenous compounds as well as tissue protection against xenobiotic exposure. As a result, BCRP has now been recognized by the FDA to be one of the key drug transporters involved in clinically relevant drug disposition. We published a highly-accessed review article on BCRP in 2005, and much progress has been made since then. In this review, we provide an update of current knowledge on basic biochemistry and pharmacological functions of BCRP as well as its relevance to drug resistance and drug disposition.
Collapse
Affiliation(s)
- Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Box 357610, Seattle, Washington, 98195-7610, USA,
| | | |
Collapse
|
91
|
Abstract
INTRODUCTION Cancer remains the leading cause of death worldwide. Numerous therapeutic strategies that include smart biological treatments toward specific cellular pathways are being developed. Yet, inherent and acquired multidrug resistance (MDR) to chemotherapeutic drugs remains the major obstacle in effective cancer treatments. AREAS COVERED Herein, we focused on an implementation of nanoscale drug delivery strategies (nanomedicines) to treat tumors that resist MDR. Specifically, we briefly discuss the MDR phenomenon and provide structural and functional characterization of key proteins that account for MDR. We next describe the strategies to target tumors using nanoparticles and provide a mechanistic overview of how changes in the influx:efflux ratio result in overcoming MDR. EXPERT OPINION Various strategies have been applied in preclinical and clinical settings to overcome cancer MDR. Among them are the use of chemosensitizers that aim to sensitize the cancer cells to chemotherapeutic treatment and the use of nanomedicines as delivery vehicles that can increase the influx of drugs into cancer cells. These strategies can enhance the therapeutic response in resistant tumors by bypassing efflux pumps or by increasing the nominal amounts of therapeutic payloads into the cancer cells at a given time point.
Collapse
Affiliation(s)
- Assaf Ganoth
- The Interdisciplinary Center (IDC) , P.O. Box 167, Herzliya 46150 , Israel
| | | | | |
Collapse
|
92
|
Rijpma SR, van den Heuvel JJMW, van der Velden M, Sauerwein RW, Russel FGM, Koenderink JB. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity. Malar J 2014; 13:359. [PMID: 25218605 PMCID: PMC4172838 DOI: 10.1186/1475-2875-13-359] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022] Open
Abstract
Background Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly involved in drug deposition, as they are located at membranes of many uptake and excretory organs and at protective barriers, where they export endogenous and xenobiotic compounds, including pharmaceuticals. In this study, a panel of well-established anti-malarial drugs which may affect drug plasma concentrations was tested for interactions with human ABC transport proteins. Methods The interaction of chloroquine, quinine, artemisinin, mefloquine, lumefantrine, atovaquone, dihydroartemisinin and proguanil, with transport activity of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), bile salt export pump (BSEP) and multidrug resistance-associated proteins (MRP) 1–4 were analysed. The effect of the anti-malarials on the ATP-dependent uptake of radio-labelled substrates was measured in membrane vesicles isolated from HEK293 cells overexpressing the ABC transport proteins. Results A strong and previously undescribed inhibition of BCRP-mediated transport by atovaquone with a 50% inhibitory concentration (IC50) of 0.23 μM (95% CI 0.17-0.29 μM) and inhibition of P-gp-mediated transport by quinine with an IC50 of 6.8 μM (95% CI 5.9-7.8 μM) was observed. Furthermore, chloroquine and mefloquine were found to significantly inhibit P-gp-mediated transport. BCRP transport activity was significantly inhibited by all anti-malarials tested, whereas BSEP-mediated transport was not inhibited by any of the compounds. Both MRP1- and MRP3-mediated transport were significantly inhibited by mefloquine. Conclusions Atovaquone and quinine significantly inhibit BCRP- and P-gp- mediated transport at concentrations within the clinically relevant prophylactic and therapeutic range. Co-administration of these established anti-malarials with drugs that are BCRP or P-gp substrates may potentially lead to drug-drug interactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, Netherlands.
| |
Collapse
|
93
|
Tyrosine kinase inhibitors as reversal agents for ABC transporter mediated drug resistance. Molecules 2014; 19:13848-77. [PMID: 25191874 PMCID: PMC6271846 DOI: 10.3390/molecules190913848] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/27/2023] Open
Abstract
Tyrosine kinases (TKs) play an important role in pathways that regulate cancer cell proliferation, apoptosis, angiogenesis and metastasis. Aberrant activity of TKs has been implicated in several types of cancers. In recent years, tyrosine kinase inhibitors (TKIs) have been developed to interfere with the activity of deregulated kinases. These TKIs are remarkably effective in the treatment of various human cancers including head and neck, gastric, prostate and breast cancer and several types of leukemia. However, these TKIs are transported out of the cell by ATP-binding cassette (ABC) transporters, resulting in development of a characteristic drug resistance phenotype in cancer patients. Interestingly, some of these TKIs also inhibit the ABC transporter mediated multi drug resistance (MDR) thereby; enhancing the efficacy of conventional chemotherapeutic drugs. This review discusses the clinically relevant TKIs and their interaction with ABC drug transporters in modulating MDR.
Collapse
|
94
|
Videira M, Reis RL, Brito MA. Deconstructing breast cancer cell biology and the mechanisms of multidrug resistance. Biochim Biophys Acta Rev Cancer 2014; 1846:312-25. [PMID: 25080053 DOI: 10.1016/j.bbcan.2014.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/12/2022]
Abstract
Cancer complexity constantly challenges the way that clinicians manage breast cancer therapy. Tumor heterogeneity and intratumoral stroma characteristics allow cells with different phenotypes and deregulated apoptotic, proliferative and migration abilities to co-exist contributing to a disappointing therapeutic response. While new approaches are being associated with conventional chemotherapy, such as hormonal therapy or target monoclonal antibodies, recurrence and metastasization are still observed. Membrane transporters are the cell's first line of contact with anticancer drugs having a major role in multidrug resistance events. This structural-based activity enables the cell to be drug-resistant by decreasing drug intracellular concentration through an efflux-transport mechanism, mainly associated with overexpression of ATP-binding cassette (ABC) proteins. This review focuses on some of the important structural and biological properties of the malignant cell and tumor microenvironment, addressing the role of the membrane ABC transporters in therapeutic outcomes, and highlighting related molecular pathways that may represent meaningful target therapies.
Collapse
Affiliation(s)
- Mafalda Videira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; Department of Galenic Pharmacy and Pharmaceutical Technology, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Rita Leones Reis
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
95
|
Kosztyu P, Bukvova R, Dolezel P, Mlejnek P. Resistance to daunorubicin, imatinib, or nilotinib depends on expression levels of ABCB1 and ABCG2 in human leukemia cells. Chem Biol Interact 2014; 219:203-10. [PMID: 24954033 DOI: 10.1016/j.cbi.2014.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/30/2014] [Accepted: 06/10/2014] [Indexed: 01/11/2023]
Abstract
The effect of ABCB1 (P-gp, (P-glycoprotein), MDR1) and ABCG2 (BCRP1, (breast cancer resistance protein 1)) expressions on cell resistance to daunorubicin (DRN), imatinib, and nilotinib was studied in human leukemia cells. We used a set of cells derived from a parental K562 cell line, expressing various levels of ABCB1 and ABCG2, respectively. The function of ABCB1 and ABCG2 was confirmed using calcein AM and pheophorbide A accumulation assays, respectively. These assays indicated distinct differences in activities of ABCB1 and ABCG2 which corresponded to their expression levels. We observed that the resistance to DRN and imatinib was proportional to the expression level of ABCB1. Similarly, the resistance to nilotinib and imatinib was proportional to the expression level of ABCG2. Importantly, K562/DoxDR05 and K562/ABCG2-Z cells with the lowest expressions of ABCB1 and ABCG2, respectively, failed to reduce the intracellular levels of imatinib to provide a significant resistance to this drug. However, the K562/DoxDR05 and K562/ABCG2-Z cells significantly decreased the intracellular levels of DRN and nilotinib, respectively, thereby mediating significant resistances to these drugs. Only cells which expression of ABCB1 or ABCG2 exceeded a certain level exhibited a significantly decreased intracellular level of imatinib, and this effect was accompanied by a significantly increased resistance to this drug. Our results clearly indicated that resistance to anticancer drugs mediated by main ABC transporters, ABCB1 and ABCG2, strongly depends on their expressions at protein levels. Importantly, resistance for one drug might be maintained while resistance for other ones might become undetectable at low transporter expression levels.
Collapse
Affiliation(s)
- Petr Kosztyu
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Romana Bukvova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Petr Dolezel
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Petr Mlejnek
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic.
| |
Collapse
|
96
|
Shukla S, Kouanda A, Silverton L, Talele TT, Ambudkar SV. Pharmacophore modeling of nilotinib as an inhibitor of ATP-binding cassette drug transporters and BCR-ABL kinase using a three-dimensional quantitative structure-activity relationship approach. Mol Pharm 2014; 11:2313-22. [PMID: 24865254 PMCID: PMC4086741 DOI: 10.1021/mp400762h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nilotinib (Tasigna) is a tyrosine kinase inhibitor approved by the FDA to treat chronic phase chronic myeloid leukemia patients. It is also a transport substrate of the ATP-binding cassette (ABC) drug efflux transporters ABCB1 (P-glycoprotein, P-gp) and ABCG2 (BCRP), which may have an effect on the pharmacokinetics and toxicity of this drug. The goal of this study was to identify pharmacophoric features of nilotinib in order to potentially develop specific inhibitors of BCR-ABL kinase with minimal interactions with ABC drug transporters. Three-dimensional pharmacophore modeling and quantitative structure-activity relationship (QSAR) studies were carried out on a series of nilotinib analogues to identify chemical features that contribute to inhibitory activity of nilotinib against BCR-ABL kinase activity, P-gp, and ABCG2. Twenty-five derivatives of nilotinib were synthesized and were then tested to measure their activity to inhibit BCR-ABL kinase and to inhibit the function of ABC drug transporters. A set of in vitro experiments including kinase activity and cell-based transport assays and photolabeling of P-gp and ABCG2 with a transport substrate, [(125)I]-iodoarylazido-prazosin (IAAP), were carried out in isolated membranes to evaluate the potency of the derivatives to inhibit the function of ABC drug transporters and BCR-ABL kinase. Sixteen, fourteen, and ten compounds were selected as QSAR data sets, respectively, to generate PHASE v3.1 pharmacophore models for BCR-ABL kinase, ABCG2, and P-gp inhibitors. The IC50 values of these derivatives against P-gp, ABCG2, or BCR-ABL kinase were used to generate pharmacophore features required for optimal interactions with these targets. A seven-point pharmacophore (AADDRRR) for BCR-ABL kinase inhibitory activity, a six-point pharmacophore (ADHRRR) for ABCG2 inhibitory activity, and a seven-point pharmacophore (AADDRRR) for P-gp inhibitory activity were generated. The derived models clearly demonstrate high predictive power for test sets of BCR-ABL, ABCG2, and P-gp inhibitors. In aggregate, these results should aid in the development of specific inhibitors of BCR-ABL kinase that exhibit no or minimal interaction with ABC drug transporters.
Collapse
Affiliation(s)
- Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, Maryland 20892, United States
| | | | | | | | | |
Collapse
|
97
|
In vitro 3D colon tumor penetrability of SRJ09, a new anti-cancer andrographolide analog. Invest New Drugs 2014; 32:806-14. [DOI: 10.1007/s10637-014-0105-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/15/2014] [Indexed: 01/13/2023]
|
98
|
Deng J, Shao J, Markowitz JS, An G. ABC Transporters in Multi-Drug Resistance and ADME-Tox of Small Molecule Tyrosine Kinase Inhibitors. Pharm Res 2014; 31:2237-55. [DOI: 10.1007/s11095-014-1389-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/15/2014] [Indexed: 12/31/2022]
|
99
|
Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch Toxicol 2014; 88:1205-48. [PMID: 24777822 DOI: 10.1007/s00204-014-1224-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022]
|
100
|
Bernt KM, Hunger SP. Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Oncol 2014; 4:54. [PMID: 24724051 PMCID: PMC3971203 DOI: 10.3389/fonc.2014.00054] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/06/2014] [Indexed: 12/22/2022] Open
Abstract
The t(9;22)(q34;q11) or Philadelphia chromosome creates a BCR-ABL1 fusion gene encoding for a chimeric BCR-ABL1 protein. It is present in 3-4% of pediatric acute lymphoblastic leukemia (Ph(+) ALL), and about 25% of adult ALL cases. Prior to the advent of tyrosine kinase inhibitors (TKI), Ph(+) ALL was associated with a very poor prognosis despite the use of intensive chemotherapy and frequently hematopoietic stem-cell transplantation (HSCT) in first remission. The development of TKIs revolutionized the therapy of Ph(+) ALL. Addition of the first generation ABL1 class TKI imatinib to intensive chemotherapy dramatically increased the survival for children with Ph(+) ALL and established that many patients can be cured without HSCT. In parallel, the mechanistic understanding of Ph(+) ALL expanded exponentially through careful mapping of pathways downstream of BCR-ABL1, the discovery of mutations in master regulators of B-cell development such as IKZF1 (Ikaros), PAX5, and early B-cell factor (EBF), the recognition of the complex clonal architecture of Ph(+) ALL, and the delineation of genomic, epigenetic, and signaling abnormalities contributing to relapse and resistance. Still, many important basic and clinical questions remain unanswered. Current clinical trials are testing second generation TKIs in patients with newly diagnosed Ph(+) ALL. Neither the optimal duration of therapy nor the optimal chemotherapy backbone are currently defined. The role of HSCT in first remission and post-transplant TKI therapy also require further study. In addition, it will be crucial to continue to dig deeper into understanding Ph(+) ALL at a mechanistic level, and translate findings into complementary targeted approaches. Expanding targeted therapies hold great promise to decrease toxicity and improve survival in this high-risk disease, which provides a paradigm for how targeted therapies can be incorporated into treatment of other high-risk leukemias.
Collapse
Affiliation(s)
- Kathrin M Bernt
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| | - Stephen P Hunger
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| |
Collapse
|