51
|
Li BE, Ernst P. Two decades of leukemia oncoprotein epistasis: the MLL1 paradigm for epigenetic deregulation in leukemia. Exp Hematol 2014; 42:995-1012. [PMID: 25264566 PMCID: PMC4307938 DOI: 10.1016/j.exphem.2014.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/16/2014] [Indexed: 12/12/2022]
Abstract
MLL1, located on human chromosome 11, is disrupted in distinct recurrent chromosomal translocations in several leukemia subsets. Studying the MLL1 gene and its oncogenic variants has provided a paradigm for understanding cancer initiation and maintenance through aberrant epigenetic gene regulation. Here we review the historical development of model systems to recapitulate oncogenic MLL1-rearrangement (MLL-r) alleles encoding mixed-lineage leukemia fusion proteins (MLL-FPs) or internal gene rearrangement products. These largely mouse and human cell/xenograft systems have been generated and used to understand how MLL-r alleles affect diverse pathways to result in a highly penetrant, drug-resistant leukemia. The particular features of the animal models influenced the conclusions of mechanisms of transformation. We discuss significant downstream enablers, inhibitors, effectors, and collaborators of MLL-r leukemia, including molecules that directly interact with MLL-FPs and endogenous mixed-lineage leukemia protein, direct target genes of MLL-FPs, and other pathways that have proven to be influential in supporting or suppressing the leukemogenic activity of MLL-FPs. The use of animal models has been complemented with patient sample, genome-wide analyses to delineate the important genomic and epigenomic changes that occur in distinct subsets of MLL-r leukemia. Collectively, these studies have resulted in rapid progress toward developing new strategies for targeting MLL-r leukemia and general cell-biological principles that may broadly inform targeting aberrant epigenetic regulators in other cancers.
Collapse
Affiliation(s)
- Bin E Li
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Patricia Ernst
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Pediatrics Hematology/Oncology/BMT, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
52
|
Abstract
The molecular determinants regulating the specification of human embryonic stem cells (hESCs) into hematopoietic cells remain elusive. HOXA9 plays a relevant role in leukemogenesis and hematopoiesis. It is highly expressed in hematopoietic stem and progenitor cells (HSPCs) and is downregulated upon differentiation. Hoxa9-deficient mice display impaired hematopoietic development, and deregulation of HOXA9 expression is frequently associated with acute leukemia. Analysis of the genes differentially expressed in cord blood HSPCs vs hESC-derived HSPCs identified HOXA9 as the most downregulated gene in hESC-derived HSPCs, suggesting that expression levels of HOXA9 may be crucial for hematopoietic differentiation of hESC. Here we show that during hematopoietic differentiation of hESCs, HOXA9 expression parallels hematopoietic development, but is restricted to the hemogenic precursors (HEP) (CD31(+)CD34(+)CD45(-)), and diminishes as HEPs differentiate into blood cells (CD45(+)). Different gain-of-function and loss-of-function studies reveal that HOXA9 enhances hematopoietic differentiation of hESCs by specifically promoting the commitment of HEPs into primitive and total CD45(+) blood cells. Gene expression analysis suggests that nuclear factor-κB signaling could be collaborating with HOXA9 to increase hematopoietic commitment. However, HOXA9 on its own is not sufficient to confer in vivo long-term engraftment potential to hESC-hematopoietic derivatives, reinforcing the idea that additional molecular regulators are needed for the generation of definitive in vivo functional HSPCs from hESC.
Collapse
|
53
|
Bueno C, Roldan M, Anguita E, Romero-Moya D, Martín-Antonio B, Rosu-Myles M, del Cañizo C, Campos F, García R, Gómez-Casares M, Fuster JL, Jurado M, Delgado M, Menendez P. Bone marrow mesenchymal stem cells from patients with aplastic anemia maintain functional and immune properties and do not contribute to the pathogenesis of the disease. Haematologica 2014; 99:1168-75. [PMID: 24727813 DOI: 10.3324/haematol.2014.103580] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aplastic anemia is a life-threatening bone marrow failure disorder characterized by peripheral pancytopenia and marrow hypoplasia. The majority of cases of aplastic anemia remain idiopathic, although hematopoietic stem cell deficiency and impaired immune responses are hallmarks underlying the bone marrow failure in this condition. Mesenchymal stem/stromal cells constitute an essential component of the bone marrow hematopoietic microenvironment because of their immunomodulatory properties and their ability to support hematopoiesis, and they have been involved in the pathogenesis of several hematologic malignancies. We investigated whether bone marrow mesenchymal stem cells contribute, directly or indirectly, to the pathogenesis of aplastic anemia. We found that mesenchymal stem cell cultures can be established from the bone marrow of aplastic anemia patients and display the same phenotype and differentiation potential as their counterparts from normal bone marrow. Mesenchymal stem cells from aplastic anemia patients support the in vitro homeostasis and the in vivo repopulating function of CD34(+) cells, and maintain their immunosuppressive and anti-inflammatory properties. These data demonstrate that bone marrow mesenchymal stem cells from patients with aplastic anemia do not have impaired functional and immunological properties, suggesting that they do not contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Clara Bueno
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Faculty of Medicine, Barcelona, Spain
| | - Mar Roldan
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Eduardo Anguita
- Servicio de Hematología, Hospital Clínico San Carlos, Madrid, Spain
| | - Damia Romero-Moya
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Faculty of Medicine, Barcelona, Spain
| | - Beatriz Martín-Antonio
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Faculty of Medicine, Barcelona, Spain
| | - Michael Rosu-Myles
- Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Consuelo del Cañizo
- Department of Hematology, University Hospital of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Francisco Campos
- Department of Neurology, Neurovascular Area, Clinical Neurosciences Research Laboratory, Hospital Clínico-Health Research Institute of Santiago de Compostela, Spain
| | - Regina García
- Servicio de Hematología, Hospital Clínico de Málaga, Málaga, Spain
| | - Maite Gómez-Casares
- Servicio de Hematología, Hospital Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Jose Luis Fuster
- Sección de Oncohematología Pediátrica, Hospital Virgen de Arrixaca, Murcia, Spain
| | - Manuel Jurado
- Servicio de Hematología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Mario Delgado
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Faculty of Medicine, Barcelona, Spain Instituciò Catalana de Reserca i Estudis Avançats (ICREA), Barcellona, Spain
| |
Collapse
|
54
|
Škorvaga M, Nikitina E, Kubeš M, Košík P, Gajdošechová B, Leitnerová M, Copáková L, Belyaev I. Incidence of common preleukemic gene fusions in umbilical cord blood in Slovak population. PLoS One 2014; 9:e91116. [PMID: 24621554 PMCID: PMC3951330 DOI: 10.1371/journal.pone.0091116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/06/2014] [Indexed: 12/11/2022] Open
Abstract
The first event in origination of many childhood leukemias is likely the presence of preleukemic clone (transformed hematopoietic stem/progenitor cells with preleukemic gene fusions (PGF)) in newborn. Thus, the screening of umbilical cord blood (UCB) for PGF may be of high importance for developing strategies for childhood leukemia prevention and treatment. However, the data on incidence of PGF in UCB are contradictive. We have compared multiplex polymerase chain reaction (PCR) and real-time quantitative PCR (RT qPCR) in neonates from Slovak National Birth Cohort. According to multiplex PCR, all 135 screened samples were negative for the most frequent PGF of B-lineage acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). To explore the prevalence of prognostically important TEL-AML1, MLL-AF4 and BCR-ABL (p190), 200 UCB were screened using RT qPCR. The initial screening showed an unexpectedly high incidence of studied PGF. The validation of selected samples in two laboratories confirmed approximately ¼ of UCB positive, resulting in ∼4% incidence of TEL-AML1, ∼6.25% incidence of BCR-ABL1 p190, and ∼0.75% frequency of MLL-AF4. In most cases, the PGF presented at very low level, about 1–5 copies per 105 cells. We hypothesize that low PGF numbers reflect their relatively late origin and are likely to be eliminated in further development while higher number of PGF reflects earlier origination and may represent higher risk for leukemia.
Collapse
Affiliation(s)
- Milan Škorvaga
- Department of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ekaterina Nikitina
- Department of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Laboratory of Oncovirology, Cancer Research Institute, Siberian Branch of the Russian Academy of Medical Sciences, Tomsk, Russian Federation
| | - Miroslav Kubeš
- Laboratory of R&D, Eurocord-Slovakia, Bratislava, Slovak Republic
| | - Pavol Košík
- Department of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Beata Gajdošechová
- Department of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Michaela Leitnerová
- Department of Clinical Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Lucia Copáková
- Department of Clinical Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Igor Belyaev
- Department of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
- * E-mail:
| |
Collapse
|
55
|
Valentine MC, Linabery AM, Chasnoff S, Hughes AEO, Mallaney C, Sanchez N, Giacalone J, Heerema NA, Hilden JM, Spector LG, Ross JA, Druley TE. Excess congenital non-synonymous variation in leukemia-associated genes in MLL- infant leukemia: a Children's Oncology Group report. Leukemia 2013; 28:1235-41. [PMID: 24301523 PMCID: PMC4045651 DOI: 10.1038/leu.2013.367] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/19/2013] [Accepted: 11/29/2013] [Indexed: 12/11/2022]
Abstract
Infant leukemia (IL) is a rare sporadic cancer with a grim prognosis. Although most cases are accompanied by MLL rearrangements and harbor very few somatic mutations, less is known about the genetics of the cases without MLL translocations. We performed the largest exome-sequencing study to date on matched non-cancer DNA from pairs of mothers and IL patients to characterize congenital variation that may contribute to early leukemogenesis. Using the COSMIC database to define acute leukemia-associated candidate genes, we find a significant enrichment of rare, potentially functional congenital variation in IL patients compared with randomly selected genes within the same patients and unaffected pediatric controls. IL acute myeloid leukemia (AML) patients had more overall variation than IL acute lymphocytic leukemia (ALL) patients, but less of that variation was inherited from mothers. Of our candidate genes, we found that MLL3 was a compound heterozygote in every infant who developed AML and 50% of infants who developed ALL. These data suggest a model by which known genetic mechanisms for leukemogenesis could be disrupted without an abundance of somatic mutation or chromosomal rearrangements. This model would be consistent with existing models for the establishment of leukemia clones in utero and the high rate of IL concordance in monozygotic twins.
Collapse
Affiliation(s)
- M C Valentine
- 1] Department of Genetics, Washington University School of Medicine, St Louis, MO, USA [2] Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - A M Linabery
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - S Chasnoff
- 1] Department of Genetics, Washington University School of Medicine, St Louis, MO, USA [2] Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - A E O Hughes
- 1] Department of Genetics, Washington University School of Medicine, St Louis, MO, USA [2] Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - C Mallaney
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - N Sanchez
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - J Giacalone
- 1] Department of Genetics, Washington University School of Medicine, St Louis, MO, USA [2] Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - N A Heerema
- Department of Pathology, Ohio State University, Columbus, OH, USA
| | - J M Hilden
- Department of Oncology/Hematology, Peyton Manning Children's Hospital at St Vincent, Indianapolis, IN, USA
| | - L G Spector
- 1] Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA [2] Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - J A Ross
- 1] Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA [2] Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - T E Druley
- 1] Department of Genetics, Washington University School of Medicine, St Louis, MO, USA [2] Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
56
|
Faridi F, Ponnusamy K, Quagliano-Lo Coco I, Chen-Wichmann L, Grez M, Henschler R, Wichmann C. Aberrant epigenetic regulators control expansion of human CD34+ hematopoietic stem/progenitor cells. Front Genet 2013; 4:254. [PMID: 24348510 PMCID: PMC3842847 DOI: 10.3389/fgene.2013.00254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/08/2013] [Indexed: 12/02/2022] Open
Abstract
Transcription is a tightly regulated process ensuring the proper expression of numerous genes regulating all aspects of cellular behavior. Transcription factors regulate multiple genes including other transcription factors that together control a highly complex gene network. The transcriptional machinery can be “hijacked” by oncogenic transcription factors, thereby leading to malignant cell transformation. Oncogenic transcription factors manipulate a variety of epigenetic control mechanisms to fulfill gene regulatory and cell transforming functions. These factors assemble epigenetic regulators at target gene promoter sequences, thereby disturbing physiological gene expression patterns. Retroviral vector technology and the availability of “healthy” human hematopoietic CD34+ progenitor cells enable the generation of pre-leukemic cell models for the analysis of aberrant human hematopoietic progenitor cell expansion mediated by leukemogenic transcription factors. This review summarizes recent findings regarding the mechanism by which leukemogenic gene products control human hematopoietic CD34+ progenitor cell expansion by disrupting the normal epigenetic program.
Collapse
Affiliation(s)
- Farnaz Faridi
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, Ludwig-Maximilian University Hospital Munich, Germany
| | - Kanagaraju Ponnusamy
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, Ludwig-Maximilian University Hospital Munich, Germany ; Institute of Transfusion Medicine and Immunohematology, Goethe University Frankfurt, Germany
| | | | - Linping Chen-Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, Ludwig-Maximilian University Hospital Munich, Germany
| | - Manuel Grez
- Institute for Biomedical Research Georg-Speyer-Haus, Frankfurt, Germany
| | - Reinhard Henschler
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, Ludwig-Maximilian University Hospital Munich, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, Ludwig-Maximilian University Hospital Munich, Germany
| |
Collapse
|
57
|
Montes R, Ayllón V, Prieto C, Bursen A, Prelle C, Romero-Moya D, Real PJ, Navarro-Montero O, Chillón C, Marschalek R, Bueno C, Menendez P. Ligand-independent FLT3 activation does not cooperate with MLL-AF4 to immortalize/transform cord blood CD34+ cells. Leukemia 2013; 28:666-74. [PMID: 24240202 DOI: 10.1038/leu.2013.346] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 10/18/2013] [Accepted: 11/08/2013] [Indexed: 01/11/2023]
Abstract
MLL-AF4 fusion is hallmark in high-risk infant pro-B-acute lymphoblastic leukemia (pro-B-ALL). Our limited understanding of MLL-AF4-mediated transformation reflects the absence of human models reproducing this leukemia. Hematopoietic stem/progenitor cells (HSPCs) constitute likely targets for transformation. We previously reported that MLL-AF4 enhanced hematopoietic engraftment and clonogenic potential in cord blood (CB)-derived CD34+ HSPCs but was not sufficient for leukemogenesis, suggesting that additional oncogenic lesions are required for MLL-AF4-mediated transformation. MLL-AF4+ pro-B-ALL display enormous levels of FLT3, and occasionally FLT3-activating mutations, thus representing a candidate cooperating event in MLL-AF4+ pro-B-ALL. We have explored whether FLT3.TKD (tyrosine kinase domain) mutation or increased expression of FLT3.WT (wild type) cooperates with MLL-AF4 to immortalize/transform CB-CD34+ HSPCs. In vivo, FLT3.TKD/FLT3.WT alone, or in combination with MLL-AF4, enhances hematopoietic repopulating function of CB-CD34+ HSPCs without impairing migration or hematopoietic differentiation. None of the animals transplanted with MLL-AF4+FLT3.TKD/WT-CD34+ HSPCs showed any sign of disease after 16 weeks. In vitro, enforced expression of FLT3.TKD/FLT3.WT conveys a transient overexpansion of MLL-AF4-expressing CD34+ HSPCs associated to higher proportion of cycling cells coupled to lower apoptotic levels, but does not augment clonogenic potential nor confer stable replating. Together, FLT3 activation does not suffice to immortalize/transform MLL-AF4-expressing CB-CD34+ HSPCs, suggesting the need of alternative (epi)-genetic cooperating oncogenic lesions.
Collapse
Affiliation(s)
- R Montes
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - V Ayllón
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - C Prieto
- 1] GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain [2] Faculty of Medicine, Department of Stem Cells, Development and Cancer, Cell Therapy Program of the University of Barcelona, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - A Bursen
- Institute of Pharmaceutical Biology/ZAFES/DCAL, Goethe-University of Frankfurt, Biocenter, Frankfurt, Germany
| | - C Prelle
- Institute of Pharmaceutical Biology/ZAFES/DCAL, Goethe-University of Frankfurt, Biocenter, Frankfurt, Germany
| | - D Romero-Moya
- 1] GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain [2] Faculty of Medicine, Department of Stem Cells, Development and Cancer, Cell Therapy Program of the University of Barcelona, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - P J Real
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - O Navarro-Montero
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - C Chillón
- Hospital Universitario de Salamanca, Servicio de Hematología, Salamanca, Spain
| | - R Marschalek
- Institute of Pharmaceutical Biology/ZAFES/DCAL, Goethe-University of Frankfurt, Biocenter, Frankfurt, Germany
| | - C Bueno
- 1] GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain [2] Faculty of Medicine, Department of Stem Cells, Development and Cancer, Cell Therapy Program of the University of Barcelona, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - P Menendez
- 1] GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain [2] Faculty of Medicine, Department of Stem Cells, Development and Cancer, Cell Therapy Program of the University of Barcelona, Josep Carreras Leukemia Research Institute, Barcelona, Spain [3] Instituciò Catalana de Reserca i Estudis Avançats (ICREA)
| |
Collapse
|
58
|
Wang J, Yu L, Jiang C, Chen M, Ou C, Wang J. Bone marrow mononuclear cells exert long-term neuroprotection in a rat model of ischemic stroke by promoting arteriogenesis and angiogenesis. Brain Behav Immun 2013; 34:56-66. [PMID: 23891963 PMCID: PMC3795857 DOI: 10.1016/j.bbi.2013.07.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/06/2013] [Accepted: 07/17/2013] [Indexed: 01/02/2023] Open
Abstract
Transplanted bone marrow-derived mononuclear cells (BMMNCs) can promote arteriogenesis and angiogenesis by incorporating into vascular walls and differentiating into smooth muscle cells (SMCs) and endothelial cells (ECs). Here, we explored whether BMMNCs can enhance arteriogenesis and angiogenesis and promote long-term functional recovery in a rat model of permanent middle cerebral artery occlusion (pMCAO). Sprague-Dawley rats were injected with vehicle or 1×10(7) BMMNCs labeled with BrdU via femoral vein 24 h after induction of pMCAO. Functional deficits were assessed weekly through day 42 after pMCAO, and infarct volume was assessed on day 7. We visualized the angioarchitecture by latex perfusion on days 14 and 42. BMMNC transplantation significantly reduced infarct volume and neurologic functional deficits compared with untreated or vehicle-treated ischemic groups. In BMMNC-treated rats, BrdU-positive cells were widely distributed in the infarct boundary zone, were incorporated into vessel walls, and enhanced the growth of leptomeningeal anastomoses, the circle of Willis, and basilar arteries. BMMNCs were shown to differentiate into SMCs and ECs from day 14 after stroke and preserved vascular repair function for at least 6 weeks. Our data indicate that BMMNCs can significantly enhance arteriogenesis and angiogenesis, reduce infarct volume, and promote long-term functional recovery after pMCAO in rats.
Collapse
Affiliation(s)
- Jianping Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China.
| | - Lie Yu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China,Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Ming Chen
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chunying Ou
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jian Wang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA,Address correspondence to: Jianping Wang, MD, PhD, Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. (Phone: 011-86-371-68322417; Fax: 86-371-66965783; ) Or: Jian Wang, MD, PhD, Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA. (Phone: 410-955-3640; Fax: 410-502-5177; )
| |
Collapse
|
59
|
Abstract
In this issue of Blood, Bueno and colleagues explore the developmental impact, as well as the transforming capacity, of the mixed-lineage leukemia (MLL)–AF4 fusion protein in combination with activation of FMS-like tyrosine receptor 3 (FLT3) in human embryonic stem cells (hESCs).1
Collapse
|
60
|
FLT3 activation cooperates with MLL-AF4 fusion protein to abrogate the hematopoietic specification of human ESCs. Blood 2013; 121:3867-78, S1-3. [PMID: 23479570 DOI: 10.1182/blood-2012-11-470146] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mixed-lineage leukemia (MLL)-AF4 fusion arises prenatally in high-risk infant acute pro-B-lymphoblastic leukemia (pro-B-ALL). In human embryonic stem cells (hESCs), MLL-AF4 skewed hematoendothelial specification but was insufficient for transformation, suggesting that additional oncogenic insults seem required for MLL-AF4-mediated transformation. MLL-AF4+ pro-B-ALL expresses enormous levels of FLT3, occasionally because of activating mutations, thus representing a candidate cooperating event in MLL-AF4+ pro-B-ALL. Here, we explored the developmental impact of FLT3 activation alone, or together with MLL-AF4, in the hematopoietic fate of hESCs. FLT3 activation does not affect specification of hemogenic precursors but significantly enhances the formation of CD45(+) blood cells, and CD45(+)CD34(+) blood progenitors with clonogenic potential. However, overexpression of FLT3 mutations or wild-type FLT3 (FLT3-WT) completely abrogates hematopoietic differentiation from MLL-AF4-expressing hESCs, indicating that FLT3 activation cooperates with MLL-AF4 to inhibit human embryonic hematopoiesis. Cell cycle/apoptosis analyses suggest that FLT3 activation directly affects hESC specification rather than proliferation or survival of hESC-emerging hematopoietic derivatives. Transcriptional profiling of hESC-derived CD45(+) cells supports the FLT3-mediated inhibition of hematopoiesis in MLL-AF4-expressing hESCs, which is associated with large transcriptional changes and downregulation of genes involved in hematopoietic system development and function. Importantly, FLT3 activation does not cooperate with MLL-AF4 to immortalize/transform hESC-derived hematopoietic cells, suggesting the need of alternative (epi)-genetic cooperating hits.
Collapse
|
61
|
Identification of somatic and germline mutations using whole exome sequencing of congenital acute lymphoblastic leukemia. BMC Cancer 2013; 13:55. [PMID: 23379653 PMCID: PMC3573941 DOI: 10.1186/1471-2407-13-55] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/30/2013] [Indexed: 11/23/2022] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) diagnosed within the first month of life is classified as congenital ALL and has a significantly worse outcome than ALL diagnosed in older children. This suggests that congenital ALL is a biologically different disease, and thus may be caused by a distinct set of mutations. To understand the somatic and germline mutations contributing to congenital ALL, the protein-coding regions in the genome were captured and whole-exome sequencing was employed for the identification of single-nucleotide variants and small insertion and deletions in the germlines as well as the primary tumors of four patients with congenital ALL. Methods Exome sequencing was performed on Illumina GAIIx or HiSeq 2000 (Illumina, San Diego, California). Reads were aligned to the human reference genome and the Genome Analysis Toolkit was used for variant calling. An in-house developed Ensembl-based variant annotator was used to richly annotate each variant. Results There were 1–3 somatic, protein-damaging mutations per ALL, including a novel mutation in Sonic Hedgehog. Additionally, there were many germline mutations in genes known to be associated with cancer predisposition, as well as genes involved in DNA repair. Conclusion This study is the first to comprehensively characterize the germline and somatic mutational profile of all protein-coding genes patients with congenital ALL. These findings identify potentially important therapeutic targets, as well as insight into possible cancer predisposition genes.
Collapse
|
62
|
Wilkinson A, Ballabio E, Geng H, North P, Tapia M, Kerry J, Biswas D, Roeder R, Allis C, Melnick A, de Bruijn M, Milne T. RUNX1 is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction. Cell Rep 2013; 3:116-27. [PMID: 23352661 PMCID: PMC3607232 DOI: 10.1016/j.celrep.2012.12.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 11/08/2012] [Accepted: 12/26/2012] [Indexed: 12/22/2022] Open
Abstract
The Mixed Lineage Leukemia (MLL) protein is an important epigenetic regulator required for the maintenance of gene activation during development. MLL chromosomal translocations produce novel fusion proteins that cause aggressive leukemias in humans. Individual MLL fusion proteins have distinct leukemic phenotypes even when expressed in the same cell type, but how this distinction is delineated on a molecular level is poorly understood. Here, we highlight a unique molecular mechanism whereby the RUNX1 gene is directly activated by MLL-AF4 and the RUNX1 protein interacts with the product of the reciprocal AF4-MLL translocation. These results support a mechanism of transformation whereby two oncogenic fusion proteins cooperate by activating a target gene and then modulating the function of its downstream product.
Collapse
Affiliation(s)
- Adam C. Wilkinson
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Erica Ballabio
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Huimin Geng
- Departments of Medicine/Hematology and Oncology Division, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Phillip North
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Marta Tapia
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jon Kerry
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Debabrata Biswas
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - C. David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Ari Melnick
- Departments of Medicine/Hematology and Oncology Division, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Marella F.T.R. de Bruijn
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Thomas A. Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
63
|
Romero-Moya D, Bueno C, Montes R, Navarro-Montero O, Iborra FJ, López LC, Martin M, Menendez P. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function. Haematologica 2013; 98:1022-9. [PMID: 23349299 DOI: 10.3324/haematol.2012.079244] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these processes. Although recent work has contributed to understanding the role of mitochondria during stem cell differentiation, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus progenitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential in CD34(+) hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34(+) cells on the basis of their mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopulating potential of CD34(+) cells with high (CD34(+) Mito(High)) versus low (CD34(+) Mito(Low)) mitochondrial mass. The CD34(+) Mito(Low) fraction contained 6-fold more CD34(+)CD38(-) primitive cells and was enriched in hematopoietic stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno-deficient mice. In contrast, the CD34(+) Mito(High) fraction was more enriched in hematopoietic progenitor function with higher in vitro clonogenic capacity. In vitro differentiation of CD34(+) Mito(Low) cells was significantly delayed as compared to that of CD34(+) Mito(High) cells. The eventual complete differentiation of CD34(+) Mito(Low) cells, which coincided with a robust expansion of the CD34(-) differentiated progeny, was accompanied by mitochondrial adaptation, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and COX2. In conclusion, cord blood CD34(+) cells with low levels of mitochondrial mass are enriched in hematopoietic repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A mitochondrial response underlies hematopoietic stem/progenitor cell differentiation and proliferation of lineage-committed CD34(-) cells.
Collapse
Affiliation(s)
- Damia Romero-Moya
- GENyO-Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Government, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Krämer OH, Stauber RH, Bug G, Hartkamp J, Knauer SK. SIAH proteins: critical roles in leukemogenesis. Leukemia 2012; 27:792-802. [PMID: 23038274 DOI: 10.1038/leu.2012.284] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The delicate balance between the synthesis and the degradation of proteins ensures cellular homeostasis. Proteases act in an irreversible manner and therefore have to be strictly regulated. The ubiquitin-proteasome system (UPS) is a major pathway for the proteolytic degradation of cellular proteins. As dysregulation of the UPS is observed in most cancers including leukemia, the UPS is a valid target for therapeutic intervention strategies. Ubiquitin-ligases selectively bind substrates to target them for poly-ubiquitinylation and proteasomal degradation. Therefore, pharmacological modulation of these proteins could allow a specific level of control. Increasing evidence accumulates that ubiquitin-ligases termed mammalian seven in absentia homologs (SIAHs) are not only critical for the pathogenesis of solid tumors but also for leukemogenesis. However, the relevance and therapeutic potential of SIAH-dependent processes has not been fully elucidated. Here, we summarize functions of SIAH ubiquitin-ligases in leukemias, how they select leukemia-relevant substrates for proteasomal degradation, and how the expression and activity of SIAH1 and SIAH2 can be modulated in vivo. We also discuss that epigenetic drugs belonging to the group of histone deacetylase inhibitors induce SIAH-dependent proteasomal degradation to accelerate the turnover of leukemogenic proteins. In addition, our review highlights potential areas for future research on SIAH proteins.
Collapse
Affiliation(s)
- O H Krämer
- Center for Molecular Biomedicine (CMB), Department of Biochemistry, University of Jena, Jena, Germany.
| | | | | | | | | |
Collapse
|
65
|
Zhou Y, You MJ, Young KH, Lin P, Lu G, Medeiros LJ, Bueso-Ramos CE. Advances in the molecular pathobiology of B-lymphoblastic leukemia. Hum Pathol 2012; 43:1347-1362. [PMID: 22575265 DOI: 10.1016/j.humpath.2012.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/26/2012] [Accepted: 02/02/2012] [Indexed: 02/03/2023]
Abstract
B-lymphoblastic leukemia/lymphoma, also known as B-acute lymphoblastic leukemia, is derived from B-cell progenitors. B-acute lymphoblastic leukemia occurs predominantly in children, but can occur at any age. Risk-adapted intensive chemotherapy is effective in treating most children with B-acute lymphoblastic leukemia, but this approach is less successful in adults. Recent developments in genome-wide genetic analysis in B-acute lymphoblastic leukemia have provided insights into disease pathogenesis and prognosis. B-acute lymphoblastic leukemia cases usually carry a primary genetic event, often a chromosome translocation, and a constellation of secondary genetic alterations that are acquired and selected dynamically in a nonlinear fashion. These genetic changes commonly affect cellular mechanisms that control B-cell differentiation and proliferation. The cooperative interaction between inactivation of hematopoietic transcription factors involved in differentiation (class II mutation) and activating mutations involved in cell proliferation (class I mutation) is reminiscent of the pathogenic model of acute myeloid leukemia. The resulting improved molecular understanding of B-acute lymphoblastic leukemia is helping to refine disease risk stratification and discover new therapeutic approaches for patients with refractory disease. In this review, we first summarize the clinicopathologic and immunophenotypic features of B-acute lymphoblastic leukemia and introduce current understanding of B-cell development and B-acute lymphoblastic leukemia leukemogenesis. We then focus on recent advances in genetic analysis and gene expression profiling of B-acute lymphoblastic leukemia and discuss the implications of these findings for disease evolution, risk prediction, and possible novel therapeutic approaches.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
66
|
Nishi M, Eguchi-Ishimae M, Wu Z, Gao W, Iwabuki H, Kawakami S, Tauchi H, Inukai T, Sugita K, Hamasaki Y, Ishii E, Eguchi M. Suppression of the let-7b microRNA pathway by DNA hypermethylation in infant acute lymphoblastic leukemia with MLL gene rearrangements. Leukemia 2012; 27:389-97. [DOI: 10.1038/leu.2012.242] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
67
|
Wünsch D, Fetz V, Heider D, Tenzer S, Bier C, Kunst L, Knauer S, Stauber R. Chemico-genetic strategies to inhibit the leukemic potential of threonine aspartase-1. Blood Cancer J 2012; 2:e77. [PMID: 22829979 PMCID: PMC3389164 DOI: 10.1038/bcj.2012.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
68
|
Development of a multi-step leukemogenesis model of MLL-rearranged leukemia using humanized mice. PLoS One 2012; 7:e37892. [PMID: 22745659 PMCID: PMC3380045 DOI: 10.1371/journal.pone.0037892] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/30/2012] [Indexed: 01/12/2023] Open
Abstract
Mixed-lineage-leukemia (MLL) fusion oncogenes are intimately involved in acute leukemia and secondary therapy-related acute leukemia. To understand MLL-rearranged leukemia, several murine models for this disease have been established. However, the mouse leukemia derived from mouse hematopoietic stem cells (HSCs) may not be fully comparable with human leukemia. Here we developed a humanized mouse model for human leukemia by transplanting human cord blood-derived HSCs transduced with an MLL-AF10 oncogene into a supra-immunodeficient mouse strain, NOD/Shi-scid, IL-2Rγ(-/-) (NOG) mice. Injection of the MLL-AF10-transduced HSCs into the liver of NOG mice enhanced multilineage hematopoiesis, but did not induce leukemia. Because active mutations in ras genes are often found in MLL-related leukemia, we next transduced the gene for a constitutively active form of K-ras along with the MLL-AF10 oncogene. Eight weeks after transplantation, all the recipient mice had developed acute monoblastic leukemia (the M5 phenotype in French-American-British classification). We thus successfully established a human MLL-rearranged leukemia that was derived in vivo from human HSCs. In addition, since the enforced expression of the mutant K-ras alone was insufficient to induce leukemia, the present model may also be a useful experimental platform for the multi-step leukemogenesis model of human leukemia.
Collapse
|
69
|
Chillón MC, Gómez-Casares MT, López-Jorge CE, Rodriguez-Medina C, Molines A, Sarasquete ME, Alcoceba M, Miguel JDGS, Bueno C, Montes R, Ramos F, Rodríguez JN, Giraldo P, Ramírez M, García-Delgado R, Fuster JL, González-Díaz M, Menendez P. Prognostic significance of FLT3 mutational status and expression levels in MLL-AF4+ and MLL-germline acute lymphoblastic leukemia. Leukemia 2012; 26:2360-6. [DOI: 10.1038/leu.2012.161] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
70
|
Overexpression of the catalytically impaired Taspase1 T234V or Taspase1 D233A variants does not have a dominant negative effect in T(4;11) leukemia cells. PLoS One 2012; 7:e34142. [PMID: 22570686 PMCID: PMC3343046 DOI: 10.1371/journal.pone.0034142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/22/2012] [Indexed: 01/24/2023] Open
Abstract
Background The chromosomal translocation t(4;11)(q21;q23) is associated with high-risk acute lymphoblastic leukemia of infants. The resulting AF4•MLL oncoprotein becomes activated by Taspase1 hydrolysis and is considered to promote oncogenic transcriptional activation. Hence, Taspase1’s proteolytic activity is a critical step in AF4•MLL pathophysiology. The Taspase1 proenzyme is autoproteolytically processed in its subunits and is assumed to assemble into an αββα-heterodimer, the active protease. Therefore, we investigated here whether overexpression of catalytically inactive Taspase1 variants are able to interfere with the proteolytic activity of the wild type enzyme in AF4•MLL model systems. Methodology/Findings The consequences of overexpressing the catalytically dead Taspase1 mutant, Taspase1T234V, or the highly attenuated variant, Taspase1D233A, on Taspase1’s processing of AF4•MLL and of other Taspase1 targets was analyzed in living cancer cells employing an optimized cell-based assay. Notably, even a nine-fold overexpression of the respective Taspase1 mutants neither inhibited Taspase1’s cis- nor trans-cleavage activity in vivo. Likewise, enforced expression of the α- or β-subunits showed no trans-dominant effect against the ectopically or endogenously expressed enzyme. Notably, co-expression of the individual α- and β-subunits did not result in their assembly into an enzymatically active protease complex. Probing Taspase1 multimerization in living cells by a translocation-based protein interaction assay as well as by biochemical methods indicated that the inactive Taspase1 failed to assemble into stable heterocomplexes with the wild type enzyme. Conclusions Collectively, our results demonstrate that inefficient heterodimerization appears to be the mechanism by which inactive Taspase1 variants fail to inhibit wild type Taspase1’s activity in trans. Our work favours strategies targeting Taspase1’s catalytic activity rather than attempts to block the formation of active Taspase1 dimers to interfere with the pathobiological function of AF4•MLL.
Collapse
|
71
|
Ramos-Mejía V, Montes R, Bueno C, Ayllón V, Real PJ, Rodríguez R, Menendez P. Residual expression of the reprogramming factors prevents differentiation of iPSC generated from human fibroblasts and cord blood CD34+ progenitors. PLoS One 2012; 7:e35824. [PMID: 22545141 PMCID: PMC3335819 DOI: 10.1371/journal.pone.0035824] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/22/2012] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSC) have been generated from different tissues, with the age of the donor, tissue source and specific cell type influencing the reprogramming process. Reprogramming hematopoietic progenitors to hiPSC may provide a very useful cellular system for modelling blood diseases. We report the generation and complete characterization of hiPSCs from human neonatal fibroblasts and cord blood (CB)-derived CD34+ hematopoietic progenitors using a single polycistronic lentiviral vector containing an excisable cassette encoding the four reprogramming factors Oct4, Klf4, Sox2 and c-myc (OKSM). The ectopic expression of OKSM was fully silenced upon reprogramming in some hiPSC clones and was not reactivated upon differentiation, whereas other hiPSC clones failed to silence the transgene expression, independently of the cell type/tissue origin. When hiPSC were induced to differentiate towards hematopoietic and neural lineages those hiPSC which had silenced OKSM ectopic expression displayed good hematopoietic and early neuroectoderm differentiation potential. In contrast, those hiPSC which failed to switch off OKSM expression were unable to differentiate towards either lineage, suggesting that the residual expression of the reprogramming factors functions as a developmental brake impairing hiPSC differentiation. Successful adenovirus-based Cre-mediated excision of the provirus OKSM cassette in CB-derived CD34+ hiPSC with residual transgene expression resulted in transgene-free hiPSC clones with significantly improved differentiation capacity. Overall, our findings confirm that residual expression of reprogramming factors impairs hiPSC differentiation.
Collapse
Affiliation(s)
- Verónica Ramos-Mejía
- Centre Pfizer-Universidad de Granada-Junta de Andalucía for Genomics, Oncological Research (GENyO), Granada, Spain
- * E-mail: (VR); (PM)
| | - Rosa Montes
- Centre Pfizer-Universidad de Granada-Junta de Andalucía for Genomics, Oncological Research (GENyO), Granada, Spain
| | - Clara Bueno
- Centre Pfizer-Universidad de Granada-Junta de Andalucía for Genomics, Oncological Research (GENyO), Granada, Spain
| | - Verónica Ayllón
- Centre Pfizer-Universidad de Granada-Junta de Andalucía for Genomics, Oncological Research (GENyO), Granada, Spain
| | - Pedro J. Real
- Centre Pfizer-Universidad de Granada-Junta de Andalucía for Genomics, Oncological Research (GENyO), Granada, Spain
| | - René Rodríguez
- Centre Pfizer-Universidad de Granada-Junta de Andalucía for Genomics, Oncological Research (GENyO), Granada, Spain
| | - Pablo Menendez
- Centre Pfizer-Universidad de Granada-Junta de Andalucía for Genomics, Oncological Research (GENyO), Granada, Spain
- * E-mail: (VR); (PM)
| |
Collapse
|
72
|
Real PJ, Ligero G, Ayllon V, Ramos-Mejia V, Bueno C, Gutierrez-Aranda I, Navarro-Montero O, Lako M, Menendez P. SCL/TAL1 regulates hematopoietic specification from human embryonic stem cells. Mol Ther 2012; 20:1443-53. [PMID: 22491213 DOI: 10.1038/mt.2012.49] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Determining the molecular regulators/pathways responsible for the specification of human embryonic stem cells (hESCs) into hematopoietic precursors has far-reaching implications for potential cell therapies and disease modeling. Mouse models lacking SCL/TAL1 (stem cell leukemia/T-cell acute lymphocytic leukemia 1) do not survive beyond early embryogenesis because of complete absence of hematopoiesis, indicating that SCL is a master early hematopoietic regulator. SCL is commonly found rearranged in human leukemias. However, there is barely information on the role of SCL on human embryonic hematopoietic development. Differentiation and sorting assays show that endogenous SCL expression parallels hematopoietic specification of hESCs and that SCL is specifically expressed in hematoendothelial progenitors (CD45(-)CD31(+)CD34(+)) and, to a lesser extent, on CD45(+) hematopoietic cells. Enforced expression of SCL in hESCs accelerates the emergence of hematoendothelial progenitors and robustly promotes subsequent differentiation into primitive (CD34(+)CD45(+)) and total (CD45(+)) blood cells with higher clonogenic potential. Short-hairpin RNA-based silencing of endogenous SCL abrogates hematopoietic specification of hESCs, confirming the early hematopoiesis-promoting effect of SCL. Unfortunately, SCL expression on its own is not sufficient to confer in vivo engraftment to hESC-derived hematopoietic cells, suggesting that additional yet undefined master regulators are required to orchestrate the stepwise hematopoietic developmental process leading to the generation of definitive in vivo functional hematopoiesis from hESCs.
Collapse
Affiliation(s)
- Pedro J Real
- Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research (GENyO), Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Rapid generation of human B-cell lymphomas via combined expression of Myc and Bcl2 and their use as a preclinical model for biological therapies. Oncogene 2012; 32:1066-1072. [PMID: 22484426 DOI: 10.1038/onc.2012.117] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although numerous mouse models of B-cell malignancy have been developed via the enforced expression of defined oncogenic lesions, the feasibility of generating lineage-defined human B-cell malignancies using mice reconstituted with modified human hematopoietic stem cells (HSCs) remains unclear. In fact, whether human cells can be transformed as readily as murine cells by simple oncogene combinations is a subject of considerable debate. Here, we describe the development of humanized mouse model of MYC/BCL2-driven 'double-hit' lymphoma. By engrafting human HSCs transduced with the oncogene combination into immunodeficient mice, we generate a fatal B malignancy with complete penetrance. This humanized-MYC/BCL2-model (hMB) accurately recapitulates the histopathological and clinical aspects of steroid-, chemotherapy- and rituximab-resistant human 'double-hit' lymphomas that involve the MYC and BCL2 loci. Notably, this model can serve as a platform for the evaluation of antibody-based therapeutics. As a proof of principle, we used this model to show that the anti-CD52 antibody alemtuzumab effectively eliminates lymphoma cells from the spleen, liver and peripheral blood, but not from the brain. The hMB humanized mouse model underscores the synergy of MYC and BCL2 in 'double-hit' lymphomas in human patients. Additionally, our findings highlight the utility of humanized mouse models in interrogating therapeutic approaches, particularly human-specific monoclonal antibodies.
Collapse
|
74
|
Jakó J, Szerafin L. [Leukemia- and lymphoma-associated flow cytometric, cytogenetic, and molecular genetic aberrations in healthy individuals]. Orv Hetil 2012; 153:531-40. [PMID: 22450142 DOI: 10.1556/oh.2012.29334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most leukemia and lymphoma cases are characterized by specific flow cytometric, cytogenetic and molecular genetic aberrations, which can also be detected in healthy individuals in some cases. The authors review the literature concerning monoclonal B-cell lymphocytosis, and the occurrence of chromosomal translocations t(14;18) and t(11;14), NPM-ALK fusion gene, JAK2 V617F mutation, BCR-ABL1 fusion gene, ETV6-RUNX1(TEL-AML1), MLL-AF4 and PML-RARA fusion gene in healthy individuals. At present, we do not know the importance of these aberrations. From the authors review it is evident that this phenomenon has both theoretical and practical (diagnostic, prognostic, and therapeutic) significance.
Collapse
Affiliation(s)
- János Jakó
- Jósa András Oktatókórház Egészségügyi Szolgáltató Nonprofit Kft. Hematológiai Osztály Nyíregyháza Lukács Ödön u. 4. 4400.
| | | |
Collapse
|
75
|
Affiliation(s)
- Ronald W Stam
- Department of Pediatric Oncology/Haematology, Erasmus MC-Sophia Children's Hospital, Dr. Molewaterplein 50, Room: Ee15-14a, 3015 GE Rotterdam, The Netherlands.
| |
Collapse
|
76
|
Sánchez L, Gutierrez-Aranda I, Ligero G, Martín M, Ayllón V, Real PJ, Ramos-Mejía V, Bueno C, Menendez P. Maintenance of human embryonic stem cells in media conditioned by human mesenchymal stem cells obviates the requirement of exogenous basic fibroblast growth factor supplementation. Tissue Eng Part C Methods 2012; 18:387-96. [PMID: 22136131 DOI: 10.1089/ten.tec.2011.0546] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Despite the improvements in the human embryonic stem cell (hESC) culture systems, very similar conditions to those used to maintain hESCs on mouse feeders are broadly applied to culture methods based on human feeders. Indeed, basic fibroblast growth factor (bFGF), a master hESC-sustaining factor, is still added in nearly all medium formulations for hESC propagation. Human foreskin fibroblasts (HFFs) and mesenchymal stem cells (MSCs) used as feeders have recently been reported to support hESC growth without exogenous bFGF. However, whether hESCs may be maintained undifferentiated without exogenous bFGF using media conditioned (CM) by human feeders remains elusive. We hypothesize that HFFs and hMSCs are likely to be functionally different and therefore the mechanisms by which HFF-CM and MSC-CM support undifferentiated growth of hESCs may differ. We have thus determined whether HFF-CM and/or MSC-CM sustain feeder-free undifferentiated growth of hESC without exogenous supplementation of bFGF. We report that hMSCs synthesize higher levels of endogenous bFGF than HFFs. Accordingly and in contrast to HFF-CM, MSC-CM produced without the addition of exogenous bFGF supports hESC pluripotency and culture homeostasis beyond 20 passages without the need of bFGF supplementation. hESCs maintained without exogenous bFGF in MSC-CM retained hESC morphology and expression of pluripotency surface markers and transcription factors, formed teratomas, and showed spontaneous and lineage-directed in vitro differentiation capacity. Our data indicate that MSC-CM, but not HFF-CM, provides microenvironment cues supporting feeder-free long-term maintenance of pluripotent hESCs and obviates the requirement of exogenous bFGF at any time.
Collapse
Affiliation(s)
- Laura Sánchez
- GENYO-Centre Pfizer-University of Granada-Government of Andalucía for Genomic and Oncological Research, Avda de la Ilustración, Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
A human ESC model for MLL-AF4 leukemic fusion gene reveals an impaired early hematopoietic-endothelial specification. Cell Res 2012; 22:986-1002. [PMID: 22212479 DOI: 10.1038/cr.2012.4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The MLL-AF4 fusion gene is a hallmark genomic aberration in high-risk acute lymphoblastic leukemia in infants. Although it is well established that MLL-AF4 arises prenatally during human development, its effects on hematopoietic development in utero remain unexplored. We have created a human-specific cellular system to study early hemato-endothelial development in MLL-AF4-expressing human embryonic stem cells (hESCs). Functional studies, clonal analysis and gene expression profiling reveal that expression of MLL-AF4 in hESCs has a phenotypic, functional and gene expression impact. MLL-AF4 acts as a global transcriptional activator and a positive regulator of homeobox gene expression in hESCs. Functionally, MLL-AF4 enhances the specification of hemogenic precursors from hESCs but strongly impairs further hematopoietic commitment in favor of an endothelial cell fate. MLL-AF4 hESCs are transcriptionally primed to differentiate towards hemogenic precursors prone to endothelial maturation, as reflected by the marked upregulation of master genes associated to vascular-endothelial functions and early hematopoiesis. Furthermore, we report that MLL-AF4 expression is not sufficient to transform hESC-derived hematopoietic cells. This work illustrates how hESCs may provide unique insights into human development and further our understanding of how leukemic fusion genes, known to arise prenatally, regulate human embryonic hematopoietic specification.
Collapse
|
78
|
Ramos-Mejía V, Fernández AF, Ayllón V, Real PJ, Bueno C, Anderson P, Martín F, Fraga MF, Menendez P. Maintenance of human embryonic stem cells in mesenchymal stem cell-conditioned media augments hematopoietic specification. Stem Cells Dev 2011; 21:1549-58. [PMID: 21936705 DOI: 10.1089/scd.2011.0400] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The realization of human embryonic stem cells (hESC) as a model for human developmental hematopoiesis and in potential cell replacement strategies relies on an improved understanding of the extrinsic and intrinsic factors regulating hematopoietic-specific hESC differentiation. Human mesenchymal stem cells (hMSCs) are multipotent cells of mesodermal origin that form a part of hematopoietic stem cell niches and have an important role in the regulation of hematopoiesis through production of secreted factors and/or cell-to-cell interactions. We have previously shown that hESCs may be successfully maintained feeder free using hMSC-conditioned media (MSC-CM). Here, we hypothesized that hESCs maintained in MSC-CM may be more prone to differentiation toward hematopoietic lineage than hESCs grown in standard human foreskin fibroblast-conditioned media. We report that specification into hemogenic progenitors and subsequent hematopoietic differentiation and clonogenic progenitor capacity is robustly enhanced in hESC lines maintained in MSC-CM. Interestingly, co-culture of hESCs on hMSCs fully abrogates hematopoietic specification of hESCs, thus suggesting that the improved hematopoietic differentiation is mediated by MSC-secreted factors rather than by MSC-hESC physical interactions. To investigate the molecular mechanism involved in this process, we analyzed global (LINE-1) methylation and genome-wide promoter DNA methylation. hESCs grown in MSC-CM showed a decrease of 17% in global DNA methylation and a promoter DNA methylation signature consisting of 45 genes commonly hypomethylated and 102 genes frequently hypermethylated. Our data indicate that maintenance of hESCs in MSC-CM robustly augments hematopoietic specification and that the process seems mediated by MSC-secreted factors conferring a DNA methylation signature to undifferentiated hESCs which may influence further predisposition toward hematopoietic specification.
Collapse
Affiliation(s)
- Verónica Ramos-Mejía
- Stem Cells, Development, and Cancer Laboratory, GENYO: Centro de Genómica e Investigación Oncológica Pfizer-Universidad de Granada-Junta de Andalucía, Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|