51
|
De Santis S, Monaldi C, Mancini M, Bruno S, Cavo M, Soverini S. Overcoming Resistance to Kinase Inhibitors: The Paradigm of Chronic Myeloid Leukemia. Onco Targets Ther 2022; 15:103-116. [PMID: 35115784 PMCID: PMC8800859 DOI: 10.2147/ott.s289306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Protein kinases (PKs) play crucial roles in cellular proliferation and survival, hence their deregulation is a common event in the pathogenesis of solid and hematologic malignancies. Targeting PKs has been a promising strategy in cancer treatment, and there are now a variety of approved anticancer drugs targeting PKs. However, the phenomenon of resistance remains an obstacle to be addressed and overcoming resistance is a goal to be achieved. Chronic myeloid leukemia (CML) is the first as well as one of the best examples of a cancer that can be targeted by molecular therapy; hence, it can be used as a model disease for other cancers. This review aims to summarize up-to-date knowledge on the main mechanisms implicated in resistance to PK inhibitory therapies and to outline the main strategies that are being explored to overcome resistance. The importance of molecular diagnostics and disease monitoring in counteracting resistance will also be discussed.
Collapse
Affiliation(s)
- Sara De Santis
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
- Correspondence: Sara De Santis Insitute of Hematology “Lorenzo e Ariosto Seràgnoli”, Via Massarenti 9, Bologna, 40138, ItalyTel +39 051 2143791Fax +39 051 2144037 Email
| | - Cecilia Monaldi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| | - Manuela Mancini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Samantha Bruno
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| | - Michele Cavo
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Simona Soverini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| |
Collapse
|
52
|
Elsir Khair H, Ahmed Mohamed B, Yousef Nour B, Ali Waggiallah H. Prevalence of BCR-ABL T315I Mutation in Different Chronic Myeloid Leukemia patients Categories. Pak J Biol Sci 2022; 25:175-181. [PMID: 35234007 DOI: 10.3923/pjbs.2022.175.181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Chronic Myelogenous Leukaemia (CML) is a clonal myeloproliferative tumor distinguished by the existence of the Philadelphia chromosome (Ph) resulting from the t (9, 22) (q34, q11) translocation. The BCR-ABL gene and the fusion protein, which has constitutive tyrosine kinase activity, are the outcome of this translocation. The purpose of this study is to determine the prevalence of the BCR-ABL T315I mutation in CML patients. <b>Materials and Methods:</b> Descriptive cross-sectional studies were conducted on 100 CML patients who visited RICK hospital between May, 2018-2019. T315I mutation analysis was done on all patients utilizing (RT/PCR) followed by RLFP to quantify the prevalence of Kinase Domain Mutation analysis (KDM) in CML. <b>Results:</b> The link between haematological parameters and ABL mutations in CML patients was shown to be a substantial positive correlation between T315I and haematological parameters (HB and WBC) but no correlation with PLT. The data revealed that 43 out of 99 CML had T315I, with highly prevalent gene express (43.4%) detected in all CML 56.6%. The correlation of T315I mutations with clinical status was positive significant (p-000). <b>Conclusion:</b> It can be concluded that T315I mutation became significantly higher in CML patients than in other groups of mutations. The detection of ABL kinase domain mutations may be a proper and valuable strategy for optimizing therapeutic methods and preventing treatment delays.
Collapse
MESH Headings
- Cross-Sectional Studies
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/epidemiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Mutation
- Prevalence
- Protein Kinase Inhibitors/pharmacology
Collapse
|
53
|
Tran TH, Tasian SK. Has Ph-like ALL Superseded Ph+ ALL as the Least Favorable Subtype? Best Pract Res Clin Haematol 2021; 34:101331. [PMID: 34865703 DOI: 10.1016/j.beha.2021.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a subset of high-risk B-ALL associated with high relapse risk and inferior clinical outcomes across the pediatric-to-adult age spectrum. Ph-like ALL is characterized by frequent IKZF1 alterations and a kinase-activated gene expression profile similar to that of Philadelphia chromosome-positive (Ph+) ALL, yet lacks the canonical BCR-ABL1 rearrangement. Advances in high-throughput sequencing technologies during the past decade have unraveled the genomic landscape of Ph-like ALL, revealing a diverse array of kinase-activating translocations and mutations that may be amenable to targeted therapies that have set a remarkable precision medicine paradigm for patients with Ph + ALL. Collaborative scientific efforts to identify and characterise Ph-like ALL during the past decade has directly informed current precision medicine trials investigating the therapeutic potential of tyrosine kinase inhibitor-based therapies for children, adolescents, and adults with Ph-like ALL, although the most optimal treatment paradigm for this high-risk group of patients has yet to be established. Herein, we describe the epidemiology, clinical features, and biology of Ph-like ALL, highlight challenges in implementing pragmatic and cost-effective diagnostic algorithms in the clinic, and describe the milieu of treatment strategies under active investigation that strive to decrease relapse risk and improve long-term survival for patients with Ph-like ALL as has been successfully achieved for those with Ph + ALL.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, QC, Canada; Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
54
|
Bommannan KB, Naseem S, Binota J, Varma N, Malhotra P, Varma S. Tyrosine kinase domain mutations in chronic myelogenous leukemia patients: A single center experience. J Postgrad Med 2021; 68:93-97. [PMID: 34747876 PMCID: PMC9196293 DOI: 10.4103/jpgm.jpgm_781_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Introduction: Despite the impressive responses achieved with tyrosine kinase inhibitor (TKI) therapy, treatment resistance develops in 16–33% of patients of chronic myelogenous leukemia (CML). Of the BCR-ABL1 dependent mechanisms, mutations in the tyrosine kinase domain (TKD) are the commonest cause of resistance. Material and Methods: Allele specific oligonucleotide - polymerase chain reaction (ASO-PCR) was done for testing the six common TKD mutations, T315I, G250E, E255K, M244V, M351T, and Y253F. Results and Conclusion: TKD mutation study was done on 83 patients. Of these 44 (53%) were positive for one or more mutations. On analyzing specific mutations, E255K was the commonest mutation seen in 24 (29%) cases, followed by T315I in 23(28%) cases. Y253F mutation was not seen in the present study sample. In the present cohort of 83 patients, 29 (35%) cases were positive for single mutation, 12 (14%) had two mutations and 3 (4%) had three mutations.
Collapse
Affiliation(s)
- K B Bommannan
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - S Naseem
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - J Binota
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - N Varma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - P Malhotra
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - S Varma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
55
|
Park H, Kim I, Kim HJ, Shin DY, Lee SY, Kwon OH, Kim DY, Lee KH, Ahn JS, Park J, Sohn SK, Lee JO, Cheong JW, Kim KH, Kim HG, Kim H, Lee YJ, Nam SH, Do YR, Park SG, Park SK, Bae SH, Song HH, Oh D, Jung CW, Park S. Ultra-deep sequencing mutation analysis of the BCR/ABL1 kinase domain in newly diagnosed chronic myeloid leukemia patients. Leuk Res 2021; 111:106728. [PMID: 34673444 DOI: 10.1016/j.leukres.2021.106728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022]
Abstract
Ultra-deep sequencing detects low-frequency genetic mutations with high sensitivity. We used this approach to prospectively examine mutations in the BCR/ABL1 tyrosine kinase from patients with newly diagnosed, chronic-phase chronic myeloid leukemia (CML) treated with the tyrosine kinase inhibitor nilotinib. Between May 2013 and November 2014, 50 patients from 18 institutions were enrolled in the study. We screened 103 somatic mutations and found that mutations in the P-loop domain were the most frequent (173/454 mutations in the P-loop) and noted the presence of the V299 L mutation (dasatinib-resistant/nilotinib-sensitive) in 98 % of patients (49/50). No patients had Y253H, E255 V, or F359 V/C/I mutations, which would recommend dasatinib rather than nilotinib treatment. The S417Y mutation was associated with lower achievement of a major molecular response (MMR) at 6 months, and the V371A mutation was associated with reduced MMR and MR4.5 durations (MMR for 2 years: 100 % for no mutation vs. 75 % for mutation, P=0.039; MR4.5 for 15 months: 94.1 % vs. 25 %, P=0.002). Patients with known nilotinib-resistant mutations had lower rates of MR4.5 achievement. In conclusion, ultra-deep sequencing is a sensitive method for genetic-based treatment decisions. Based on the results of these mutational analyses, nilotinib treatment is a promising option for Korean patients with CML.
Collapse
Affiliation(s)
- Hyunkyung Park
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea; Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Inho Kim
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Hyeong-Joon Kim
- Department of Internal Medicine, Chonnam National University, Hwasun Hospital, Hwasun, South Korea.
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | - Dae-Young Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyoo-Hyung Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae-Sook Ahn
- Department of Internal Medicine, Chonnam National University, Hwasun Hospital, Hwasun, South Korea
| | - Jinny Park
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Sang-Kyun Sohn
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Jeong-Ok Lee
- Department of Internal Medicine, Seoul National University, Bundang Hospital, Seongnam, South Korea
| | - June-Won Cheong
- Department of Internal Medicine, Yonsei University, Severance Hospital, Seoul, South Korea
| | - Kyoung Ha Kim
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea
| | - Hoon-Gu Kim
- Department of Internal Medicine, Gyeongsang Institute of Health Sciences, Gyeongsang National University College of Medicine and Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Hawk Kim
- Department of Internal Medicine, Ulsan University Hospital, Ulsan, South Korea
| | - Yoo Jin Lee
- Department of Internal Medicine, Ulsan University Hospital, Ulsan, South Korea
| | - Seung-Hyun Nam
- Department of Internal Medicine, VHS Medical Center, Seoul, South Korea
| | - Young Rok Do
- Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - Sang-Gon Park
- Department of Internal Medicine, Chosun University Hospital, Gwangju, South Korea
| | - Seong Kyu Park
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Sung Hwa Bae
- Department of Internal Medicine, Daegu Catholic University Medical Center, Daegu, South Korea
| | - Hun Ho Song
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Seoul, South Korea
| | - Doyeun Oh
- Department of Internal Medicine, CHA Bundang Medical Center, Seongnam, South Korea
| | - Chul Won Jung
- Department of Internal Medicine, Samsung Medical Center, Seoul, South Korea
| | - Seonyang Park
- Department of Internal Medicine, Inje University, Haeundae Paik Hospital, Busan, South Korea
| |
Collapse
|
56
|
Aznab M, Shahriari-Ahmadi A, Heydarpour F. Evaluation of the outcomes in patients with chronic myeloid leukemia treated with imatinib in 18-year follow-up. Leuk Res Rep 2021; 16:100271. [PMID: 34631408 PMCID: PMC8487986 DOI: 10.1016/j.lrr.2021.100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
The objective of this paper is to examine the effects of Imatinib on patients who are at the chronic phase of chronic myeloid leukemia (CML). Method: Totally, 79 patients with CML who received the treatment between 2003 and 2020 entered the study. The patients were evaluated in terms of molecular response rate and overall survival (OS). Results: About 75.9% of patients achieved deep molecular response in mean follow-up of 89.92 months. The OS rate was about 91.2%. Conclusion: There was no considerable cumulative toxicity with Imatinib long-term use. A high percent of patients had a deep molecular response.
Collapse
Affiliation(s)
- Mozafar Aznab
- Internal Medicine Department,Medical Oncologist Hematologist, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Shahriari-Ahmadi
- Medical Oncologist-Hematologist, Iran University for Medical sciences, Tehran, Iran
| | - Fatemeh Heydarpour
- Internal Medicine Department,Medical Oncologist Hematologist, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Corresponding author at: PHD in Epidemiology, Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
57
|
Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia-From Molecular Mechanisms to Clinical Relevance. Cancers (Basel) 2021; 13:cancers13194820. [PMID: 34638304 PMCID: PMC8508378 DOI: 10.3390/cancers13194820] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic myeloid leukemia (CML) is a myeloproliferative neoplasia associated with a molecular alteration, the fusion gene BCR-ABL1, that encodes the tyrosine kinase oncoprotein BCR-ABL1. This led to the development of tyrosine kinase inhibitors (TKI), with Imatinib being the first TKI approved. Although the vast majority of CML patients respond to Imatinib, resistance to this targeted therapy contributes to therapeutic failure and relapse. Here we review the molecular mechanisms and other factors (e.g., patient adherence) involved in TKI resistance, the methodologies to access these mechanisms, and the possible therapeutic approaches to circumvent TKI resistance in CML. Abstract Resistance to targeted therapies is a complex and multifactorial process that culminates in the selection of a cancer clone with the ability to evade treatment. Chronic myeloid leukemia (CML) was the first malignancy recognized to be associated with a genetic alteration, the t(9;22)(q34;q11). This translocation originates the BCR-ABL1 fusion gene, encoding the cytoplasmic chimeric BCR-ABL1 protein that displays an abnormally high tyrosine kinase activity. Although the vast majority of patients with CML respond to Imatinib, a tyrosine kinase inhibitor (TKI), resistance might occur either de novo or during treatment. In CML, the TKI resistance mechanisms are usually subdivided into BCR-ABL1-dependent and independent mechanisms. Furthermore, patients’ compliance/adherence to therapy is critical to CML management. Techniques with enhanced sensitivity like NGS and dPCR, the use of artificial intelligence (AI) techniques, and the development of mathematical modeling and computational prediction methods could reveal the underlying mechanisms of drug resistance and facilitate the design of more effective treatment strategies for improving drug efficacy in CML patients. Here we review the molecular mechanisms and other factors involved in resistance to TKIs in CML and the new methodologies to access these mechanisms, and the therapeutic approaches to circumvent TKI resistance.
Collapse
|
58
|
Brown PA, Shah B, Advani A, Aoun P, Boyer MW, Burke PW, DeAngelo DJ, Dinner S, Fathi AT, Gauthier J, Jain N, Kirby S, Liedtke M, Litzow M, Logan A, Luger S, Maness LJ, Massaro S, Mattison RJ, May W, Oluwole O, Park J, Przespolewski A, Rangaraju S, Rubnitz JE, Uy GL, Vusirikala M, Wieduwilt M, Lynn B, Berardi RA, Freedman-Cass DA, Campbell M. Acute Lymphoblastic Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19:1079-1109. [PMID: 34551384 DOI: 10.6004/jnccn.2021.0042] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The NCCN Guidelines for Acute Lymphoblastic Leukemia (ALL) focus on the classification of ALL subtypes based on immunophenotype and cytogenetic/molecular markers; risk assessment and stratification for risk-adapted therapy; treatment strategies for Philadelphia chromosome (Ph)-positive and Ph-negative ALL for both adolescent and young adult and adult patients; and supportive care considerations. Given the complexity of ALL treatment regimens and the required supportive care measures, the NCCN ALL Panel recommends that patients be treated at a specialized cancer center with expertise in the management of ALL This portion of the Guidelines focuses on the management of Ph-positive and Ph-negative ALL in adolescents and young adults, and management in relapsed settings.
Collapse
Affiliation(s)
- Patrick A Brown
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | - Anjali Advani
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | | | | | - Shira Dinner
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | - Jordan Gauthier
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | - Nitin Jain
- The University of Texas MD Anderson Cancer Center
| | | | | | | | - Aaron Logan
- UCSF Helen Diller Family Comprehensive Cancer Center
| | - Selina Luger
- Abramson Cancer Center at the University of Pennsylvania
| | | | | | | | | | | | - Jae Park
- Memorial Sloan Kettering Cancer Center
| | | | | | - Jeffrey E Rubnitz
- St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | - Geoffrey L Uy
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | - Beth Lynn
- National Comprehensive Cancer Network
| | | | | | | |
Collapse
|
59
|
Tadesse F, Asres G, Abubeker A, Gebremedhin A, Radich J. Spectrum of BCR-ABL Mutations and Treatment Outcomes in Ethiopian Imatinib-Resistant Patients With Chronic Myeloid Leukemia. JCO Glob Oncol 2021; 7:1187-1193. [PMID: 34292760 PMCID: PMC8457809 DOI: 10.1200/go.21.00058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the successes achieved in chronic myeloid leukemia (CML) with tyrosine kinase inhibitor (TKI) therapy, resistance remains an obstacle. The most common mechanism of resistance is the acquisition of a point mutation in the BCR-ABL kinase domain. Few studies have reported African patients with CML in regard to such mutations. We here report the types of BCR-ABL mutations in Ethiopian imatinib-resistant patients with CML and their outcome.
Collapse
Affiliation(s)
| | - Getahun Asres
- University of Gondar, College of Medicine and Health Sciences, Gondar, Ethiopia
| | - Abdulaziz Abubeker
- Addis Ababa University College of Health Sciences, Addis Ababa, Ethiopia
| | - Amha Gebremedhin
- Addis Ababa University College of Health Sciences, Addis Ababa, Ethiopia
| | | |
Collapse
|
60
|
Shen Y, Zhang Y, Xue W, Yue Z. dbMCS: A Database for Exploring the Mutation Markers of Anti-Cancer Drug Sensitivity. IEEE J Biomed Health Inform 2021; 25:4229-4237. [PMID: 34314366 DOI: 10.1109/jbhi.2021.3100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The identification of mutation markers and the selection of appropriate treatment for patients with specific genome mutations are important steps in the development of targeted therapies and the realization of precision medicine for human cancers. To investigate the baseline characteristics of drug sensitivity markers and develop computational methods of mutation effect prediction, we presented a manually curated online- based database of mutation Markers for anti-Cancer drug Sensitivity (dbMCS). Currently, dbMCS contains 1271 mutations and 4427 mutation-disease-drug associations (3151 and 1276 for sensitivity and resistance, respectively) with their PubMed indexed articles. By comparing the mutations in dbMCS with the putative neutral polymorphisms, we investigated the characteristics of drug sensitivity markers. We found that the mutation markers tend to significantly impact on high-conservative regions both in DNA sequences and protein domains. And some of them presented pleiotropic effects depending on the tumor context, appearing concurrently in the sensitivity and resistance categories. In addition, we preliminarily explored the machine learning-based methods for identifying mutation markers of anti-cancer drug sensitivity and produced optimistic results, which suggests that a reliable dataset may provide new insights and essential clues for future cancer pharmacogenomics studies. dbMCS is available at http://bioinfo.aielab.cc/dbMCS/.
Collapse
|
61
|
Romzova M, Smitalova D, Hynst J, Tom N, Loja T, Herudkova Z, Jurcek T, Stejskal L, Zackova D, Mayer J, Racil Z, Culen M. Hierarchical distribution of somatic variants in newly diagnosed chronic myeloid leukaemia at diagnosis and early follow-up. Br J Haematol 2021; 194:604-612. [PMID: 34212373 DOI: 10.1111/bjh.17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/30/2022]
Abstract
There is an emerging body of evidence that patients with chronic myeloid leukaemia (CML) may carry not only breakpoint cluster region-Abelson murine leukaemia viral oncogene homologue 1 (BCR-ABL1) kinase domain mutations (BCR-ABL1 KD mutations), but also mutations in other genes. Their occurrence is highest during progression or at failure, but their impact at diagnosis is unclear. In the present study, we prospectively screened for mutations in 18 myeloid neoplasm-associated genes and BCR-ABL1 KD in the following populations: bulk leucocytes, CD34+ CD38+ progenitors and CD34+ CD38- stem cells, at diagnosis and early follow-up. In our cohort of chronic phase CML patients, nine of 49 patients harboured somatic mutations in the following genes: six ASXL1 mutations, one SETBP1, one TP53, one JAK2, but no BCR-ABL1 KD mutations. In seven of the nine patients, mutations were detected in multiple hierarchical populations including bulk leucocytes at diagnosis. The mutation dynamics reflected the BCR-ABL1 transcript decline induced by treatment in eight of the nine cases, suggesting that mutations were acquired in the Philadelphia chromosome (Ph)-positive clone. In one patient, the JAK2 V617F mutation correlated with a concomitant Ph-negative myeloproliferative neoplasm and persisted despite a 5-log reduction of the BCR-ABL1 transcript. Only two of the nine patients with mutations failed first-line therapy. No correlation was found between the mutation status and survival or response outcomes.
Collapse
Affiliation(s)
- Marianna Romzova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Dagmar Smitalova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jakub Hynst
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Nikola Tom
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Loja
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zdenka Herudkova
- Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Jurcek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Lukas Stejskal
- Department of Hemato-Oncology, University Hospital, Ostrava, Czech Republic
| | - Daniela Zackova
- Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jiri Mayer
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Zdenek Racil
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Martin Culen
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
62
|
Potential functions of hsa-miR-155-5p and core genes in chronic myeloid leukemia and emerging role in human cancer: A joint bioinformatics analysis. Genomics 2021; 113:1647-1658. [PMID: 33862181 DOI: 10.1016/j.ygeno.2021.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/07/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Considering the critical roles of hsa-miR-155-5p participated in hematopoietic system, this study aims to clarify the possible pathogenesis of chronic myeloid leukemia (CML) induced by hsa-miR-155-5p.Three different strategies were employed, namely a network-based pipeline, a survival analysis and genetic screening method, and a simulation modeling approach, to assess the oncogenic role of hsa-miR-155-5p in CML. We identified new potential roles of hsa-miR-155-5p in CML, involving the BCR/ABL-mediated leukemogenesis through MAPK signaling. Several promising targets including E2F2, KRAS and FLI1 were screened as candidate diagnostic marker genes. The survival analysis revealed that mRNA expression of E2F2, KRAS and FLI1 was negatively correlated with hsa-miR-155-5p and these targets were significantly associated with poor overall survival. Furthermore, an overlap between CML-related genes and hsa-miR-155-5p target genes was revealed using competing endogenous RNA (ceRNA) networks analysis. Taken together, our results reveal the dynamic regulatory aspect of hsa-miR-155-5p as potential player in CML pathogenesis.
Collapse
|
63
|
Hendel SJ, Shoulders MD. Directed evolution in mammalian cells. Nat Methods 2021; 18:346-357. [PMID: 33828274 DOI: 10.1038/s41592-021-01090-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Directed evolution experiments are typically carried out using in vitro systems, bacteria, or yeast-even when the goal is to probe or modulate mammalian biology. Performing directed evolution in systems that do not match the intended mammalian environment severely constrains the scope and functionality of the targets that can be evolved. We review new platforms that are now making it possible to use the mammalian cell itself as the setting for directed evolution and present an overview of frontier challenges and high-impact targets for this approach.
Collapse
Affiliation(s)
- Samuel J Hendel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
64
|
Moncada A, Pancrazzi A. Lab tests for MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:187-220. [PMID: 35153004 DOI: 10.1016/bs.ircmb.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molecular laboratory investigations for myeloproliferative neoplasm (MPN) can ideally be divided into two distincts groups, those for the detection of the BCR-ABL rearrangement (suspect of chronic myeloid leukemia) and those for the variants determination of the driver genes of the negative Philadelphia forms (MPN Ph neg). The BCR-ABL detection is based on RT-Polymerase Chain Reaction techniques and more recently on droplet digital PCR (ddPCR). For this type of analysis, combined with chromosome banding analysis (CBA) and Fluorescent in situ hybridization (FISH), it is essential to quantify BCR-ABL mutated copies by standard curve method. The investigation on driver genes for MPN Ph neg forms includes activity for erythroid forms such as Polycythemia Vera (test JAK2V617F and JAK2 exon 12), for non-erythroid forms such as essential thrombocythemia and myelofibrosis (test JAK2V617F, CALR exon 9, MPL exon 10), for "atypical" ones such as mastocytosis (cKIT D816V test) and for hypereosinophilic syndrome (FIP1L1-PDGFRalpha test). It's crucial to assign prognosis value through calculating allelic burden of JAK2 V617F variant and determining CALR esone 9 variants (type1/1like, type2/2like and atypical ones). A fundamental innovation for investigating triple negative cases for JAK2, CALR, MPL and for providing prognostic score is the use of Next Generation Sequencing panels containing high molecular risk genes as ASXL1, EZH2, TET2, IDH1/IDH2, SRSF2. This technique allows to detect additional or subclonal mutations which are usually acquired in varying sized sub-clones of hematopoietic progenitors. These additional variants have a prognostic significance and should be indagated to exclude false negative cases.
Collapse
Affiliation(s)
- Alice Moncada
- Laboratory Medicine Department, Molecular and Clinical Pathology Sector, Azienda USL Toscana Sudest, Ospedale San Donato, Arezzo, Italy
| | - Alessandro Pancrazzi
- Laboratory Medicine Department, Molecular and Clinical Pathology Sector, Azienda USL Toscana Sudest, Ospedale San Donato, Arezzo, Italy.
| |
Collapse
|
65
|
CNS Involvement in a Patient with Chronic Myeloid Leukemia. Case Rep Hematol 2021; 2021:8891376. [PMID: 33777461 PMCID: PMC7972862 DOI: 10.1155/2021/8891376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/29/2020] [Accepted: 02/05/2021] [Indexed: 11/29/2022] Open
Abstract
Inspite of medication compliance, some chronic myeloid leukemia (CML) patients will relapse/progress into an accelerated phase or blast crisis. Central nervous system (CNS) involvement is a rare manifestation of such a relapse. Here, we report a case of 23-year-old female who was diagnosed with CML in the accelerated phase and subsequently treated with imatinib. She developed early relapse in her CNS, and her treatment was switched to dasatinib and intrathecal chemotherapy with cytarabine and methotrexate. Her CNS disease went into remission, and she underwent matched unrelated donor (MUD) hematopoietic stem cell transplant (HSCT). We discuss various mechanisms of treatment failure, importance of vigilance for symptoms and signs of treatment failure/relapse, indications for use of different tyrosine kinase inhibitors (TKIs), and management of blast crises in CML.
Collapse
|
66
|
Lu T, Cao J, Zou F, Li X, Wang A, Wang W, Liang H, Liu Q, Hu C, Chen C, Hu Z, Wang W, Li L, Ge J, Shen Y, Ren T, Liu J, Xia R, Liu Q. Discovery of a highly potent kinase inhibitor capable of overcoming multiple imatinib-resistant ABL mutants for chronic myeloid leukemia (CML). Eur J Pharmacol 2021; 897:173944. [PMID: 33581133 DOI: 10.1016/j.ejphar.2021.173944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 11/29/2022]
Abstract
As the critical driving force for chronic myeloid leukemia (CML), BCR gene fused ABL kinase has been extensively explored as a validated target of drug discovery. Although imatinib has achieved tremendous success as the first-line treatment for CML, the long-term application ultimately leads to resistance, primarily via various acquired mutations occurring in the BCR-ABL kinase. Although dasatinib and nilotinib have been approved as second-line therapies that could overcome some of these mutants, the most prevalent gatekeeper T315I mutant remains unconquered. Here, we report a novel type II kinase inhibitor, CHMFL-48, that potently inhibits the wild-type BCR-ABL (wt) kinase as well as a panel of imatinib-resistant mutants, including T315I, F317L, E255K, Y253F, and M351T. CHMFL-48 displayed great inhibitory activity against ABL wt (IC50: 1 nM, 70-fold better than imatinib) and the ABL T315I mutant (IC50: 0.8 nM, over 10,000-fold better than imatinib) in a biochemical assay and potently blocked the autophosphorylation of BCR-ABL wt and BCR-ABL mutants in a cellular context, which further affected downstream signalling mediators, including signal transducer and activator of transcription 5 (STAT5) and CRK like proto-oncogene (CRKL), and led to the cell cycle progression blockage as well as apoptosis induction. CHMFL-48 also exhibited great anti-leukemic efficacies in vivo in K562 cells and p210-T315I-transformed BaF3 cell-inoculated murine models. This discovery extended the pharmacological diversity of BCR-ABL kinase inhibitors and provided more potential options for anti-CML therapies.
Collapse
Affiliation(s)
- Tingting Lu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China
| | - Jiangyan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Xixiang Li
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Wenliang Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Huamin Liang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Qingwang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Cheng Chen
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zhenquan Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Lili Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Jian Ge
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Yang Shen
- The First Hospital of Jiaxing, 1882 Zhonghuan South Rd, Jiaxing, Zhejiang, 314000, PR China
| | - Tao Ren
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ruixiang Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China.
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
67
|
Soverini S, Martelli M, Bavaro L, De Benedittis C, Papayannidis C, Sartor C, Sorà F, Albano F, Galimberti S, Abruzzese E, Annunziata M, Russo S, Stulle M, Imovilli A, Bonifacio M, Maino E, Stagno F, Maria Basilico C, Borlenghi E, Fozza C, Mignone F, Minari R, Stella S, Baccarani M, Cavo M, Martinelli G. Next-generation sequencing improves BCR-ABL1 mutation detection in Philadelphia chromosome-positive acute lymphoblastic leukaemia. Br J Haematol 2021; 193:271-279. [PMID: 33403687 DOI: 10.1111/bjh.17301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/06/2020] [Indexed: 01/30/2023]
Abstract
BCR-ABL1 kinase domain mutation testing in tyrosine kinase inhibitor (TKI)-resistant Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukaemia (ALL) patients is routinely performed by Sanger sequencing (SS). Recently, next-generation sequencing (NGS)-based approaches have been developed that afford greater sensitivity and straightforward discrimination between compound and polyclonal mutations. We performed a study to compare the results of SS and NGS in a consecutive cohort of 171 Ph+ ALL patients. At diagnosis, 0/44 and 3/44 patients were positive for mutations by SS and NGS respectively. Out of 47 patients with haematologic resistance, 45 had mutations according to both methods, but in 25 patients NGS revealed additional mutations undetectable by SS. Out of 80 patients in complete haematologic response but with BCR-ABL1 ≥0·1%, 28 (35%) and 52 (65%) were positive by SS and NGS respectively. Moreover, in 12 patients positive by SS, NGS detected additional mutations. NGS resolved clonal complexity in 34 patients with multiple mutations at the same or different codons and identified 35 compound mutations. Our study demonstrates that, in Ph+ ALL on TKI therapy, NGS enables more accurate assessment of mutation status both in patients who fail therapy and in patients with minimal residual disease above 0·1%.
Collapse
Affiliation(s)
- Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Margherita Martelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Luana Bavaro
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Caterina De Benedittis
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Cristina Papayannidis
- Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia, Università degli Studi di Bologna, Bologna, Italia
| | - Chiara Sartor
- Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia, Università degli Studi di Bologna, Bologna, Italia
| | - Federica Sorà
- Hematology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Albano
- Hematology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Sara Galimberti
- Hematology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Sabina Russo
- Internal Medicine Unit, AOU Policlinico di Messina, Messina, Italy
| | - Manuela Stulle
- Hematology Unit, Azienda Sanitaria Universitaria Integrata, Trieste, Italy
| | - Annalisa Imovilli
- Hematology Unit, Azienda Unità Sanitaria Locale-IRCCS, Reggio Emilia, Italy
| | | | - Elena Maino
- Hematology Unit, Ospedale Dell'Angelo, Mestre, Italy
| | - Fabio Stagno
- Hematology Section and BMT Unit, Rodolico Hospital, AOU Policlinico V. Emanuele, Catania, Italy
| | - Claudia Maria Basilico
- ASST dei Sette Laghi, Presidio di Varese Ospedale Circolo Fondazione Macchi, Varese, Italy
| | | | - Claudio Fozza
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Flavio Mignone
- Department of Science and Innovation Technology (DISIT), University of Piemonte Orientale, Alessandria, Italy
| | | | - Stefania Stella
- Department of Clinical and Experimental Medicine and Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele Catania, Catania, Italy
| | | | - Michele Cavo
- Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia, Università degli Studi di Bologna, Bologna, Italia
| | - Giovanni Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| |
Collapse
|
68
|
Iqbal Z, Absar M, Mahmood A, Aleem A, Iqbal M, Jameel A, Akhtar T, Karim S, Rasool M, Mirza Z, Khalid M, Akram AM, Sabar MF, Khalid AM, Aljarrah K, Iqbal J, Khalid M, Shah IH, Alanazi N. Discovery and Protein Modeling Studies of Novel Compound Mutations Causing Resistance to Multiple Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia. Asian Pac J Cancer Prev 2020; 21:3517-3526. [PMID: 33369447 PMCID: PMC8046299 DOI: 10.31557/apjcp.2020.21.12.3517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/07/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE BCR-ABL fusion oncogene is the hallmark of chronic myeloid leukemia (CML), causing genomic instability which leads to accumulation of mutations in BCR-ABL as well as other genes. BCR-ABL mutations are the cause of tyrosine kinase inhibitors (TKIs) resistance in CML. Recently, compound BCR-ABL mutations have been reported to resist all FDA approved TKIs. Therefore, finding novel compound BCR-ABL mutations can help and clinically manage CML. Therefore, our objective was to find out novel drug-resistant compound BCR-ABL mutations in CML and carry out their protein modelling studies. METHODOLOGY Peripheral blood samples were collected from ten imatinib resistant CML patients receiving nilotinib treatment. BCR-ABL transcript mutations were investigated by employing capillary sequencing. Patient follow-up was carried out using European LeukemiaNet guidelines. Protein modeling studies were carried out for new compound mutations using PyMol to see the effects of mutations at structural level. RESULTS A novel compound mutation (K245N mutation along with G250W mutation) and previously known T351I utation was detected in two of the nilotinib resistance CML patients respectively while in the rest of 8 nilotinib responders, no resistant mutations were detected. Protein modelling studies indicated changes in BCR-ABL mutant protein which may have negatively impacted its binding with nilotinib leading to drug resistance. CONCLUSION We report a novel nilotinib resistant BCR-ABL compound mutation (K245N along with G250W mutation) which impacts structural modification in BCR-ABL mutant protein leading to drug resistance. As compound mutations pose a new threat by causing resistance to all FDA approved tyrosine kinase inhibitors in BCR-ABL+ leukemias, our study opens a new direction for in vitro characterization of novel BCR-ABL compound mutations and their resistant to second generation and third generation TKIs.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor/genetics
- Drug Resistance, Neoplasm/drug effects
- Female
- Follow-Up Studies
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Models, Molecular
- Mutation
- Prognosis
- Protein Conformation
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Zafar Iqbal
- Hematology Oncology and Pharmacogenetics Engineering Sciences (HOPES) Group, Health Sciences Research Laboratories, Department of Zoology, University of the Punjab, Lahore, & University of Education, Lahore, Pakistan.
| | - Muhammad Absar
- Hematology Oncology and Pharmacogenetics Engineering Sciences (HOPES) Group, Health Sciences Research Laboratories, Department of Zoology, University of the Punjab, Lahore, & University of Education, Lahore, Pakistan.
| | - Amer Mahmood
- Department of Anatomy, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia.
| | - Aamer Aleem
- Hematology/Oncology Division, Department of Medicine, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia.
| | - Mudassar Iqbal
- Foreign Faculty, Asian Medical Institute, Kant City, National Surgical Centre, Bishkek, Kyrgyzstan, and Higher Education Commission Program in “Hematology Oncology and Pharmacogenetics Engineering Sciences (HOPES)”, Kyrgyzstan.
| | - Abid Jameel
- Post-Graduate Medical Institute, Hayatabad Medical Complex, Peshawar, Pakistan.
| | - Tanveer Akhtar
- Hematology Oncology and Pharmacogenetics Engineering Sciences (HOPES) Group, Health Sciences Research Laboratories, Department of Zoology, University of the Punjab, Lahore, & University of Education, Lahore, Pakistan.
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research & Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research & Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Zeenat Mirza
- Center of Excellence in Genomic Medicine Research & Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | - Afia Muhammad Akram
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan.
| | | | - Ahmad M Khalid
- Departments of Biotechnology and Genomic Medicine, University of Sialkot, Pakistan.
| | - Khalid Aljarrah
- College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS)/ KAIMRC/SSBMT, National Guards Health Affairs, Al-Ahsa, Kingdom of Saudi Arabia.
- Jordan University of Science and Technology, Irbid, Jordan.
| | - Janhangir Iqbal
- National Guard Health Affairs, King Abdullah International Medical Research Centre (KAIMRC), Al-Ahsa, Saudi Arabia.
| | - Muhammad Khalid
- Allied Hospital, Punjab Medical College & Sahil Hospital, Faisalabad, Pakistan.
| | - Ijaz H Shah
- Allied Hospital, Punjab Medical College & Sahil Hospital, Faisalabad, Pakistan.
| | - Nawaf Alanazi
- College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS)/ KAIMRC/SSBMT, National Guards Health Affairs, Al-Ahsa, Kingdom of Saudi Arabia.
| |
Collapse
|
69
|
Soverini S, Martelli M, Bavaro L, De Benedittis C, Sica S, Sorà F, Iurlo A, Bonifacio M, Pregno P, Galimberti S, Lunghi F, Albano F, D'Adda M, Crugnola M, Capodanno I, Castagnetti F, Gugliotta G, Papayannidis C, Rosti G, Percesepe A, Mignone F, Baccarani M, Martinelli G, Cavo M. BCR-ABL1 compound mutants: prevalence, spectrum and correlation with tyrosine kinase inhibitor resistance in a consecutive series of Philadelphia chromosome-positive leukemia patients analyzed by NGS. Leukemia 2020; 35:2102-2107. [PMID: 33262525 DOI: 10.1038/s41375-020-01098-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy.
| | - Margherita Martelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Luana Bavaro
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Caterina De Benedittis
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Simona Sica
- Fondazione Policlinico Universitario A Gemelli-IRCCS, Istituto di Ematologia e Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Sorà
- Fondazione Policlinico Universitario A Gemelli-IRCCS, Istituto di Ematologia e Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Patrizia Pregno
- Hematology Unit, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Francesca Lunghi
- Hematology and BMT Unit, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Mariella D'Adda
- Hematology Unit, Spedali Civili Azienda Ospedaliera, Brescia, Italy
| | - Monica Crugnola
- Division of Hematology, Azienda Ospedialiero-Universitaria, Parma, Italy
| | - Isabella Capodanno
- Hematology Unit, Azienda Unità Sanitaria Locale-IRCCS, Reggio Emilia, Italy
| | - Fausto Castagnetti
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Bologna, Italia.,Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, Bologna, Italia
| | - Gabriele Gugliotta
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Bologna, Italia.,Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, Bologna, Italia
| | - Cristina Papayannidis
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Bologna, Italia.,Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, Bologna, Italia
| | - Gianantonio Rosti
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Bologna, Italia.,Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, Bologna, Italia
| | | | - Flavio Mignone
- Department of Science and Innovation Technology (DISIT), University of Piemonte Orientale, Alessandria, Italy
| | - Michele Baccarani
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Giovanni Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy.,Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Michele Cavo
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Bologna, Italia.,Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, Bologna, Italia
| |
Collapse
|
70
|
Soverini S, Bernardi S, Galimberti S. Molecular Testing in CML between Old and New Methods: Are We at a Turning Point? J Clin Med 2020; 9:E3865. [PMID: 33261150 PMCID: PMC7760306 DOI: 10.3390/jcm9123865] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular monitoring of minimal residual disease (MRD) and BCR-ABL1 kinase domain (KD) mutation testing have a well consolidated role in the routine management of chronic myeloid leukemia (CML) patients, as they provide precious information for therapeutic decision-making. Molecular response levels are used to define whether a patient has an "optimal", "warning", or "failure" response to tyrosine kinase inhibitor (TKI) therapy. Mutation status may be useful to decide whether TKI therapy should be changed and which alternative TKI (or TKIs) are most likely to be effective. Real-time quantitative polymerase chain reaction (RQ-qPCR) and Sanger sequencing are currently the gold standard for molecular response monitoring and mutation testing, respectively. However, in recent years, novel technologies such as digital PCR (dPCR) and next-generation sequencing (NGS) have been evaluated. Here, we critically describe the main features of these old and novel technologies, provide an overview of the recently published studies assessing the potential clinical value of dPCR and NGS, and discuss how the state of the art might evolve in the next years.
Collapse
Affiliation(s)
- Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, Hematology/Oncology “Lorenzo e Ariosto Seràgnoli”, University of Bologna, 40138 Bologna, Italy;
| | - Simona Bernardi
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Hematology Unit, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
71
|
Hehlmann R. The New ELN Recommendations for Treating CML. J Clin Med 2020; 9:E3671. [PMID: 33207600 PMCID: PMC7697560 DOI: 10.3390/jcm9113671] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
After normal survival has been achieved in most patients with chronic myeloid leukemia (CML), a new goal for treating CML is survival at good quality of life, with treatment discontinuation in sustained deep molecular response (DMR; MR4 or deeper) and treatment-free remission (TFR). Four tyrosine kinase inhibitors (TKIs) have been approved for first-line therapy: imatinib, dasatinib, nilotinib, bosutinib. Unexpectedly, the outcome of long-term randomized trials has shown that faster response as achieved by higher doses of imatinib, imatinib in combination, or second-generation (2G)-TKIs, does not translate into a survival advantage. Serious and frequent, and in part cumulative long-term toxicities, have led to a reevaluation of the role of 2G-TKIs in first-line therapy. Generic imatinib is the current most cost-effective first-line therapy in the chronic phase. A change of treatment is recommended when intolerance cannot be ameliorated or molecular milestones are not reached. Patient comorbidities and contraindications of all TKIs must be considered. Risk profile at diagnosis should be assessed with the EUTOS score for long-term survival (ELTS). Monitoring of response is by polymerase chain reaction (PCR). Cytogenetics is still required in the case of atypical translocations, atypical transcripts, and additional chromosomal aberrations. TKIs are contraindicated during pregnancy. Since the majority of patients are at risk of lifelong exposure to TKIs, amelioration of chronic low-grade side effects is important.
Collapse
Affiliation(s)
- Rüdiger Hehlmann
- ELN-Foundation, Weinheim and Medical Faculty Mannheim of Heidelberg University, 69126 Mannheim, Germany
| |
Collapse
|
72
|
Sato E, Iriyama N, Tokuhira M, Takaku T, Ishikawa M, Nakazato T, Sugimoto KJ, Fujita H, Kimura Y, Fujioka I, Asou N, Komatsu N, Kizaki M, Hatta Y, Kawaguchi T. The EUTOS long-term survival score predicts disease-specific mortality and molecular responses among patients with chronic myeloid leukemia in a practice-based cohort. Cancer Med 2020; 9:8931-8939. [PMID: 33037866 PMCID: PMC7724301 DOI: 10.1002/cam4.3516] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/25/2020] [Accepted: 09/12/2020] [Indexed: 01/17/2023] Open
Abstract
The European Treatment and Outcome Study (EUTOS) long‐term survival (ELTS) score predicts disease‐specific death in patients with chronic myeloid leukemia (CML) being treated with imatinib during the chronic phase (CP) of the disease. However, it is unclear whether the ELTS score predicts CML‐related events or treatment responses. This study evaluated the predictive value of the ELTS score regarding prognosis and treatment response in patients with CML‐CP. Clinical data were retrospectively obtained from patients enrolled in the CML Cooperative Study Group (CML‐CSG), which included patients diagnosed with CML‐CP from April 2001 to January 2016, and treated with any tyrosine kinase inhibitor (TKI) as first‐line therapy. Among 342 eligible patients, the ELTS scores indicated low‐, intermediate‐, and high‐risk in 74%, 21%, and 5% of patients, respectively. Patients with high ELTS scores had significantly higher disease‐specific mortality and worse event‐free survival, progression‐free survival, and overall survival. Among four risk scores, including the Sokal, Hasford, EUTOS, and ELTS scores, risk stratification by the ELTS score had the highest predictive value in assessing patient prognosis, and also in treatment responses. In fact, the EUTOS and ELTS scores were able to predict the major molecular response within 12 months. Most importantly, the ELTS score was the only scoring system that predicted deep molecular response at any time, regardless of risk level (65.0%, 43.7%, and 23.5% in low‐, intermediate‐, and high‐risk groups, respectively). Compared to other risk scores, the ELTS score was the most sensitive risk classification tool for the four endpoints of interest in this study, as well as molecular responses in patients with CML‐CP.
Collapse
Affiliation(s)
- Eriko Sato
- Department of Hematology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Noriyoshi Iriyama
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Michihide Tokuhira
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tomoiku Takaku
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Maho Ishikawa
- Department of Hemato-Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Tomonori Nakazato
- Department of Hematology, Yokohama Municipal Citizen's Hospital, Yokohama, Japan
| | - Kei-Ji Sugimoto
- Department of Hematology, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Hiroyuki Fujita
- Department of Hematology, Saiseikai Yokohama Nanbu Hospital, Yokohama, Japan
| | - Yuta Kimura
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Isao Fujioka
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Norio Asou
- Department of Hemato-Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masahiro Kizaki
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yoshihiro Hatta
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tatsuya Kawaguchi
- Department of Hematology and Infectious Diseases, Kumamoto University Hospital, Kumamoto, Japan.,Department of Medical Technology, Kumamoto Health Science University, Kumamoto, Japan
| |
Collapse
|
73
|
Zackova D, Klamova H, Belohlavkova P, Stejskal L, Necasova T, Semerad L, Weinbergerova B, Srbova D, Voglova J, Cicatkova P, Sustkova Z, Hornak T, Baranova J, Prochazkova J, Mayer J. Dasatinib treatment long-term results among imatinib-resistant/intolerant patients with chronic phase chronic myeloid leukemia are favorable in daily clinical practice. Leuk Lymphoma 2020; 62:194-202. [PMID: 33021423 DOI: 10.1080/10428194.2020.1827242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To evaluate long-term real-life results of dasatinib therapy among chronic phase chronic myeloid leukemia patients resistant or intolerant to imatinib, we retrospectively analyzed data of 118 patients treated in centers participating in the database INFINITY. With median follow-up of 37 months, estimated 5-year cumulative incidences of complete cytogenetic and major molecular responses were 78% and 68%, respectively. The estimated 5-year probability of overall survival (OS) and event-free survival (EFS) were 86% and 83%, respectively. Both OS and EFS were significantly improved among patients with BCR-ABL1 transcript level ≤10% at 3 months. Dasatinib toxicity was tolerable however persistent in almost half our patients, even after years of therapy. Pleural effusion occurred in 29% of patients and was responsible for 30% of dasatinib discontinuations. Our results confirmed very good efficacy and acceptable toxicity of dasatinib in second line setting and support the evidence and importance of high-quality real-life CML patient management.
Collapse
Affiliation(s)
- Daniela Zackova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Hana Klamova
- Institute of Hematology and Blood Transfusion, Praha, Czech Republic
| | - Petra Belohlavkova
- 4th Department of Internal Medicine - Hematology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lukas Stejskal
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Tereza Necasova
- Institute of Biostatistics and Analyses, Ltd., Brno, Czech Republic
| | - Lukas Semerad
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Barbora Weinbergerova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Dana Srbova
- Institute of Hematology and Blood Transfusion, Praha, Czech Republic
| | - Jaroslava Voglova
- 4th Department of Internal Medicine - Hematology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Petra Cicatkova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Zuzana Sustkova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Tomas Hornak
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Jana Baranova
- Institute of Biostatistics and Analyses, Ltd., Brno, Czech Republic
| | - Jirina Prochazkova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic.,Central European Institute of Technology, Brno, Czech Republic
| |
Collapse
|
74
|
Ito F, Miura M, Fujioka Y, Abumiya M, Kobayashi T, Takahashi S, Yoshioka T, Kameoka Y, Takahashi N. The BCRP inhibitor febuxostat enhances the effect of nilotinib by regulation of intracellular concentration. Int J Hematol 2020; 113:100-105. [PMID: 33025461 DOI: 10.1007/s12185-020-03000-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 01/26/2023]
Abstract
Nilotinib is a substrate of the breast cancer resistance protein (BCRP), which is a drug efflux transporter encoded by ABCG2 and regulates the pharmacokinetics of its substrates. We investigated the interaction between nilotinib and BCRP in chronic myeloid leukemia (CML) cells. An imatinib-resistant K562 cell line (K562/IM-R) treated with nilotinib was analyzed for BCRP expression, proliferation, apoptosis, and intracellular nilotinib concentration. K562/IM-R cells cultured with tyrosine kinase inhibitors (TKIs) showed an increased cell count and retained viability, whereas the growth of parental K562 cells was severely inhibited, suggesting that BCRP is involved in developing resistance to TKIs. Nilotinib-treated K562/IM-R cells showed a reduction in apoptosis; however, febuxostat pretreatment resulted in increased apoptosis. The intracellular concentration of nilotinib in K562/IM-R cells was significantly reduced compared to that in parental K562 cells, and febuxostat-pretreated K562/IM-R cells showed an increased intracellular nilotinib level compared to cells without pretreatment. The reduction in nilotinib levels caused by BCRP in CML cells might play a crucial role in resistance to TKIs. Moreover, febuxostat, as a BCRP inhibitor, could enhance nilotinib sensitivity, and combination therapy with nilotinib and febuxostat may represent a promising strategy for treatment of CML.
Collapse
Affiliation(s)
- Fumiko Ito
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Masatomo Miura
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | - Yuki Fujioka
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Maiko Abumiya
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | - Takahiro Kobayashi
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Saori Takahashi
- Clinical Research Promotion and Support Center, Akita University Hospital, Akita, Japan
| | - Tomoko Yoshioka
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Yoshihiro Kameoka
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan.,Clinical Research Promotion and Support Center, Akita University Hospital, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan.
| |
Collapse
|
75
|
Smith G, Apperley J, Milojkovic D, Cross NCP, Foroni L, Byrne J, Goringe A, Rao A, Khorashad J, de Lavallade H, Mead AJ, Osborne W, Plummer C, Jones G, Copland M. A British Society for Haematology Guideline on the diagnosis and management of chronic myeloid leukaemia. Br J Haematol 2020; 191:171-193. [PMID: 32734668 DOI: 10.1111/bjh.16971] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Adam J Mead
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Wendy Osborne
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Chris Plummer
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Gail Jones
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
- BSH Haemato-Oncology Task Force representative
| | | |
Collapse
|
76
|
Abstract
New insights have emerged from maturing long-term academic and commercial clinical trials regarding optimum management of chronic myeloid leukemia (CML). Velocity of response has unexpectedly proved less important than hitherto thought, does not predict survival, and is of unclear relevance for treatment-free remission (TFR). Serious and cumulative toxicity has been observed with tyrosine kinase inhibitors that had been expected to replace imatinib. Generic imatinib has become cost-effective first-line treatment in chronic phase despite chronic low-grade side-effects in many patients. Earlier recognition of end-phase by genetic assessment might improve prospects for blast crisis (BC). TFR has become an important new treatment goal of CML. To reflect this new situation ELN has recently revised and updated its recommendations for treating CML. After a brief review of 175 years of CML history this review will focus on recent developments and on current evidence for treating CML in 2020.
Collapse
Affiliation(s)
- Rüdiger Hehlmann
- ELN Foundation, Weinheim; Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| |
Collapse
|
77
|
Managing chronic myeloid leukemia for treatment-free remission: a proposal from the GIMEMA CML WP. Blood Adv 2020; 3:4280-4290. [PMID: 31869412 DOI: 10.1182/bloodadvances.2019000865] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Several papers authored by international experts have proposed recommendations on the management of BCR-ABL1+ chronic myeloid leukemia (CML). Following these recommendations, survival of CML patients has become very close to normal. The next, ambitious, step is to bring as many patients as possible into a condition of treatment-free remission (TFR). The Gruppo Italiano Malattie EMatologiche dell'Adulto (GIMEMA; Italian Group for Hematologic Diseases of the Adult) CML Working Party (WP) has developed a project aimed at selecting the treatment policies that may increase the probability of TFR, taking into account 4 variables: the need for TFR, the tyrosine kinase inhibitors (TKIs), the characteristics of leukemia, and the patient. A Delphi-like method was used to reach a consensus among the representatives of 50 centers of the CML WP. A consensus was reached on the assessment of disease risk (EUTOS Long Term Survival [ELTS] score), on the definition of the most appropriate age boundaries for the choice of first-line treatment, on the choice of the TKI for first-line treatment, and on the definition of the responses that do not require a change of the TKI (BCR-ABL1 ≤10% at 3 months, ≤1% at 6 months, ≤0.1% at 12 months, ≤0.01% at 24 months), and of the responses that require a change of the TKI, when the goal is TFR (BCR-ABL1 >10% at 3 and 6 months, >1% at 12 months, and >0.1% at 24 months). These suggestions may help optimize the treatment strategy for TFR.
Collapse
|
78
|
Shanmuganathan N, Branford S. The Hidden Pathogenesis of CML: Is BCR-ABL1 the First Event? Curr Hematol Malig Rep 2020; 14:501-506. [PMID: 31696382 DOI: 10.1007/s11899-019-00549-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Identification of the BCR-ABL1 fusion oncogene in patients diagnosed with chronic myeloid leukemia (CML) led to the development of targeted therapy responsible for the dramatic survival benefits observed in the past two decades. However, despite these revolutionary findings, there remains marked disparity in patient outcomes. Why do some patients present de novo while others evolve to the more aggressive stages of CML? Why can select patients successfully discontinue therapy as part of a treatment-free remission attempt whereas others fail to meet specific molecular milestones? RECENT FINDINGS BCR-ABL1 kinase mutations are only identified in approximately 50% of patients with poor responses and disease progression, suggesting the presence of alternative resistance mechanisms. Numerous institutions have identified the presence of additional genomic events in addition to BCR-ABL1 with the increasing availability of next-generation sequencing. We explore the potential pathways and events that may cooperate with BCR-ABL1 to answer these questions but also challenge the fundamental tenet that BCR-ABL1 is always the sole event initiating CML.
Collapse
Affiliation(s)
- Naranie Shanmuganathan
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia. .,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia. .,School of Medicine, University of Adelaide, Adelaide, Australia. .,Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia. .,School of Health Sciences, University of South Australia, Adelaide, Australia.
| | - Susan Branford
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia.,School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
79
|
Prospective assessment of NGS-detectable mutations in CML patients with nonoptimal response: the NEXT-in-CML study. Blood 2020; 135:534-541. [PMID: 31877211 DOI: 10.1182/blood.2019002969] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
In chronic myeloid leukemia (CML) patients, tyrosine kinase inhibitors (TKIs) may select for drug-resistant BCR-ABL1 kinase domain (KD) mutants. Although Sanger sequencing (SS) is considered the gold standard for BCR-ABL1 KD mutation screening, next-generation sequencing (NGS) has recently been assessed in retrospective studies. We conducted a prospective, multicenter study (NEXT-in-CML) to assess the frequency and clinical relevance of low-level mutations and the feasibility, cost, and turnaround times of NGS-based BCR-ABL1 mutation screening in a routine setting. A series of 236 consecutive CML patients with failure (n = 124) or warning (n = 112) response to TKI therapy were analyzed in parallel by SS and NGS in 1 of 4 reference laboratories. Fifty-one patients (22 failure, 29 warning) who were negative for mutations by SS had low-level mutations detectable by NGS. Moreover, 29 (27 failure, 2 warning) of 60 patients who were positive for mutations by SS showed additional low-level mutations. Thus, mutations undetectable by SS were identified in 80 out of 236 patients (34%), of whom 42 (18% of the total) had low-level mutations somehow relevant for clinical decision making. Prospective monitoring of mutation kinetics demonstrated that TKI-resistant low-level mutations are invariably selected if the patients are not switched to another TKI or if they are switched to a inappropriate TKI or TKI dose. The NEXT-in-CML study provides for the first time robust demonstration of the clinical relevance of low-level mutations, supporting the incorporation of NGS-based BCR-ABL1 KD mutation screening results in the clinical decision algorithms.
Collapse
|
80
|
Jiang D, Shu C, Lei C, Wan Y, Sun L. Early-onset colorectal cancer: A distinct entity with unique genetic features. Oncol Lett 2020; 20:33. [PMID: 32774506 PMCID: PMC7406876 DOI: 10.3892/ol.2020.11894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/26/2020] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to elucidate the genetic features of early-onset colorectal cancer (CRC), particularly the genetic mutations that may be regarded as prognostic and/or predictive markers in CRC and other malignancies. In total, 40 patients with non-polyposis CRC aged 35 or younger were selected. The formalin-fixed, paraffin-embedded tumors acquired were subjected to mismatch repair (MMR) protein immunochemical staining and gene analysis with next-generation sequencing (44 exons, 17 genes; Ion Torrent Sequencing Platform). A total of 11 (27.5%) tumors presented with MMR protein deficiency (dMMR) and 26 (65%) tumors harbored one or more genetic mutations, including K-RAS proto-oncogene (35%), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA; 20%), B-Raf proto-oncogene (5%), erb-b2 receptor tyrosine kinase 2 (5%), discoidin domain receptor tyrosine kinase 2 (5%), N-RAS proto-oncogene (2.5%), KIT proto-oncogene (2.5%), TSC complex subunit 1 (2.5%), DNA methyltransferase 3 alpha (2.5%) and ABL proto-oncogene 1 (2.5%). Of the dMMR tumors, 81.8% (9/11) of cases presented with mutations in the tested genes, while only 58.6% (17/29) of the MMR-proficient (pMMR) tumors presented with these (P=0.158). PI3KCA was frequently mutated in dMMR tumors compared to pMMR tumors (P=0.025). In a subgroup with a family history of CRC, the dMMR status (P<0.001) and PIK3CA genetic mutation status (P=0.01) were more frequently observed compared to the other two groups (with a family history of other cancer types or no malignancy). Almost all patients who had relatives with CRC presented with both dMMR and other genetic mutations, while this was not observed in the patients who had relatives with other types of carcinoma. Certain genetic mutations that are rarely reported in CRC were only identified in those patients with a family history of carcinoma. In conclusion, non-polyposis CRC in young adults presents as a distinct entity with a unique set of genetic features. However, investigation of more cases in further studies is required to verify the present results.
Collapse
Affiliation(s)
- Dan Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chang Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan 610041, P.R. China
| | - Chuanfen Lei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ying Wan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Linyong Sun
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
81
|
Ponatinib in childhood Philadelphia chromosome-positive leukaemias: an international registry of childhood chronic myeloid leukaemia study. Eur J Cancer 2020; 136:107-112. [PMID: 32668374 DOI: 10.1016/j.ejca.2020.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/16/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ponatinib is effective in adults with Philadelphia chromosome-positive (Ph+) leukaemias, but scant data are available regarding the use of this tyrosine kinase inhibitor in children. AIMS The aim of this study isto describe the tolerance and efficacy of compassionate use of ponatinib in a paediatric cohort of patients with Ph+ leukaemias. METHODS Data from 11 children with chronic myeloid leukaemia (CML) registered to the international registry of childhood chronic myeloid leukaemia and from 3 children with Ph+ acute lymphoblastic leukaemia (Ph+ ALL) treated with ponatinib were collected retrospectively. RESULTS In 11 girls and 3 boys (median age 14 years), ponatinib was used as a second- to eighth-line treatment. Ponatinib was administered as single therapy (9 patients) or in combination with chemotherapy (8 patients). The status of the disease when ponatinib was started was as follows: CML in advanced phases (n = 8), CML in chronic phase without achievement of molecular response (n = 2) or presence of T315I mutation (n = 1) and Ph + ALL in molecular (n = 1) or marrow (n = 2) relapses. The median dose administered was 21.4 mg/m2 and median duration of ponatinib was 2.5 months. Ponatinib alone or in combination with chemotherapy administered on 16 occasions led to achievement of major molecular response in 50% of cases. Ponatinib was used as a bridge to transplant in 4 cases. Among the 9 patients treated with ponatinib alone, toxicity grade III-IV (2 patients) was exclusively haematologic. No vascular events related to ponatinib were observed. CONCLUSION Ponatinib may be a reasonable additional treatment option for children with Ph+ leukaemias who have failed several lines of therapy.
Collapse
|
82
|
Carofiglio F, Lopalco A, Lopedota A, Cutrignelli A, Nicolotti O, Denora N, Stefanachi A, Leonetti F. Bcr-Abl Tyrosine Kinase Inhibitors in the Treatment of Pediatric CML. Int J Mol Sci 2020; 21:ijms21124469. [PMID: 32586039 PMCID: PMC7352889 DOI: 10.3390/ijms21124469] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
The therapeutic approach to Chronic Myeloid Leukemia (CML) has changed since the advent of the tyrosine kinase inhibitor (TKI) imatinib, which was then followed by the second generation TKIs dasatinib, nilotinib, and, finally, by ponatinib, a third-generation drug. At present, these therapeutic options represent the first-line treatment for adults. Based on clinical experience, imatinb, dasatinib, and nilotinib have been approved for children even though the studies that were concerned with efficacy and safety toward pediatric patients are still awaiting more specific and high-quality data. In this scenario, it is of utmost importance to prospectively validate data extrapolated from adult studies to set a standard therapeutic management for pediatric CML by employing appropriate formulations on the basis of pediatric clinical trials, which allow a careful monitoring of TKI-induced adverse effects especially in growing children exposed to long-term therapy.
Collapse
MESH Headings
- Child
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Prognosis
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
| | | | | | | | | | | | - Angela Stefanachi
- Correspondence: (A.S.); (F.L.); Tel.: +39-08-0544-2783 (A.S.); +39-08-0544-2784 (F.L.)
| | - Francesco Leonetti
- Correspondence: (A.S.); (F.L.); Tel.: +39-08-0544-2783 (A.S.); +39-08-0544-2784 (F.L.)
| |
Collapse
|
83
|
Tavitian S, Uzunov M, Bérard E, Bouscary D, Thomas X, Raffoux E, Leguay T, Gallego Hernanz MP, Berceanu A, Leprêtre S, Hicheri Y, Chevallier P, Bertoli S, Lhéritier V, Dombret H, Huguet F. Ponatinib-based therapy in adults with relapsed or refractory Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the real-life OPAL study. Leuk Lymphoma 2020; 61:2161-2167. [DOI: 10.1080/10428194.2020.1762876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Suzanne Tavitian
- Department of Hematology, Institut Universitaire du Cancer Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Madalina Uzunov
- Department of Hematology, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Emilie Bérard
- CHU de Toulouse, UMR 1027, INSERM-Université Toulouse III, Toulouse, France
| | | | - Xavier Thomas
- Department of Hematology, CHU de Lyon Sud, Pierre-Bénite, France
| | - Emmanuel Raffoux
- AP-HP, Hopital Saint-Louis, Service Hematologie Adulte, Paris, France
| | - Thibaut Leguay
- Service d'hématologie clinique et thérapie cellulaire, Hôpital du Haut-Lévèque, CHU de Bordeaux, Bordeaux, France
| | | | - Ana Berceanu
- Department of Hematology, CHU Besancon, Besancon, France
| | | | | | | | - Sarah Bertoli
- Department of Hematology, Institut Universitaire du Cancer Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Véronique Lhéritier
- Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL), Lyon, France
| | - Hervé Dombret
- Hospital Saint-Louis, Hématologie Adulte, Paris, France
| | - Françoise Huguet
- Department of Hematology, Institut Universitaire du Cancer Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| |
Collapse
|
84
|
Chronic Myeloid Leukemia Prognosis and Therapy: Criticisms and Perspectives. J Clin Med 2020; 9:jcm9061709. [PMID: 32498406 PMCID: PMC7357035 DOI: 10.3390/jcm9061709] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Ph+ chronic myeloid leukemia (CML) is a clonal myeloproliferative disease whose clinical course is characterized by progression disease from the early chronic phase (CP) to the fatal blastic phase (BP). This programmed course is closely related to the translocation t(9;22)(q22;q11) and the resulting BCR-ABL1 fusion protein (p210) that drives the leukemic transformation of hematopoietic stem cells. Therefore, the cure of CML can only pass through the abrogation of the Ph+ clone. Allogeneic stem cell transplantation (allo-SCT) and interferon-alpha (IFNα) have been proven to reduce the Ph+ clone in a limited proportion of CML population and this translated in a lower rate of progression to BP and in a significant prolongation of survival. Tyrosine-kinase inhibitors (TKIs), lastly introduced in 2000, by preventing the disease blastic transformation and significantly prolonging the survival in up to 90% of the patient population, radically changed the fate of CML. The current therapy with TKIs induces a chronicization of the disease but several criticisms still persist, and the most relevant one is the sustainability of long-term therapy with TKIs in terms of compliance, toxicity and costs. The perspectives concern the optimization of therapy according to the age, the risk of disease, the potency and the safety profiles of the TKIs. The prolongation of survival is the most important end point which should be guaranteed to all patients. The treatment free remission (TFR) is the new goal that we would like to give to an increasing number of patients. The cure remains the main objective of CML therapy.
Collapse
|
85
|
Brown NA, Elenitoba-Johnson KSJ. Enabling Precision Oncology Through Precision Diagnostics. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:97-121. [PMID: 31977297 DOI: 10.1146/annurev-pathmechdis-012418-012735] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genomic testing enables clinical management to be tailored to individual cancer patients based on the molecular alterations present within cancer cells. Genomic sequencing results can be applied to detect and classify cancer, predict prognosis, and target therapies. Next-generation sequencing has revolutionized the field of cancer genomics by enabling rapid and cost-effective sequencing of large portions of the genome. With this technology, precision oncology is quickly becoming a realized paradigm for managing the treatment of cancer patients. However, many challenges must be overcome to efficiently implement the transition of next-generation sequencing from research applications to routine clinical practice, including using specimens commonly available in the clinical setting; determining how to process, store, and manage large amounts of sequencing data; determining how to interpret and prioritize molecular findings; and coordinating health professionals from multiple disciplines.
Collapse
Affiliation(s)
- Noah A Brown
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA;
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
86
|
Singh AP, Umbarkar P, Tousif S, Lal H. Cardiotoxicity of the BCR-ABL1 tyrosine kinase inhibitors: Emphasis on ponatinib. Int J Cardiol 2020; 316:214-221. [PMID: 32470534 DOI: 10.1016/j.ijcard.2020.05.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022]
Abstract
The advent of tyrosine kinase inhibitors (TKIs) targeted therapy revolutionized the treatment of chronic myeloid leukemia (CML) patients. However, cardiotoxicity associated with these targeted therapies puts the cancer survivors at higher risk. Ponatinib is a third-generation TKI for the treatment of CML patients having gatekeeper mutation T315I, which is resistant to the first and second generation of TKIs, namely, imatinib, nilotinib, dasatinib, and bosutinib. Multiple unbiased screening from our lab and others have identified ponatinib as most cardiotoxic FDA approved TKI among the entire FDA approved TKI family (total 50+). Indeed, ponatinib is the only treatment option for CML patients with T315I mutation. This review focusses on the cardiovascular risks and mechanism/s associated with CML TKIs with a particular focus on ponatinib cardiotoxicity. We have summarized our recent findings with transgenic zebrafish line harboring BNP luciferase activity to demonstrate the cardiotoxic potential of ponatinib. Additionally, we will review the recent discoveries reported by our and other laboratories that ponatinib primarily exerts its cardiotoxicity via an off-target effect on cardiomyocyte prosurvival signaling pathways, AKT and ERK. Finally, we will shed light on future directions for minimizing the adverse sequelae associated with CML-TKIs.
Collapse
Affiliation(s)
- Anand Prakash Singh
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA.
| | - Prachi Umbarkar
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA
| | - Sultan Tousif
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA
| | - Hind Lal
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA.
| |
Collapse
|
87
|
Singh AP, Glennon MS, Umbarkar P, Gupte M, Galindo CL, Zhang Q, Force T, Becker JR, Lal H. Ponatinib-induced cardiotoxicity: delineating the signalling mechanisms and potential rescue strategies. Cardiovasc Res 2020; 115:966-977. [PMID: 30629146 DOI: 10.1093/cvr/cvz006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/06/2018] [Accepted: 01/04/2019] [Indexed: 11/13/2022] Open
Abstract
AIMS Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of chronic myelogenous leukaemia (CML). However, cardiotoxicity of these agents remains a serious concern. The underlying mechanism of these adverse cardiac effects is largely unknown. Delineation of the underlying mechanisms of TKIs associated cardiac dysfunction could guide potential prevention strategies, rescue approaches, and future drug design. This study aimed to determine the cardiotoxic potential of approved CML TKIs, define the associated signalling mechanism and identify potential alternatives. METHODS AND RESULTS In this study, we employed a zebrafish transgenic BNP reporter line that expresses luciferase under control of the nppb promoter (nppb:F-Luciferase) to assess the cardiotoxicity of all approved CML TKIs. Our in vivo screen identified ponatinib as the most cardiotoxic agent among the approved CML TKIs. Then using a combination of zebrafish and isolated neonatal rat cardiomyocytes, we delineated the signalling mechanism of ponatinib-induced cardiotoxicity by demonstrating that ponatinib inhibits cardiac prosurvival signalling pathways AKT and extra-cellular-signal-regulated kinase (ERK), and induces cardiomyocyte apoptosis. As a proof of concept, we augmented AKT and ERK signalling by administration of Neuregulin-1β (NRG-1β), and this prevented ponatinib-induced cardiomyocyte apoptosis. We also demonstrate that ponatinib-induced cardiotoxicity is not mediated by inhibition of fibroblast growth factor signalling, a well-known target of ponatinib. Finally, our comparative profiling for the cardiotoxic potential of CML approved TKIs, identified asciminib (ABL001) as a potentially much less cardiotoxic treatment option for CML patients with the T315I mutation. CONCLUSION Herein, we used a combination of in vivo and in vitro methods to systematically screen CML TKIs for cardiotoxicity, identify novel molecular mechanisms for TKI cardiotoxicity, and identify less cardiotoxic alternatives.
Collapse
Affiliation(s)
- Anand P Singh
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Michael S Glennon
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA.,Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, School of Medicine, University of Pittsburgh Medical Center, 200 Lothrop, BST E1258, Pittsburgh, PA, USA
| | - Prachi Umbarkar
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Manisha Gupte
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Cristi L Galindo
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Qinkun Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Thomas Force
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Jason R Becker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA.,Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, School of Medicine, University of Pittsburgh Medical Center, 200 Lothrop, BST E1258, Pittsburgh, PA, USA
| | - Hind Lal
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| |
Collapse
|
88
|
Soverini S, Albano F, Bassan R, Fabbiano F, Ferrara F, Foà R, Olivieri A, Rambaldi A, Rossi G, Sica S, Specchia G, Venditti A, Barosi G, Pane F. Next-generation sequencing for BCR-ABL1 kinase domain mutations in adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: A position paper. Cancer Med 2020; 9:2960-2970. [PMID: 32154668 PMCID: PMC7196068 DOI: 10.1002/cam4.2946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/15/2020] [Accepted: 02/12/2020] [Indexed: 12/28/2022] Open
Abstract
Emergence of clones carrying point mutations in the BCR‐ABL1 kinase domain (KD) is a common mechanism of resistance to tyrosine kinase inhibitor (TKI)‐based therapies in Philadelphia chromosome‐positive (Ph+) acute lymphoblastic leukemia (ALL). Sanger sequencing (SS) is the most frequently used method for diagnostic BCR‐ABL1 KD mutation screening, but it has some limitations—it is poorly sensitive and cannot robustly identify compound mutations. Next‐generation sequencing (NGS) may overcome these problems. NSG is increasingly available and has the potential to become the method of choice for diagnostic BCR‐ABL1 KD mutation screening. A group discussion within an ad hoc constituted Panel of Experts has produced a series of consensus‐based statements on the potential value of NGS testing before and during first‐line TKI‐based treatment, in relapsed/refractory cases, before and after allo‐stem cell transplantation, and on how NGS results may impact on therapeutic decisions. A set of minimal technical and methodological requirements for the analysis and the reporting of results has also been defined. The proposals herein reported may be used to guide the practical use of NGS for BCR‐ABL1 KD mutation testing in Ph+ ALL.
Collapse
Affiliation(s)
- Simona Soverini
- Institute of Hematology "Lorenzo e Ariosto Seràgnoli", Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Renato Bassan
- Ospedale dell'Angelo, UOC Ematologia, Mestre-Venezia, Italy
| | | | | | - Robin Foà
- Division of Hematology University "Sapienza", Rome, Italy
| | - Attilio Olivieri
- Department of Hematology, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandro Rambaldi
- Department of Oncology and Hemato-Oncology, University of Milan and Azienda Socio-Sanitaria Territoriale (ASST) Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Giuseppe Rossi
- Dipartimento di Oncologia Clinica, A.O. Spedali Civili, Brescia, Italy
| | - Simona Sica
- Fondazione Policlinico Universitario A. Gemelli, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Adriano Venditti
- Dipartimento di Biomedicina e Prevenzione, Universitá Tor Vergata, Rome, Italy
| | | | - Fabrizio Pane
- U.O.C. Ematologia e Trapianti di Midollo Azienda Ospedaliera, Universitaria Federico II di Napoli, Naples, Italy
| |
Collapse
|
89
|
Sakurai M, Okamoto S, Matsumura I, Murakami S, Takizawa M, Waki M, Hirano D, Watanabe-Nakaseko R, Kobayashi N, Iino M, Mitsui H, Ishikawa Y, Takahashi N, Kawaguchi T, Suzuki R, Yamamoto K, Kizaki M, Ohnishi K, Naoe T, Akashi K. Treatment outcomes of chronic-phase chronic myeloid leukemia with resistance and/or intolerance to a 1st-line tyrosine kinase inhibitor in Japan: the results of the New TARGET study 2nd-line. Int J Hematol 2020; 111:812-825. [DOI: 10.1007/s12185-020-02843-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/27/2022]
|
90
|
Chien SH, Liu HM, Chen PM, Ko PS, Lin JS, Chen YJ, Lee LH, Hsiao LT, Chiou TJ, Gau JP, Yang MH, Liu CY. The landscape of BCR-ABL mutations in patients with Philadelphia chromosome-positive leukaemias in the era of second-generation tyrosine kinase inhibitors. Hematol Oncol 2020; 38:390-398. [PMID: 32011024 DOI: 10.1002/hon.2721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/24/2019] [Accepted: 01/12/2020] [Indexed: 11/09/2022]
Abstract
BCR-ABL mutations are associated with resistance to tyrosine kinase inhibitors (TKIs) in Philadelphia chromosome-positive leukaemia. The emergence of these mutations in the era of second-generation TKIs, such as dasatinib and nilotinib, remains an evolving field. We conducted a retrospective study to quantitatively characterize the BCR-ABL transcript and mutation status during treatment with first-generation and second-generation TKI therapies. BCR-ABL mutations were detected by direct sequencing for patients with Philadelphia chromosome-positive leukaemia receiving TKI therapies. The efficacy of TKI therapy was quantitatively assessed by calculating the log reduction of BCR-ABL transcripts, which was measured using real-time quantitative polymerase chain reaction. Fisher's exact test was performed to analyse the associations of log reduction <3 and mutation status. We found 35 patients harbouring 55 mutations of 43 different types, of which 30% occurred in patients receiving imatinib, 27% in nilotinib, and 43% in dasatinib. We found a novel germline mutation, N336 N (AAC➔AAT), and two novel frameshift mutations, Asn358Thr fs*14 and Gly251Ala fs*16. T315I was the most common missense mutation, followed by V299L and F317L. Intron 8 35-bp insertion was the most frequent frameshift mutation. Both missense and multiple BCR-ABL mutations were significantly associated with worse molecular response compared with the molecular response of patients without mutation. Missense mutations, rather than frameshift, were associated with less log reduction, while the T315I, F317L, and T315A mutations were significantly correlated with poor log reduction. Collectively, amino acid substitutions at T315I, F317L, and T315A accounted for the majority of missense mutations and the loss of major molecular response. Mutation analysis is essential for patients receiving TKI therapy who exhibit an unfavourable response. The present study provided a landscape of BCR-ABL mutations in the era of second-generation TKIs.
Collapse
Affiliation(s)
- Sheng-Hsuan Chien
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsueng-Mei Liu
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Ming Chen
- Department of Food and Science and biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Po-Shen Ko
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jeong-Shi Lin
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ying-Ju Chen
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Hsuan Lee
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Liang-Tsai Hsiao
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzeon-Jye Chiou
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jyh-Pyng Gau
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Yu Liu
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
91
|
Minervini CF, Cumbo C, Orsini P, Anelli L, Zagaria A, Specchia G, Albano F. Nanopore Sequencing in Blood Diseases: A Wide Range of Opportunities. Front Genet 2020; 11:76. [PMID: 32140171 PMCID: PMC7043087 DOI: 10.3389/fgene.2020.00076] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
The molecular pathogenesis of hematological diseases is often driven by genetic and epigenetic alterations. Next-generation sequencing has considerably increased our genomic knowledge of these disorders becoming ever more widespread in clinical practice. In 2012 Oxford Nanopore Technologies (ONT) released the MinION, the first long-read nanopore-based sequencer, overcoming the main limits of short-reads sequences generation. In the last years, several nanopore sequencing approaches have been performed in various "-omic" sciences; this review focuses on the challenge to introduce ONT devices in the hematological field, showing advantages, disadvantages and future perspectives of this technology in the precision medicine era.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| |
Collapse
|
92
|
Çiftçi H. Effects of Glycyrrhetic Acid on Human Chronic Myelogenous Leukemia Cells. Turk J Pharm Sci 2020; 17:49-55. [PMID: 32454760 DOI: 10.4274/tjps.galenos.2018.49389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/18/2018] [Indexed: 12/18/2022]
Abstract
Objectives Chronic myelogenous leukemia (CML) is a type of blood cancer that is initially treated with imatinib (first Abl kinase inhibitor). However, some patients with CML develop imatinib resistance. Several new generation drugs have been developed, but do not overcome this problem. Glycyrrhetic acid (GA) is a plant-derived pentacyclic triterpenoid that exhibits multiple pharmacological properties for the treatment of cancers. The current study aimed to investigate the effects of GA on the K562 cell line (Bcr-Abl positive leukemia). Materials and Methods The MTT cell proliferation assay was employed to evaluate the cytotoxic effect of GA compared with imatinib (positive control) against leukemia and normal blood cells. For detection of cell death, an apoptotic/necrotic/healthy assay was performed against the K562 cell line. To investigate the kinase inhibitory activity of GA, the Abl1 kinase profiling assay and a molecular docking study were performed. Results GA showed Abl kinase inhibitory activity with an IC50 value of 29.2 μM and induced apoptosis in the K562 cell line after 6 h of treatment. Conclusion The current findings indicate that this class of plant extract could be a potential candidate for treatment of CML.
Collapse
Affiliation(s)
- Halilibrahim Çiftçi
- Kumamoto University, School of Pharmacy, Department of Bioorganic Medicinal Chemistry, Kumamoto, Japan
| |
Collapse
|
93
|
Ghione S, Mabrouk N, Paul C, Bettaieb A, Plenchette S. Protein kinase inhibitor-based cancer therapies: Considering the potential of nitric oxide (NO) to improve cancer treatment. Biochem Pharmacol 2020; 176:113855. [PMID: 32061562 DOI: 10.1016/j.bcp.2020.113855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
The deregulation of a wide variety of protein kinases is associated with cancer cell initiation and tumor progression. Owing to their indispensable function in signaling pathways driving malignant cell features, protein kinases constitute major therapeutic targets in cancer. Over the past two decades, intense efforts in drug development have been dedicated to this field. The development of protein kinase inhibitors (PKIs) have been a real breakthrough in targeted cancer therapy. Despite obvious successes across patients with different types of cancer, the development of PKI resistance still prevails. Combination therapies are part of a comprehensive approach to address the problem of drug resistance. The therapeutic use of nitric oxide (NO) donors to bypass PKI resistance in cancer has never been tested in clinic yet but several arguments suggest that the combination of PKIs and NO donors may exert a potential anticancer effect. The present review summarized the current state of knowledge on common targets to both PKIs and NO. Herein, we attempt to provide the rationale underlying a potential combination of PKIs and NO donors for future directions and design of new combination therapies in cancer.
Collapse
Affiliation(s)
- Silvia Ghione
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Nesrine Mabrouk
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Ali Bettaieb
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphanie Plenchette
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
94
|
Zhou L, Shi H, Shi W, Yang L, Zhang Y, Xu M, Chen X, Zhu Y, Mu H, Wan X, Yang Z, Zeng Y, Liu H. Durable Molecular Remission in a Lymphoid BP-CML Patient Harboring T315I Mutation Treated with Anti-CD19 CAR-T Therapy. Onco Targets Ther 2019; 12:10989-10995. [PMID: 31997880 PMCID: PMC6917542 DOI: 10.2147/ott.s232102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/02/2019] [Indexed: 01/01/2023] Open
Abstract
Despite the prominent effects of BCR-ABL tyrosine kinase inhibitors (TKI) therapy in patients with chronic phase-chronic myeloid leukemia (CP-CML) and thus low incidence of blastic transformation, blast phase (BP)-CML remains a major therapeutic challenge in the TKI era. The "gatekeeper" mutation T315I in BCR-ABL1 kinase, which often coupled with a poor prognosis, is quite common and resistant to all TKIs except for ponatinib. The occurrence of T315I mutation in BP-CML makes the situation more complex. Anti-CD19 chimeric antigen receptor T cell (CAR-T) technology is a new immunotherapy which has significantly improved the efficacy of B cell hematologic malignances. Here we report a lymphoid BP-CML patient harboring T315I mutation who achieved complete molecular remission and returned to chronic phase by anti-CD19 CAR-T therapy. Our study provides a new therapeutic strategy for patients in BP-CML.
Collapse
Affiliation(s)
- Lu Zhou
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Wenyu Shi
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Li Yang
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yaping Zhang
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Mengqi Xu
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xiufang Chen
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yanv Zhu
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Hui Mu
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xiaochun Wan
- Shenzhen Bin De Bio Tech Co. Lid, Shenzhen, People's Republic of China
| | - Zhonghua Yang
- Shenzhen Bin De Bio Tech Co. Lid, Shenzhen, People's Republic of China
| | - Ying Zeng
- Shenzhen Bin De Bio Tech Co. Lid, Shenzhen, People's Republic of China
| | - Hong Liu
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
95
|
Feys T. Anticipate Your Next Move in Chronic Myeloid Leukaemia Patient Management. EUROPEAN MEDICAL JOURNAL 2019. [DOI: 10.33590/emj/10310682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Treatment decisions in chronic myeloid leukaemia (CML) are complex and require the evaluation of many factors at each stage of therapy. Many patients will become resistant or intolerant to the first and subsequent lines of tyrosine kinase inhibitors (TKI) they receive, requiring them to switch to a different TKI. Clinicians are faced with many considerations when choosing subsequent treatments and an important issue is how best to manage failure on a second-generation TKI. During an interactive and case-based, Incyte-sponsored, satellite symposium at the 2019 European Hematology Association (EHA) congress, Dr Janssen and Prof Apperley discussed the current best practices for managing patients failing imatinib or second-generation TKI, considering whether second-generation TKI should be used sequentially and the timing of the introduction of a third-generation TKI (ponatinib). Dr Soverini and Dr de Lavallade discussed how regular BCR-ABL response monitoring and mutational analysis are integral to CML patient management. They highlighted the clinical relevance of low-level mutations and the necessity to prevent clonal expansion of these TKI-resistant mutants, and the accumulation of additional mutations, by switching to an effective TKI in a timely manner.
Collapse
Affiliation(s)
- Tom Feys
- Ariez International, Bruges, Belgium
| |
Collapse
|
96
|
Soverini S, Abruzzese E, Bocchia M, Bonifacio M, Galimberti S, Gozzini A, Iurlo A, Luciano L, Pregno P, Rosti G, Saglio G, Stagno F, Tiribelli M, Vigneri P, Barosi G, Breccia M. Next-generation sequencing for BCR-ABL1 kinase domain mutation testing in patients with chronic myeloid leukemia: a position paper. J Hematol Oncol 2019; 12:131. [PMID: 31801582 PMCID: PMC6894351 DOI: 10.1186/s13045-019-0815-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/27/2019] [Indexed: 12/31/2022] Open
Abstract
BCR-ABL1 kinase domain (KD) mutation status is considered to be an important element of clinical decision algorithms for chronic myeloid leukemia (CML) patients who do not achieve an optimal response to tyrosine kinase inhibitors (TKIs). Conventional Sanger sequencing is the method currently recommended to test BCR-ABL1 KD mutations. However, Sanger sequencing has limited sensitivity and cannot always discriminate between polyclonal and compound mutations. The use of next-generation sequencing (NGS) is increasingly widespread in diagnostic laboratories and represents an attractive alternative. Currently available data on the clinical impact of NGS-based mutational testing in CML patients do not allow recommendations with a high grade of evidence to be prepared. This article reports the results of a group discussion among an ad hoc expert panel with the objective of producing recommendations on the appropriateness of clinical decisions about the indication for NGS, the performance characteristics of NGS platforms, and the therapeutic changes that could be applied based on the use of NGS in CML. Overall, these recommendations might be employed to inform clinicians about the practical use of NGS in CML.
Collapse
Affiliation(s)
- Simona Soverini
- Hematology/Oncology "L. e A. Seràgnoli", Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, Bologna, Italy.
| | | | - Monica Bocchia
- Hematology Unit, Azienda Ospedaliera Universitaria Senese, University of Siena, Siena, Italy
| | | | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Antonella Gozzini
- Department of Cellular Therapies and Transfusion Medicine, AOU Careggi, Florence, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Patrizia Pregno
- Hematology Unit, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Gianantonio Rosti
- Hematology/Oncology "L. e A. Seràgnoli", Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, Bologna, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences of the University of Turin, Mauriziano Hospital, Turin, Italy
| | - Fabio Stagno
- Hematology Section and BMT Unit, Rodolico Hospital, AOU Policlinico-V. Emanuele, Catania, Italy
| | - Mario Tiribelli
- Division of Hematology and Bone Marrow Transplantation, Department of Medical Area, University of Udine, Udine, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine and Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Massimo Breccia
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| |
Collapse
|
97
|
Schneeweiss-Gleixner M, Byrgazov K, Stefanzl G, Berger D, Eisenwort G, Lucini CB, Herndlhofer S, Preuner S, Obrova K, Pusic P, Witzeneder N, Greiner G, Hoermann G, Sperr WR, Lion T, Deininger M, Valent P, Gleixner KV. CDK4/CDK6 inhibition as a novel strategy to suppress the growth and survival of BCR-ABL1 T315I+ clones in TKI-resistant CML. EBioMedicine 2019; 50:111-121. [PMID: 31761618 PMCID: PMC6921367 DOI: 10.1016/j.ebiom.2019.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose Ponatinib is the only approved tyrosine kinase inhibitor (TKI) suppressing BCR-ABL1T315I-mutated cells in chronic myeloid leukemia (CML). However, due to side effects and resistance, BCR-ABL1T315I-mutated CML remains a clinical challenge. Hydroxyurea (HU) has been used for cytoreduction in CML for decades. We found that HU suppresses or even eliminates BCR-ABL1T315I+ sub-clones in heavily pretreated CML patients. Based on this observation, we investigated the effects of HU on TKI-resistant CML cells in vitro. Methods Viability, apoptosis and proliferation of drug-exposed primary CML cells and BCR-ABL1+ cell lines were examined by flow cytometry and 3H-thymidine-uptake. Expression of drug targets was analyzed by qPCR and Western blotting. Findings HU was more effective in inhibiting the proliferation of leukemic cells harboring BCR-ABL1T315I or T315I-including compound-mutations compared to cells expressing wildtype BCR-ABL1. Moreover, HU synergized with ponatinib and ABL001 in inducing growth inhibition in CML cells. Furthermore, HU blocked cell cycle progression in leukemic cells, which was accompanied by decreased expression of CDK4 and CDK6. Palbociclib, a more specific CDK4/CDK6-inhibitor, was also found to suppress proliferation in primary CML cells and to synergize with ponatinib in producing growth inhibition in BCR-ABL1T315I+ cells, suggesting that suppression of CDK4/CDK6 may be a promising concept to overcome BCR-ABL1T315I-associated TKI resistance. Interpretation HU and the CDK4/CDK6-blocker palbociclib inhibit growth of CML clones expressing BCR-ABL1T315I or complex T315I-including compound-mutations. Clinical studies are required to confirm single drug effects and the efficacy of `ponatinib+HU´ and ´ponatinib+palbociclib´ combinations in advanced CML. Funding This project was supported by the Austrian Science Funds (FWF) projects F4701-B20, F4704-B20 and P30625.
Collapse
Affiliation(s)
- Mathias Schneeweiss-Gleixner
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria
| | | | - Gabriele Stefanzl
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria
| | - Daniela Berger
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria
| | | | - Susanne Herndlhofer
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria
| | - Sandra Preuner
- Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Klara Obrova
- Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Petra Pusic
- Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Nadine Witzeneder
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Georg Greiner
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Austria; Central Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Innsbruck, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria
| | - Thomas Lion
- Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Michael Deininger
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria.
| | - Karoline V Gleixner
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria.
| |
Collapse
|
98
|
El Fakih R, Chaudhri N, Alfraih F, Rausch CR, Naqvi K, Jabbour E. Complexity of chronic-phase CML management after failing a second-generation TKI. Leuk Lymphoma 2019; 61:776-787. [PMID: 31739705 DOI: 10.1080/10428194.2019.1691196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The treatment landscape of chronic myeloid leukemia (CML) was radically changed with the introduction of imatinib in 2001. With the emergence of treatment failure with imatinib, more specific and potent second- and third-generation tyrosine kinase inhibitors (TKIs) were developed. Currently, 6 TKIs and one protein synthesis inhibitor are available on the market for CML treatment. Despite the availability of these agents, it is not uncommon for some patients to experience treatment failure across several lines of therapy. Sequencing the available treatment options is a challenging task that becomes more complex after patients fail the more potent second- and third-generation TKIs. The ability to successfully salvage such patients is limited. In this paper, we will briefly review the mechanisms of treatment failure in chronic-phase CML (CP-CML) and focus on the complexity of managing patients who fail a second-generation TKI.
Collapse
Affiliation(s)
- Riad El Fakih
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Naeem Chaudhri
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Feras Alfraih
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Caitlin R Rausch
- The University of Texas MD Anderson Cancer Center, LEUKEMIA, Houston, TX, USA
| | - Kiran Naqvi
- The University of Texas MD Anderson Cancer Center, LEUKEMIA, Houston, TX, USA
| | - Elias Jabbour
- The University of Texas MD Anderson Cancer Center, LEUKEMIA, Houston, TX, USA
| |
Collapse
|
99
|
Lauseker M, Bachl K, Turkina A, Faber E, Prejzner W, Olsson‐Strömberg U, Baccarani M, Lomaia E, Zackova D, Ossenkoppele G, Griskevicius L, Schubert‐Fritschle G, Sacha T, Heibl S, Koskenvesa P, Bogdanovic A, Clark RE, Guilhot J, Hoffmann VS, Hasford J, Hochhaus A, Pfirrmann M. Prognosis of patients with chronic myeloid leukemia presenting in advanced phase is defined mainly by blast count, but also by age, chromosomal aberrations and hemoglobin. Am J Hematol 2019; 94:1236-1243. [PMID: 31456269 DOI: 10.1002/ajh.25628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/28/2022]
Abstract
Chronic myeloid leukemia (CML) is usually diagnosed in chronic phase, yet there is a small percentage of patients that is diagnosed in accelerated phase or blast crisis. Due to this rarity, little is known about the prognosis of these patients. Our aim was to identify prognostic factors for this cohort. We identified 283 patients in the EUTOS population-based and out-study registries that were diagnosed in advanced phase. Nearly all patients were treated with tyrosine kinase inhibitors. Median survival in this heterogeneous cohort was 8.2 years. When comparing patients with more than 30% blasts to those with 20-29% blasts, the hazard ratio (HR) was 1.32 (95%-confidence interval (CI): [0.7-2.6]). Patients with 20-29% blasts had a significantly higher risk than patients with less than 20% blasts (HR: 2.24, 95%-CI: [1.2-4.0], P = .008). We found that the blast count was the most important prognostic factor; however, age, hemoglobin, basophils and other chromosomal aberrations should be considered as well. The ELTS score was able to define two groups (high risk vs non-high risk) with an HR of 3.01 (95%-CI: [1.81-5.00], P < .001). Regarding the contrasting definitions of blast crisis, our data clearly supported the 20% cut-off over the 30% cut-off in this cohort. Based on our results, we conclude that a one-phase rather than a two-phase categorization of de novo advanced phase CML patients is appropriate.
Collapse
Affiliation(s)
- Michael Lauseker
- Institute for Medical Information Processing, Biometry, and EpidemiologyLudwig‐Maximilians‐Universität München Munich Germany
| | - Katharina Bachl
- Institute for Medical Information Processing, Biometry, and EpidemiologyLudwig‐Maximilians‐Universität München Munich Germany
| | - Anna Turkina
- National Research Center for Hematology Moscow Russia
| | - Edgar Faber
- Department of Hematology‐OncologyUniversity Hospital, Palacky University Olomouc Czech Republic
| | - Witold Prejzner
- Department of HematologyMedical University of Gdansk Gdansk Poland
| | - Ulla Olsson‐Strömberg
- Department of Internal Medicine, Department of Medical Science and Division of HematologyUniversity Hospital Uppsala Sweden
| | - Michele Baccarani
- Department of Hematology and Oncology L. and AUniversity of Bologna Bologna Italy
| | - Elza Lomaia
- Clinical oncology ‐ Research department of oncology and hematologyAlmazov Medical Research Center St Petersburg Russian Federation
| | - Daniela Zackova
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital Brno and Masaryk University Brno Czech Republic
| | - Gert Ossenkoppele
- Department of HematologyAmsterdam University Medical Center, location VUmc Amsterdam The Netherlands
| | - Laimonas Griskevicius
- Vilnius University Hospital Santaros Klinikos and Institute of Clinical MedicineVilnius University Vilnius Lithuania
| | | | - Tomasz Sacha
- Chair and Department of HematologyJagiellonian University Hospital Kraków Poland
| | - Sonja Heibl
- Department for Internal Medicine IVKlinikum Wels‐Grieskirchen Wels Austria
| | - Perttu Koskenvesa
- Helsinki University Hospital Cancer Center and Hematology Research UnitHelsinki University Helsinki Finland
| | - Andrija Bogdanovic
- Clinic of Hematology CCS and Faculty of MedicineUniversity of Belgrade Belgrade Serbia
| | - Richard E. Clark
- Institute of Translational MedicineUniversity of Liverpool Liverpool UK
| | - Joelle Guilhot
- Clinical Investigation Center, INSERM CIC 1402, CHU Poitiers Poitiers France
| | - Verena S. Hoffmann
- Institute for Medical Information Processing, Biometry, and EpidemiologyLudwig‐Maximilians‐Universität München Munich Germany
| | - Joerg Hasford
- Institute for Medical Information Processing, Biometry, and EpidemiologyLudwig‐Maximilians‐Universität München Munich Germany
| | - Andreas Hochhaus
- Abteilung Hämatologie/Onkologie, Klinik für Innere Medizin IIUniversitätsklinikum Jena Jena Germany
| | - Markus Pfirrmann
- Institute for Medical Information Processing, Biometry, and EpidemiologyLudwig‐Maximilians‐Universität München Munich Germany
| |
Collapse
|
100
|
Bonifacio M, Stagno F, Scaffidi L, Krampera M, Di Raimondo F. Management of Chronic Myeloid Leukemia in Advanced Phase. Front Oncol 2019; 9:1132. [PMID: 31709190 PMCID: PMC6823861 DOI: 10.3389/fonc.2019.01132] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Management of chronic myeloid leukemia (CML) in advanced phases remains a challenge also in the era of tyrosine kinase inhibitors (TKIs) treatment. Cytogenetic clonal evolution and development of resistant mutations represent crucial events that limit the benefit of subsequent therapies in these patients. CML is diagnosed in accelerated (AP) or blast phase (BP) in <5% of patients, and the availability of effective treatments for chronic phase (CP) has dramatically reduced progressions on therapy. Due to smaller number of patients, few randomized studies are available in this setting and evidences are limited. Nevertheless, three main scenarios may be drawn: (a) patients diagnosed in AP are at higher risk of failure as compared to CP patients, but if they achieve optimal responses with frontline TKI treatment their outcome may be similarly favorable; (b) patients diagnosed in BP may be treated with TKI alone or with TKI together with conventional chemotherapy regimens, and subsequent transplant decisions should rely on kinetics of response and individual transplant risk; (c) patients in CP progressing under TKI treatment represent the most challenging population and they should be treated with alternative TKI according to the mutational profile, optional chemotherapy in BP patients, and transplant should be considered in suitable cases after return to second CP. Due to lack of validated and reliable markers to predict blast crisis and the still unsatisfactory results of treatments in this setting, prevention of progression by careful selection of frontline treatment in CP and early treatment intensification in non-optimal responders remains the main goal. Personalized evaluation of response kinetics could help in identifying patients at risk for progression.
Collapse
Affiliation(s)
| | - Fabio Stagno
- Division of Hematology With BMT, AOU Policlinico “Vittorio Emanuele”, University of Catania, Catania, Italy
| | - Luigi Scaffidi
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Mauro Krampera
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Francesco Di Raimondo
- Division of Hematology With BMT, AOU Policlinico “Vittorio Emanuele”, University of Catania, Catania, Italy
| |
Collapse
|