51
|
El Azzouzi K, Wiesner C, Linder S. Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence. J Cell Biol 2016; 213:109-25. [PMID: 27069022 PMCID: PMC4828691 DOI: 10.1083/jcb.201510043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/02/2016] [Indexed: 12/11/2022] Open
Abstract
The authors find that matrix metalloproteinase MT1-MMP is enriched at the plasma membrane of macrophage podosomes, where it persists beyond podosome lifetime and, through binding to the subcortical actin cytoskeleton, forms subcellular signposts that facilitate podosome reformation. Podosomes are dynamic cell adhesions that are also sites of extracellular matrix degradation, through recruitment of matrix-lytic enzymes, particularly of matrix metalloproteinases. Using total internal reflection fluorescence microscopy, we show that the membrane-bound metalloproteinase MT1-MMP is enriched not only at podosomes but also at distinct “islets” embedded in the plasma membrane of primary human macrophages. MT1-MMP islets become apparent upon podosome dissolution and persist beyond podosome lifetime. Importantly, the majority of MT1-MMP islets are reused as sites of podosome reemergence. siRNA-mediated knockdown and recomplementation analyses show that islet formation is based on the cytoplasmic tail of MT1-MMP and its ability to bind the subcortical actin cytoskeleton. Collectively, our data reveal a previously unrecognized phase in the podosome life cycle and identify a structural function of MT1-MMP that is independent of its proteolytic activity. MT1-MMP islets thus act as cellular memory devices that enable efficient and localized reformation of podosomes, ensuring coordinated matrix degradation and invasion.
Collapse
Affiliation(s)
- Karim El Azzouzi
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| | - Christiane Wiesner
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
52
|
Castro-Castro A, Marchesin V, Monteiro P, Lodillinsky C, Rossé C, Chavrier P. Cellular and Molecular Mechanisms of MT1-MMP-Dependent Cancer Cell Invasion. Annu Rev Cell Dev Biol 2016; 32:555-576. [PMID: 27501444 DOI: 10.1146/annurev-cellbio-111315-125227] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metastasis is responsible for most cancer-associated deaths. Accumulating evidence based on 3D migration models has revealed a diversity of invasive migratory schemes reflecting the plasticity of tumor cells to switch between proteolytic and nonproteolytic modes of invasion. Yet, initial stages of localized regional tumor dissemination require proteolytic remodeling of the extracellular matrix to overcome tissue barriers. Recent data indicate that surface-exposed membrane type 1-matrix metalloproteinase (MT1-MMP), belonging to a group of membrane-anchored MMPs, plays a central role in pericellular matrix degradation during basement membrane and interstitial tissue transmigration programs. In addition, a large body of work indicates that MT1-MMP is targeted to specialized actin-rich cell protrusions termed invadopodia, which are responsible for matrix degradation. This review describes the multistep assembly of actin-based invadopodia in molecular details. Mechanisms underlying MT1-MMP traffic to invadopodia through endocytosis/recycling cycles, which are key to the invasive program of carcinoma cells, are discussed.
Collapse
Affiliation(s)
| | | | - Pedro Monteiro
- Barts Cancer Institute, University of London John Vane Science Centre, London EC1M 6BQ, United Kingdom
| | - Catalina Lodillinsky
- Instituto de Oncologia Ángel H. Roffo, Research Area, Buenos Aires, C1417DTB, Argentina
| | - Carine Rossé
- Institut Curie, Paris, F-75248 France; .,PSL Research University, Paris, F-75005 France.,CNRS, UMR 144, Paris, F-75248 France
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248 France; .,PSL Research University, Paris, F-75005 France.,CNRS, UMR 144, Paris, F-75248 France
| |
Collapse
|
53
|
Daubon T, Spuul P, Alonso F, Fremaux I, Génot E. VEGF-A stimulates podosome-mediated collagen-IV proteolysis in microvascular endothelial cells. J Cell Sci 2016; 129:2586-98. [PMID: 27231093 DOI: 10.1242/jcs.186585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/19/2016] [Indexed: 01/01/2023] Open
Abstract
Podosomes are dynamic cell-matrix contact structures that combine several key abilities, including adhesion, matrix degradation and mechanosensing. These actin-based cytoskeletal structures have been mostly studied in monocytic cells, but much less is known about those formed in other lineages. In this study, we characterise podosomes in capillary-derived microvascular endothelial cells. We identify two types of podosomes: constitutive podosomes that form in the absence of specific stimulation and induced podosomes that arise in response to the angiogenic factor VEGF-A. Constitutive and VEGF-A-induced podosomes share similar components but exhibit marked differences in terms of gelatinolytic activity. We also show that the extracellular matrix proteins laminin and collagen-IV are key determinants of the VEGF-A response, but neither collagen-I nor fibronectin are conducive for podosome induction. Moreover, only collagen-IV elicits the formation of proteolytically active podosomes through a mechanism involving increased Src phosphorylation, p190RhoGAP-B (also known as ARHGAP5) relocalisation and MT1-MMP (also known as MMP14) cell surface exposure at podosome sites. We hypothesise that by promoting podosome formation, VEGF-A enables endothelial cells to overcome the basement membrane barrier to allow sprouting outwards from the existing vasculature.
Collapse
Affiliation(s)
| | - Pirjo Spuul
- Université de Bordeaux, 33 000 Bordeaux, France INSERM U1045, 33 000 Bordeaux, France
| | - Florian Alonso
- Université de Bordeaux, 33 000 Bordeaux, France INSERM U1045, 33 000 Bordeaux, France
| | - Isabelle Fremaux
- Université de Bordeaux, 33 000 Bordeaux, France INSERM U1045, 33 000 Bordeaux, France
| | - Elisabeth Génot
- Université de Bordeaux, 33 000 Bordeaux, France INSERM U1045, 33 000 Bordeaux, France
| |
Collapse
|
54
|
Rijal R, Arhzaouy K, Strucksberg KH, Cross M, Hofmann A, Schröder R, Clemen CS, Eichinger L. Mutant p97 exhibits species-specific changes of its ATPase activity and compromises the UBXD9-mediated monomerisation of p97 hexamers. Eur J Cell Biol 2016; 95:195-207. [PMID: 27132113 DOI: 10.1016/j.ejcb.2016.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022] Open
Abstract
p97 (VCP) is a homo-hexameric triple-A ATPase that exerts a plethora of cellular processes. Heterozygous missense mutations of p97 cause at least five human neurodegenerative disorders. However, the specific molecular consequences of p97 mutations are hitherto widely unknown. Our in silico structural models of human and Dictyostelium p97 showed that the disease-causing human R93C, R155H, and R155C as well as Dictyostelium R154C, E219K, R154C/E219K p97 mutations constitute variations in surface-exposed locations. In-gel ATPase activity measurements of p97 monomers and hexamers revealed significant mutation- and species-specific differences. While all human p97 mutations led to an increase in ATPase activity, no changes could be detected for the Dictyostelium R154C mutant, which is orthologous to human R155C. The E219K mutation led to an almost complete loss of activity, which was partially recuperated in the R154C/E219K double-mutant indicating p97 inter-domain communication. By means of co-immunoprecipitation experiments we identified an UBX-domain containing Dictyostelium protein as a novel p97 interaction partner. We categorized all UBX-domain containing Dictyostelium proteins and named the interaction partner UBXD9. Pull-down assays and surface plasmon resonance analyses of Dictyostelium UBXD9 or the human orthologue TUG/ASPL/UBXD9 demonstrated direct interactions with p97 as well as species-, mutation- and ATP-dependent differences in the binding affinities. Sucrose density gradient assays revealed that both human and Dictyostelium UBXD9 proteins very efficiently disassembled wild-type, but to a lesser extent mutant p97 hexamers into monomers. Our results are consistent with a scenario in which p97 point mutations lead to differences in enzymatic activities and molecular interactions, which in the long-term result in a late-onset and progressive multisystem disease.
Collapse
Affiliation(s)
- Ramesh Rijal
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Khalid Arhzaouy
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Karl-Heinz Strucksberg
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Megan Cross
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland 4111, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland 4111, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3030, Australia
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Christoph S Clemen
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| | - Ludwig Eichinger
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
55
|
Chevalier C, Collin G, Descamps S, Touaitahuata H, Simon V, Reymond N, Fernandez L, Milhiet PE, Georget V, Urbach S, Lasorsa L, Orsetti B, Boissière-Michot F, Lopez-Crapez E, Theillet C, Roche S, Benistant C. TOM1L1 drives membrane delivery of MT1-MMP to promote ERBB2-induced breast cancer cell invasion. Nat Commun 2016; 7:10765. [PMID: 26899482 PMCID: PMC4764922 DOI: 10.1038/ncomms10765] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023] Open
Abstract
ERBB2 overexpression in human breast cancer leads to invasive carcinoma but the mechanism is not clearly understood. Here we report that TOM1L1 is co-amplified with ERBB2 and defines a subgroup of HER2+/ER+ tumours with early metastatic relapse. TOM1L1 encodes a GAT domain-containing trafficking protein and is a SRC substrate that negatively regulates tyrosine kinase signalling. We demonstrate that TOM1L1 upregulation enhances the invasiveness of ERBB2-transformed cells. This pro-tumoural function does not involve SRC, but implicates membrane-bound membrane-type 1 MMP (MT1-MMP)-dependent activation of invadopodia, membrane protrusions specialized in extracellular matrix degradation. Mechanistically, ERBB2 elicits the indirect phosphorylation of TOM1L1 on Ser321. The phosphorylation event promotes GAT-dependent association of TOM1L1 with the sorting protein TOLLIP and trafficking of the metalloprotease MT1-MMP from endocytic compartments to invadopodia for tumour cell invasion. Collectively, these results show that TOM1L1 is an important element of an ERBB2-driven proteolytic invasive programme and that TOM1L1 amplification potentially enhances the metastatic progression of ERBB2-positive breast cancers. ERBB2 overexpression in human breast cancer leads to invasion and metastasis. Here the authors report that ERBB2 induces indirect phosphorylation of TOM1L1 that promotes trafficking of the metalloprotease MT1-MMP to invadopodia, which leads to tumour cell invasion.
Collapse
Affiliation(s)
- Clément Chevalier
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Guillaume Collin
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Simon Descamps
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Heiani Touaitahuata
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Valérie Simon
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Nicolas Reymond
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Laurent Fernandez
- Centre de Biochimie Structurale, CNRS UMR 5048-INSERM UMR 1054, 29 rue de navacelles, 34090 Montpellier, France
| | - Pierre-Emmanuel Milhiet
- Centre de Biochimie Structurale, CNRS UMR 5048-INSERM UMR 1054, 29 rue de navacelles, 34090 Montpellier, France
| | | | - Serge Urbach
- Functional Proteomics Platform, 34090 Montpellier, France
| | - Laurence Lasorsa
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM U896, 34298 Montpellier, France
| | - Béatrice Orsetti
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM U896, 34298 Montpellier, France
| | - Florence Boissière-Michot
- Translational Research Unit, Institut régional du Cancer de Montpellier (ICM)-Val d'Aurelle, 34298 Montpellier, France
| | - Evelyne Lopez-Crapez
- Translational Research Unit, Institut régional du Cancer de Montpellier (ICM)-Val d'Aurelle, 34298 Montpellier, France
| | - Charles Theillet
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM U896, 34298 Montpellier, France
| | - Serge Roche
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Christine Benistant
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France.,Centre de Biochimie Structurale, CNRS UMR 5048-INSERM UMR 1054, 29 rue de navacelles, 34090 Montpellier, France
| |
Collapse
|
56
|
Abstract
The membrane-tethered membrane type 1–matrix metalloproteinase (MT1-MMP) mediates proteolysis-based invasive tumor growth. In this issue, Marchesin et al. (2015. J. Cell Biol.http://dx.doi.org/10.1083/jcb.201506002) describe a tug-of-war mechanism regulating dynein and kinesin motors to drive endosome tubulation and MT1-MMP delivery to the surface of cancer cells, identifying a crucial regulatory axis for tumor metastasis.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
57
|
Marchesin V, Castro-Castro A, Lodillinsky C, Castagnino A, Cyrta J, Bonsang-Kitzis H, Fuhrmann L, Irondelle M, Infante E, Montagnac G, Reyal F, Vincent-Salomon A, Chavrier P. ARF6-JIP3/4 regulate endosomal tubules for MT1-MMP exocytosis in cancer invasion. J Cell Biol 2016; 211:339-58. [PMID: 26504170 PMCID: PMC4621834 DOI: 10.1083/jcb.201506002] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interaction of plasma membrane ARF6 with JIP3/JIP4 effectors on MT1-MMP endosomes coordinates dynactin–dynein and kinesin-1 activity in a tug-of-war mechanism for endosome tubulation and MT1-MMP exocytosis to promote breast cancer cell invasion. Invasion of cancer cells into collagen-rich extracellular matrix requires membrane-tethered membrane type 1–matrix metalloproteinase (MT1-MMP) as the key protease for collagen breakdown. Understanding how MT1-MMP is delivered to the surface of tumor cells is essential for cancer cell biology. In this study, we identify ARF6 together with c-Jun NH2-terminal kinase–interacting protein 3 and 4 (JIP3 and JIP4) effectors as critical regulators of this process. Silencing ARF6 or JIP3/JIP4 in breast tumor cells results in MT1-MMP endosome mispositioning and reduces MT1-MMP exocytosis and tumor cell invasion. JIPs are recruited by Wiskott-Aldrich syndrome protein and scar homologue (WASH) on MT1-MMP endosomes on which they recruit dynein–dynactin and kinesin-1. The interaction of plasma membrane ARF6 with endosomal JIPs coordinates dynactin–dynein and kinesin-1 activity in a tug-of-war mechanism, leading to MT1-MMP endosome tubulation and exocytosis. In addition, we find that ARF6, MT1-MMP, and kinesin-1 are up-regulated in high-grade triple-negative breast cancers. These data identify a critical ARF6–JIP–MT1-MMP–dynein–dynactin–kinesin-1 axis promoting an invasive phenotype of breast cancer cells.
Collapse
Affiliation(s)
- Valentina Marchesin
- PSL Research University, Institut Curie, 75248 Paris, France Membrane and Cytoskeleton Dynamics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, 75248 Paris, France University Pierre et Marie Curie Paris 06, 75000 Paris, France
| | - Antonio Castro-Castro
- PSL Research University, Institut Curie, 75248 Paris, France Membrane and Cytoskeleton Dynamics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, 75248 Paris, France
| | - Catalina Lodillinsky
- PSL Research University, Institut Curie, 75248 Paris, France Membrane and Cytoskeleton Dynamics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, 75248 Paris, France
| | - Alessia Castagnino
- PSL Research University, Institut Curie, 75248 Paris, France Membrane and Cytoskeleton Dynamics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, 75248 Paris, France
| | - Joanna Cyrta
- PSL Research University, Institut Curie, 75248 Paris, France Membrane and Cytoskeleton Dynamics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, 75248 Paris, France
| | - Hélène Bonsang-Kitzis
- Department of Translational Research, Residual Tumor and Response to Treatment Laboratory, Institut Curie, 75248 Paris, France Institut National de la Sante et de la Recherche Médicale, Unite Mixte de Recherche 932 Immunity and Cancer, Institut Curie, 75248 Paris, France Department of Surgery, Institut Curie, 75248 Paris, France
| | | | - Marie Irondelle
- PSL Research University, Institut Curie, 75248 Paris, France Membrane and Cytoskeleton Dynamics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, 75248 Paris, France
| | - Elvira Infante
- PSL Research University, Institut Curie, 75248 Paris, France Membrane and Cytoskeleton Dynamics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, 75248 Paris, France
| | - Guillaume Montagnac
- PSL Research University, Institut Curie, 75248 Paris, France Membrane and Cytoskeleton Dynamics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, 75248 Paris, France
| | - Fabien Reyal
- Department of Translational Research, Residual Tumor and Response to Treatment Laboratory, Institut Curie, 75248 Paris, France Institut National de la Sante et de la Recherche Médicale, Unite Mixte de Recherche 932 Immunity and Cancer, Institut Curie, 75248 Paris, France Department of Surgery, Institut Curie, 75248 Paris, France
| | | | - Philippe Chavrier
- PSL Research University, Institut Curie, 75248 Paris, France Membrane and Cytoskeleton Dynamics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, 75248 Paris, France
| |
Collapse
|
58
|
Zhao P, Xu Y, Wei Y, Qiu Q, Chew TL, Kang Y, Cheng C. The CD44s splice isoform is a central mediator for invadopodia activity. J Cell Sci 2016; 129:1355-65. [PMID: 26869223 DOI: 10.1242/jcs.171959] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 02/04/2016] [Indexed: 01/04/2023] Open
Abstract
The ability for tumor cells to spread and metastasize to distant organs requires proteolytic degradation of extracellular matrix (ECM). This activity is mediated by invadopodia, actin-rich membrane protrusions that are enriched for proteases. However, the mechanisms underlying invadopodia activity are not fully understood. Here, we report that a specific CD44 splice isoform, CD44s, is an integral component in invadopodia. We show that CD44s, but not another splice isoform CD44v, is localized in invadopodia. Small hairpin (sh)RNA-mediated depletion of CD44s abolishes invadopodia activity, prevents matrix degradation and decreases tumor cell invasiveness. Our results suggest that CD44s promotes cortactin phosphorylation and recruits MT1-MMP (also known as MMP14) to sites of matrix degradation, which are important activities for invadopodia function. Importantly, we show that depletion of CD44s inhibits breast cancer cell metastasis to the lung in animals. These findings suggest a crucial mechanism underlying the role of the CD44s splice isoform in breast cancer metastasis.
Collapse
Affiliation(s)
- Pu Zhao
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yilin Xu
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Qiong Qiu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Teng-Leong Chew
- Cell Imaging Facility & Nikon Imaging Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Chonghui Cheng
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
59
|
Lehtimäki J, Hakala M, Lappalainen P. Actin Filament Structures in Migrating Cells. Handb Exp Pharmacol 2016; 235:123-152. [PMID: 27469496 DOI: 10.1007/164_2016_28] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell migration is necessary for several developmental processes in multicellular organisms. Furthermore, many physiological processes such as wound healing and immunological events in adult animals are dependent on cell migration. Consequently, defects in cell migration are linked to various diseases including immunological disorders as well as cancer progression and metastasis formation. Cell migration is driven by specific protrusive and contractile actin filament structures, but the types and relative contributions of these actin filament arrays vary depending on the cell type and the environment of the cell. In this chapter, we introduce the most important actin filament structures that contribute to mesenchymal and amoeboid cell migration modes and discuss the mechanisms by which the assembly and turnover of these structures are controlled by various actin-binding proteins.
Collapse
Affiliation(s)
- Jaakko Lehtimäki
- Institute of Biotechnology, University of Helsinki, 56, 00014, Helsinki, Finland
| | - Markku Hakala
- Institute of Biotechnology, University of Helsinki, 56, 00014, Helsinki, Finland
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, 56, 00014, Helsinki, Finland.
| |
Collapse
|
60
|
Linder S, Wiesner C. Feel the force: Podosomes in mechanosensing. Exp Cell Res 2015; 343:67-72. [PMID: 26658516 DOI: 10.1016/j.yexcr.2015.11.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/28/2015] [Indexed: 01/27/2023]
Abstract
Cells interact with their environment through highly localized contact structures. Podosomes represent a subgroup of cell-matrix contacts, which is especially prominent in cells of the monocytic lineage such as monocytes, macrophages and dendritic cells, but also in a variety of other cell types. Comparable to other adhesion structures, podosomes feature a complex architecture, which forms the basis for their extensive repertoire of sensory and effector functions. These functions are mainly linked to interactions with the extracellular matrix and comprise well known properties such as cell-matrix adhesion and extracellular matrix degradation. A more recent discovery is the ability of podosomes to act as mechanosensory devices, by detecting rigidity and topography of the substratum. In this review, we focus especially on the molecular events involved in mechanosensing by podosomes, the structural elements of podosomes that enable this function, as well as the intra- and extracellular signals generated downstream of podosome mechanosensing.
Collapse
Affiliation(s)
- Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Christiane Wiesner
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
61
|
Abstract
Human cells express 45 kinesins, microtubule motors that transport a variety of molecules and organelles within the cell. Many kinesins also modulate the tracks they move on by either bundling or sliding or regulating the dynamic assembly and disassembly of the microtubule polymer. In migrating cells, microtubules control the asymmetry between the front and rear of the cell by differentially regulating force generation processes and substrate adhesion. Many of these functions are mediated by kinesins, transporters as well as track modulators. In this review, we summarize the current knowledge on kinesin functions in cell migration.
Collapse
|
62
|
Increased expression of surface CD44 in hypoxia-DCs skews helper T cells toward a Th2 polarization. Sci Rep 2015; 5:13674. [PMID: 26323509 PMCID: PMC4555176 DOI: 10.1038/srep13674] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/03/2015] [Indexed: 12/17/2022] Open
Abstract
A low partial oxygen pressure (hypoxia) occurs in many pathological environments, such as solid tumors and inflammatory lesions. Understanding the cellular response to hypoxic stress has broad implications for human diseases. As we previously reported, hypoxia significantly altered dendritic cells (DCs) to a DC2 phenotype and promoted a Th2 polarization of naïve T cells with increased IL-4 production. However, the underlying mechanisms still remain largely unknown. In this study, we found the over-expression of surface CD44 in DCs was involved in this process via ligand binding. Further investigation showed hypoxia could reduce the surface expression of membrane type 1 metalloprotease (MT1-MMP) via down-regulating the kinesin-like protein KIF2A, which subsequently alleviated the shedding of CD44 from DCs. Moreover, KIF2A expression was found negatively regulated by HIF-1α in hypoxic microenvironment. These results suggest a previously uncharacterized mechanism by which hypoxia regulates the function of DCs via KIF2A/MT1-MMP/CD44 axis, providing critical information to understand the immune response under hypoxia.
Collapse
|
63
|
Wang C, Wang C, Wei Z, Li Y, Wang W, Li X, Zhao J, Zhou X, Qu X, Xiang F. Suppression of motor protein KIF3C expression inhibits tumor growth and metastasis in breast cancer by inhibiting TGF-β signaling. Cancer Lett 2015; 368:105-114. [PMID: 26272184 DOI: 10.1016/j.canlet.2015.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 11/25/2022]
Abstract
Breast cancer is the most common cause of death among women. KIF3C, a member of kinesin superfamily, functions as a motor protein involved in axonal transport in neuronal cells. To explore the expression, regulation and mechanism of KIF3C in breast cancer, 4 breast cancer cell lines and 93 cases of primary breast cancer and paired adjacent tissues were examined. Immunohistochemistry, Real Time Polymerase Chain Reaction (RT-PCR), Western blot, flow cytometry, short hairpin RNA (shRNA) interference, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation techniques and xenograft mice model were used. We found that KIF3C was over-expressed in breast cancer tissues and such high KIF3C expression was also associated with tumor recurrence and lymph node metastasis. Silencing of KIF3C by shRNA inhibited epithelial-mesenchymal transition and metastasis by inhibiting TGF-β signaling and suppressed breast cancer cell proliferation through inducing G2/M phase arrest. The tumor size was smaller and the number of lung metastatic nodules was less in KIF3C depletion MDA-MB-231 cell xenograft mice than in negative control group. These results suggested that high expression of KIF3C in breast cancer may be associated with the tumor progression and metastasis.
Collapse
Affiliation(s)
- Chengqin Wang
- Department of Pathology, Medical College of Qingdao University, Qingdao, China.
| | - Chenggang Wang
- Department of Emergency, Binzhou Center Hospital, Binzhou, China
| | - Zhimin Wei
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujun Li
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenhong Wang
- Department of Pathology, Medical College of Qingdao University, Qingdao, China
| | - Xia Li
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Zhao
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuan Zhou
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| | - Fenggang Xiang
- Department of Pathology, Medical College of Qingdao University, Qingdao, China; Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
64
|
Veillat V, Spuul P, Daubon T, Egaña I, Kramer IJ, Génot E. Podosomes: Multipurpose organelles? Int J Biochem Cell Biol 2015; 65:52-60. [DOI: 10.1016/j.biocel.2015.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/20/2015] [Indexed: 01/11/2023]
|
65
|
van den Dries K, Bolomini-Vittori M, Cambi A. Spatiotemporal organization and mechanosensory function of podosomes. Cell Adh Migr 2015; 8:268-72. [PMID: 24658050 DOI: 10.4161/cam.28182] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes are small, circular adhesions formed by cells such as osteoclasts, macrophages, dendritic cells, and endothelial cells. They comprise a protrusive actin core module and an adhesive ring module composed of integrins and cytoskeletal adaptor proteins such as vinculin and talin. Furthermore, podosomes are associated with an actin network and often organize into large clusters. Recent results from our laboratory and others have shed new light on podosome structure and dynamics, suggesting a revision of the classical "core-ring" model. Also, these studies demonstrate that the adhesive and protrusive module are functionally linked by the actin network likely facilitating mechanotransduction as well as providing feedback between these two modules. In this commentary, we briefly summarize these recent advances with respect to the knowledge on podosome structure and discuss force distribution mechanisms within podosomes and their emerging role in mechanotransduction.
Collapse
Affiliation(s)
- Koen van den Dries
- Department of Tumor Immunology; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Nijmegen, The Netherlands
| | - Matteo Bolomini-Vittori
- Department of Tumor Immunology; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Tumor Immunology; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Nijmegen, The Netherlands; Department of Nanobiophysics; MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede, The Netherlands
| |
Collapse
|
66
|
Wiesner C, Le-Cabec V, El Azzouzi K, Maridonneau-Parini I, Linder S. Podosomes in space: macrophage migration and matrix degradation in 2D and 3D settings. Cell Adh Migr 2015; 8:179-91. [PMID: 24713854 DOI: 10.4161/cam.28116] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Migration of macrophages is a key process for a variety of physiological functions, such as pathogen clearance or tissue homeostasis. However, it can also be part of pathological scenarios, as in the case of tumor-associated macrophages. This review presents an overview of the different migration modes macrophages can adopt, depending on the physical and chemical properties of specific environments, and the constraints they impose upon cells. We discuss the importance of these environmental and also of cellular parameters, as well as their relative impact on macrophage migration and on the formation of matrix-lytic podosomes in 2D and 3D. Moreover, we present an overview of routinely used and also newly developed assays for the study of macrophage migration in both 2D and 3D contexts, their respective advantages and limitations, and also their potential to reliably mimic in vivo situations.
Collapse
Affiliation(s)
- Christiane Wiesner
- Institute for Medical Microbiology; Virology and Hygiene; University Medical Center Eppendorf; Hamburg, Germany
| | - Véronique Le-Cabec
- CNRS UMR 5089; IPBS (Institut de Pharmacologie et de Biologie Structurale), BP64182, 205 route de Narbonne, 31077 Toulouse Cedex 04, France; Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Karim El Azzouzi
- Institute for Medical Microbiology; Virology and Hygiene; University Medical Center Eppendorf; Hamburg, Germany
| | - Isabelle Maridonneau-Parini
- CNRS UMR 5089; IPBS (Institut de Pharmacologie et de Biologie Structurale), BP64182, 205 route de Narbonne, 31077 Toulouse Cedex 04, France; Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France; These authors contributed equally to this work
| | - Stefan Linder
- Institute for Medical Microbiology; Virology and Hygiene; University Medical Center Eppendorf; Hamburg, Germany; These authors contributed equally to this work
| |
Collapse
|
67
|
Xiong R, Rao P, Kim S, Li M, Wen X, Yuan W. Herpes Simplex Virus 1 US3 Phosphorylates Cellular KIF3A To Downregulate CD1d Expression. J Virol 2015; 89:6646-55. [PMID: 25878107 PMCID: PMC4468489 DOI: 10.1128/jvi.00214-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/09/2015] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) causes one of the most prevalent herpesviral infections in humans and is the leading etiological agent of viral encephalitis and eye infections. Our understanding of how HSV-1 interacts with the host at the cellular and organismal levels is still limited. We and others previously reported that, upon infection, HSV-1 rapidly and efficiently downregulates CD1d cell surface expression and suppresses the function of NKT cells, a group of innate T cells with critical immunoregulatory function. The viral protein kinase US3 plays a major role in this immune evasion mechanism, and its kinase activity is required for this function. In this study, we investigated the cellular substrate(s) phosphorylated by US3 and how it mediates US3 suppression of CD1d recycling. We identified the type II kinesin motor protein KIF3A as a critical kinesin factor in the cell surface expression of CD1d. Interestingly, KIF3A is phosphorylated by US3 both in vitro and in infected cells. Mass spectrometry analysis of purified KIF3A showed that it is phosphorylated predominantly at serine 687 by US3. Ablation of this phosphorylation abolished US3-mediated downregulation of CD1d expression, suggesting that phosphorylation of KIF3A is the primary mechanism of HSV-1 suppression of CD1d expression by US3 protein. Understanding of the precise mechanism of viral modulation of CD1d expression will help to develop more efficient vaccines in the future to boost host NKT cell-mediated immune responses against herpesviruses. IMPORTANCE Herpes simplex virus 1 (HSV-1) is among the most common human pathogens. Little is known regarding the exact mechanism by which this virus evades the human immune system, particularly the innate immune system. We previously reported that HSV-1 employs its protein kinase US3 to modulate the expression of the key antigen-presenting molecule CD1d to evade the antiviral function of NKT cells. Here we identified the key cellular motor protein KIF3A as a cellular substrate phosphorylated by US3, and this phosphorylation event mediates US3-induced immune evasion.
Collapse
Affiliation(s)
- Ran Xiong
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ping Rao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Seil Kim
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michelle Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xiangshu Wen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
68
|
Linder S, Scita G. RABGTPases in MT1-MMP trafficking and cell invasion: Physiology versus pathology. Small GTPases 2015; 6:145-52. [PMID: 26107110 DOI: 10.4161/21541248.2014.985484] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The matrix metalloproteinase MT1-MMP is a central regulator of cell invasion in both physiological and pathological settings, such as tissue surveillance by immune cells and cancer cell metastasis. MT1-MMP cleaves a plethora of intra- and extracellular proteins, including extracellular matrix proteins, matrix receptors, and also other MMPs, and thus enables modification of both the cell surface proteome and the pericellular environment. Despite its importance for cell invasion, the pathways regulating MT1-MMP exposure on the cell surface are largely unknown. Recently, our groups discovered that a specific subset of RABGTPases, most notably RAB5a, is critical for MT1-MMP trafficking in primary human macrophages and carcinoma cells. Here, we discuss and contrast our findings for both cell types, pointing out common features and differences in the RABGTPase-dependent trafficking of MT1-MMP in health and disease.
Collapse
Affiliation(s)
- Stefan Linder
- a Institute for Medical Microbiology; Virology and Hygiene ; University Medical Center Eppendorf ; Hamburg , Germany
| | | |
Collapse
|
69
|
Itoh Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol 2015; 44-46:207-23. [PMID: 25794647 DOI: 10.1016/j.matbio.2015.03.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/22/2022]
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) form a subgroup of the matrix metalloproteinase (MMP) family, and there are 6 MT-MMPs in humans. MT-MMPs are further sub-classified into type I transmembrane-type (MT1, -MT2-, MT3- and MT5-MMPs) and glycosylphosphatidylinositol (GPI)-anchored type (MT4- and MT6-MMPs). In either case MT-MMPs are tethered to the plasma membrane, and this cell surface expression provides those enzymes with unique functionalities affecting various cellular behaviours. Among the 6 MT-MMPs, MT1-MMP is the most investigated enzyme and many of its roles and regulations have been revealed to date, but the potential roles and regulatory mechanisms of other MT-MMPs are gradually getting clearer as well. Further investigations of MT-MMPs are likely to reveal novel pathophysiological mechanisms and potential therapeutic strategies for different diseases in the future.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK.
| |
Collapse
|
70
|
Linder S, Wiesner C. Tools of the trade: podosomes as multipurpose organelles of monocytic cells. Cell Mol Life Sci 2015; 72:121-35. [PMID: 25300510 PMCID: PMC11113205 DOI: 10.1007/s00018-014-1731-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 01/07/2023]
Abstract
Podosomes are adhesion and invasion structures that are particularly prominent in cells of the monocytic lineage such as macrophages, dendritic cells, and osteoclasts. They are multifunctional organelles that combine several key abilities required for cell migration and invasion. The podosome repertoire includes well-established functions such as cell-substrate adhesion, and extracellular matrix degradation, recently discovered abilities such as rigidity and topology sensing as well as antigen sampling, and also more speculative functions such as cell protrusion stabilization and transmigration. Collectively, podosomes not only enable dynamic interactions of cells with their surroundings, they also gather information about the pericellular environment, and are actively involved in its reshaping. This review presents an overview of the current knowledge on podosome composition, architecture, and regulation. We focus in particular on the growing list of podosome functions and discuss the specific properties of podosomes in macrophages, dendritic cells, and osteoclasts. Moreover, this article highlights podosome-related intracellular transport processes, the formation of podosomes in 3D environments as well as potentially podosome-associated diseases involving monocytic cells.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Martinistr. 52, 20246, Hamburg, Germany,
| | | |
Collapse
|
71
|
Abstract
Macrophages are motile leukocytes, targeted by HIV-1, thought to play a critical role in host dissemination of the virus. However, whether infection impacts their migration capacity remains unknown. We show that 2-dimensional migration and the 3-dimensional (3D) amoeboid migration mode of HIV-1-infected human monocyte-derived macrophages were inhibited, whereas the 3D mesenchymal migration was enhanced. The viral protein Nef was necessary and sufficient for all HIV-1-mediated effects on migration. In Nef transgenic mice, tissue infiltration of macrophages was increased in a tumor model and in several tissues at steady state, suggesting a dominant role for mesenchymal migration in vivo. The mesenchymal motility involves matrix proteolysis and podosomes, cell structures constitutive of monocyte-derived cells. Focusing on the mechanisms used by HIV-1 Nef to control the mesenchymal migration, we show that the stability, size, and proteolytic function of podosomes are increased via the phagocyte-specific kinase Hck and Wiskott-Aldrich syndrome protein (WASP), 2 major regulators of podosomes. In conclusion, HIV-1 reprograms macrophage migration, which likely explains macrophage accumulation in several patient tissues, which is a key step for virus spreading and pathogenesis. Moreover, Nef points out podosomes and the Hck/WASP signaling pathway as good candidates to control tissue infiltration of macrophages, a detrimental phenomenon in several diseases.
Collapse
|
72
|
Efimova N, Grimaldi A, Bachmann A, Frye K, Zhu X, Feoktistov A, Straube A, Kaverina I. Podosome-regulating kinesin KIF1C translocates to the cell periphery in a CLASP-dependent manner. J Cell Sci 2014; 127:5179-88. [PMID: 25344256 DOI: 10.1242/jcs.149633] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The kinesin KIF1C is known to regulate podosomes, actin-rich adhesion structures that remodel the extracellular matrix during physiological processes. Here, we show that KIF1C is a player in the podosome-inducing signaling cascade. Upon induction of podosome formation by protein kinase C (PKC), KIF1C translocation to the cell periphery intensifies and KIF1C accumulates both in the proximity of peripheral microtubules that show enrichment for the plus-tip-associated proteins CLASPs and around podosomes. Importantly, without CLASPs, both KIF1C trafficking and podosome formation are suppressed. Moreover, chimeric mitochondrially targeted CLASP2 recruits KIF1C, suggesting a transient CLASP-KIF1C association. We propose that CLASPs create preferred microtubule tracks for KIF1C to promote podosome induction downstream of PKC.
Collapse
Affiliation(s)
- Nadia Efimova
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| | - Ashley Grimaldi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| | - Alice Bachmann
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Keyada Frye
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| | - Alexander Feoktistov
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| | - Anne Straube
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| |
Collapse
|
73
|
Baranov MV, Ter Beest M, van den Bogaart G. Reaching for far-flung antigen: How solid-core podosomes of dendritic cells transform into protrusive structures. Commun Integr Biol 2014; 7:970961. [PMID: 26843902 PMCID: PMC4594491 DOI: 10.4161/cib.29084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 01/22/2023] Open
Abstract
We recently identified a novel role for podosomes in antigen sampling. Podosomes are dynamic cellular structures that consist of point-like concentrations of actin surrounded by integrins and adaptor proteins such as vinculin and talin. Podosomes establish cellular contact with the extracellular matrix (ECM) and facilitate cell migration via ECM degradation. In our recent paper, we studied podosomes of human dendritic cells (DCs), major antigen presenting cells (APC) that take-up, process, and present foreign antigen to naive T-cells. We employed gelatin-impregnated porous polycarbonate filters to demonstrate that the mechanosensitive podosomes of DCs selectively localize to regions of low-physical resistance such as the filter pores. After degradation of the gelatin, podosomes increasingly protrude into the lumen of these pores. These protrusive podosome-derived structures contain several endocytic and early endosomal markers such as clathrin, Rab5, and VAMP3, and, surprisingly, also contain C-type lectins, a type of pathogen recognition receptors (PRRs). Finally, we performed functional uptake experiments to demonstrate that these PRRs facilitate uptake of antigen from the opposite side of the filter. Our data provide mechanistic insight in how dendritic cells sample for antigen across epithelial barriers for instance from the lumen of the lung and gut.
Collapse
Affiliation(s)
- Maksim V Baranov
- Department of Tumor Immunology; Radboud University Medical Center ; Radboud Institute for Molecular Life Sciences ; Nijmegen, The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology; Radboud University Medical Center ; Radboud Institute for Molecular Life Sciences ; Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology; Radboud University Medical Center ; Radboud Institute for Molecular Life Sciences ; Nijmegen, The Netherlands
| |
Collapse
|
74
|
Microtubule acetylation regulates dynamics of KIF1C-powered vesicles and contact of microtubule plus ends with podosomes. Eur J Cell Biol 2014; 93:424-37. [PMID: 25151635 DOI: 10.1016/j.ejcb.2014.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 11/21/2022] Open
Abstract
Microtubule dynamics are important for a variety of key cellular functions such as intracellular trafficking, adjustment of the cell surface proteome, or adhesion structure turnover. In the current study, we investigate the effects of altered microtubule acetylation levels on the subcellular distribution of kinesins and actin cytoskeletal architecture in primary human macrophages. Microtubule acetylation was altered by overexpression or siRNA-induced depletion of the acetylase MEC-17, or by blocking α-tubulin deacetylation by addition of the inhibitor tubacin. We show that microtubule acetylation influences the subcellular distribution of vesicles associated with the kinesin KIF1C, as well as their directionality, velocity and run length. Moreover, tubulin acetylation alters the targeting frequency of microtubule plus ends on podosomes and influences the number of podosomes per cell and thus the matrix-degrading capacity of macrophages. Collectively, our results point to α-tubulin acetylation as an important modification that impacts on kinesin vesicle dynamics, actin cytoskeletal architecture and cellular function of macrophages.
Collapse
|
75
|
Spuul P, Ciufici P, Veillat V, Leclercq A, Daubon T, Kramer IJ, Génot E. Importance of RhoGTPases in formation, characteristics, and functions of invadosomes. Small GTPases 2014; 5:e28195. [PMID: 24967648 DOI: 10.4161/sgtp.28713] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes and invadopodia (collectively known as invadosomes) are specialized plasma-membrane actin-based microdomains that combine adhesive properties with matrix degrading and/or mechanosensor activities. These organelles have been extensively studied in vitro and current concerted efforts aim at establishing their physiological relevance and subsequent association with human diseases. Proper functioning of the bone, immune, and vascular systems is likely to depend on these structures while their occurrence in cancer cells appears to be linked to tumor metastasis. The elucidation of the mechanisms driving invadosome assembly is a prerequisite to understanding their role in vivo and ultimately to controlling their functions. Adhesive and soluble ligands act via transmembrane receptors that propagate signals to the cytoskeleton via small G proteins of the Rho family, assisted by tyrosine kinases and scaffold proteins to induce invadosome formation and rearrangements. Oncogene expression and cell-cell interactions may also trigger their assembly. Manipulation of the signals that regulate invadosome formation and dynamics could therefore be a strategy to interfere with their functions in a multitude of pathological settings, such as excessive bone breakdown, infections, vascular remodeling, transendothelial diapedesis, and metastasis.
Collapse
Affiliation(s)
- Pirjo Spuul
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Paolo Ciufici
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Véronique Veillat
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Anne Leclercq
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Thomas Daubon
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - IJsbrand Kramer
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Elisabeth Génot
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| |
Collapse
|
76
|
Pahwa S, Stawikowski MJ, Fields GB. Monitoring and Inhibiting MT1-MMP during Cancer Initiation and Progression. Cancers (Basel) 2014; 6:416-35. [PMID: 24549119 PMCID: PMC3980612 DOI: 10.3390/cancers6010416] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 12/14/2022] Open
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a zinc-dependent type-I transmembrane metalloproteinase involved in pericellular proteolysis, migration and invasion. Numerous substrates and binding partners have been identified for MT1-MMP, and its role in collagenolysis appears crucial for tumor invasion. However, development of MT1-MMP inhibitors must consider the substantial functions of MT1-MMP in normal physiology and disease prevention. The present review examines the plethora of MT1-MMP activities, how these activities relate to cancer initiation and progression, and how they can be monitored in real time. Examination of MT1-MMP activities and cell surface behaviors can set the stage for the development of unique, selective MT1-MMP inhibitors.
Collapse
Affiliation(s)
- Sonia Pahwa
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma, 1110 North Stonewall Avenue, Oklahoma City, OK 73117, USA.
| | - Maciej J Stawikowski
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA.
| | - Gregg B Fields
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA.
| |
Collapse
|
77
|
Weaver SA, Wolters B, Ito N, Woskowicz AM, Kaneko K, Shitomi Y, Seiki M, Itoh Y. Basal localization of MT1-MMP is essential for epithelial cell morphogenesis in 3D collagen matrix. J Cell Sci 2014; 127:1203-13. [PMID: 24463815 PMCID: PMC4117704 DOI: 10.1242/jcs.135236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The membrane-anchored collagenase membrane type 1 matrix metalloprotease (MT1-MMP) has been shown to play an essential role during epithelial tubulogenesis in 3D collagen matrices; however, its regulation during tubulogenesis is not understood. Here, we report that degradation of collagen in polarized epithelial cells is post-translationally regulated by changing the localization of MT1-MMP from the apical to the basal surface. MT1-MMP predominantly localizes at the apical surface in inert polarized epithelial cells, whereas treatment with HGF induced basal localization of MT1-MMP followed by collagen degradation. The basal localization of MT1-MMP requires the ectodomains of the enzyme because deletion of the MT-loop region or the hemopexin domain inhibited basal localization of the enzyme. TGFβ is a well-known inhibitor of tubulogenesis and our data indicate that its mechanism of inhibition is, at least in part, due to inhibition of MT1-MMP localization to the basal surface. Interestingly, however, the effect of TGFβ was found to be bi-phasic: at high doses it effectively inhibited basal localization of MT1-MMP, whereas at lower doses tubulogenesis and basal localization of MT1-MMP was promoted. Taken together, these data indicate that basal localization of MT1-MMP is a key factor promoting the degradation of extracellular matrix by polarized epithelial cells, and that this is an essential part of epithelial morphogenesis in 3D collagen.
Collapse
Affiliation(s)
- Sarah A Weaver
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Baranov M, Ter Beest M, Reinieren-Beeren I, Cambi A, Figdor CG, van den Bogaart G. Podosomes of dendritic cells facilitate antigen sampling. J Cell Sci 2014; 127:1052-1064. [PMID: 24424029 DOI: 10.1242/jcs.141226] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here, we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for the podosomes of dendritic cells.
Collapse
Affiliation(s)
- Maksim Baranov
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Inge Reinieren-Beeren
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Alessandra Cambi
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| |
Collapse
|
79
|
Zou JX, Duan Z, Wang J, Sokolov A, Xu J, Chen CZ, Li JJ, Chen HW. Kinesin family deregulation coordinated by bromodomain protein ANCCA and histone methyltransferase MLL for breast cancer cell growth, survival, and tamoxifen resistance. Mol Cancer Res 2014; 12:539-49. [PMID: 24391143 DOI: 10.1158/1541-7786.mcr-13-0459] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Kinesins are a superfamily of motor proteins and often deregulated in different cancers. However, the mechanism of their deregulation has been poorly understood. Through examining kinesin gene family expression in estrogen receptor (ER)-positive breast cancer cells, we found that estrogen stimulation of cancer cell proliferation involves a concerted regulation of specific kinesins. Estrogen strongly induces expression of 19 kinesin genes such as Kif4A/4B, Kif5A/5B, Kif10, Kif11, Kif15, Kif18A/18B, Kif20A/20B, Kif21, Kif23, Kif24, Kif25, and KifC1, whereas suppresses the expression of seven others, including Kif1A, Kif1C, Kif7, and KifC3. Interestingly, the bromodomain protein ANCCA/ATAD2, previously shown to be an estrogen-induced chromatin regulator, plays a crucial role in the up- and downregulation of kinesins by estrogen. Its overexpression drives estrogen-independent upregulation of specific kinesins. Mechanistically, ANCCA (AAA nuclear coregulator cancer associated) mediates E2-dependent recruitment of E2F and MLL1 histone methyltransferase at kinesin gene promoters for gene activation-associated H3K4me3 methylation. Importantly, elevated levels of Kif4A, Kif15, Kif20A, and Kif23 correlate with that of ANCCA in the tumors and with poor relapse-free survival of patients with ER-positive breast cancer. Their knockdown strongly impeded proliferation and induced apoptosis of both tamoxifen-sensitive and resistant cancer cells. Together, the study reveals ANCCA as a key mediator of kinesin family deregulation in breast cancer and the crucial role of multiple kinesins in growth and survival of the tumor cells. IMPLICATIONS These findings support the development of novel inhibitors of cancer-associated kinesins and their regulator ANCCA for effective treatment of cancers including tamoxifen-resistant breast cancers.
Collapse
Affiliation(s)
- June X Zou
- UC Davis Cancer Center/Basic Sciences, University of California, Davis, UCDMC Research III, Room 1400B, 4645 2nd Avenue, Sacramento, CA 95817.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Lin YN, Izbicki JR, König A, Habermann JK, Blechner C, Lange T, Schumacher U, Windhorst S. Expression of DIAPH1 is up-regulated in colorectal cancer and its down-regulation strongly reduces the metastatic capacity of colon carcinoma cells. Int J Cancer 2013; 134:1571-82. [PMID: 24105619 DOI: 10.1002/ijc.28486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
In most cases, metastatic colorectal cancer is not curable, thus new approaches are necessary to identify novel targets for colorectal cancer therapy. Actin-binding-proteins (ABPs) directly regulate motility of metastasising tumor cells, and for cortactin an association with colon cancer metastasis has been already shown. However, as its depletion only incompletely inhibits metastasis, additional, more suitable cellular targets have to be identified. Here we analyzed expression of the ABPs, DIAPH1, VASP, N-WASP, and fascin in comparison with cortactin and found that, besides cortactin, DIAPH1 was expressed with the highest frequency (63%) in colorectal cancer. As well as cortactin, DIAPH1 was not detectable in normal colon tissue and expression of both proteins was positively correlated with metastasis of colorectal cancer. To analyse the mechanistic role of DIAPH1 for metastasis of colon carcinoma cells in comparison with cortactin, expression of the proteins was stably down-regulated in the human colon carcinoma cell lines HT-29, HROC-24 and HCT-116. Analysis of metastasis of colon carcinoma cells in SCID mice revealed that depletion of DIAPH1 reduced metastasis 60-fold and depletion of cortactin 16-fold as compared with control cells. Most likely the stronger effect of DIAPH1 depletion on colon cancer metastasis is due to the fact that in vitro knock down of DIAPH1 impaired all steps of metastasis; adhesion, invasion and migration while down-regulation of cortactin only reduced adhesion and invasion. This very strong reducing effect of DIAPH1 depletion on colon carcinoma cell metastasis makes the protein a promising therapeutic target for individualized colorectal cancer therapy.
Collapse
Affiliation(s)
- Yuan-Na Lin
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
81
|
|
82
|
Schachtner H, Calaminus SDJ, Thomas SG, Machesky LM. Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton (Hoboken) 2013; 70:572-89. [PMID: 23804547 DOI: 10.1002/cm.21119] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 12/30/2022]
Abstract
Cells use various actin-based motile structures to allow them to move across and through matrix of varying density and composition. Podosomes are actin cytoskeletal structures that form in motile cells and that mediate adhesion to substrate, migration, and other specialized functions such as transmigration through cell and matrix barriers. The podosome is a unique and interesting entity, which appears in the light microscope as an individual punctum, but is linked to other podosomes like a node on a network of the underlying cytoskeleton. Here, we discuss the signals that control podosome assembly and dynamics in different cell types and the actin organising proteins that regulate both the inner actin core and integrin-rich surrounding ring structures. We review the structure and composition of podosomes and also their functions in various cell types of both myeloid and endothelial lineage. We also discuss the emerging idea that podosomes can sense matrix stiffness and enable cells to respond to their environment.
Collapse
Affiliation(s)
- Hannah Schachtner
- CRUK Beatson Institute for Cancer Research and College of Medical, Veterinary and Life Sciences, Glasgow University, Garscube Campus, Switchback Rd., Bearsden, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
83
|
van den Dries K, Schwartz SL, Byars J, Meddens MBM, Bolomini-Vittori M, Lidke DS, Figdor CG, Lidke KA, Cambi A. Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes. Mol Biol Cell 2013; 24:2112-23. [PMID: 23637461 PMCID: PMC3694795 DOI: 10.1091/mbc.e12-12-0856] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Podosomes are multimolecular mechanosensory assemblies that coordinate mesenchymal migration of tissue-resident dendritic cells. They have a protrusive actin core and an adhesive ring of integrins and adaptor proteins, such as talin and vinculin. We recently demonstrated that core actin oscillations correlate with intensity fluctuations of vinculin but not talin, suggesting different molecular rearrangements for these components. Detailed information on the mutual localization of core and ring components at the nanoscale is lacking. By dual-color direct stochastic optical reconstruction microscopy, we for the first time determined the nanoscale organization of individual podosomes and their spatial arrangement within large clusters formed at the cell-substrate interface. Superresolution imaging of three ring components with respect to actin revealed that the cores are interconnected and linked to the ventral membrane by radiating actin filaments. In core-free areas, αMβ2 integrin and talin islets are homogeneously distributed, whereas vinculin preferentially localizes proximal to the core and along the radiating actin filaments. Podosome clusters appear as self-organized contact areas, where mechanical cues might be efficiently transduced and redistributed. Our findings call for a reevaluation of the current "core-ring" model and provide a novel structural framework for further understanding the collective behavior of podosome clusters.
Collapse
Affiliation(s)
- K van den Dries
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
D'Amico E, Gayral S, Massart C, Van Sande J, Reiter JF, Dumont JE, Robaye B, Schurmans S. Thyroid-specific inactivation of KIF3A alters the TSH signaling pathway and leads to hypothyroidism. J Mol Endocrinol 2013; 50:375-87. [PMID: 23511952 PMCID: PMC4404413 DOI: 10.1530/jme-12-0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Kinesins, including the kinesin 2/KIF3 molecular motor, play an important role in intracellular traffic and can deliver vesicles to distal axon terminals, to cilia, to nonpolarized cell surfaces or to epithelial cell basolateral membranes, thus taking part in the establishment of cellular polarity. We report here the consequences of kinesin 2 motor inactivation in the thyroid of 3-week-old Kif3a(Δ)(/flox) Pax8(Cre/)(+) mutant mice. Our results indicate first that 3-week-old Pax8(Cre/)(+) mice used in these experiments present minor thyroid functional defects resulting in a slight increase in circulating bioactive TSH and intracellular cAMP levels, sufficient to maintain blood thyroxine levels in the normal range. Second, Kif3a inactivation in thyrocytes markedly amplified the phenotype observed in Pax8(Cre/)(+) mice, resulting in altered TSH signaling upstream of the second messenger cAMP and mild hypothyroidism. Finally, our results in mouse embryonic fibroblasts indicate that Kif3a inactivation in the absence of any Pax8 gene alteration leads to altered G protein-coupled receptor plasma membrane expression, as shown for the β2 adrenergic receptor, and we suggest that a similar mechanism may explain the altered TSH signaling and mild hypothyroidism detected in Kif3a(Δ)(/flox) Pax8(Cre/)(+) mutant mice.
Collapse
Affiliation(s)
- Eva D'Amico
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), rue des Professeurs Jeener et Brachet 12, 6041-Gosselies, Belgium
| | - Stéphanie Gayral
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), rue des Professeurs Jeener et Brachet 12, 6041-Gosselies, Belgium
| | - Claude Massart
- IRIBHM, ULB, Campus Erasme, route de Lennik 808, 1070-Brussels, Belgium
| | | | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, Smith Cardiovascular Research Building, Mission Bay Blvd South 555, University of California, San Francisco, San Francisco, CA 94158-9001, USA
| | - Jacques E. Dumont
- IRIBHM, ULB, Campus Erasme, route de Lennik 808, 1070-Brussels, Belgium
| | - Bernard Robaye
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), rue des Professeurs Jeener et Brachet 12, 6041-Gosselies, Belgium
| | - Stéphane Schurmans
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), rue des Professeurs Jeener et Brachet 12, 6041-Gosselies, Belgium
- Laboratoire de Génétique Fonctionnelle, GIGA-Research Centre, Université de Liège (ULg), rue de 1'Hôpital 1, 4000-Liège, Belgium
- Welbio, ULg
- Secteur de Biochimie Métabolique, Département des Sciences Fonctionnelles, ULg, Boulevard de Colonster 20, 4000-Liège, Belgium
| |
Collapse
|
85
|
Marco M, Fortin C, Fulop T. Membrane-type matrix metalloproteinases: key mediators of leukocyte function. J Leukoc Biol 2013; 94:237-46. [PMID: 23695309 DOI: 10.1189/jlb.0612267] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Leukocytes are major cellular effectors of the immune response. To accomplish this task, these cells display a vast arsenal of proteinases, among which, members of the MMP family are especially important. Leukocytes express several members of the MMP family, including secreted- and membrane-anchored MT- MMPs, which synergistically orchestrate an appropriate proteolytic reaction that ultimately modulates immunological responses. The MT-MMP subfamily comprises TM- and GPI-anchored proteinases, which are targeted to well-defined membrane microdomains and exhibit different substrate specificities. Whereas much information exists on the biological roles of secreted MMPs in leukocytes, the roles of MT-MMPs remain relatively obscure. This review summarizes the current knowledge on the expression of MT-MMPs in leukocyte and their contribution to the immune responses and to pathological conditions.
Collapse
Affiliation(s)
- Marta Marco
- Departamento de Bioquímica Clínica Facultad de Química, Gral. Flores 2124, Universidad de la República, Montevideo, Uruguay CP 11800.
| | | | | |
Collapse
|
86
|
Wiesner C, El Azzouzi K, Linder S. A specific subset of RabGTPases controls cell surface exposure of MT1-MMP, extracellular matrix degradation and three-dimensional invasion of macrophages. J Cell Sci 2013; 126:2820-33. [PMID: 23606746 DOI: 10.1242/jcs.122358] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The matrix metalloproteinase MT1-MMP has a major impact on invasive cell migration in both physiological and pathological settings such as immune cell extravasation or metastasis of cancer cells. Surface-associated MT1-MMP is able to cleave components of the extracellular matrix, which is a prerequisite for proteolytic invasive migration. However, current knowledge on the molecular mechanisms that regulate MT1-MMP trafficking to and from the cell surface is limited. We have identified three members of the RabGTPase family, Rab5a, Rab8a and Rab14, as crucial regulators of MT1-MMP trafficking and function in primary human macrophages. Both overexpressed and endogenous forms show prominent colocalisation with MT1-MMP-positive vesicles, whereas expression of mutant constructs, as well as siRNA-induced knockdown, reveal that these RabGTPases are crucial in the regulation of MT1-MMP surface exposure, contact of MT1-MMP-positive vesicles with podosomes, extracellular matrix degradation in two and three dimensions, as well as three-dimensional proteolytic invasion of macrophages. Collectively, our results identify Rab5a, Rab8a and Rab14 as major regulators of MT1-MMP trafficking and invasive migration of primary human macrophages, which could be promising potential targets for manipulation of immune cell invasion.
Collapse
Affiliation(s)
- Christiane Wiesner
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | | | | |
Collapse
|
87
|
Kodani A, Salomé Sirerol-Piquer M, Seol A, Garcia-Verdugo JM, Reiter JF. Kif3a interacts with Dynactin subunit p150 Glued to organize centriole subdistal appendages. EMBO J 2013; 32:597-607. [PMID: 23386061 DOI: 10.1038/emboj.2013.3] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/04/2012] [Indexed: 01/17/2023] Open
Abstract
Formation of cilia, microtubule-based structures that function in propulsion and sensation, requires Kif3a, a subunit of Kinesin II essential for intraflagellar transport (IFT). We have found that, Kif3a is also required to organize centrioles. In the absence of Kif3a, the subdistal appendages of centrioles are disorganized and lack p150(Glued) and Ninein. Consequently, microtubule anchoring, centriole cohesion and basal foot formation are abrogated by loss of Kif3a. Kif3a localizes to the mother centriole and interacts with the Dynactin subunit p150(Glued). Depletion of p150(Glued) phenocopies the effects of loss of Kif3a, indicating that Kif3a recruitment of p150(Glued) is critical for subdistal appendage formation. The transport functions of Kif3a are dispensable for subdistal appendage organization as mutant forms of Kif3a lacking motor activity or the motor domain can restore p150(Glued) localization. Comparison to cells lacking Ift88 reveals that the centriolar functions of Kif3a are independent of IFT. Thus, in addition to its ciliogenic roles, Kif3a recruits p150(Glued) to the subdistal appendages of mother centrioles, critical for centrosomes to function as microtubule-organizing centres.
Collapse
Affiliation(s)
- Andrew Kodani
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001, USA
| | | | | | | | | |
Collapse
|
88
|
Dong Z, Xu X, Du L, Yang Y, Cheng H, Zhang X, Li Z, Wang L, Li J, Liu H, Qu X, Wang C. Leptin-mediated regulation of MT1-MMP localization is KIF1B dependent and enhances gastric cancer cell invasion. Carcinogenesis 2013; 34:974-83. [PMID: 23354307 DOI: 10.1093/carcin/bgt028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leptin overexpression is closely correlated with gastric cancer (GC) invasion, but its exact effect and the underlying mechanism in tumorigenesis remain poorly understood. Membrane type 1-matrix metalloproteinase (MT1-MMP), a surface-anchored 'master switch' proteinase, is overexpressed and plays crucial roles in tumor invasion. Here, we characterized the influence of leptin on the generation and surface localization of MT1-MMP in GC and elucidated its molecular mechanisms. Our results revealed that leptin promoted GC cell invasion in vitro by upregulating MT1-MMP expression. Furthermore, cell surface biotinylation assay and flow cytometry demonstrated that the surface expression of MT1-MMP was also enhanced by leptin, and knockdown of kinesin family member 1B (KIF1B, a microtubule plus end-directed monomeric motor protein) by small interference RNA inhibited this process. Notably, coimmunoprecipitation analysis indicated that leptin enhanced the interaction of MT1-MMP with KIF1B in a time-dependent manner, which consequently contributed to GC cell invasion. Moreover, leptin increased MT1-MMP or KIF1B expression by the protein kinase B (AKT) pathway and extracellular signal-regulated kinase 1/2 partially participated in this process. However, only AKT was implicated in the leptin-mediated membrane localization of MT1-MMP. Immunohistochemistry analysis revealed that leptin, MT1-MMP and KIF1B are overexpressed in GC tissues, and they positively correlated with clinical stage and lymph node metastasis. These observations indicate that this regulatory network exists in vivo. Taken together, our findings suggest that leptin is an effective intracellular stimulator of MT1-MMP and that leptin-enhanced cell surface localization of MT1-MMP is dependent on KIF1B, which consequently plays a critical role in GC invasion.
Collapse
Affiliation(s)
- Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Transcriptional response of bovine monocyte-derived macrophages after the infection with different Argentinean Mycobacterium bovis isolates. BIOMED RESEARCH INTERNATIONAL 2013; 2013:458278. [PMID: 23484118 PMCID: PMC3581155 DOI: 10.1155/2013/458278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/13/2012] [Accepted: 11/27/2012] [Indexed: 12/03/2022]
Abstract
Infection of bovines with Mycobacterium bovis causes important financial hardship in many countries presenting also a risk for humans. M. bovis is known to be adapted to survive and thrive within the intramacrophage environment. In spite of its relevance, at present the information about macrophage expression patterns is scarce, particularly regarding the bovine host. In this study, transcriptomic analysis was used to detect genes differentially expressed in macrophages derived from peripheral blood mononuclear cells at early stages of infection with two Argentinean strains of M. bovis, a virulent and an attenuated strains. The results showed that the number of differentially expressed genes in the cells infected with the virulent strain (5) was significantly lower than those in the cells infected with the attenuated strain (172). Several genes were more strongly expressed in infected macrophages. Among them, we detected encoding transcription factors, anthrax toxin receptor, cell division and apoptosis regulator, ankyrin proteins, cytoskeleton proteins, protein of cell differentiation, and regulators of endocytic traffic of membrane. Quantitative real-time PCR of a selected group of differentially expressed genes confirmed the microarrays results. Altogether, the present results contribute to understanding the mechanisms involved in the early interaction of M. bovis with the bovine macrophage.
Collapse
|
90
|
Stehbens S, Wittmann T. Targeting and transport: how microtubules control focal adhesion dynamics. ACTA ACUST UNITED AC 2012; 198:481-9. [PMID: 22908306 PMCID: PMC3514042 DOI: 10.1083/jcb.201206050] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Directional cell migration requires force generation that relies on the
coordinated remodeling of interactions with the extracellular matrix (ECM),
which is mediated by integrin-based focal adhesions (FAs). Normal FA turnover
requires dynamic microtubules, and three members of the diverse group of
microtubule plus-end-tracking proteins are principally involved in mediating
microtubule interactions with FAs. Microtubules also alter the assembly state of
FAs by modulating Rho GTPase signaling, and recent evidence suggests that
microtubule-mediated clathrin-dependent and -independent endocytosis regulates
FA dynamics. In addition, FA-associated microtubules may provide a polarized
microtubule track for localized secretion of matrix metalloproteases (MMPs).
Thus, different aspects of the molecular mechanisms by which microtubules
control FA turnover in migrating cells are beginning to emerge.
Collapse
Affiliation(s)
- Samantha Stehbens
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
91
|
Cervero P, Himmel M, Krüger M, Linder S. Proteomic analysis of podosome fractions from macrophages reveals similarities to spreading initiation centres. Eur J Cell Biol 2012; 91:908-22. [DOI: 10.1016/j.ejcb.2012.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 12/24/2022] Open
|
92
|
Knapinska A, Fields GB. Chemical biology for understanding matrix metalloproteinase function. Chembiochem 2012; 13:2002-20. [PMID: 22933318 PMCID: PMC3951272 DOI: 10.1002/cbic.201200298] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Indexed: 12/20/2022]
Abstract
The matrix metalloproteinase (MMP) family has long been associated with normal physiological processes such as embryonic implantation, tissue remodeling, organ development, and wound healing, as well as multiple aspects of cancer initiation and progression, osteoarthritis, inflammatory and vascular diseases, and neurodegenerative diseases. The development of chemically designed MMP probes has advanced our understanding of the roles of MMPs in disease in addition to shedding considerable light on the mechanisms of MMP action. The first generation of protease-activated agents has demonstrated proof of principle as well as providing impetus for in vivo applications. One common problem has been a lack of agent stability at nontargeted tissues and organs due to activation by multiple proteases. The present review considers how chemical biology has impacted the progress made in understanding the roles of MMPs in disease and the basic mechanisms of MMP action.
Collapse
Affiliation(s)
| | - Gregg B. Fields
- Departments of Chemistry and Biology Torrey Pines Institute for Molecular Studies 11350 SW Village Parkway, Port St. Lucie, FL 34987 (USA)
| |
Collapse
|
93
|
Castro-Castro A, Janke C, Montagnac G, Paul-Gilloteaux P, Chavrier P. ATAT1/MEC-17 acetyltransferase and HDAC6 deacetylase control a balance of acetylation of alpha-tubulin and cortactin and regulate MT1-MMP trafficking and breast tumor cell invasion. Eur J Cell Biol 2012; 91:950-60. [PMID: 22902175 DOI: 10.1016/j.ejcb.2012.07.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022] Open
Abstract
Invasive tumor cells use proteases to degrade and migrate through the stromal environment consisting of a 3D network of extracellular matrix macromolecules. In particular, MT1-MMP, a membrane-anchored metalloproteinase, is critical during cancer cell invasion. MT1-MMP is stored in endosomal compartments and then delivered to invadopodia, the specialized plasma membrane domains of invasive cancer cells endowed with extracellular matrix-degradation capacity. In macrophages, traffic of MT1-MMP vesicles to invadopodia-related podosomes requires microtubules. We previously found that in breast tumor MDA-MB-231 cells an increase of microtubule and cortactin acetylation upon inhibition of HDAC6 correlates with a decrease of matrix degradation and invasion in three-dimensional collagen I gel. Here, we investigated the role of the recently identified α-tubulin N-acetyltransferase 1 ATAT1 in invasive MDA-MB-231 cells. We found that the dynamics and distribution of MT1-MMP-positive endosomes require regulation of acetylation levels. We observed that ATAT1 tubulin acetyltransferase binds and regulates cortactin acetylation levels. In addition, ATAT1 colocalizes with cortactin at the adherent surface of the cells and it is required for 2D migration and invasive migration of MDA-MB-231 cells in collagen matrix. All together, our data indicate that a balance of acetylation and deaceylation by ATAT1/HDAC6 enzymes with opposite activities regulates the migratory and invasive capacities of breast tumor cells.
Collapse
|
94
|
Branch KM, Hoshino D, Weaver AM. Adhesion rings surround invadopodia and promote maturation. Biol Open 2012; 1:711-22. [PMID: 23213464 PMCID: PMC3507228 DOI: 10.1242/bio.20121867] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/21/2012] [Indexed: 12/19/2022] Open
Abstract
Invasion and metastasis are aggressive cancer phenotypes that are highly related to the ability of cancer cells to degrade extracellular matrix (ECM). At the cellular level, specialized actin-rich structures called invadopodia mediate focal matrix degradation by serving as exocytic sites for ECM-degrading proteinases. Adhesion signaling is likely to be a critical regulatory input to invadopodia, but the mechanism and location of such adhesion signaling events are poorly understood. Here, we report that adhesion rings surround invadopodia shortly after formation and correlate strongly with invadopodium activity on a cell-by-cell basis. By contrast, there was little correlation of focal adhesion number or size with cellular invadopodium activity. Prevention of adhesion ring formation by inhibition of RGD-binding integrins or knockdown (KD) of integrin-linked kinase (ILK) reduced the number of ECM-degrading invadopodia and reduced recruitment of IQGAP to invadopodium actin puncta. Furthermore, live cell imaging revealed that the rate of extracellular MT1-MMP accumulation at invadopodia was greatly reduced in both integrin-inhibited and ILK-KD cells. Conversely, KD of MT1-MMP reduced invadopodium activity and dynamics but not the number of adhesion-ringed invadopodia. These results suggest a model in which adhesion rings are recruited to invadopodia shortly after formation and promote invadopodium maturation by enhancing proteinase secretion. Since adhesion rings are a defining characteristic of podosomes, similar structures formed by normal cells, our data also suggest further similarities between invadopodia and podosomes.
Collapse
Affiliation(s)
- Kevin M Branch
- Department of Cancer Biology, Vanderbilt University School of Medicine , Nashville, TN 37232 , USA
| | | | | |
Collapse
|
95
|
Brisson L, Reshkin SJ, Goré J, Roger S. pH regulators in invadosomal functioning: proton delivery for matrix tasting. Eur J Cell Biol 2012; 91:847-60. [PMID: 22673002 DOI: 10.1016/j.ejcb.2012.04.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/20/2022] Open
Abstract
Invadosomes are actin-rich finger-like cellular structures sensing and interacting with the surrounding extracellular matrix (ECM) and involved in its proteolytic remodeling. Invadosomes are structures distinct from other adhesion complexes, and have been identified in normal cells that have to cross tissue barriers to fulfill their function such as leukocytes, osteoclasts and endothelial cells. They also represent features of highly aggressive cancer cells, allowing them to escape from the primary tumor, to invade surrounding tissues and to reach systemic circulation. They are localized to the ventral membrane of cells grown under 2-dimensional conditions and are supposed to be present all around cells grown in 3-dimensional matrices. Indeed invadosomes are key structures in physiological processes such as inflammation and the immune response, bone remodeling, tissue repair, but also in pathological conditions such as osteopetrosis and the development of metastases. Invadosomes are subdivided into podosomes, found in normal cells, and into invadopodia specific for cancer cells. While these two structures exhibit differences in organization, size, number and half-life, they share similarities in molecular composition, participation in cell-matrix adhesion and promoting matrix degradation. A key determinant in invadosomal function is the recruitment and release of proteases, such as matrix metalloproteinases (MMPs), serine proteases and cysteine cathepsins, together with their activation in a tightly controlled and highly acidic microenvironment. Therefore numerous pH regulators such as V-ATPases and Na(+)/H(+) exchangers, are found in invadosomes and are directly involved in their constitution as well as their functioning. This review focuses on the participation of pH regulators in invadosome function in physiological and pathological conditions, with a particular emphasis on ECM remodeling by osteoclasts during bone resorption and by cancer cells.
Collapse
Affiliation(s)
- Lucie Brisson
- Nutrition, Growth and Cancer, Université François-Rabelais de Tours, Inserm U, France
| | | | | | | |
Collapse
|
96
|
Stölting M, Wiesner C, van Vliet V, Butt E, Pavenstädt H, Linder S, Kremerskothen J. Lasp-1 regulates podosome function. PLoS One 2012; 7:e35340. [PMID: 22514729 PMCID: PMC3325968 DOI: 10.1371/journal.pone.0035340] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 03/15/2012] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cells form a variety of adhesive structures to connect with their environment and to regulate cell motility. In contrast to classical focal adhesions, podosomes, highly dynamic structures of different cell types, are actively engaged in matrix remodelling and degradation. Podosomes are composed of an actin-rich core region surrounded by a ring-like structure containing signalling molecules, motor proteins as well as cytoskeleton-associated proteins. Lasp-1 is a ubiquitously expressed, actin-binding protein that is known to regulate cytoskeleton architecture and cell migration. This multidomain protein is predominantely present at focal adhesions, however, a second pool of Lasp-1 molecules is also found at lamellipodia and vesicle-like microdomains in the cytosol.In this report, we show that Lasp-1 is a novel component and regulator of podosomes. Immunofluorescence studies reveal a localization of Lasp-1 in the podosome ring structure, where it colocalizes with zyxin and vinculin. Life cell imaging experiments demonstrate that Lasp-1 is recruited in early steps of podosome assembly. A siRNA-mediated Lasp-1 knockdown in human macrophages affects podosome dynamics as well as their matrix degradation capacity. In summary, our data indicate that Lasp-1 is a novel component of podosomes and is involved in the regulation of podosomal function.
Collapse
Affiliation(s)
- Miriam Stölting
- Medizinische Klinik D, Abteilung für Molekulare Nephrologie, Universitätsklinikum Münster, Münster, Germany
| | - Christiane Wiesner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Vanessa van Vliet
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Elke Butt
- Institut für Klinische Biochemie, Universität Würzburg, Würzburg, Germany
| | - Hermann Pavenstädt
- Medizinische Klinik D, Abteilung für Molekulare Nephrologie, Universitätsklinikum Münster, Münster, Germany
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Joachim Kremerskothen
- Medizinische Klinik D, Abteilung für Molekulare Nephrologie, Universitätsklinikum Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
97
|
Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading. PLoS One 2012; 7:e33368. [PMID: 22428034 PMCID: PMC3299788 DOI: 10.1371/journal.pone.0033368] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 02/13/2012] [Indexed: 11/19/2022] Open
Abstract
Primary cilia, solitary microtubule-based structures that grow from the centriole and extend into the extracellular space, have increasingly been implicated as sensors of a variety of biochemical and biophysical signals. Mutations in primary cilium-related genes have been linked to a number of rare developmental disorders as well as dysregulation of cell proliferation. We propose that primary cilia are also important in mechanically regulated bone formation in adults and that their malfunction could play a role in complex multi-factorial bone diseases, such as osteoporosis. In this study, we generated mice with an osteoblast- and osteocyte-specific knockout of Kif3a, a subunit of the kinesin II intraflagellar transport (IFT) protein; IFT is required for primary cilia formation, maintenance, and function. These Colα1(I) 2.3-Cre;Kif3a(fl/fl) mice exhibited no obvious morphological skeletal abnormalities. Skeletally mature Colα1(I) 2.3-Cre;Kif3a(fl/fl) and control mice were exposed to 3 consecutive days of cyclic axial ulna loading, which resulted in a significant increase in bone formation in both the conditional knockouts and controls. However, Colα1(I) 2.3-Cre;Kif3a(fl/fl) mice did exhibit decreased formation of new bone in response to mechanical ulnar loading compared to control mice. These results suggest that primary cilia act as cellular mechanosensors in bone and that their function may be critical for the regulation of bone physiology due to mechanical loading in adults.
Collapse
|
98
|
Terminal transport of lytic granules to the immune synapse is mediated by the kinesin-1/Slp3/Rab27a complex. Blood 2012; 119:3879-89. [PMID: 22308290 DOI: 10.1182/blood-2011-09-382556] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cytotoxic T lymphocytes kill target cells via the polarized secretion of cytotoxic granules at the immune synapse. The lytic granules are initially recruited around the polarized microtubule-organizing center. In a dynein-dependent transport process, the granules move along microtubules toward the microtubule-organizing center in the minus-end direction. Here, we found that a kinesin-1-dependent process is required for terminal transport and secretion of polarized lytic granule to the immune synapse. We show that synaptotagmin-like protein 3 (Slp3) is an effector of Rab27a in cytotoxic T lymphocytes and interacts with kinesin-1 through the tetratricopeptide repeat of the kinesin-1 light chain. Inhibition of the Rab27a/Slp3/kinesin-1 transport complex impairs lytic granule secretion. Our data provide further molecular insights into the key functional and regulatory mechanisms underlying the terminal transport of cytotoxic granules and the latter's secretion at the immune synapse.
Collapse
|
99
|
Hanania R, Sun HS, Xu K, Pustylnik S, Jeganathan S, Harrison RE. Classically activated macrophages use stable microtubules for matrix metalloproteinase-9 (MMP-9) secretion. J Biol Chem 2012; 287:8468-83. [PMID: 22270361 DOI: 10.1074/jbc.m111.290676] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As major effector cells of the innate immune response, macrophages must adeptly migrate from blood to infected tissues. Endothelial transmigration is accomplished by matrix metalloproteinase (MMP)-induced degradation of basement membrane and extracellular matrix components. The classical activation of macrophages with LPS and IFN-γ causes enhanced microtubule (MT) stabilization and secretion of MMPs. Macrophages up-regulate MMP-9 expression and secretion upon immunological challenge and require its activity for migration during the inflammatory response. However, the dynamics of MMP-9 production and intracellular distribution as well as the mechanisms responsible for its trafficking are unknown. Using immunofluorescent imaging, we localized intracellular MMP-9 to small Golgi-derived cytoplasmic vesicles that contained calreticulin and protein-disulfide isomerase in activated RAW 264.7 macrophages. We demonstrated vesicular organelles of MMP-9 aligned along stable subsets of MTs and showed that selective modulation of MT dynamics contributes to the enhanced trafficking of MMP-9 extracellularly. We found a Rab3D-dependent association of MMP-9 vesicles with the molecular motor kinesin, whose association with the MT network was greatly enhanced after macrophage activation. Finally, we implicated kinesin 5B and 3B isoforms in the effective trafficking of MMP-9 extracellularly.
Collapse
Affiliation(s)
- Raed Hanania
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | |
Collapse
|
100
|
Le Cabec V, Van Goethem E, Guiet R, Maridonneau-Parini I. La migration des phagocytes. Med Sci (Paris) 2011; 27:1112-9. [DOI: 10.1051/medsci/20112712018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|