51
|
Pillai RK, Afkhami M. Advances in Diagnosis and Risk Stratification of Acute Myeloid Leukemia and Myelodysplastic Syndromes. Cancer Treat Res 2021; 181:1-16. [PMID: 34626352 DOI: 10.1007/978-3-030-78311-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Advances in high-throughput DNA sequencing technology in the past decade have made a tremendous impact on basic science and clinical practice. Methods using the latest next generation sequencing technology can sequence an entire human genome within a few hours. Diagnosis and prognostication of hematologic neoplasms have moved from traditional histology and immunophenotyping to integration of cytogenetic and genomic alterations. Using illustrative cases, this chapter provides an overview of the utility of using genomic data for prognostication as well as treatment decision-making for patients with bone marrow neoplasms.
Collapse
Affiliation(s)
- Raju K Pillai
- City of Hope Medical Center, 1500 E Duarte Rd, Duarte, CA, 91010, USA.
| | - Michelle Afkhami
- City of Hope Medical Center, 1500 E Duarte Rd, Duarte, CA, 91010, USA
| |
Collapse
|
52
|
The journey of a thousand miles begins with 1 step. Blood 2021; 138:824-826. [PMID: 34499156 DOI: 10.1182/blood.2021012304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
|
53
|
Martín-Izquierdo M, Abáigar M, Hernández-Sánchez JM, Tamborero D, López-Cadenas F, Ramos F, Lumbreras E, Madinaveitia-Ochoa A, Megido M, Labrador J, Sánchez-Real J, Olivier C, Dávila J, Aguilar C, Rodríguez JN, Martín-Nuñez G, Santos-Mínguez S, Miguel-García C, Benito R, Díez-Campelo M, Hernández-Rivas JM. Co-occurrence of cohesin complex and Ras signaling mutations during progression from myelodysplastic syndromes to secondary acute myeloid leukemia. Haematologica 2021; 106:2215-2223. [PMID: 32675227 PMCID: PMC8327724 DOI: 10.3324/haematol.2020.248807] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are hematological disorders at high risk of progression to secondary acute myeloid leukemia (sAML). However, the mutational dynamics and clonal evolution underlying disease progression are poorly understood at present. To elucidate the mutational dynamics of pathways and genes occurring during the evolution to sAML, next generation sequencing was performed on 84 serially paired samples of MDS patients who developed sAML (discovery cohort) and 14 paired samples from MDS patients who did not progress to sAML during follow-up (control cohort). Results were validated in an independent series of 388 MDS patients (validation cohort). We used an integrative analysis to identify how mutations, alone or in combination, contribute to leukemic transformation. The study showed that MDS progression to sAML is characterized by greater genomic instability and the presence of several types of mutational dynamics, highlighting increasing (STAG2) and newly-acquired (NRAS and FLT3) mutations. Moreover, we observed cooperation between genes involved in the cohesin and Ras pathways in 15-20% of MDS patients who evolved to sAML, as well as a high proportion of newly acquired or increasing mutations in the chromatin-modifier genes in MDS patients receiving a disease-modifying therapy before their progression to sAML.
Collapse
Affiliation(s)
- Marta Martín-Izquierdo
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| | - María Abáigar
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| | - Jesús M Hernández-Sánchez
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| | - David Tamborero
- Hospital del Mar Medical Research Institute (IMIM), Barcelona and Karolinska Institutet, Stockholm
| | - Félix López-Cadenas
- University of Salamanca, IBSAL, Hematology, Hospital Clinico Universitario, Salamanca, Spain
| | - Fernando Ramos
- Hematology, Hospital Universitario de León, Institute of Biomedicine (IBIOMED), Spain
| | - Eva Lumbreras
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| | | | - Marta Megido
- Hematology, Hospital del Bierzo, Ponferrada, León, Spain
| | - Jorge Labrador
- Hematology, Hospital Universitario de Burgos, Burgos, Spain
| | - Javier Sánchez-Real
- Hematology, Hospital Universitario de León, Institute of Biomedicine (IBIOMED), Spain
| | | | - Julio Dávila
- Hematology, Hospital Nuestra Señora de Sónsoles, Ávila, Spain
| | | | | | | | - Sandra Santos-Mínguez
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| | - Cristina Miguel-García
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| | - Rocío Benito
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| | - María Díez-Campelo
- University of Salamanca, IBSAL, Hematology, Hospital Clínico Universitario, Salamanca, Spain
| | - Jesús M Hernández-Rivas
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| |
Collapse
|
54
|
Single-cell transcriptomics dissects hematopoietic cell destruction and T-cell engagement in aplastic anemia. Blood 2021; 138:23-33. [PMID: 33763704 DOI: 10.1182/blood.2020008966] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Aplastic anemia (AA) is a T cell-mediated autoimmune disorder of the hematopoietic system manifested by severe depletion of the hematopoietic stem and progenitor cells (HSPCs). Nonetheless, our understanding of the complex relationship between HSPCs and T cells is still obscure, mainly limited by techniques and the sparsity of HSPCs in the context of bone marrow failure. Here we performed single-cell transcriptome analysis of residual HSPCs and T cells to identify the molecular players from patients with AA. We observed that residual HSPCs in AA exhibited lineage-specific alterations in gene expression and transcriptional regulatory networks, indicating a selective disruption of distinct lineage-committed progenitor pools. In particular, HSPCs displayed frequently altered alternative splicing events and skewed patterns of polyadenylation in transcripts related to DNA damage and repair, suggesting a likely role in AA progression to myelodysplastic syndromes. We further identified cell type-specific ligand-receptor interactions as potential mediators for ongoing HSPCs destruction by T cells. By tracking patients after immunosuppressive therapy (IST), we showed that hematopoiesis remission was incomplete accompanied by IST insensitive interactions between HSPCs and T cells as well as sustained abnormal transcription state. These data collectively constitute the transcriptomic landscape of disrupted hematopoiesis in AA at single-cell resolution, providing new insights into the molecular interactions of engaged T cells with residual HSPCs and render novel therapeutic opportunities for AA.
Collapse
|
55
|
Chiereghin C, Travaglino E, Zampini M, Saba E, Saitta C, Riva E, Bersanelli M, Della Porta MG. The Genetics of Myelodysplastic Syndromes: Clinical Relevance. Genes (Basel) 2021; 12:genes12081144. [PMID: 34440317 PMCID: PMC8392119 DOI: 10.3390/genes12081144] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a clonal disease arising from hematopoietic stem cells, that are characterized by ineffective hematopoiesis (leading to peripheral blood cytopenia) and by an increased risk of evolution into acute myeloid leukemia. MDS are driven by a complex combination of genetic mutations that results in heterogeneous clinical phenotype and outcome. Genetic studies have enabled the identification of a set of recurrently mutated genes which are central to the pathogenesis of MDS and can be organized into a limited number of cellular pathways, including RNA splicing (SF3B1, SRSF2, ZRSR2, U2AF1 genes), DNA methylation (TET2, DNMT3A, IDH1/2), transcription regulation (RUNX1), signal transduction (CBL, RAS), DNA repair (TP53), chromatin modification (ASXL1, EZH2), and cohesin complex (STAG2). Few genes are consistently mutated in >10% of patients, whereas a long tail of 40-50 genes are mutated in <5% of cases. At diagnosis, the majority of MDS patients have 2-4 driver mutations and hundreds of background mutations. Reliable genotype/phenotype relationships were described in MDS: SF3B1 mutations are associated with the presence of ring sideroblasts and more recent studies indicate that other splicing mutations (SRSF2, U2AF1) may identify distinct disease categories with specific hematological features. Moreover, gene mutations have been shown to influence the probability of survival and risk of disease progression and mutational status may add significant information to currently available prognostic tools. For instance, SF3B1 mutations are predictors of favourable prognosis, while driver mutations of other genes (such as ASXL1, SRSF2, RUNX1, TP53) are associated with a reduced probability of survival and increased risk of disease progression. In this article, we review the most recent advances in our understanding of the genetic basis of myelodysplastic syndromes and discuss its clinical relevance.
Collapse
Affiliation(s)
- Chiara Chiereghin
- IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Italy; (C.C.); (E.T.); (M.Z.); (E.S.); (C.S.); (E.R.)
| | - Erica Travaglino
- IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Italy; (C.C.); (E.T.); (M.Z.); (E.S.); (C.S.); (E.R.)
| | - Matteo Zampini
- IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Italy; (C.C.); (E.T.); (M.Z.); (E.S.); (C.S.); (E.R.)
| | - Elena Saba
- IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Italy; (C.C.); (E.T.); (M.Z.); (E.S.); (C.S.); (E.R.)
| | - Claudia Saitta
- IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Italy; (C.C.); (E.T.); (M.Z.); (E.S.); (C.S.); (E.R.)
| | - Elena Riva
- IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Italy; (C.C.); (E.T.); (M.Z.); (E.S.); (C.S.); (E.R.)
| | - Matteo Bersanelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy;
| | - Matteo Giovanni Della Porta
- IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Italy; (C.C.); (E.T.); (M.Z.); (E.S.); (C.S.); (E.R.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy;
- Correspondence: ; Tel.: +39-0282247668
| |
Collapse
|
56
|
Kataoka N, Matsumoto E, Masaki S. Mechanistic Insights of Aberrant Splicing with Splicing Factor Mutations Found in Myelodysplastic Syndromes. Int J Mol Sci 2021; 22:ijms22157789. [PMID: 34360561 PMCID: PMC8346168 DOI: 10.3390/ijms22157789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Pre-mRNA splicing is an essential process for gene expression in higher eukaryotes, which requires a high order of accuracy. Mutations in splicing factors or regulatory elements in pre-mRNAs often result in many human diseases. Myelodysplastic syndrome (MDS) is a heterogeneous group of chronic myeloid neoplasms characterized by many symptoms and a high risk of progression to acute myeloid leukemia. Recent findings indicate that mutations in splicing factors represent a novel class of driver mutations in human cancers and affect about 50% of Myelodysplastic syndrome (MDS) patients. Somatic mutations in MDS patients are frequently found in genes SF3B1, SRSF2, U2AF1, and ZRSR2. Interestingly, they are involved in the recognition of 3' splice sites and exons. It has been reported that mutations in these splicing regulators result in aberrant splicing of many genes. In this review article, we first describe molecular mechanism of pre-mRNA splicing as an introduction and mainly focus on those four splicing factors to describe their mutations and their associated aberrant splicing patterns.
Collapse
Affiliation(s)
- Naoyuki Kataoka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
- Correspondence: ; Tel.: +81-3-5841-5372; Fax: +81-3-5841-8014
| | - Eri Matsumoto
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| | - So Masaki
- Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan;
| |
Collapse
|
57
|
Osman A, Patel JL. Diagnostic Challenge and Clinical Dilemma: The Long Reach of Clonal Hematopoiesis. Clin Chem 2021; 67:1062-1070. [PMID: 34263288 DOI: 10.1093/clinchem/hvab105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/11/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Widespread application of massively parallel sequencing has resulted in recognition of clonal hematopoiesis in various clinical settings and on a relatively frequent basis. Somatic mutations occur in individuals with normal blood counts, and increase in frequency with age. The genes affected are the same genes that are commonly mutated in overt myeloid malignancies such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). This phenomenon is referred to as clonal hematopoiesis of indeterminate potential (CHIP). CONTENT In this review, we explore the diagnostic and clinical implications of clonal hematopoiesis. In addition to CHIP, clonal hematopoiesis may be seen in patients with cytopenia who do not otherwise meet criteria for hematologic malignancy, a condition referred to as clonal cytopenia of undetermined significance (CCUS). Distinguishing CHIP and CCUS from overt myeloid neoplasm is a challenge to diagnosticians due to the overlapping mutational landscape observed in these conditions. We describe helpful laboratory and clinical features in making this distinction. CHIP confers a risk of progression to overt hematologic malignancy similar to other premalignant states. CHIP is also associated with a proinflammatory state with multisystem implications and increased mortality risk due to cardiovascular events. The current approach to follow up and management of patients with clonal hematopoiesis is described. SUMMARY Nuanced understanding of clonal hematopoiesis is essential for diagnosis and clinical management of patients with hematologic conditions. Further data are needed to more accurately predict the natural history and guide management of these patients with respect to both malignant progression as well as nonhematologic sequelae.
Collapse
Affiliation(s)
- Afaf Osman
- Division of Hematology and Hematologic Malignancies, University of Utah, and Huntsman Cancer Institute, Salt Lake City, UT
| | - Jay L Patel
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT
| |
Collapse
|
58
|
Clinical relevance of clonal hematopoiesis in the oldest-old population. Blood 2021; 138:2093-2105. [PMID: 34125889 DOI: 10.1182/blood.2021011320] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is associated with increased risk of cancers and inflammation-related diseases. This phenomenon becomes very common in oldest-old individuals, in whom the implications of CHIP are not well defined. We performed a mutational screening in 1794 oldest-old individuals enrolled in two population-based studies and investigate the relationships between CHIP and associated pathologies. Clonal mutations were observed in one third of oldest-old individuals and were associated with reduced survival. Mutations in JAK2 and splicing genes, multiple mutations (DNMT3A, TET2, ASXL1 with additional genetic lesions) and variant allele frequency ≥0.096 had positive predictive value for myeloid neoplasms. Combining mutation profiles with abnormalities in red blood cell indices improved the ability of myeloid neoplasm prediction. On this basis, we defined a predictive model that identifies 3 risk groups with different probabilities of developing myeloid neoplasms. Mutations in DNMT3A, TET2, ASXL1 or JAK2 (most occurring as single lesion) were associated with coronary heart disease and rheumatoid arthritis. Cytopenia was a common finding in oldest-old population, the underlying cause remaining unexplained in 30% of cases. Among individuals with unexplained cytopenia, the presence of highly-specific mutation patterns was associated with myelodysplastic-like phenotype and a probability of survival comparable to that of myeloid neoplasms. Accordingly, 7.5% of oldest-old subjects with cytopenia had presumptive evidence of myeloid neoplasm. In conclusion, specific mutational patterns define different risk of developing myeloid neoplasms vs. inflammatory-associated diseases in oldest-old population. In individuals with unexplained cytopenia, mutational status may identify those subjects with presumptive evidence of myeloid neoplasms.
Collapse
|
59
|
Oligomonocytic and overt chronic myelomonocytic leukemia show similar clinical, genomic, and immunophenotypic features. Blood Adv 2021; 4:5285-5296. [PMID: 33108455 DOI: 10.1182/bloodadvances.2020002206] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022] Open
Abstract
Oligomonocytic chronic myelomonocytic leukemia (OM-CMML) is defined as those myelodysplastic syndromes (MDSs) or myelodysplastic/myeloproliferative neoplasms, unclassifiable with relative monocytosis (≥10% monocytes) and a monocyte count of 0.5 to <1 × 109/L. These patients show clinical and genomic features similar to those of overt chronic myelomonocytic leukemia (CMML), although most of them are currently categorized as MDS, according to the World Health Organization 2017 classification. We analyzed the clinicopathologic features of 40 patients with OM-CMML with well-annotated immunophenotypic and molecular data and compared them to those of 56 patients with overt CMML. We found similar clinical, morphological, and cytogenetic features. In addition, OM-CMML mirrored the well-known complex molecular profile of CMML, except for the presence of a lower percentage of RAS pathway mutations. In this regard, of the different genes assessed, only CBL was found to be mutated at a significantly lower frequency. Likewise, the OM-CMML immunophenotypic profile, assessed by the presence of >94% classical monocytes (MO1s) and CD56 and/or CD2 positivity in peripheral blood monocytes, was similar to overt CMML. The MO1 percentage >94% method showed high accuracy for predicting CMML diagnosis (sensitivity, 90.7%; specificity, 92.2%), even when considering OM-CMML as a subtype of CMML (sensitivity, 84.9%; specificity, 92.1%) in our series of 233 patients (39 OM-CMML, 54 CMML, 23 MDS, and 15 myeloproliferative neoplasms with monocytosis and 102 reactive monocytosis). These results support the consideration of OM-CMML as a distinctive subtype of CMML.
Collapse
|
60
|
Palomo L, Acha P, Solé F. Genetic Aspects of Myelodysplastic/Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13092120. [PMID: 33925681 PMCID: PMC8124412 DOI: 10.3390/cancers13092120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal myeloid neoplasms characterized, at the time of their presentation, by the simultaneous presence of both myelodysplastic and myeloproliferative features. In MDS/MPN, the karyotype is often normal but mutations in genes that are common across myeloid neoplasms can be detected in a high proportion of cases by targeted sequencing. In this review, we intend to summarize the main genetic findings across all MDS/MPN overlap syndromes and discuss their relevance in the management of patients. Abstract Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are myeloid neoplasms characterized by the presentation of overlapping features from both myelodysplastic syndromes and myeloproliferative neoplasms. Although the classification of MDS/MPN relies largely on clinical features and peripheral blood and bone marrow morphology, studies have demonstrated that a large proportion of patients (~90%) with this disease harbor somatic mutations in a group of genes that are common across myeloid neoplasms. These mutations play a role in the clinical heterogeneity of these diseases and their clinical evolution. Nevertheless, none of them is specific to MDS/MPN and current diagnostic criteria do not include molecular data. Even when such alterations can be helpful for differential diagnosis, they should not be used alone as proof of neoplasia because some of these mutations may also occur in healthy older people. Here, we intend to review the main genetic findings across all MDS/MPN overlap syndromes and discuss their relevance in the management of the patients.
Collapse
Affiliation(s)
- Laura Palomo
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (L.P.); (P.A.)
- Experimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Pamela Acha
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (L.P.); (P.A.)
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (L.P.); (P.A.)
- Correspondence: ; Tel.: +34-93-557-2806
| |
Collapse
|
61
|
Veiga CB, Lawrence EM, Murphy AJ, Herold MJ, Dragoljevic D. Myelodysplasia Syndrome, Clonal Hematopoiesis and Cardiovascular Disease. Cancers (Basel) 2021; 13:cancers13081968. [PMID: 33921778 PMCID: PMC8073047 DOI: 10.3390/cancers13081968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The development of blood cancers is a complex process that involves the acquisition of specific blood disorders that precede cancer. These blood disorders are often driven by the accumulation of genetic abnormalities, which are discussed in this review. Likewise, predicting the rate of progression of these diseases is difficult, but it appears to be linked to which specific gene mutations are present in blood cells. In this review, we discuss a variety of genetic abnormalities that drive blood cancer, conditions that precede clinical symptoms of blood cancer, and how alterations in these genes change blood cell function. Additionally, we discuss the novel links between blood cancer development and heart disease. Abstract The development of myelodysplasia syndromes (MDS) is multiphasic and can be driven by a plethora of genetic mutations and/or abnormalities. MDS is characterized by a hematopoietic differentiation block, evidenced by increased immature hematopoietic cells, termed blast cells and decreased mature circulating leukocytes in at least one lineage (i.e., cytopenia). Clonal hematopoiesis of indeterminate potential (CHIP) is a recently described phenomenon preceding MDS development that is driven by somatic mutations in hemopoietic stem cells (HSCs). These mutant HSCs have a competitive advantage over healthy cells, resulting in an expansion of these clonal mutated leukocytes. In this review, we discuss the multiphasic development of MDS, the common mutations found in both MDS and CHIP, how a loss-of-function in these CHIP-related genes can alter HSC function and leukocyte development and the potential disease outcomes that can occur with dysfunctional HSCs. In particular, we discuss the novel connections between MDS development and cardiovascular disease.
Collapse
Affiliation(s)
- Camilla Bertuzzo Veiga
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Erin M. Lawrence
- Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; (E.M.L.); (M.J.H.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Andrew J. Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Diabetes, Department of Immunology, Monash University, Clayton, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Marco J. Herold
- Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; (E.M.L.); (M.J.H.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Dragana Dragoljevic
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Diabetes, Department of Immunology, Monash University, Clayton, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3052, Australia
- Correspondence:
| |
Collapse
|
62
|
Point Mutation Specific Antibodies in B-Cell and T-Cell Lymphomas and Leukemias: Targeting IDH2, KRAS, BRAF and Other Biomarkers RHOA, IRF8, MYD88, ID3, NRAS, SF3B1 and EZH2. Diagnostics (Basel) 2021; 11:diagnostics11040600. [PMID: 33801781 PMCID: PMC8065453 DOI: 10.3390/diagnostics11040600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
B-cell and T-cell lymphomas and leukemias often have distinct genetic mutations that are diagnostically defining or prognostically significant. A subset of these mutations consists of specific point mutations, which can be evaluated using genetic sequencing approaches or point mutation specific antibodies. Here, we describe genes harboring point mutations relevant to B-cell and T-cell malignancies and discuss the current availability of these targeted point mutation specific antibodies. We also evaluate the possibility of generating novel antibodies against known point mutations by computationally assessing for chemical and structural features as well as epitope antigenicity of these targets. Our results not only summarize several genetic mutations and identify existing point mutation specific antibodies relevant to hematologic malignancies, but also reveal potential underdeveloped targets which merit further study.
Collapse
|
63
|
Iacobucci I, Mullighan C. Prognostic mutation constellations in acute myeloid leukaemia and myelodysplastic syndrome. Curr Opin Hematol 2021; 28:101-109. [PMID: 33427759 PMCID: PMC8174569 DOI: 10.1097/moh.0000000000000629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW In the past decade, numerous studies analysing the genome and transcriptome of large cohorts of acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) patients have substantially improved our knowledge of the genetic landscape of these diseases with the identification of heterogeneous constellations of germline and somatic mutations with prognostic and therapeutic relevance. However, inclusion of integrated genetic data into classification schema is still far from a reality. The purpose of this review is to summarize recent insights into the prevalence, pathogenic role, clonal architecture, prognostic impact and therapeutic management of genetic alterations across the spectrum of myeloid malignancies. RECENT FINDINGS Recent multiomic-studies, including analysis of genetic alterations at the single-cell resolution, have revealed a high heterogeneity of lesions in over 200 recurrently mutated genes affecting disease initiation, clonal evolution and clinical outcome. Artificial intelligence and specifically machine learning approaches have been applied to large cohorts of AML and MDS patients to define in an unbiased manner clinically meaningful disease patterns including, disease classification, prognostication and therapeutic vulnerability, paving the way for future use in clinical practice. SUMMARY Integration of genomic, transcriptomic, epigenomic and clinical data coupled to conventional and machine learning approaches will allow refined leukaemia classification and risk prognostication and will identify novel therapeutic targets for these still high-risk leukaemia subtypes.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis (USA)
| | - Charles Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis (USA)
- Hematological Malignancies Program, St Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
64
|
Jung HA, Jung CW, Jang JH. Mutations in genes affecting DNA methylation enhances responses to decitabine in patients with myelodysplastic syndrome. Korean J Intern Med 2021; 36:413-423. [PMID: 33086776 PMCID: PMC7969079 DOI: 10.3904/kjim.2019.385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIMS In this study, we tested whether mutations in the methylation pathway genes ten-eleven-translocation 2 (TET2) and DNA methyltransferase gene 3A (DNMT3A) improve the responses of patients with myelodysplastic syndrome (MDS) to decitabine. METHODS We retrospectively sequenced the TET2 and DNMT3A genes from 70 patients diagnosed with de novo MDS between June 2008 and December 2011 and treated with a 5-day regimen of decitabine (290 cycles). We then analyzed treatment outcomes. RESULTS Patients with hematological improvement survived longer than those without hematological improvement (22.9 months vs. 10.9 months, p = 0.006). Among the 70 patients, 12 (17.1%) carried TET2 or DNMT3A mutations. The baseline characteristics of patients with wild type or mutated genes were similar. Patients with mutations in TET2 or DNMT3A had a higher overall response rate than those with the wild type genes (82.3% vs. 46.6%, p = 0.023). Multivariate analysis demonstrated that the TET2 or DMNT3A mutation status was associated with improved treatment responses and better overall survival among patients receiving decitabine. CONCLUSION These results demonstrate that TET2 mutations enhance the treatment response of MDS patients to hypomethylating agents like decitabine.
Collapse
Affiliation(s)
- Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chul Won Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jun Ho Jang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Correspondence to Jun Ho Jang, M.D. Division of HematologyOncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea Tel: +82-2-3410-3459 Fax: +82-2-3410-1754
| |
Collapse
|
65
|
Patnaik MM, Tefferi A. Myelodysplastic syndromes with ring sideroblasts (MDS-RS) and MDS/myeloproliferative neoplasm with RS and thrombocytosis (MDS/MPN-RS-T) - "2021 update on diagnosis, risk-stratification, and management". Am J Hematol 2021; 96:379-394. [PMID: 33428785 DOI: 10.1002/ajh.26090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
DISEASE OVERVIEW Ring sideroblasts (RS) are erythroid precursors with abnormal perinuclear mitochondrial iron accumulation. Two myeloid neoplasms defined by the presence of RS, include myelodysplastic syndromes with RS (MDS-RS) and MDS/myeloproliferative neoplasm with RS and thrombocytosis (MDS/MPN-RS-T). DIAGNOSIS MDS-RS is a lower risk MDS, with single or multilineage dysplasia (MDS-RS-SLD/MLD), <5% bone marrow (BM) blasts, <1% peripheral blood blasts and ≥15% BM RS (≥5% in the presence of SF3B1 mutations). MDS/MPN-RS-T, now a formal entity in the MDS/MPN overlap syndromes, has diagnostic features of MDS-RS-SLD, along with a platelet count ≥450 × 109 /L and large atypical megakaryocytes. MUTATIONS AND KARYOTYPE Mutations in SF3B1 are seen in ≥80% of patients with MDS-RS-SLD and MDS/MPN-RS-T, and strongly correlate with the presence of BM RS; MDS/MPN-RS-T patients also demonstrate JAK2V617F (50%), DNMT3A, TET2 and ASXL1 mutations. Cytogenetic abnormalities are uncommon in both. RISK STRATIFICATION Most patients with MDS-RS-SLD are stratified into lower risk groups by the revised-IPSS. Disease outcome in MDS/MPN-RS-T is better than that of MDS-RS-SLD, but worse than that of essential thrombocythemia (MPN). Both diseases are associated with a low risk of leukemic transformation. TREATMENT Anemia and iron overload are complications seen in both and are managed similar to lower risk MDS and MPN. Luspatercept, a first-in-class erythroid maturation agent is now approved for the management of anemia in patients with MDS-RS and MDS/MPN-RS-T. Aspirin therapy is reasonable in MDS/MPN-RS-T, especially in the presence of JAK2V617F, but the value of platelet-lowering drugs remains to be defined.
Collapse
Affiliation(s)
- Mrinal M. Patnaik
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota
| | - Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota
| |
Collapse
|
66
|
Molecular Targeted Therapy in Myelodysplastic Syndromes: New Options for Tailored Treatments. Cancers (Basel) 2021; 13:cancers13040784. [PMID: 33668555 PMCID: PMC7917605 DOI: 10.3390/cancers13040784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Myelodysplastic syndromes (MDS) are a group of diseases in which bone marrow stem cells acquire genetic alterations and can initiate leukemia, blocking the production of mature blood cells. It is of crucial importance to identify those genetic abnormalities because some of them can be the targeted. To date only very few drugs are approved for patients manifesting this group of disorders and there is an urgent need to develop new effective therapies. This review gives an overview of the genetic of MDS and the therapeutic options available and in clinical experimentation. Abstract Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic disorders characterized by ineffective hematopoiesis, progressive cytopenias and increased risk of transformation to acute myeloid leukemia. The improved understanding of the underlying biology and genetics of MDS has led to better disease and risk classification, paving the way for novel therapeutic opportunities. Indeed, we now have a vast pipeline of targeted agents under pre-clinical and clinical development, potentially able to modify the natural history of the diverse disease spectrum of MDS. Here, we review the latest therapeutic approaches (investigational and approved agents) for MDS treatment. A deep insight will be given to molecularly targeted therapies by reviewing new agents for individualized precision medicine.
Collapse
|
67
|
Bersanelli M, Travaglino E, Meggendorfer M, Matteuzzi T, Sala C, Mosca E, Chiereghin C, Di Nanni N, Gnocchi M, Zampini M, Rossi M, Maggioni G, Termanini A, Angelucci E, Bernardi M, Borin L, Bruno B, Bonifazi F, Santini V, Bacigalupo A, Voso MT, Oliva E, Riva M, Ubezio M, Morabito L, Campagna A, Saitta C, Savevski V, Giampieri E, Remondini D, Passamonti F, Ciceri F, Bolli N, Rambaldi A, Kern W, Kordasti S, Sole F, Palomo L, Sanz G, Santoro A, Platzbecker U, Fenaux P, Milanesi L, Haferlach T, Castellani G, Della Porta MG. Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes. J Clin Oncol 2021; 39:1223-1233. [PMID: 33539200 PMCID: PMC8078359 DOI: 10.1200/jco.20.01659] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recurrently mutated genes and chromosomal abnormalities have been identified in myelodysplastic syndromes (MDS). We aim to integrate these genomic features into disease classification and prognostication.
Collapse
Affiliation(s)
- Matteo Bersanelli
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy.,National Institute of Nuclear Physics (INFN), Bologna, Italy
| | - Erica Travaglino
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | | | - Tommaso Matteuzzi
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy.,National Institute of Nuclear Physics (INFN), Bologna, Italy
| | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy.,National Institute of Nuclear Physics (INFN), Bologna, Italy
| | - Ettore Mosca
- Institute of Biomedical Technologies, National Research Council (CNR), Segrate, Milan, Italy
| | | | - Noemi Di Nanni
- Institute of Biomedical Technologies, National Research Council (CNR), Segrate, Milan, Italy
| | - Matteo Gnocchi
- Institute of Biomedical Technologies, National Research Council (CNR), Segrate, Milan, Italy
| | - Matteo Zampini
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Marianna Rossi
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Giulia Maggioni
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy.,Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | | | - Emanuele Angelucci
- Hematology and Transplant Center, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Massimo Bernardi
- Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, & University Vita-Salute San Raffaele, Milan, Italy
| | | | - Benedetto Bruno
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesca Bonifazi
- Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Valeria Santini
- Hematology, Azienda Ospedaliero-Universitaria Careggi & University of Florence, Florence Italy
| | - Andrea Bacigalupo
- Hematology, IRCCS Fondazione Policlinico Universitario Gemelli & Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Teresa Voso
- Hematology, Policlinico Tor Vergata & Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Esther Oliva
- Hematology, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Marta Riva
- Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marta Ubezio
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Lucio Morabito
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Alessia Campagna
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Claudia Saitta
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza Italy
| | - Victor Savevski
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Enrico Giampieri
- National Institute of Nuclear Physics (INFN), Bologna, Italy.,Experimental, Diagnostic and Specialty Medicine-DIMES, Bologna, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy.,National Institute of Nuclear Physics (INFN), Bologna, Italy
| | - Francesco Passamonti
- Hematology, ASST Sette Laghi, Ospedale di Circolo of Varese & Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, & University Vita-Salute San Raffaele, Milan, Italy
| | - Niccolò Bolli
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | - Shahram Kordasti
- Haematology, Guy's Hospital & Comprehensive Cancer Centre, King's College, London, United Kingdom.,Hematology Department & Stem Cell Transplant Unit, DISCLIMO-Università Politecnica delle Marche, Ancona, Italy
| | - Francesc Sole
- Institut de Recerca Contra la Leucèmia Josep Carreras, Ctra de Can Ruti, Badalona-Barcelona, Spain
| | - Laura Palomo
- Institut de Recerca Contra la Leucèmia Josep Carreras, Ctra de Can Ruti, Badalona-Barcelona, Spain
| | - Guillermo Sanz
- Hematology, Hospital Universitario La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Armando Santoro
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy.,Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Pierre Fenaux
- Service d'Hématologie Séniors, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris and Université Paris, Paris, France
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council (CNR), Segrate, Milan, Italy
| | | | - Gastone Castellani
- National Institute of Nuclear Physics (INFN), Bologna, Italy.,Experimental, Diagnostic and Specialty Medicine-DIMES, Bologna, Italy
| | - Matteo G Della Porta
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy.,Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| |
Collapse
|
68
|
Bernardi S, Farina M. Exosomes and Extracellular Vesicles in Myeloid Neoplasia: The Multiple and Complex Roles Played by These " Magic Bullets". BIOLOGY 2021; 10:biology10020105. [PMID: 33540594 PMCID: PMC7912829 DOI: 10.3390/biology10020105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Extracellular vesicles (EVs) are released by the majority of cell types and can be isolated from both cell cultures and body fluids. They are involved in cell-to-cell communication and may shuttle different messages (RNA, DNA, and proteins). These messages are known to influence the microenvironment of cells and their behavior. In recent years, some evidence about the involvement of EVs and exosomes, an EV subgroup, in immunomodulation, the transfer of disease markers, and the treatment of myeloid malignancies have been reported. Little is known about these vesicles in this particular setting of hematologic neoplasia; here, we summarize and critically review the available results, aiming to encourage further investigations. Abstract Extracellular vesicles (exosomes, in particular) are essential in multicellular organisms because they mediate cell-to-cell communication via the transfer of secreted molecules. They are able to shuttle different cargo, from nucleic acids to proteins. The role of exosomes has been widely investigated in solid tumors, which gave us surprising results about their potential involvement in pathogenesis and created an opening for liquid biopsies. Less is known about exosomes in oncohematology, particularly concerning the malignancies deriving from myeloid lineage. In this review, we aim to present an overview of immunomodulation and the microenvironment alteration mediated by exosomes released by malicious myeloid cells. Afterwards, we review the studies reporting the use of exosomes as disease biomarkers and their influence in response to treatment, together with the recent experiences that have focused on the use of exosomes as therapeutic tools. The further development of new technologies and the increased knowledge of biological (exosomes) and clinical (myeloid neoplasia) aspects are expected to change the future approaches to these malignancies.
Collapse
Affiliation(s)
- Simona Bernardi
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy;
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- Correspondence: or ; Tel.: +39-0303998464
| | - Mirko Farina
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy;
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
69
|
Abstract
Idiopathic pure red cell aplasia (PRCA) and secondary PRCA associated with thymoma and large granular lymphocyte leukemia are generally considered to be immune-mediated. The PRCA2004/2006 study showed that poor responses to immunosuppression and anemia relapse were associated with death. PRCA may represent the prodrome to MDS. Thus, clonal hematopoiesis may be responsible for treatment failure. We investigated gene mutations in myeloid neoplasm-associated genes in acquired PRCA. We identified 21 mutations affecting amino acid sequences in 11 of the 38 adult PRCA patients (28.9%) using stringent filtering of the error-prone sequences and SNPs. Four PRCA patients showed 7 driver mutations in TET2, DNMT3A and KDM6A, and 2 PRCA patients carried multiple mutations in TET2. Five PRCA patients had mutations with high VAFs exceeding 0.3. These results suggest that clonal hematopoiesis by stem/progenitor cells might be related to the pathophysiology of chronic PRCA in certain adult patients.
Collapse
|
70
|
Atli EI, Gurkan H, Atli E, Kirkizlar HO, Yalcintepe S, Demir S, Demirci U, Eker D, Mail C, Kalkan R, Demir AM. The Importance of Targeted Next-Generation Sequencing Usage in Cytogenetically Normal Myeloid Malignancies. Mediterr J Hematol Infect Dis 2021; 13:e2021013. [PMID: 33489052 PMCID: PMC7813283 DOI: 10.4084/mjhid.2021.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
Advanced diagnostic methods give an advantage for the identification of abnormalities in myeloid malignancies. Various researchers have shown the potential importance of genetic tests before the disease's onset and in remission. Large testing panels prevent false-negative results in myeloid malignancies. However, the critical question is how the results of conventional cytogenetic and molecular cytogenetic techniques can be merged with NGS technologies. In this paper, we drew an algorithm for the evaluation of myeloid malignancies. To evaluate genetic abnormalities, we performed cytogenetics, molecular cytogenetics, and NGS testing in myeloid malignancies. In this study, we analyzed 100 patients admitted to the Medical Genetics Laboratory with different myeloid malignancies. We highlighted the possible diagnostic algorithm for cytogenetically normal cases. We applied NGS 141 gene panel for cytogenetically normal patients, and we detected two or more pathogenic variations in 61 out of 100 patients (61%). NGS's pathogenic variation detection rate varies in disease groups: they were present in 85% of A.M.L. and 23% of M.D.S. Here, we identified 24 novel variations out of total pathogenic variations in myeloid malignancies. A total of 18 novel variations were identified in A.M.L., and 6 novel variations were identified in M.D.S. Despite long turnaround times, conventional techniques are still a golden standard for myeloid malignancies but sometimes cryptic gene fusions or complex abnormalities cannot be easily identified by conventional techniques. In these conditions, advanced technologies like NGS are highly recommended.
Collapse
Affiliation(s)
- Emine Ikbal Atli
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Hakan Gurkan
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Engin Atli
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Hakki Onur Kirkizlar
- Faculty of Medicine, Department of Hematology, Trakya University, Edirne, Turkey
| | - Sinem Yalcintepe
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Selma Demir
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Ufuk Demirci
- Faculty of Medicine, Department of Hematology, Trakya University, Edirne, Turkey
| | - Damla Eker
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Cisem Mail
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Rasime Kalkan
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, Cyprus
| | - Ahmet Muzaffer Demir
- Faculty of Medicine, Department of Hematology, Trakya University, Edirne, Turkey
| |
Collapse
|
71
|
Bandara M, Goonasekera H, Dissanayake V. Identification of Novel Insertions and Deletions in Haematopoietic Stem/Progenitor Cells in de novo Myelodysplastic Syndromes. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:228-233. [PMID: 35178361 PMCID: PMC8800462 DOI: 10.22088/ijmcm.bums.10.3.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/11/2021] [Indexed: 11/03/2022]
Abstract
Myelodysplastic Syndromes (MDS) are clonal haematological stem cell disorders. The molecular basis of MDS is heterogeneous and the molecular mechanisms underlying biology of this complex disorder are not fully understood. Genetic variations (GVs) occur in about 90% of patients with MDS. It has been shown that in addition to the single nucleotide variations, insertions and deletions (indels) in the key genes that are known to drive MDS, could also play a role in pathogenesis of MDS. However, only a few genetic studies have analyzed indels in MDS. The present study reports indels of bone marrow (BM) derived CD34+ haematopoietic stem/progenitor cells of 20 newly diagnosed de novo MDS patients using next generation sequencing.A total of 88 indels (9 insertions and 79 deletions) across 28 genes were observed. The genes that showed more than five indels are BCOR (N=6), RAD21 (N=6), TP53 (N=8), ASXL1 (N=9), TET2 (N=9) and BCORL1 (N=10). Deletion in the BCORL1 gene (c.3957_3959delGGA, TGAG>TGAG/T) was the most recurrent deletion and was observed in 4/20 patients. The other recurrent deletions reported were EZH2 (W15X, N=2) and RAD21 (G274X, N=3). The recurrent insertions were detected in the FLT3 (E598DYVDFREYE, N=3) and in the NPM1 (L287LCX, N=3) genes. The findings of this study may have a diagnostic, prognostic and a therapeutic value for MDS after validation using a larger cohort.
Collapse
Affiliation(s)
- Manoj Bandara
- Department of Pre-Clinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka.
| | - Hemali Goonasekera
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka.
| | - Vajira Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka.,Corresponding author: Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka.
| |
Collapse
|
72
|
Sundaravel S, Steidl U, Wickrema A. Epigenetic modifiers in normal and aberrent erythropoeisis. Semin Hematol 2021; 58:15-26. [PMID: 33509439 PMCID: PMC7883935 DOI: 10.1053/j.seminhematol.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Erythroid differentiation program is comprised of lineage commitment, erythroid progenitor proliferation, and termination differentiation. Each stage of the differentiation program is heavily influenced by epigenetic modifiers that alter the epigenome in a dynamic fashion influenced by cytokines/humeral factors and are amicable to target by drugs. The epigenetic modifiers can be classified as DNA modifiers (DNMT, TET), mRNA modifiers (RNA methylases and demethylases) and histone protein modifiers (methyltransferases, acetyltransferases, demethylases, and deacetylases). Here we describe mechanisms by which these epigenetic modifiers influence and guide erythroid-lineage differentiation during normal and malignant erythropoiesis and also benign diseases that arise from their altered structure or function.
Collapse
Affiliation(s)
- Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY; Department of Medicine, Albert Einstein College of Medicine-Montefiore Medical center, Bronx, NY
| | | |
Collapse
|
73
|
Zubovic L, Piazza S, Tebaldi T, Cozzuto L, Palazzo G, Sidarovich V, De Sanctis V, Bertorelli R, Lammens T, Hofmans M, De Moerloose B, Ponomarenko J, Pigazzi M, Masetti R, Mecucci C, Basso G, Macchi P. The altered transcriptome of pediatric myelodysplastic syndrome revealed by RNA sequencing. J Hematol Oncol 2020; 13:135. [PMID: 33046098 PMCID: PMC7552545 DOI: 10.1186/s13045-020-00974-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Pediatric myelodysplastic syndrome (PMDS) is a very rare and still poorly characterized disorder. In this work, we identified novel potential targets of PMDS by determining genes with aberrant expression, which can be correlated with PMDS pathogenesis. We identified 291 differentially expressed genes (DEGs) in PMDS patients, comprising genes involved in the regulation of apoptosis and the cell cycle, ribosome biogenesis, inflammation and adaptive immunity. Ten selected DEGs were then validated, confirming the sequencing data. These DEGs will potentially represent new molecular biomarkers and therapeutic targets for PMDS.
Collapse
Affiliation(s)
- Lorena Zubovic
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy.
| | - Silvano Piazza
- Bioinformatics Facility, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Giuliana Palazzo
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Viktoryia Sidarovich
- High Throughput Screening (HTS) and Validation, CIBIO, University of Trento, Trento, Italy
| | - Veronica De Sanctis
- Next Generation Sequencing Core Facility LaBSSAH - CIBIO, University of Trento, Trento, Italy
| | - Roberto Bertorelli
- Next Generation Sequencing Core Facility LaBSSAH - CIBIO, University of Trento, Trento, Italy
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Mattias Hofmans
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), Barcelona, Spain.,University Pompeu Fabra, Barcelona, Spain
| | - Martina Pigazzi
- Istituto Di Ricerca Pediatrica Città Della Speranza, Padua, Italy
| | - Riccardo Masetti
- Associazione italiana ematologia e oncologia pediatrica (AIEOP), Bologna, Italy
| | | | - Giuseppe Basso
- Maternal and Child Health Department, Padua University, Padua, Italy.,IIGM-Italian Institute for Genomic Medicine, Turin, Italy
| | - Paolo Macchi
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
74
|
Affiliation(s)
- Mario Cazzola
- From Fondazione IRCCS Policlinico San Matteo and the University of Pavia, Pavia, Italy
| |
Collapse
|
75
|
DNA methylation identifies genetically and prognostically distinct subtypes of myelodysplastic syndromes. Blood Adv 2020; 3:2845-2858. [PMID: 31582393 DOI: 10.1182/bloodadvances.2019000192] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022] Open
Abstract
Recurrent mutations implicate several epigenetic regulators in the early molecular pathobiology of myelodysplastic syndromes (MDS). We hypothesized that MDS subtypes defined by DNA methylation (DNAm) patterns could enhance our understanding of MDS disease biology and identify patients with convergent epigenetic profiles. Bisulfite padlock probe sequencing was used to measure DNAm of ∼500 000 unique cytosine guanine dinucleotides covering 140 749 nonoverlapping regulatory regions across the genome in bone marrow DNA samples from 141 patients with MDS. Application of a nonnegative matrix factorization (NMF)-based decomposition of DNAm profiles identified 5 consensus clusters described by 5 NMF components as the most stable grouping solution. Each of the 5 NMF components identified by this approach correlated with specific genetic abnormalities and categorized patients into 5 distinct methylation clusters, each largely defined by a single NMF component. Methylation clusters displayed unique differentially methylated regulatory loci enriched for active and bivalent promoters and enhancers. Two clusters were enriched for samples with complex karyotypes, although only one had an increased number of TP53 mutations. Each of the 3 most frequently mutated splicing factors, SF3B1, U2AF1, and SRSF2, was enriched in different clusters. Mutations of ASXL1, EZH2, and RUNX1 were coenriched in the SRSF2-containing cluster. In multivariate analysis, methylation cluster membership remained independently associated with overall survival. Targeted DNAm profiles identify clinically relevant subtypes of MDS not otherwise distinguished by mutations or clinical features. Patients with diverse genetic lesions can converge on common DNAm states with shared pathogenic mechanisms and clinical outcomes.
Collapse
|
76
|
Prognostic Markers of Myelodysplastic Syndromes. ACTA ACUST UNITED AC 2020; 56:medicina56080376. [PMID: 32727068 PMCID: PMC7466347 DOI: 10.3390/medicina56080376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022]
Abstract
Myelodysplastic syndrome (MDS) is a clonal disease characterized by multilineage dysplasia, peripheral blood cytopenias, and a high risk of transformation to acute myeloid leukemia. In theory, from clonal hematopoiesis of indeterminate potential to hematologic malignancies, there is a complex interplay between genetic and epigenetic factors, including miRNA. In practice, karyotype analysis assigns patients to different prognostic groups, and mutations are often associated with a particular disease phenotype. Among myeloproliferative disorders, secondary MDS is a group of special entities with a typical spectrum of genetic mutations and cytogenetic rearrangements resembling those in de novo MDS. This overview analyzes the present prognostic systems of MDS and the most recent efforts in the search for genetic and epigenetic markers for the diagnosis and prognosis of MDS.
Collapse
|
77
|
Malcovati L, Stevenson K, Papaemmanuil E, Neuberg D, Bejar R, Boultwood J, Bowen DT, Campbell PJ, Ebert BL, Fenaux P, Haferlach T, Heuser M, Jansen JH, Komrokji RS, Maciejewski JP, Walter MJ, Fontenay M, Garcia-Manero G, Graubert TA, Karsan A, Meggendorfer M, Pellagatti A, Sallman DA, Savona MR, Sekeres MA, Steensma DP, Tauro S, Thol F, Vyas P, Van de Loosdrecht AA, Haase D, Tüchler H, Greenberg PL, Ogawa S, Hellstrom-Lindberg E, Cazzola M. SF3B1-mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS. Blood 2020; 136:157-170. [PMID: 32347921 PMCID: PMC7362582 DOI: 10.1182/blood.2020004850] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
The 2016 revision of the World Health Organization classification of tumors of hematopoietic and lymphoid tissues is characterized by a closer integration of morphology and molecular genetics. Notwithstanding, the myelodysplastic syndrome (MDS) with isolated del(5q) remains so far the only MDS subtype defined by a genetic abnormality. Approximately half of MDS patients carry somatic mutations in spliceosome genes, with SF3B1 being the most commonly mutated one. SF3B1 mutation identifies a condition characterized by ring sideroblasts (RS), ineffective erythropoiesis, and indolent clinical course. A large body of evidence supports recognition of SF3B1-mutant MDS as a distinct nosologic entity. To further validate this notion, we interrogated the data set of the International Working Group for the Prognosis of MDS (IWG-PM). Based on the findings of our analyses, we propose the following diagnostic criteria for SF3B1-mutant MDS: (1) cytopenia as defined by standard hematologic values, (2) somatic SF3B1 mutation, (3) morphologic dysplasia (with or without RS), and (4) bone marrow blasts <5% and peripheral blood blasts <1%. Selected concomitant genetic lesions represent exclusion criteria for the proposed entity. In patients with clonal cytopenia of undetermined significance, SF3B1 mutation is almost invariably associated with subsequent development of overt MDS with RS, suggesting that this genetic lesion might provide presumptive evidence of MDS in the setting of persistent unexplained cytopenia. Diagnosis of SF3B1-mutant MDS has considerable clinical implications in terms of risk stratification and therapeutic decision making. In fact, this condition has a relatively good prognosis and may respond to luspatercept with abolishment of the transfusion requirement.
Collapse
Affiliation(s)
- Luca Malcovati
- Department of Molecular Medicine, University of Pavia & Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Kristen Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - David T Bowen
- St. James's Institute of Oncology, Leeds Teaching Hospitals, Leeds, United Kingdom
| | | | | | - Pierre Fenaux
- Hôpital St Louis, Assistance Publique-Hôpitaux de Paris and Paris Diderot University, Paris, France
| | | | | | - Joop H Jansen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rami S Komrokji
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | | | - Michaela Fontenay
- Université Paris Descartes, Hôpital Cochin Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | - Aly Karsan
- BC Cancer Research Centre & Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Andrea Pellagatti
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - David A Sallman
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | | | | | - Sudhir Tauro
- Dundee Cancer Centre, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | | | - Paresh Vyas
- MRC Molecular Hematology Unit, WIMM University of Oxford, Oxford Biomedical Research Centre, Department of Hematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | | | - Detlef Haase
- University Medical Center, Georg August University, Göttingen, Germany
| | - Heinz Tüchler
- Ludwig Boltzmann Institute for Leukemia Research, Vienna, Austria
| | | | - Seishi Ogawa
- Department of Tumor Biology, University of Kyoto, Japan; and
| | - Eva Hellstrom-Lindberg
- Division of Hematology, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia & Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
78
|
Lovat F, Nigita G, Distefano R, Nakamura T, Gasparini P, Tomasello L, Fadda P, Ibrahimova N, Catricalà S, Palamarchuk A, Caligiuri MA, Gallì A, Malcovati L, Minden MD, Croce CM. Combined loss of function of two different loci of miR-15/16 drives the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci U S A 2020; 117:12332-12340. [PMID: 32424097 PMCID: PMC7275703 DOI: 10.1073/pnas.2003597117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Double knockout of the two miR-15/16 loci in mouse resulted in the development of acute myeloid leukemia (AML). This result suggested that, at least, a fraction of human AMLs could be due to a similar mechanism. We analyzed the role of the two miR-15/16 clusters in 93 myelodysplastic syndrome (MDS) patients divided in three subgroups: patients with MDS, patients with MDS before transforming into AML (MDS-T), and patients with AML evolving from MDS (MDS-AML). Then, we tested 139 AML cases and 14 different AML cell lines by assessing microRNA (miRNA) expression, target protein expression, genetic loss, and silencing. MDS-T and MDS-AML patients show a reduction of the expression of miR-15a/-15b/-16 compared to MDS patients. Each miRNA can significantly predict MDS and MDS-T groups. Then, 79% of primary AMLs show a reduced expression of miR-15a and/or miR-15b. The expression of miR-15a/-15b/-16 significantly stratified AML patients in two prognostic classes. Furthermore, 40% of AML cell lines showed a combined loss of the expression of miR-15a/-15b and overexpression of their direct/indirect targets. As potential mechanisms involved in the silencing of the two miR-15/16 loci, we identified a genetic loss of miR-15a and miR-15b and silencing of these two loci by methylation. We identified a potential driver oncogenic role in the loss of expression of both miR-15/16 clusters in the progression of MDS into AML and in AML pathogenesis. The stratification of AML patients, based on miR-15/16 expression, can lead to targeted and combination therapies for the treatment of this incurable disease.
Collapse
Affiliation(s)
- Francesca Lovat
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Rosario Distefano
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Tatsuya Nakamura
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Luisa Tomasello
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Paolo Fadda
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Narmin Ibrahimova
- Department of Medical Biophysics, University of Toronto, ON M5G 2M9, Canada
| | - Silvia Catricalà
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alexey Palamarchuk
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Michael A Caligiuri
- Center for Stem Cell Transplantation, Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010
| | - Anna Gallì
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Luca Malcovati
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, ON M5G 2M9, Canada
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210;
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
79
|
Ochi Y, Kon A, Sakata T, Nakagawa MM, Nakazawa N, Kakuta M, Kataoka K, Koseki H, Nakayama M, Morishita D, Tsuruyama T, Saiki R, Yoda A, Okuda R, Yoshizato T, Yoshida K, Shiozawa Y, Nannya Y, Kotani S, Kogure Y, Kakiuchi N, Nishimura T, Makishima H, Malcovati L, Yokoyama A, Takeuchi K, Sugihara E, Sato TA, Sanada M, Takaori-Kondo A, Cazzola M, Kengaku M, Miyano S, Shirahige K, Suzuki HI, Ogawa S. Combined Cohesin-RUNX1 Deficiency Synergistically Perturbs Chromatin Looping and Causes Myelodysplastic Syndromes. Cancer Discov 2020; 10:836-853. [PMID: 32249213 PMCID: PMC7269820 DOI: 10.1158/2159-8290.cd-19-0982] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022]
Abstract
STAG2 encodes a cohesin component and is frequently mutated in myeloid neoplasms, showing highly significant comutation patterns with other drivers, including RUNX1. However, the molecular basis of cohesin-mutated leukemogenesis remains poorly understood. Here we show a critical role of an interplay between STAG2 and RUNX1 in the regulation of enhancer-promoter looping and transcription in hematopoiesis. Combined loss of STAG2 and RUNX1, which colocalize at enhancer-rich, CTCF-deficient sites, synergistically attenuates enhancer-promoter loops, particularly at sites enriched for RNA polymerase II and Mediator, and deregulates gene expression, leading to myeloid-skewed expansion of hematopoietic stem/progenitor cells (HSPC) and myelodysplastic syndromes (MDS) in mice. Attenuated enhancer-promoter loops in STAG2/RUNX1-deficient cells are associated with downregulation of genes with high basal transcriptional pausing, which are important for regulation of HSPCs. Downregulation of high-pausing genes is also confirmed in STAG2-cohesin-mutated primary leukemia samples. Our results highlight a unique STAG2-RUNX1 interplay in gene regulation and provide insights into cohesin-mutated leukemogenesis. SIGNIFICANCE: We demonstrate a critical role of an interplay between STAG2 and a master transcription factor of hematopoiesis, RUNX1, in MDS development, and further reveal their contribution to regulation of high-order chromatin structures, particularly enhancer-promoter looping, and the link between transcriptional pausing and selective gene dysregulation caused by cohesin deficiency.This article is highlighted in the In This Issue feature, p. 747.
Collapse
Affiliation(s)
- Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayana Kon
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyonori Sakata
- Laboratory of Genome Structure and Function, Research Division for Quantitative Life Sciences, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Masahiro M Nakagawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naotaka Nakazawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Masanori Kakuta
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | | | - Tatsuaki Tsuruyama
- Department of Drug and Discovery Medicine, Pathology Division, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akinori Yoda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rurika Okuda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuichi Yoshizato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichi Kotani
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasunori Kogure
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomomi Nishimura
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eiji Sugihara
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Taka-Aki Sato
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masashi Sanada
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Division for Quantitative Life Sciences, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
80
|
Abstract
PURPOSE OF REVIEW The field of acute myeloid leukemia (AML) has been revolutionized in recent years by the advent of high-throughput techniques, such as next-generation sequencing. In this review, we will discuss some of the recently identified mutations that have defined a new molecular landscape in this disease, as well as their prognostic, predictive, and therapeutic implications. RECENT FINDINGS Recent studies have shown how many cases of AML evolve from a premalignant period of latency characterized by the accumulation of several mutations and the emergence of one or multiple dominant clones. The pattern of co-occurring mutations and cytogenetic abnormalities at diagnosis defines risk and can determine therapeutic approaches to induce remission. Besides the genetic landscape at diagnosis, the continued presence of particular gene mutations during or after treatment carries prognostic information that should further influence strategies to maintain remission in the long term. The recent progress made in AML research is a seminal example of how basic science can translate into improving clinical practice. Our ability to characterize the genomic landscape of individual patients has not only improved our ability to diagnose and prognosticate but is also bringing the promise of precision medicine to fruition in the field.
Collapse
Affiliation(s)
- Ludovica Marando
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Brian J P Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
81
|
Do next-generation sequencing results drive diagnostic and therapeutic decisions in MDS? Blood Adv 2020; 3:3454-3460. [PMID: 31714959 DOI: 10.1182/bloodadvances.2019000680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
This article has a companion Point by Thol and Platzbecker.
Collapse
|
82
|
Ernst P, Engmann B, Frietsch JJ, Schnetzke U, Scholl S, Theis B, Kreipe HH, Ernst T, Glaser A, Haferlach T, Koch T, Hochhaus A, Hilgendorf I. A 19-year-old patient with atypical chronic myeloid leukemia. Ann Hematol 2020; 99:1145-1148. [PMID: 32193626 PMCID: PMC7196939 DOI: 10.1007/s00277-020-03992-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Philipp Ernst
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07740, Jena, Germany.
| | - Björn Engmann
- Klinik für Innere Medizin, Burgenlandkreis Klinikum, Naumburg, Germany
| | - Jochen J Frietsch
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07740, Jena, Germany
| | - Ulf Schnetzke
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07740, Jena, Germany
| | - Sebastian Scholl
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07740, Jena, Germany
| | - Bernhard Theis
- Institut für Pathologie, Universitätsklinikum Jena, Jena, Germany
| | - Hans H Kreipe
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Thomas Ernst
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07740, Jena, Germany
| | - Anita Glaser
- Institut für Humangenetik, Universitätsklinikum Jena, Jena, Germany
| | | | - Thilo Koch
- Klinik für Innere Medizin, Burgenlandkreis Klinikum, Naumburg, Germany
| | - Andreas Hochhaus
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07740, Jena, Germany
| | - Inken Hilgendorf
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07740, Jena, Germany
| |
Collapse
|
83
|
Invariant phenotype and molecular association of biallelic TET2 mutant myeloid neoplasia. Blood Adv 2020; 3:339-349. [PMID: 30709865 DOI: 10.1182/bloodadvances.2018024216] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022] Open
Abstract
Somatic TET2 mutations (TET2 MT) are frequent in myeloid neoplasia (MN), particularly chronic myelomonocytic leukemia (CMML). TET2 MT includes mostly loss-of-function/hypomorphic hits. Impaired TET2 activity skews differentiation of hematopoietic stem cells toward proliferating myeloid precursors. This study was prompted by the observation of frequent biallelic TET2 gene inactivations (biTET2 i ) in CMML. We speculated that biTET2 i might be associated with distinct clinicohematological features. We analyzed TET2 MT in 1045 patients with MN. Of 82 biTET2 i cases, 66 were biTET2 MT, 13 were hemizygous TET2 MT, and 3 were homozygous TET2 MT (uniparental disomy); the remaining patients (denoted biTET2 - hereafter) were either monoallelic TET2 MT (n = 96) or wild-type TET2 (n = 823). Truncation mutations were found in 83% of biTET2 i vs 65% of biTET2 - cases (P = .02). TET2 hits were founder lesions in 72% of biTET2 i vs 38% of biTET2 - cases (P < .0001). In biTET2 i , significantly concurrent hits included SRSF2 MT (33%; P < .0001) and KRAS/NRAS MT (16%; P = .03) as compared with biTET2 - When the first TET2 hit was ancestral in biTET2 i , the most common subsequent hits affected a second TET2 MT, followed by SRSF2 MT, ASXL1 MT, RAS MT, and DNMT3A MT BiTET2 i patients without any monocytosis showed an absence of SRSF2 MT BiTET2 i patients were older and had monocytosis, CMML, normal karyotypes, and lower-risk disease compared with biTET2 - patients. Hence, while a second TET2 hit occurred frequently, biTET2 i did not portend faster progression but rather determined monocytic differentiation, consistent with its prevalence in CMML. Additionally, biTET2 i showed lower odds of cytopenias and marrow blasts (≥5%) and higher odds of myeloid dysplasia and marrow hypercellularity. Thus, biTET2 i might represent an auxiliary assessment tool in MN.
Collapse
|
84
|
Yokota A, Huo L, Lan F, Wu J, Huang G. The Clinical, Molecular, and Mechanistic Basis of RUNX1 Mutations Identified in Hematological Malignancies. Mol Cells 2020; 43:145-152. [PMID: 31964134 PMCID: PMC7057846 DOI: 10.14348/molcells.2019.0252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
RUNX1 plays an important role in the regulation of normal hematopoiesis. RUNX1 mutations are frequently found and have been intensively studied in hematological malignancies. Germline mutations in RUNX1 cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). Somatic mutations of RUNX1 are observed in various types of hematological malignancies, such as AML, acute lymphoblastic leukemia (ALL), myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), chronic myelomonocytic leukemia (CMML), and congenital bone marrow failure (CBMF). Here, we systematically review the clinical and molecular characteristics of RUNX1 mutations, the mechanisms of pathogenesis caused by RUNX1 mutations, and potential therapeutic strategies to target RUNX1-mutated cases of hematological malignancies.
Collapse
Affiliation(s)
- Asumi Yokota
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Li Huo
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 15006, China
| | - Fengli Lan
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 40022, China
| | - Jianqiang Wu
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
85
|
Crisà E, Kulasekararaj AG, Adema V, Such E, Schanz J, Haase D, Shirneshan K, Best S, Mian SA, Kizilors A, Cervera J, Lea N, Ferrero D, Germing U, Hildebrandt B, Martínez ABV, Santini V, Sanz GF, Solé F, Mufti GJ. Impact of somatic mutations in myelodysplastic patients with isolated partial or total loss of chromosome 7. Leukemia 2020; 34:2441-2450. [PMID: 32066866 DOI: 10.1038/s41375-020-0728-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/19/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022]
Abstract
Monosomy 7 [-7] and/or partial loss of chromosome 7 [del(7q)] are associated with poor and intermediate prognosis, respectively, in myelodysplastic syndromes (MDS), but somatic mutations may also play a key complementary role. We analyzed the impact on the outcomes of deep targeted mutational screening in 280 MDS patients with -7/del(7q) as isolated cytogenetic abnormality (86 with del(7q) and 194 with -7). Patients with del(7q) or -7 had similar demographic and disease-related characteristics. Somatic mutations were detected in 79% (93/117) of patients (82% in -7 and 73% in del(7q) group). Median number of mutations per patient was 2 (range 0-8). There was no difference in mutation frequency between the two groups. Patients harbouring ≥2 mutations had a worse outcome than patients with <2 or no mutations (leukaemic transformation at 24 months, 38% and 20%, respectively, p = 0.044). Untreated patients with del(7q) had better overall survival (OS) compared with -7 (median OS, 34 vs 17 months, p = 0.034). In multivariable analysis, blast count, TP53 mutations and number of mutations were independent predictors of OS, whereas the cytogenetic subgroups did not retain prognostic relevance. This study highlights the importance of mutational analysis in terms of prognosis in MDS patients with isolated -7 or del(7q).
Collapse
Affiliation(s)
- Elena Crisà
- Department of Haematological Medicine, King's College Hospital, NHS Foundation Trust, London, UK. .,Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy. .,Fondazione Italiana Sindromi Mielodisplastiche (FISiM), Bologna, Italy.
| | - Austin G Kulasekararaj
- Department of Haematological Medicine, King's College Hospital, NHS Foundation Trust, London, UK
| | - Vera Adema
- Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Esperanza Such
- Department of Hematology, Hospital Universitario La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julie Schanz
- Department of Hematology and Medical Oncology, University Medical Center of Göttingen, Göttingen, Germany
| | - Detlef Haase
- Department of Hematology and Medical Oncology, University Medical Center of Göttingen, Göttingen, Germany
| | - Katayoon Shirneshan
- Department of Hematology and Medical Oncology, University Medical Center of Göttingen, Göttingen, Germany
| | - Steven Best
- Laboratory for Molecular Haemato-Oncology, King's College Hospital, NHS Foundation Trust, London, UK
| | - Syed A Mian
- Department of Haematological Medicine, King's College Hospital, NHS Foundation Trust, London, UK.,Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Aytug Kizilors
- Laboratory for Molecular Haemato-Oncology, King's College Hospital, NHS Foundation Trust, London, UK
| | - José Cervera
- Genetics Unit, Hospital Universitario La Fe, Valencia, Spain
| | - Nicholas Lea
- Laboratory for Molecular Haemato-Oncology, King's College Hospital, NHS Foundation Trust, London, UK
| | - Dario Ferrero
- Fondazione Italiana Sindromi Mielodisplastiche (FISiM), Bologna, Italy.,Division of Hematology, University of Torino, AOU Città della Salute e della Scienza, Torino, Italy
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Barbara Hildebrandt
- Institute of Human Genetics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Valeria Santini
- Fondazione Italiana Sindromi Mielodisplastiche (FISiM), Bologna, Italy.,MDS UNIT, AOU Careggi, University of Florence, Firenze, Italy
| | - Guillermo F Sanz
- Department of Hematology, Hospital Universitario La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - Francesc Solé
- Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ghulam J Mufti
- Department of Haematological Medicine, King's College Hospital, NHS Foundation Trust, London, UK
| |
Collapse
|
86
|
Gbyli R, Song Y, Halene S. Humanized mice as preclinical models for myeloid malignancies. Biochem Pharmacol 2020; 174:113794. [PMID: 31926939 DOI: 10.1016/j.bcp.2020.113794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Humanized mice have proven to be invaluable for human hematological translational research since they offer essential tools to dissect disease biology and to bridge the gap between pre-clinical testing of novel therapeutics and their clinical applications. Many efforts have been placed to advance and optimize humanized mice to support the engraftment, differentiation, and maintenance of hematopoietic stem cells (HSCs) and the human hematological system in order to broaden the scope of applications of such models. This review covers the background of humanized mice, how they are used as platforms to model myeloid malignancies, and the various current and potential approaches to further enhance their utilization in biomedical research.
Collapse
Affiliation(s)
- Rana Gbyli
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Yuanbin Song
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
87
|
Jafari PA, Sadeghian MH, Miri HH, Sadeghi R, Bagheri R, Lavasani S, Souri S. Prognostic significance of SF3B1 mutations in patients with myelodysplastic syndromes: A meta-analysis. Crit Rev Oncol Hematol 2020; 145:102832. [DOI: 10.1016/j.critrevonc.2019.102832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/02/2018] [Accepted: 11/06/2019] [Indexed: 01/08/2023] Open
|
88
|
Acute Myeloid Leukemia: Aging and Epigenetics. Cancers (Basel) 2019; 12:cancers12010103. [PMID: 31906064 PMCID: PMC7017261 DOI: 10.3390/cancers12010103] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological disorder mainly affecting people of older age. AML initiation is primarily attributed to mutations in crucial cellular regulators such as epigenetic factors, transcription factors, and signaling genes. AML’s aggressiveness and responsiveness to treatment depends on the specific cell type where leukemia first arose. Aged hematopoietic cells are often genetically and/or epigenetically altered and, therefore, present with a completely different cellular context for AML development compared to young cells. In this review, we summarize key aspects of AML development, and we focus, in particular, on the contribution of cellular aging to leukemogenesis and on current treatment options for elderly AML patients. Hematological disorders and leukemia grow exponentially with age. So far, with conventional induction therapy, many elderly patients experience a very poor overall survival rate requiring substantial social and medical costs during the relatively few remaining months of life. The global population’s age is increasing rapidly without an acceptable equal growth in therapeutic management of AML in the elderly; this is in sharp contrast to the increase in successful therapies for leukemia in younger patients. Therefore, a focus on the understanding of the biology of aging in the hematopoietic system, the development of appropriate research models, and new therapeutic approaches are urged.
Collapse
|
89
|
Azrakhsh NA, Mensah-Glanowska P, Sand K, Kittang AO. Targeting Immune Signaling Pathways in Clonal Hematopoiesis. Curr Med Chem 2019; 26:5262-5277. [PMID: 30907306 DOI: 10.2174/0929867326666190325100636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Myeloid neoplasms are a diverse group of malignant diseases with different entities and numerous patho-clinical features. They arise from mutated clones of hematopoietic stem- and progenitor cells which expand by outperforming their normal counterparts. The intracellular signaling profile of cancer cells is the sum of genetic, epigenetic and microenvironmental influences, and the multiple interconnections between different signaling pathways make pharmacological targeting complicated. OBJECTIVE To present an overview of known somatic mutations in myeloproliferative neoplasms (MPN), myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) and the inflammatory signaling pathways affected by them, as well as current efforts to therapeutically modulate this aberrant inflammatory signaling. METHODS In this review, we extensively reviewed and compiled salient information with ClinicalTrials.gov as our source on ongoing studies, and PubMed as our authentic bibliographic source, using a focused review question. RESULTS Mutations affecting immune signal transduction are present to varying extents in clonal myeloid diseases. While MPN are dominated by a few common mutations, a multitude of different genes can be mutated in MDS and AML. Mutations can also occur in asymptomatic persons, a finding called clonal hematopoiesis of indeterminate potential (CHIP). Mutations in FLT3, JAK, STAT, CBL and RAS can lead to aberrant immune signaling. Protein kinase inhibitors are entering the clinic and are extensively investigated in clinical trials in MPN, MDS and AML. CONCLUSION In summary, this article summarizes recent research on aberrant inflammatory signaling in clonal myeloid diseases and the clinical therapeutic potential of modulation of signal transduction and effector proteins in the affected pathways.
Collapse
Affiliation(s)
| | - Patrycja Mensah-Glanowska
- Department of Hematology, Jagiellonian University Medical College / University Hospital, Krakow, Poland
| | - Kristoffer Sand
- Clinic of Medicine and Rehabilitation, More and Romsdal Hospital Trust, Alesund, Norway
| | - Astrid Olsnes Kittang
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, Section for Hematology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
90
|
Zhao P, Qin J, Liu W, Quan R, Xiao H, Liu C, Li L, Lv Y, Zhu Q, Wang H, Guo X, Wang J, Hu X. Genetic alterations in 47 patients with a novel myelodysplastic syndrome diagnosis at a single center. Oncol Lett 2019; 18:5077-5084. [PMID: 31612018 PMCID: PMC6781645 DOI: 10.3892/ol.2019.10853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/19/2019] [Indexed: 11/23/2022] Open
Abstract
At least one mutation is present in 70–80% of patients with myelodysplastic syndrome (MDS). Genetic alterations and other molecular biological markers have been included in the diagnostic and treatment guidelines for MDS. The aim of the present study was to analyze the association between genetic alterations and clinicopathological features among 47 Chinese patients with a novel diagnosis of MDS using a next-generation sequencing approach. The results indicated that from the 47 patients, 66.0% had genetic alterations. Furthermore, seven genes, U2 small nuclear RNA auxiliary factor 1 (23.4%), splicing factor 3b subunit (12.8%), ASXL transcriptional regulator 1 (10.6%), tet methylcytosine dioxygenase 2 (8.5%), BCL6 corepressor (8.5%), TP53 (8.5%) and DNA methyltransferase 3α (6.4%), indicated a higher prevalence of alterations in >5% of patients. Among the 16 (51.6%) patients with ≥2 mutations, 12 (75%) had mutations in different genetic functional groups. Variant allele frequencies in signaling pathways were generally low, suggesting that mutations in the corresponding genes were acquired relatively late during the evolution of the leukemic clones. The mutation prevalence rates of Janus kinase 2 and SH2B adaptor protein 3 were significantly higher in the MDS unclassified group and in the very high-risk groups with a karyotype as a prognostic indicator, respectively (both P<0.05). The mutation prevalence rates of SET binding protein 1 and enhancer of zeste 2 polycomb repressive complex 2 subunit were significantly higher in the high-risk group (both P<0.05). In summary, 66.0% of the 47 patients with a novel MDS diagnosis had a genetic mutation as detected by 127-target gene next-generation sequencing. The results for the genetic alterations in the present study will supplement the database of patients with MDS in China.
Collapse
Affiliation(s)
- Pan Zhao
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Jiayue Qin
- Annoroad Gene Technology Co., Ltd., Beijing 100176, P.R. China
| | - Weiyi Liu
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Richeng Quan
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Haiyan Xiao
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Chi Liu
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Liu Li
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Yan Lv
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Qianze Zhu
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Hongzhi Wang
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Xiaoqing Guo
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Juan Wang
- Annoroad Gene Technology Co., Ltd., Beijing 100176, P.R. China
| | - Xiaomei Hu
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| |
Collapse
|
91
|
Palomo L, Ibáñez M, Abáigar M, Vázquez I, Álvarez S, Cabezón M, Tazón-Vega B, Rapado I, Fuster-Tormo F, Cervera J, Benito R, Larrayoz MJ, Cigudosa JC, Zamora L, Valcárcel D, Cedena MT, Acha P, Hernández-Sánchez JM, Fernández-Mercado M, Sanz G, Hernández-Rivas JM, Calasanz MJ, Solé F, Such E. Spanish Guidelines for the use of targeted deep sequencing in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol 2019; 188:605-622. [PMID: 31621063 PMCID: PMC7064979 DOI: 10.1111/bjh.16175] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022]
Abstract
The landscape of medical sequencing has rapidly changed with the evolution of next generation sequencing (NGS). These technologies have contributed to the molecular characterization of the myelodysplastic syndromes (MDS) and chronic myelomonocytic leukaemia (CMML), through the identification of recurrent gene mutations, which are present in >80% of patients. These mutations contribute to a better classification and risk stratification of the patients. Currently, clinical laboratories include NGS genomic analyses in their routine clinical practice, in an effort to personalize the diagnosis, prognosis and treatment of MDS and CMML. NGS technologies have reduced the cost of large-scale sequencing, but there are additional challenges involving the clinical validation of these technologies, as continuous advances are constantly being made. In this context, it is of major importance to standardize the generation, analysis, clinical interpretation and reporting of NGS data. To that end, the Spanish MDS Group (GESMD) has expanded the present set of guidelines, aiming to establish common quality standards for the adequate implementation of NGS and clinical interpretation of the results, hoping that this effort will ultimately contribute to the benefit of patients with myeloid malignancies.
Collapse
Affiliation(s)
- Laura Palomo
- Josep Carreras Leukaemia Research Institute, ICO Badalona-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Sadalona, Spain
| | - Mariam Ibáñez
- Department of Haematology, Hospital Universitari i Politècnic La Fe, València, Spain.,Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain.,Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, València, Spain
| | - María Abáigar
- Institute of Biomedical Research of Salamanca (IBSAL), Cancer Research Centre (IBMCC-CIC; Univ. of Salamanca-CSIC), Salamanca, Spain
| | - Iria Vázquez
- Haematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Sara Álvarez
- NIMGenetics, Genómica y Medicina, S.L., Madrid, Spain
| | - Marta Cabezón
- Haematology Service, ICO Badalona-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Bárbara Tazón-Vega
- Department of Haematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Inmaculada Rapado
- Haematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Haematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain.,Centro de investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Francisco Fuster-Tormo
- Josep Carreras Leukaemia Research Institute, ICO Badalona-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Sadalona, Spain
| | - José Cervera
- Department of Haematology, Hospital Universitari i Politècnic La Fe, València, Spain.,Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain.,Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Rocío Benito
- Institute of Biomedical Research of Salamanca (IBSAL), Cancer Research Centre (IBMCC-CIC; Univ. of Salamanca-CSIC), Salamanca, Spain
| | - María J Larrayoz
- Haematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | | | - Lurdes Zamora
- Haematology Service, ICO Badalona-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - David Valcárcel
- Department of Haematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María T Cedena
- Haematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Haematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain.,Centro de investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Pamela Acha
- Josep Carreras Leukaemia Research Institute, ICO Badalona-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Sadalona, Spain
| | - Jesús M Hernández-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), Cancer Research Centre (IBMCC-CIC; Univ. of Salamanca-CSIC), Salamanca, Spain.,University of Salamanca (USAL), Salamanca, Spain
| | - Marta Fernández-Mercado
- Haematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain.,Advanced Genomics Laboratory, Centre for Applied Medical Research (CIMA), University of Navarra, Haemato-Oncology, Pamplona, Spain.,Biomedical Engineering Department, School of Engineering, University of Navarra, San Sebastian, Spain
| | - Guillermo Sanz
- Department of Haematology, Hospital Universitari i Politècnic La Fe, València, Spain.,Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Jesús M Hernández-Rivas
- Institute of Biomedical Research of Salamanca (IBSAL), Cancer Research Centre (IBMCC-CIC; Univ. of Salamanca-CSIC), Salamanca, Spain.,University of Salamanca (USAL), Salamanca, Spain.,Hospital Universitario de Salamanca, Salamanca, Spain
| | - María J Calasanz
- Haematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Francesc Solé
- Josep Carreras Leukaemia Research Institute, ICO Badalona-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Sadalona, Spain
| | - Esperanza Such
- Department of Haematology, Hospital Universitari i Politècnic La Fe, València, Spain.,Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain.,Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, València, Spain
| | | |
Collapse
|
92
|
Spaulding TP, Stockton SS, Savona MR. The evolving role of next generation sequencing in myelodysplastic syndromes. Br J Haematol 2019; 188:224-239. [PMID: 31571207 DOI: 10.1111/bjh.16212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 12/11/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal haematological disorders characterized by haematopoietic cell dysplasia, peripheral blood cytopenias, and a predisposition for developing acute myeloid leukaemia (AML). Cytogenetics have historically been important in diagnosis and prognosis in MDS, but the growing accessibility of next generation sequencing (NGS) has led to growing research in the roles of molecular genetic variation on clinical decision-making in these disorders. Multiple genes have been previously studied and found to be associated with specific outcomes or disease types within MDS and knowledge of mutations in these genes provides insight into previously defined MDS subtypes. Knowledge of these mutations also informs development of novel therapies in the treatment of MDS. The precise role of NGS in the diagnosis, prognosis and monitoring of MDS remains unclear but the improvements in NGS technology and accessibility affords clinicians an additional practice tool to provide the best care for patients.
Collapse
Affiliation(s)
- Travis P Spaulding
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shannon S Stockton
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael R Savona
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Cancer Biology Program, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
93
|
Cell-lineage level-targeted sequencing to identify acute myeloid leukemia with myelodysplasia-related changes. Blood Adv 2019; 2:2513-2521. [PMID: 30282643 DOI: 10.1182/bloodadvances.2017010744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal myeloid neoplasm that typically arises de novo; however, some cases evolve from a preleukemic state, such as myelodysplastic syndrome (MDS). Such secondary AMLs and those with typical MDS-related clinical features are known as AMLs with myelodysplasia-related changes (AML-MRC). Because patients with AML-MRC have poor prognosis, more accurate diagnostic approaches are required. In this study, we performed targeted sequencing of 54 genes in 3 cell populations (granulocyte, blast, and T-cell fractions) using samples from 13 patients with MDS, 16 patients with clinically diagnosed AML-MRC, 4 patients with suspected AML-MRC but clinically diagnosed as AML not otherwise specified (AML-NOS), and 11 patients with de novo AML. We found that overlapping mutations, defined as those shared at least by the blast and granulocyte fractions, were significantly enriched in patients with MDS and AML-MRC, including those with suspected AML-MRC, indicating a substantial history of clonal hematopoiesis. In contrast, blast-specific nonoverlapping mutations were significantly enriched in patients with de novo AML. Furthermore, the presence of overlapping mutations, excluding DNMT3A, TET2, and ASXL1, effectively segregated patients with MDS and AML-MRC or suspected AML-MRC from patients with de novo AML. Additionally, the presence of ≥3 mutations in the blast fraction was useful for distinguishing patients with AML-MRC from those with MDS. In conclusion, our approach is useful for classifying clinically diagnosable AML-MRC and identifying clinically diagnosed AML-NOS as latent AML-MRC. Additional prospective studies are needed to confirm the utility of this approach.
Collapse
|
94
|
Matsumoto T, Jimi S, Migita K, Terada K, Mori M, Takamatsu Y, Suzumiya J, Hara S. FF-10501 induces caspase-8-mediated apoptotic and endoplasmic reticulum stress-mediated necrotic cell death in hematological malignant cells. Int J Hematol 2019; 110:606-617. [PMID: 31407254 DOI: 10.1007/s12185-019-02722-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023]
Abstract
FF-10501 is a novel inhibitor of inosine monophosphate dehydrogenase (IMPDH). Clinical trials of FF-10501 for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are currently being conducted in the United States. Although it has been shown that FF-10501 induces apoptosis in hematological malignant cells, the intracellular mechanisms of this effect have not been characterized. We conducted an in vitro study to elucidate the mechanisms of FF-10501-induced cell death using 12 hematological malignant cell lines derived from myeloid and lymphoid malignancies. FF-10501 suppressed the growth of each cell line in a dose-dependent manner. However, the clinically relevant dose (40 μM) of FF-10501 induced cell death in three cell lines (MOLM-13, OCI-AML3, and MOLT-3). Investigation of the cell death mechanism suggested that FF-10501 induces both apoptotic and necrotic cell death. FF-10501-induced apoptosis was mediated by caspase-8 activation followed by activation of the mitochondrial pathway in MOLM-13 and MOLT-3 cells. FF-10501 induced necrotic cell death via endoplasmic reticulum stress in OCI-AML3 cells. The present study is the first to identify intracellular pathways involved in FF-10501-induced cell death.
Collapse
Affiliation(s)
- Taichi Matsumoto
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jounan, Fukuoka, 814-0180, Japan.
| | - Shiro Jimi
- Central Laboratory of Pathology and Morphology, Department of Medicine, Fukuoka University, Fukuoka, Japan
| | - Keisuke Migita
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jounan, Fukuoka, 814-0180, Japan
| | - Kazuki Terada
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yasushi Takamatsu
- Division of Medical Oncology, Hematology, and Infectious Diseases, Department of Medicine, Fukuoka University, Fukuoka, Japan
| | - Junji Suzumiya
- Department of Oncology/Hematology, Shimane University Hospital, Shimane, Japan
| | - Shuuji Hara
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jounan, Fukuoka, 814-0180, Japan
| |
Collapse
|
95
|
Meggendorfer M, Jeromin S, Haferlach C, Kern W, Haferlach T. The mutational landscape of 18 investigated genes clearly separates four subtypes of myelodysplastic/myeloproliferative neoplasms. Haematologica 2019; 103:e192-e195. [PMID: 29700173 DOI: 10.3324/haematol.2017.183160] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
96
|
Liu ZX, Lyu MN, Wang QQ, Zhai WH, Pang AM, Ma QL, Yang DL, He Y, Zhang RL, Huang Y, Wei JL, Feng SZ, Jiang EL, Han MZ. [Outcomes and prognostic factors of myelodysplastic syndrome patients with allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:484-489. [PMID: 31340621 PMCID: PMC7342395 DOI: 10.3760/cma.j.issn.0253-2727.2019.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 01/19/2023]
Abstract
Objective: To evaluate the outcomes and prognostic factors of myelodysplasia syndrome (MDS) patients who received allogeneic hematopoietic stem cell transplantation (allo-HSCT) . Methods: 165 cases of MDS who underwent allo-HSCT from Jan. 2010 to Mar. 2018 were analyzed retrospectively, focusing on the overall survival (OS) , disease free survival (DFS) , relapse, non-relapse mortality (NRM) and their related risk factors. Results: Of all the 165 cases, 105 were male and 60 were female. The 3-year OS and DFS rate were 72.5% (95%CI 64.9%-80.1%) and 67.4% (95%CI 59.17%-75.63%) , respectively. The 3-year cumulative incidence of relapse and NRM were 12.11% (95%CI 7.03%-18.65%) and 20.44% (95%CI 14.15%-27.56%) , respectively. HCT-comorbidity index (P=0.042, HR=2.094, 95%CI 1.026-4.274) was identified as independent risk factor for OS by the multivariate analysis. Intensive chemotherapy before HSCT or hypomethylation agents treatment had no effects on OS[ (67.0±7.5) %vs (57.7±10.9) %, χ(2)=0.025, P=0.874]. Conclusions: allo-HSCT is a promising means for MDS, and NRM is the major cause of treatment failure. MDS with refractory anemia with excess blasts and secondary acute myeloid leukemia patients may not benefit from intensive chemotherapy or hypomethylation agents treatment before HSCT.
Collapse
Affiliation(s)
- Z X Liu
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Sanz-De Pedro M, Wang W, Kanagal-Shamanna R, Khoury JD. Myelodysplastic Syndromes: Laboratory Workup in the Context of New Concepts and Classification Criteria. Curr Hematol Malig Rep 2019; 13:467-476. [PMID: 30338456 DOI: 10.1007/s11899-018-0483-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review provides a comprehensive update of myelodysplastic syndromes (MDS) and their diagnostic criteria, with emphasis on novel concepts and state-of-the-art laboratory workup, including multiparameter/multicolor flow cytometry, chromosome analysis, and mutation profiling. RECENT FINDINGS Recent advances in genetics and molecular technologies have provided unprecedented insights into the pathogenic mechanisms and genomic landscape of MDS and its precursor lesions. This has resulted in revised diagnostic criteria in the World Health Organization (WHO) classification and proposed new terminology for early lesions such as clonal hematopoiesis of indeterminate potential (CHIP). Against this landscape, a thorough understanding of the advantages and limitations of laboratory tests employed in the evaluation of patients with cytopenia has gained unprecedented importance. Healthcare providers involved in the care of patients with hematologic diseases should be aware of the intricacies of laboratory workup of such patients, particularly in view of the novel concepts and classification criteria of MDS.
Collapse
Affiliation(s)
- Maria Sanz-De Pedro
- Department of Laboratory Medicine, La Paz University Hospital, Madrid, Spain
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA.
| |
Collapse
|
98
|
Piazzi M, Bavelloni A, Gallo A, Faenza I, Blalock WL. Signal Transduction in Ribosome Biogenesis: A Recipe to Avoid Disaster. Int J Mol Sci 2019; 20:ijms20112718. [PMID: 31163577 PMCID: PMC6600399 DOI: 10.3390/ijms20112718] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022] Open
Abstract
Energetically speaking, ribosome biogenesis is by far the most costly process of the cell and, therefore, must be highly regulated in order to avoid unnecessary energy expenditure. Not only must ribosomal RNA (rRNA) synthesis, ribosomal protein (RP) transcription, translation, and nuclear import, as well as ribosome assembly, be tightly controlled, these events must be coordinated with other cellular events, such as cell division and differentiation. In addition, ribosome biogenesis must respond rapidly to environmental cues mediated by internal and cell surface receptors, or stress (oxidative stress, DNA damage, amino acid depletion, etc.). This review examines some of the well-studied pathways known to control ribosome biogenesis (PI3K-AKT-mTOR, RB-p53, MYC) and how they may interact with some of the less well studied pathways (eIF2α kinase and RNA editing/splicing) in higher eukaryotes to regulate ribosome biogenesis, assembly, and protein translation in a dynamic manner.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | | | - Angela Gallo
- RNA Editing Laboratory, Dipartimento di Oncoematologia, IRCCS, Ospedale Pediatrica Bambino Gesù, 00146 Rome, Italy.
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40126 Bologna, Italy.
| | - William L Blalock
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
99
|
Sakakibara K, Tsujioka T, Kida JI, Kurozumi N, Nakahara T, Suemori SI, Kitanaka A, Arao Y, Tohyama K. Binimetinib, a novel MEK1/2 inhibitor, exerts anti-leukemic effects under inactive status of PI3Kinase/Akt pathway. Int J Hematol 2019; 110:213-227. [PMID: 31129802 DOI: 10.1007/s12185-019-02667-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
A MEK1/2 inhibitor, binimetinib is promising as a therapeutic agent for malignant melanoma with N-RAS mutation. We examined in vitro effects of binimetinib on 10 human myeloid/lymphoid leukemia cell lines, and found that three of five cell lines with N-RAS mutation and one of five without N-RAS mutation were responsive to treatment with binimetinib. Binimetinib inhibited cell growth mainly by inducing G1 arrest and this action mechanism was assisted by gene set enrichment analysis. To identify signaling pathways associated with binimetinib response, we examined the status of MAP kinase/ERK and PI3Kinase/Akt pathways. The basal levels of phosphorylated ERK and Akt varied between the cell lines, and the amounts of phosphorylated ERK and Akt appeared to be reciprocal of each other. Interestingly, most of the binimetinib-resistant cell lines revealed strong Akt phosphorylation compared with binimetinib-sensitive ones. The effect of binimetinib may not be predicted by the presence/absence of N-RAS mutation, but rather by Akt phosphorylation status. Moreover, combination of binimetinib with a PI3K/Akt inhibitor showed additive growth-suppressive effects. These results suggest that binimetinib shows potential anti-leukemic effects and the basal level of phosphorylated Akt might serve as a biomarker predictive of therapeutic effect.
Collapse
Affiliation(s)
- Kanae Sakakibara
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan.,Field of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takayuki Tsujioka
- Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Jun-Ichiro Kida
- Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Nami Kurozumi
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan.,Field of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takako Nakahara
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan
| | - Shin-Ichiro Suemori
- Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Akira Kitanaka
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan.,Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Yujiro Arao
- Field of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Kaoru Tohyama
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan. .,Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| |
Collapse
|
100
|
Capitano ML, Mor-Vaknin N, Saha AK, Cooper S, Legendre M, Guo H, Contreras-Galindo R, Kappes F, Sartor MA, Lee CT, Huang X, Markovitz DM, Broxmeyer HE. Secreted nuclear protein DEK regulates hematopoiesis through CXCR2 signaling. J Clin Invest 2019; 129:2555-2570. [PMID: 31107242 PMCID: PMC6546479 DOI: 10.1172/jci127460] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
The nuclear protein DEK is an endogenous DNA-binding chromatin factor regulating hematopoiesis. DEK is one of only 2 known secreted nuclear chromatin factors, but whether and how extracellular DEK regulates hematopoiesis is not known. We demonstrated that extracellular DEK greatly enhanced ex vivo expansion of cytokine-stimulated human and mouse hematopoietic stem cells (HSCs) and regulated HSC and hematopoietic progenitor cell (HPC) numbers in vivo and in vitro as determined both phenotypically (by flow cytometry) and functionally (through transplantation and colony formation assays). Recombinant DEK increased long-term HSC numbers and decreased HPC numbers through a mechanism mediated by the CXC chemokine receptor CXCR2 and heparan sulfate proteoglycans (HSPGs) (as determined utilizing Cxcr2-/- mice, blocking CXCR2 antibodies, and 3 different HSPG inhibitors) that was associated with enhanced phosphorylation of ERK1/2, AKT, and p38 MAPK. To determine whether extracellular DEK required nuclear function to regulate hematopoiesis, we utilized 2 mutant forms of DEK: one that lacked its nuclear translocation signal and one that lacked DNA-binding ability. Both altered HSC and HPC numbers in vivo or in vitro, suggesting the nuclear function of DEK is not required. Thus, DEK acts as a hematopoietic cytokine, with the potential for clinical applicability.
Collapse
Affiliation(s)
- Maegan L. Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nirit Mor-Vaknin
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, Michigan, USA
| | - Anjan K. Saha
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Maureen Legendre
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, Michigan, USA
| | - Haihong Guo
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Rafael Contreras-Galindo
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, Michigan, USA
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher T. Lee
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Xinxin Huang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, Michigan, USA
| | - Hal E. Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|