51
|
Glisovic-Aplenc T, Diorio C, Chukinas JA, Veliz K, Shestova O, Shen F, Nunez-Cruz S, Vincent TL, Miao F, Milone MC, June CH, Teachey DT, Tasian SK, Aplenc R, Gill S. CD38 as a pan-hematologic target for chimeric antigen receptor T cells. Blood Adv 2023; 7:4418-4430. [PMID: 37171449 PMCID: PMC10440474 DOI: 10.1182/bloodadvances.2022007059] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
Many hematologic malignancies are not curable with chemotherapy and require novel therapeutic approaches. Chimeric antigen receptor (CAR) T-cell therapy is 1 such approach that involves the transfer of T cells engineered to express CARs for a specific cell-surface antigen. CD38 is a validated tumor antigen in multiple myeloma (MM) and T-cell acute lymphoblastic leukemia (T-ALL) and is also overexpressed in acute myeloid leukemia (AML). Here, we developed human CD38-redirected T cells (CART-38) as a unified approach to treat 3 different hematologic malignancies that occur across the pediatric-to-adult age spectrum. Importantly, CD38 expression on activated T cells did not impair CART-38 cells expansion or in vitro function. In xenografted mice, CART-38 mediated the rejection of AML, T-ALL, and MM cell lines and primary samples and prolonged survival. In a xenograft model of normal human hematopoiesis, CART-38 resulted in the expected reduction of hematopoietic progenitors, which warrants caution and careful monitoring of this potential toxicity when translating this new immunotherapy into the clinic. Deploying CART-38 against multiple CD38-expressing malignancies is significant because it expands the potential for this novel therapy to affect diverse patient populations.
Collapse
Affiliation(s)
- Tina Glisovic-Aplenc
- Division of Oncology, Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, PA
| | - Caroline Diorio
- Division of Oncology, Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - John A. Chukinas
- Division of Oncology, Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, PA
| | - Kimberly Veliz
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Olga Shestova
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Feng Shen
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Selene Nunez-Cruz
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Tiffaney L. Vincent
- Division of Oncology, Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, PA
| | - Fei Miao
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Michael C. Milone
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Carl H. June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - David T. Teachey
- Division of Oncology, Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sarah K. Tasian
- Division of Oncology, Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Richard Aplenc
- Division of Oncology, Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Saar Gill
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
52
|
Barbosa K, Deshpande AJ. Therapeutic targeting of leukemia stem cells in acute myeloid leukemia. Front Oncol 2023; 13:1204895. [PMID: 37601659 PMCID: PMC10437214 DOI: 10.3389/fonc.2023.1204895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
One of the distinguishing properties of hematopoietic stem cells is their ability to self-renew. Since self-renewal is important for the continuous replenishment of the hematopoietic stem cell pool, this property is often hijacked in blood cancers. Acute myeloid leukemia (AML) is believed to be arranged in a hierarchy, with self-renewing leukemia stem cells (LSCs) giving rise to the bulk tumor. Some of the earliest characterizations of LSCs were made in seminal studies that assessed the ability of prospectively isolated candidate AML stem cells to repopulate the entire heterogeneity of the tumor in mice. Further studies indicated that LSCs may be responsible for chemotherapy resistance and therefore act as a reservoir for secondary disease and leukemia relapse. In recent years, a number of studies have helped illuminate the complexity of clonality in bone marrow pathologies, including leukemias. Many features distinguishing LSCs from normal hematopoietic stem cells have been identified, and these studies have opened up diverse avenues for targeting LSCs, with an impact on the clinical management of AML patients. This review will discuss the role of self-renewal in AML and its implications, distinguishing characteristics between normal and leukemia stem cells, and opportunities for therapeutic targeting of AML LSCs.
Collapse
Affiliation(s)
- Karina Barbosa
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Aniruddha J. Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
53
|
Mu X, Chen C, Dong L, Kang Z, Sun Z, Chen X, Zheng J, Zhang Y. Immunotherapy in leukaemia. Acta Biochim Biophys Sin (Shanghai) 2023; 55:974-987. [PMID: 37272727 PMCID: PMC10326417 DOI: 10.3724/abbs.2023101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Leukaemia is the common name for a group of malignant diseases of the haematopoietic system with complex classifications and characteristics. Remarkable progress has been made in basic research and preclinical studies for acute leukaemia compared to that of the many other types/subtypes of leukaemia, especially the exploration of the biological basis and application of immunotherapy in acute myeloid leukaemia (AML) and B-cell acute lymphoblastic leukaemia (B-ALL). In this review, we summarize the basic approaches to immunotherapy for leukaemia and focus on the research progress made in immunotherapy development for AML and ALL. Importantly, despite the advances made to date, big challenges still exist in the effectiveness of leukaemia immunotherapy, especially in AML. Therefore, we use AML as an example and summarize the mechanisms of tumour cell immune evasion, describe recently reported data and known therapeutic targets, and discuss the obstacles in finding suitable treatment targets and the results obtained in recent clinical trials for several types of single and combination immunotherapies, such as bispecific antibodies, cell therapies (CAR-T-cell treatment), and checkpoint blockade. Finally, we summarize novel immunotherapy strategies for treating lymphocytic leukaemia and clinical trial results.
Collapse
Affiliation(s)
- Xingmei Mu
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chumao Chen
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Loujie Dong
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhaowei Kang
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhixian Sun
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xijie Chen
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Junke Zheng
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yaping Zhang
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
54
|
Zarychta J, Kowalczyk A, Krawczyk M, Lejman M, Zawitkowska J. CAR-T Cells Immunotherapies for the Treatment of Acute Myeloid Leukemia-Recent Advances. Cancers (Basel) 2023; 15:cancers15112944. [PMID: 37296906 DOI: 10.3390/cancers15112944] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
In order to increase the effectiveness of cancer therapies and extend the long-term survival of patients, more and more often, in addition to standard treatment, oncological patients receive also targeted therapy, i.e., CAR-T cells. These cells express a chimeric receptor (CAR) that specifically binds an antigen present on tumor cells, resulting in tumor cell lysis. The use of CAR-T cells in the therapy of relapsed and refractory B-type acute lymphoblastic leukemia (ALL) resulted in complete remission in many patients, which prompted researchers to conduct tests on the use of CAR-T cells in the treatment of other hematological malignancies, including acute myeloid leukemia (AML). AML is associated with a poorer prognosis compared to ALL due to a higher risk of relapse caused by the development of resistance to standard treatment. The 5-year relative survival rate in AML patients was estimated at 31.7%. The objective of the following review is to present the mechanism of action of CAR-T cells, and discuss the latest findings on the results of anti-CD33, -CD123, -FLT3 and -CLL-1 CAR-T cell therapy, the emerging challenges as well as the prospects for the future.
Collapse
Affiliation(s)
- Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| | - Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| | - Milena Krawczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| |
Collapse
|
55
|
Xie D, Jin X, Sun R, Zhang M, Lu W, Cao X, Guo R, Zhang Y, Zhao M. Bicistronic CAR-T cells targeting CD123 and CLL1 for AML to reduce the risk of antigen escape. Transl Oncol 2023; 34:101695. [PMID: 37224766 DOI: 10.1016/j.tranon.2023.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
PURPOSE Acute myeloid leukemia (AML) is a highly heterogeneous neoplastic disease with a poor prognosis that relapses even after its treatment with chimeric antigen receptor (CAR)-T cells targeting a single antigen. CD123 and CLL1 are expressed in most AML blasts and leukemia stem cells, and their low expression in normal hematopoietic stem cells makes them ideal targets for CAR-T. In this study, we tested the hypothesis that a new bicistronic CAR targeting CD123 and CLL1 can enhance antigenic coverage and prevent antigen escape and subsequent recurrence of AML. METHODS CD123 and CLL1 expressions were evaluated on AML cell lines and blasts. Then, in addition to concentrating on CD123 and CLL1, we introduced the marker/suicide gene RQR8 with a bicistronic CAR. Xenograft models of disseminated AML and in vitro coculture models were used to assess the anti-leukemia efficacy of CAR-T cells. The hematopoietic toxicity of CAR-T cells was evaluated in vitro by colony cell formation assays. It was demonstrated in vitro that the combination of rituximab and NK cells caused RQR8-mediated clearance of 123CL CAR-T cells. RESULTS We have successfully established bicistronic 123CL CAR-T cells that can target CD123 and CLL1. 123CL CAR-T cells effectively cleared AML cell lines and blasts. They also demonstrated appreciable anti-AML activity in animal transplant models. Moreover, 123CL CAR-T cells can be eliminated in an emergency by a natural safety switch and don't target hematopoietic stem cells. CONCLUSIONS The bicistronic CAR-T cells targeting CD123 and CLL1 may be a useful and secure method for treating AML.
Collapse
Affiliation(s)
- Danni Xie
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xin Jin
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Rui Sun
- Nankai University School of Medicine, Tianjin, China
| | - Meng Zhang
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, No. 24, Fukang Road, Nankai District, Tianjin 300190, China
| | - Xinping Cao
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Ruiting Guo
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Yi Zhang
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Mingfeng Zhao
- The First Central Clinical College of Tianjin Medical University, Tianjin, China; Nankai University School of Medicine, Tianjin, China; Department of Hematology, Tianjin First Central Hospital, No. 24, Fukang Road, Nankai District, Tianjin 300190, China.
| |
Collapse
|
56
|
Ding T, Yu Y, Pan X, Chen H. Establishment of humanized mice and its application progress in cancer immunotherapy. Immunotherapy 2023; 15:679-697. [PMID: 37096919 DOI: 10.2217/imt-2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
The current high prevalence of malignant tumors has attracted considerable attention, and treating advanced malignancies is becoming increasingly difficult. Although immunotherapy is a hopeful alternative, it is effective in only a few people. Thus, development of preclinical animal models is needed. Humanized xenotransplantation mouse models can help with selecting treatment protocols, evaluating curative effects and assessing prognosis. This review discusses the establishment of humanized mouse models and their application prospects in cancer immunotherapy to identify tailored therapies for individual patients.
Collapse
Affiliation(s)
- Tianlong Ding
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| | - Yang Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
| | - Xiaoyuan Pan
- Department of Vision Rehabilitation, Gansu Province Hospital Rehabilitation Center, Lanzhou, 730030, PR China
| | - Hao Chen
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
- Key Laboratory of Digestive System Tumors, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| |
Collapse
|
57
|
Engineering CAR-NK cells targeting CD33 with concomitant extracellular secretion of anti-CD16 antibody revealed superior antitumor effects toward myeloid leukemia. Cancer Lett 2023; 558:216103. [PMID: 36805460 DOI: 10.1016/j.canlet.2023.216103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Acute myeloid leukemia (AML) is a common form of acute leukemia, and the currently available treatments are unsatisfactory. In the present study, we report an immune cell therapeutic strategy that employed genetically modified bifunctional CAR-NK cells. These cells combined the efficient targeting of AML cells by the CD33 molecule with the concomitant stimulation of NK cell-mediated cytotoxicity via the expression and extracellular secretion of anti-CD16 antibody (B16) that binds back to the FC receptor of NK cells. Compared to CAR-NK cells that target CD33 only, the bifunctional CD33/B16 CAR-NK cells showed superior killing efficiency toward AML cells in vitro. The increase in efficiency was approximately four-fold, as determined based on the number of cells needed to achieve 80% killing activity. An in vivo study using a xenograft model also revealed the effective clearance of leukemic cells and much longer survival, with no relapse or death for at least 60 days. In addition, the safety of CAR-NK cells did not change with additional expression of B16, as determined by the release of cytokines. These data revealed the development of a promising CAR-NK approach for the treatment of patients with AML, which may improve CAR-NK-based treatment strategy in general and may potentially be used to treat other tumors as well.
Collapse
|
58
|
Fan S, Wang T, You F, Zhang T, Li Y, Ji C, Han Z, Sheng B, Zhai X, An G, Meng H, Yang L. B7-H3 chimeric antigen receptor-modified T cell shows potential for targeted treatment of acute myeloid leukaemia. Eur J Med Res 2023; 28:129. [PMID: 36941687 PMCID: PMC10026503 DOI: 10.1186/s40001-023-01049-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/07/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND AND AIMS Chimeric antigen receptor (CAR)-T cell therapy is a novel type of immunotherapy. However, the use of CAR-T cells to treat acute myeloid leukaemia (AML) has limitations. B7-H3 is expressed in several malignancies, including some types of AML cells. However, its expression in normal tissues is low. Therefore, B7-H3 is ideal for targeted AML therapy. MATERIALS AND METHODS First, we constructed B7-H3 CAR that can target B7-H3, and then constructed B7-H3-CAR-T cells in vitro, which were co-incubated with six AML cell lines expressing different levels of B7-H3, respectively. The toxicity and cytokines were detected by flow cytometry. In vivo, AML model was established in B-NSG mice to study the toxicity of B7-H3-CAR T on AML cells. RESULTS In vitro functional tests showed that B7-H3-CAR-T cells were cytotoxic to B7-H3-positive AML tumor cells and had good scavenging effect on B7-H3-expressing AML cell lines, and the cytokine results were consistent. In vivo, B7-H3-CAR-T cells significantly inhibited tumor cell growth in a mouse model of AML, prolonging mouse survival compared with controls. CONCLUSION B7-H3-CAR-T cells may serve as a novel therapeutic method for the targeted treatment of AML.
Collapse
Affiliation(s)
- Shuangshuang Fan
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Tian Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, China
| | - Fengtao You
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Tingting Zhang
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yafen Li
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Cheng Ji
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhichao Han
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Binjie Sheng
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xiaochen Zhai
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Gangli An
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| | - Huimin Meng
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China.
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China.
| | - Lin Yang
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China.
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China.
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, China.
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, Jiangsu, China.
| |
Collapse
|
59
|
Holtan SG, Savid-Frontera C, Walton K, Eaton AA, Demorest C, Hoeschen A, Zhang L, Reid K, Kurian T, Sayegh Z, Julia E, Maakaron J, Bachanova V, Jurdi NE, MacMillan ML, Weisdorf DJ, Felices M, Miller JS, Blazar BR, Davila ML, Betts BC. Human Effectors of Acute and Chronic GVHD Overexpress CD83 and Predict Mortality. Clin Cancer Res 2023; 29:1114-1124. [PMID: 36622700 PMCID: PMC10011883 DOI: 10.1158/1078-0432.ccr-22-2837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Abstract
PURPOSE Acute and chronic GVHD remain major causes of transplant-related morbidity and mortality (TRM) after allogeneic hematopoietic cell transplantation (alloHCT). We have shown CD83 chimeric antigen receptor (CAR) T cells prevent GVHD and kill myeloid leukemia cell lines. In this pilot study, we investigate CD83 expression on GVHD effector cells, correlate these discoveries with clinical outcomes, and evaluate critical therapeutic implications for transplant recipients. EXPERIMENTAL DESIGN CD83 expression was evaluated among circulating CD4+ T cells, B-cell subsets, T follicular helper (Tfh) cells, and monocytes from patients with/without acute or chronic GVHD (n = 48 for each group), respectively. CD83 expression was correlated with survival, TRM, and relapse after alloHCT. Differential effects of GVHD therapies on CD83 expression was determined. RESULTS CD83 overexpression on CD4+ T cells correlates with reduced survival and increased TRM. Increased CD83+ B cells and Tfh cells, but not monocytes, are associated with poor posttransplant survival. CD83 CAR T eliminate autoreactive CD83+ B cells isolated from patients with chronic GVHD, without B-cell aplasia as observed with CD19 CAR T. We demonstrate robust CD83 antigen density on human acute myeloid leukemia (AML), and confirm potent antileukemic activity of CD83 CAR T in vivo, without observed myeloablation. CONCLUSIONS CD83 is a promising diagnostic marker of GVHD and warrants further investigation as a therapeutic target of both GVHD and AML relapse after alloHCT.
Collapse
Affiliation(s)
- Shernan G. Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Constanza Savid-Frontera
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kelly Walton
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Anne A. Eaton
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Connor Demorest
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Andrea Hoeschen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Ling Zhang
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kayla Reid
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Tony Kurian
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Zena Sayegh
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Estefania Julia
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joseph Maakaron
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Veronika Bachanova
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Najla El Jurdi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Margaret L. MacMillan
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J. Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Bruce R. Blazar
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Marco L. Davila
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Brian C. Betts
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
60
|
CYAD-01, an autologous NKG2D-based CAR T-cell therapy, in relapsed or refractory acute myeloid leukaemia and myelodysplastic syndromes or multiple myeloma (THINK): haematological cohorts of the dose escalation segment of a phase 1 trial. Lancet Haematol 2023; 10:e191-e202. [PMID: 36764323 DOI: 10.1016/s2352-3026(22)00378-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND CYAD-01 is an autologous chimeric antigen receptor (CAR) T-cell product based on the natural killer (NK) group 2D (NKG2D) receptor, which binds eight ligands that are overexpressed in a wide range of haematological malignancies but are largely absent on non-neoplastic cells. Initial clinical evaluation of a single infusion of CYAD-01 at a low dose in patients with relapsed or refractory acute myeloid leukaemia, myelodysplastic syndromes, and multiple myeloma supported the feasibility of the approach and prompted further evaluation of CYAD-01. The aim of the present study was to determine the safety and recommended phase 2 dosing of CYAD-01 administered without preconditioning or bridging chemotherapy. METHODS The multicentre THINK study was an open-label, dose-escalation, phase 1 study for patients with relapsed or refractory acute myeloid leukaemia, myelodysplastic syndromes, or multiple myeloma, after at least one previous line of therapy. Patients were recruited from five hospitals in the USA and Belgium. The dose-escalation segment evaluated three dose levels: 3 × 108 (dose level one), 1 × 109 (dose level two), and 3 × 109 (dose level three) cells per infusion with a 3 + 3 Fibonacci study design using a schedule of three infusions at 2-week intervals followed by potential consolidation treatment consisting of three additional infusions. The occurrence of dose-limiting toxicities post-CYAD-01 infusion was assessed as the primary endpoint in the total treated patient population. The trial was registered with ClinicalTrials.gov, NCT03018405, and EudraCT, 2016-003312-12, and has been completed. FINDINGS Between Feb 6, 2017, and Oct 9, 2018, 25 patients were registered in the haematological dose-escalation segment. Seven patients had manufacturing failure for insufficient yield and two had screening failure. 16 patients were treated with CYAD-01 (three with multiple myeloma and three with acute myeloid leukaemia at dose level one; three with acute myeloid leukaemia at dose level two; and six with acute myeloid leukaemia and one with myelodysplastic syndromes at dose level three). Median follow-up was 118 days (IQR 46-180). Seven patients (44%) had grade 3 or 4 treatment-related adverse events. In total, five patients (31%) had grade 3 or 4 cytokine release syndrome across all dose levels. One dose-limiting toxicity of cytokine release syndrome was reported at dose level three. No treatment-related deaths occurred, and the maximum tolerated dose was not reached. Three (25%) of 12 evaluable patients with relapsed or refractory acute myeloid leukaemia or myelodysplastic syndromes had an objective response. Among responders, two patients with acute myeloid leukaemia proceeded to allogeneic haematopoietic stem-cell transplantation (HSCT) after CYAD-01 treatment, with durable ongoing remissions (5 and 61 months). INTERPRETATION Treatment with a multiple CYAD-01 infusion schedule without preconditioning is well tolerated and shows anti-leukaemic activity, although without durability outside of patients bridged to allogeneic HSCT. These phase 1 data support the proof-of-concept of targeting NKG2D ligands by CAR T-cell therapy. Further clinical studies with NKG2D-based CAR T-cells are warranted, potentially via combinatorial antigen targeted approaches, to improve anti-tumour activity. FUNDING Celyad Oncology.
Collapse
|
61
|
Wang Y, Xiao L, Yin L, Zhou L, Deng Y, Deng H. Diagnosis, treatment, and genetic characteristics of blastic plasmacytoid dendritic cell neoplasm: A review. Medicine (Baltimore) 2023; 102:e32904. [PMID: 36800625 PMCID: PMC9936012 DOI: 10.1097/md.0000000000032904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a highly aggressive and extremely rare hematologic disease with a poor prognosis, involving mainly the skin and bone marrow. The immunophenotype of these tumor cells is characterized by the expression of CD4, CD56, CD123, TCL-1, and CD303. To date, no consensus has been reached on the standard of care for BPDCN. Currently, clinical treatment is mainly based on high-dose chemotherapy combined with hematopoietic stem cell transplantation. However, this treatment method has limitations for elderly, frail, and relapsed/refractory patients. In recent years, breakthroughs in molecular biology and genetics have not only provided new ideas for the diagnosis of BPDCN but also helped develop targeted treatment strategies for this disease. The emergence of targeted drugs has filled the gap left by traditional therapies and shown great clinical promise. This article focuses on the latest advances in genetics and targeted therapies for BPDCN, especially the emerging therapies that may provide new ideas for the clinical treatment of BPDCN.
Collapse
Affiliation(s)
- Yemin Wang
- Department of Pathology, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Xiao
- Department of Pathology, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lili Yin
- Department of Pathology, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lv Zhou
- Department of Pathology, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanjuan Deng
- Department of Pathology, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Mol. Med. & Genet. Center, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huan Deng
- Department of Pathology, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Mol. Med. & Genet. Center, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- * Correspondence: Huan Deng, Department of Pathology, Fourth Affiliated Hospital of Nanchang University, 133 South Guangchang Road, Nanchang, Jiangxi 330003, China (e-mail: )
| |
Collapse
|
62
|
Serroukh Y, Hébert J, Busque L, Mercier F, Rudd CE, Assouline S, Lachance S, Delisle JS. Blasts in context: the impact of the immune environment on acute myeloid leukemia prognosis and treatment. Blood Rev 2023; 57:100991. [PMID: 35941029 DOI: 10.1016/j.blre.2022.100991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
Acute myeloid leukemia (AML) is a cancer that originates from the bone marrow (BM). Under physiological conditions, the bone marrow supports the homeostasis of immune cells and hosts memory lymphoid cells. In this review, we summarize our present understanding of the role of the immune microenvironment on healthy bone marrow and on the development of AML, with a focus on T cells and other lymphoid cells. The types and function of different immune cells involved in the AML microenvironment as well as their putative role in the onset of disease and response to treatment are presented. We also describe how the immune context predicts the response to immunotherapy in AML and how these therapies modulate the immune status of the bone marrow. Finally, we focus on allogeneic stem cell transplantation and summarize the current understanding of the immune environment in the post-transplant bone marrow, the factors associated with immune escape and relevant strategies to prevent and treat relapse.
Collapse
Affiliation(s)
- Yasmina Serroukh
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Erasmus Medical center Cancer Institute, University Medical Center Rotterdam, Department of Hematology, Rotterdam, the Netherlands; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada.
| | - Josée Hébert
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada; The Quebec Leukemia Cell Bank, Canada
| | - Lambert Busque
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - François Mercier
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Christopher E Rudd
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Sarit Assouline
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Jean-Sébastien Delisle
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| |
Collapse
|
63
|
Qiu HY, Ji RJ, Zhang Y. Current advances of CRISPR-Cas technology in cell therapy. CELL INSIGHT 2022; 1:100067. [PMID: 37193354 PMCID: PMC10120314 DOI: 10.1016/j.cellin.2022.100067] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 05/18/2023]
Abstract
CRISPR-Cas is a versatile genome editing technology that has been broadly applied in both basic research and translation medicine. Ever since its discovery, the bacterial derived endonucleases have been engineered to a collection of robust genome-editing tools for introducing frameshift mutations or base conversions at site-specific loci. Since the initiation of first-in-human trial in 2016, CRISPR-Cas has been tested in 57 cell therapy trials, 38 of which focusing on engineered CAR-T cells and TCR-T cells for cancer malignancies, 15 trials of engineered hematopoietic stem cells treating hemoglobinopathies, leukemia and AIDS, and 4 trials of engineered iPSCs for diabetes and cancer. Here, we aim to review the recent breakthroughs of CRISPR technology and highlight their applications in cell therapy.
Collapse
Affiliation(s)
- Hou-Yuan Qiu
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Rui-Jin Ji
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ying Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
64
|
Wei W, Yang D, Chen X, Liang D, Zou L, Zhao X. Chimeric antigen receptor T-cell therapy for T-ALL and AML. Front Oncol 2022; 12:967754. [PMID: 36523990 PMCID: PMC9745195 DOI: 10.3389/fonc.2022.967754] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/14/2022] [Indexed: 11/10/2023] Open
Abstract
Non-B-cell acute leukemia is a term that encompasses T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Currently, the therapeutic effectiveness of existing treatments for refractory or relapsed (R/R) non-B-cell acute leukemia is limited. In such situations, chimeric antigen receptor (CAR)-T cell therapy may be a promising approach to treat non-B-cell acute leukemia, given its promising results in B-cell acute lymphoblastic leukemia (B-ALL). Nevertheless, fratricide, malignant contamination, T cell aplasia for T-ALL, and specific antigen selection and complex microenvironment for AML remain significant challenges in the implementation of CAR-T therapy for T-ALL and AML patients in the clinic. Therefore, designs of CAR-T cells targeting CD5 and CD7 for T-ALL and CD123, CD33, and CLL1 for AML show promising efficacy and safety profiles in clinical trials. In this review, we summarize the characteristics of non-B-cell acute leukemia, the development of CARs, the CAR targets, and their efficacy for treating non-B-cell acute leukemia.
Collapse
Affiliation(s)
- Wenwen Wei
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Department of Medical Oncology of Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dong Yang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Xi Chen
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dandan Liang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Liqun Zou
- Department of Medical Oncology of Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
65
|
Zhou W, Yu J, Li Y, Wang K. Neoantigen-specific TCR-T cell-based immunotherapy for acute myeloid leukemia. Exp Hematol Oncol 2022; 11:100. [PMID: 36384590 PMCID: PMC9667632 DOI: 10.1186/s40164-022-00353-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Neoantigens derived from non-synonymous somatic mutations are restricted to malignant cells and are thus considered ideal targets for T cell receptor (TCR)-based immunotherapy. Adoptive transfer of T cells bearing neoantigen-specific TCRs exhibits the ability to preferentially target tumor cells while remaining harmless to normal cells. High-avidity TCRs specific for neoantigens expressed on AML cells have been identified in vitro and verified using xenograft mouse models. Preclinical studies of these neoantigen-specific TCR-T cells are underway and offer great promise as safe and effective therapies. Additionally, TCR-based immunotherapies targeting tumor-associated antigens are used in early-phase clinical trials for the treatment of AML and show encouraging anti-leukemic effects. These clinical experiences support the application of TCR-T cells that are specifically designed to recognize neoantigens. In this review, we will provide a detailed profile of verified neoantigens in AML, describe the strategies to identify neoantigen-specific TCRs, and discuss the potential of neoantigen-specific T-cell-based immunotherapy in AML.
Collapse
|
66
|
Caruso S, De Angelis B, Del Bufalo F, Ciccone R, Donsante S, Volpe G, Manni S, Guercio M, Pezzella M, Iaffaldano L, Silvestris DA, Sinibaldi M, Di Cecca S, Pitisci A, Velardi E, Merli P, Algeri M, Lodi M, Paganelli V, Serafini M, Riminucci M, Locatelli F, Quintarelli C. Safe and effective off-the-shelf immunotherapy based on CAR.CD123-NK cells for the treatment of acute myeloid leukaemia. J Hematol Oncol 2022; 15:163. [PMID: 36335396 PMCID: PMC9636687 DOI: 10.1186/s13045-022-01376-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022] Open
Abstract
Background Paediatric acute myeloid leukaemia (AML) is characterized by poor outcomes in patients with relapsed/refractory disease, despite the improvements in intensive standard therapy. The leukaemic cells of paediatric AML patients show high expression of the CD123 antigen, and this finding provides the biological basis to target CD123 with the chimeric antigen receptor (CAR). However, CAR.CD123 therapy in AML is hampered by on-target off-tumour toxicity and a long “vein-to-vein” time.
Methods We developed an off-the-shelf product based on allogeneic natural killer (NK) cells derived from the peripheral blood of healthy donors and engineered them to express a second-generation CAR targeting CD123 (CAR.CD123). Results CAR.CD123-NK cells showed significant anti-leukaemia activity not only in vitro against CD123+ AML cell lines and CD123+ primary blasts but also in two animal models of human AML-bearing immune-deficient mice. Data on anti-leukaemia activity were also corroborated by the quantification of inflammatory cytokines, namely granzyme B (Granz B), interferon gamma (IFN-γ) and tumour necrosis factor alpha (TNF-α), both in vitro and in the plasma of mice treated with CAR.CD123-NK cells.
To evaluate and compare the on-target off-tumour effects of CAR.CD123-T and NK cells, we engrafted human haematopoietic cells (hHCs) in an immune-deficient mouse model. All mice infused with CAR.CD123-T cells died by Day 5, developing toxicity against primary human bone marrow (BM) cells with a decreased number of total hCD45+ cells and, in particular, of hCD34+CD38− stem cells. In contrast, treatment with CAR.CD123-NK cells was not associated with toxicity, and all mice were alive at the end of the experiments. Finally, in a mouse model engrafted with human endothelial tissues, we demonstrated that CAR.CD123-NK cells were characterized by negligible endothelial toxicity when compared to CAR.CD123-T cells.
Conclusions Our data indicate the feasibility of an innovative off-the-shelf therapeutic strategy based on CAR.CD123-NK cells, characterized by remarkable efficacy and an improved safety profile compared to CAR.CD123-T cells. These findings open a novel intriguing scenario not only for the treatment of refractory/resistant AML patients but also to further investigate the use of CAR-NK cells in other cancers characterized by highly difficult targeting with the most conventional T effector cells.
Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01376-3.
Collapse
Affiliation(s)
- Simona Caruso
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Francesca Del Bufalo
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Roselia Ciccone
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Samantha Donsante
- grid.7841.aDepartment of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Gabriele Volpe
- grid.414125.70000 0001 0727 6809Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Simona Manni
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Marika Guercio
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Michele Pezzella
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Laura Iaffaldano
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Domenico Alessandro Silvestris
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Matilde Sinibaldi
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Stefano Di Cecca
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Angela Pitisci
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Enrico Velardi
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Pietro Merli
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Mattia Algeri
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Mariachiara Lodi
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Valeria Paganelli
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Marta Serafini
- grid.7563.70000 0001 2174 1754Department of Pediatrics, Tettamanti Research Center, Fondazione MBBM/San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Mara Riminucci
- grid.7841.aDepartment of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Franco Locatelli
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Concetta Quintarelli
- grid.414125.70000 0001 0727 6809Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
67
|
Qu C, Zhang H, Cao H, Tang L, Mo H, Liu F, Zhang L, Yi Z, Long L, Yan L, Wang Z, Zhang N, Luo P, Zhang J, Liu Z, Ye W, Liu Z, Cheng Q. Tumor buster - where will the CAR-T cell therapy 'missile' go? Mol Cancer 2022; 21:201. [PMID: 36261831 PMCID: PMC9580202 DOI: 10.1186/s12943-022-01669-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T cell) therapy based on gene editing technology represents a significant breakthrough in personalized immunotherapy for human cancer. This strategy uses genetic modification to enable T cells to target tumor-specific antigens, attack specific cancer cells, and bypass tumor cell apoptosis avoidance mechanisms to some extent. This method has been extensively used to treat hematologic diseases, but the therapeutic effect in solid tumors is not ideal. Tumor antigen escape, treatment-related toxicity, and the immunosuppressive tumor microenvironment (TME) limit their use of it. Target selection is the most critical aspect in determining the prognosis of patients receiving this treatment. This review provides a comprehensive summary of all therapeutic targets used in the clinic or shown promising potential. We summarize CAR-T cell therapies' clinical trials, applications, research frontiers, and limitations in treating different cancers. We also explore coping strategies when encountering sub-optimal tumor-associated antigens (TAA) or TAA loss. Moreover, the importance of CAR-T cell therapy in cancer immunotherapy is emphasized.
Collapse
Affiliation(s)
- Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifu Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luzhe Yan
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
68
|
Sánchez Martínez D, Tirado N, Mensurado S, Martínez-Moreno A, Romecín P, Gutiérrez Agüera F, Correia DV, Silva-Santos B, Menéndez P. Generation and proof-of-concept for allogeneic CD123 CAR-Delta One T (DOT) cells in acute myeloid leukemia. J Immunother Cancer 2022; 10:jitc-2022-005400. [PMID: 36162920 PMCID: PMC9516293 DOI: 10.1136/jitc-2022-005400] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Background Chimeric antigen receptor (CAR)-T cells have emerged as a breakthrough treatment for relapse/refractory hematological tumors, showing impressive complete remission rates. However, around 50% of the patients relapse before 1-year post-treatment. T-cell ‘fitness’ is critical to prolong CAR-T persistence and activity. Allogeneic T cells from healthy donors are less dysfunctional or exhausted than autologous patient-derived T cells; in this context, Delta One T cells (DOTs), a recently described cellular product based on MHC/HLA-independent Vδ1+γδ T cells, represent a promising allogeneic platform. Methods Here we generated and preclinically validated, for the first time, 4-1BB-based CAR-DOTs directed against the interleukin-3α chain receptor (CD123), a target antigen widely expressed on acute myeloid leukemia (AML) blasts. Results CD123CAR-DOTs showed vigorous, superior to control DOTs, cytotoxicity against AML cell lines and primary samples both in vitro and in vivo, even on tumor rechallenge. Conclusions Our results provide the proof-of-concept for a DOT-based next-generation allogeneic CAR-T therapy for AML.
Collapse
Affiliation(s)
- Diego Sánchez Martínez
- Josep Carreras Leukaemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain .,Red Española de Terapias Avanzadas (TERAV) - Instituto de Salud Carlos III (ISCII) (RICORS, RD21/0017/0029)
| | - Néstor Tirado
- Josep Carreras Leukaemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Red Española de Terapias Avanzadas (TERAV) - Instituto de Salud Carlos III (ISCII) (RICORS, RD21/0017/0029)
| | - Sofia Mensurado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Alba Martínez-Moreno
- Josep Carreras Leukaemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Red Española de Terapias Avanzadas (TERAV) - Instituto de Salud Carlos III (ISCII) (RICORS, RD21/0017/0029)
| | - Paola Romecín
- Josep Carreras Leukaemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Red Española de Terapias Avanzadas (TERAV) - Instituto de Salud Carlos III (ISCII) (RICORS, RD21/0017/0029)
| | - Francisco Gutiérrez Agüera
- Josep Carreras Leukaemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Red Española de Terapias Avanzadas (TERAV) - Instituto de Salud Carlos III (ISCII) (RICORS, RD21/0017/0029)
| | - Daniel V Correia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Pablo Menéndez
- Josep Carreras Leukaemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain .,Red Española de Terapias Avanzadas (TERAV) - Instituto de Salud Carlos III (ISCII) (RICORS, RD21/0017/0029).,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
69
|
Maakaron JE, Hu M, El Jurdi N. Chimeric antigen receptor T cell therapy for cancer: clinical applications and practical considerations. BRITISH MEDICAL JOURNAL 2022. [DOI: 10.1136/bmj-2021-068956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract
Chimeric antigen receptor T cells have revolutionized the treatment of hematological malignancies during the past five years, boasting impressive response rates and durable remissions for patients who previously had no viable options. In this review, we provide a brief historical overview of their development. We focus on the practical aspects of a patient’s journey through this treatment and the unique toxicities and current best practices to manage those. We then discuss the key registration trials that have led to approvals for the treatment of relapsed/refractory acute lymphoblastic leukemia (ALL), diffuse large B cell lymphoma (DLBCL), follicular lymphoma, mantle cell lymphoma (MCL), and multiple myeloma. Finally, we consider the future development and research directions of this cutting edge therapy.
Collapse
|
70
|
Duncan BB, Dunbar CE, Ishii K. Applying a Clinical Lens to Animal Models of CAR-T Cell Therapies. Mol Ther Methods Clin Dev 2022; 27:17-31. [PMID: 36156878 PMCID: PMC9478925 DOI: 10.1016/j.omtm.2022.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chimeric antigen receptor (CAR)-T cells have emerged as a promising treatment modality for various hematologic and solid malignancies over the past decade. Animal models remain the cornerstone of pre-clinical evaluation of human CAR-T cell products and are generally required by regulatory agencies prior to clinical translation. However, pharmacokinetics and pharmacodynamics of adoptively transferred T cells are dependent on various recipient factors, posing challenges for accurately predicting human engineered T cell behavior in non-human animal models. For example, murine xenograft models did not forecast now well-established cytokine-driven systemic toxicities of CAR-T cells seen in humans, highlighting the limitations of animal models that do not perfectly recapitulate complex human immune systems. Understanding the concordance as well as discrepancies between existing pre-clinical animal data and human clinical experiences, along with established advantages and limitations of each model, will facilitate investigators’ ability to appropriately select and design animal models for optimal evaluation of future CAR-T cell products. We summarize the current state of animal models in this field, and the advantages and disadvantages of each approach depending on the pre-clinical questions being asked.
Collapse
|
71
|
Jogalekar MP, Rajendran RL, Khan F, Dmello C, Gangadaran P, Ahn BC. CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments. Front Immunol 2022; 13:925985. [PMID: 35936003 PMCID: PMC9355792 DOI: 10.3389/fimmu.2022.925985] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a progressive new pillar in immune cell therapy for cancer. It has yielded remarkable clinical responses in patients with B-cell leukemia or lymphoma. Unfortunately, many challenges remain to be addressed to overcome its ineffectiveness in the treatment of other hematological and solidtumor malignancies. The major hurdles of CAR T-cell therapy are the associated severe life-threatening toxicities such as cytokine release syndrome and limited anti-tumor efficacy. In this review, we briefly discuss cancer immunotherapy and the genetic engineering of T cells and, In detail, the current innovations in CAR T-cell strategies to improve efficacy in treating solid tumors and hematologic malignancies. Furthermore, we also discuss the current challenges in CAR T-cell therapy and new CAR T-cell-derived nanovesicle therapy. Finally, strategies to overcome the current clinical challenges associated with CAR T-cell therapy are included as well.
Collapse
Affiliation(s)
- Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
72
|
Trad R, Warda W, Alcazer V, Neto da Rocha M, Berceanu A, Nicod C, Haderbache R, Roussel X, Desbrosses Y, Daguindau E, Renosi F, Roumier C, Bouquet L, Biichle S, Guiot M, Seffar E, Caillot D, Depil S, Robinet E, Salma Y, Deconinck E, Deschamps M, Ferrand C. Chimeric antigen receptor T-cells targeting IL-1RAP: a promising new cellular immunotherapy to treat acute myeloid leukemia. J Immunother Cancer 2022; 10:jitc-2021-004222. [PMID: 35803613 PMCID: PMC9272123 DOI: 10.1136/jitc-2021-004222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background Acute myeloid leukemia (AML) remains a very difficult disease to cure due to the persistence of leukemic stem cells (LSCs), which are resistant to different lines of chemotherapy and are the basis of refractory/relapsed (R/R) disease in 80% of patients with AML not receiving allogeneic transplantation. Methods In this study, we showed that the interleukin-1 receptor accessory protein (IL-1RAP) protein is overexpressed on the cell surface of LSCs in all subtypes of AML and confirmed it as an interesting and promising target in AML compared with the most common potential AML targets, since it is not expressed by the normal hematopoietic stem cell. After establishing the proof of concept for the efficacy of chimeric antigen receptor (CAR) T-cells targeting IL-1RAP in chronic myeloid leukemia, we hypothesized that third-generation IL-1RAP CAR T-cells could eliminate AML LSCs, where the medical need is not covered. Results We first demonstrated that IL-1RAP CAR T-cells can be produced from AML T-cells at the time of diagnosis and at relapse. In vitro and in vivo, we showed the effectiveness of IL-1RAP CAR T-cells against AML cell lines expressing different levels of IL-1RAP and the cytotoxicity of autologous IL-1RAP CAR T-cells against primary cells from patients with AML at diagnosis or at relapse. In patient-derived relapsed AML xenograft models, we confirmed that IL-1RAP CAR T-cells are able to circulate in peripheral blood and to migrate in the bone marrow and spleen, are cytotoxic against primary AML cells and increased overall survival. Conclusion In conclusion, our preclinical results suggest that IL-1RAP CAR T-based adoptive therapy could be a promising strategy in AML treatment and it warrants the clinical investigation of this CAR T-cell therapy.
Collapse
Affiliation(s)
- Rim Trad
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France
| | - Walid Warda
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France.,CanCell Therapeutics, Besancon, France
| | | | - Mathieu Neto da Rocha
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France.,CanCell Therapeutics, Besancon, France
| | - Ana Berceanu
- Clinical Hematology, C.H. Univ Jean Minjoz, Besancon, France
| | | | | | - Xavier Roussel
- Clinical Hematology, C.H. Univ Jean Minjoz, Besancon, France
| | | | | | - Florain Renosi
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France
| | | | - Lucie Bouquet
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France
| | - Sabeha Biichle
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France
| | - Melanie Guiot
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France
| | - Evan Seffar
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France
| | - Denis Caillot
- Clinical Hematology, CHU François Mitterrand, Dijon, France
| | | | | | - Yahya Salma
- Laboratory of Applied Biotechnology (LBA3B), Lebanese University, Tripoli, Lebanon
| | - Eric Deconinck
- Clinical Hematology, C.H. Univ Jean Minjoz, Besancon, France
| | - Marina Deschamps
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France.,CanCell Therapeutics, Besancon, France
| | - Christophe Ferrand
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France .,CanCell Therapeutics, Besancon, France
| |
Collapse
|
73
|
Adimora IJ, Wilson NR, Pemmaraju N. Blastic plasmacytoid dendritic cell neoplasm (BPDCN): A promising future in the era of targeted therapeutics. Cancer 2022; 128:3019-3026. [PMID: 35726525 DOI: 10.1002/cncr.34345] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 11/09/2022]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy arising from precursor dendritic cells. BPDCN cells characteristically express several markers on their cell surfaces including CD123, CD4, and CD56. Because of its rarity and challenging clinical presentation, there was no standard of care in managing BPDCN for decades and its prognosis overall was poor. However, as understanding of this rare neoplasm has increased, so have treatment options. The conventional cytotoxic chemotherapy regimens once used in the treatment of BPDCN were modest in their impact on disease relapse until paired with hematopoietic stem cell transplant. Although recent data suggest that there still remains a role for chemotherapeutic agents, targeted modalities have expanded the overall BPDCN treatment landscape. The CD123-targeted agent, tagraxofusp, was the first Food and Drug Administration-approved monotherapy in the treatment of BPDCN. Since its inception, several CD123-targeted and other cell-surface agents have been investigated, with many agents still in the preclinical stages. Although relapsed/refractory disease and central nervous system disease both remain formidable areas of research, there are several promising therapeutic approaches that could have a significant impact on the trajectory of treatment. This review will provide detailed insight on the novel drugs currently in use and those being explored in the management of BPDCN.
Collapse
Affiliation(s)
- Ijele J Adimora
- Department of Internal Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Nathaniel R Wilson
- Department of Internal Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
74
|
Hino C, Pham B, Park D, Yang C, Nguyen MH, Kaur S, Reeves ME, Xu Y, Nishino K, Pu L, Kwon SM, Zhong JF, Zhang KK, Xie L, Chong EG, Chen CS, Nguyen V, Castillo DR, Cao H. Targeting the Tumor Microenvironment in Acute Myeloid Leukemia: The Future of Immunotherapy and Natural Products. Biomedicines 2022; 10:biomedicines10061410. [PMID: 35740430 PMCID: PMC9219790 DOI: 10.3390/biomedicines10061410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) plays an essential role in the development, proliferation, and survival of leukemic blasts in acute myeloid leukemia (AML). Within the bone marrow and peripheral blood, various phenotypically and functionally altered cells in the TME provide critical signals to suppress the anti-tumor immune response, allowing tumor cells to evade elimination. Thus, unraveling the complex interplay between AML and its microenvironment may have important clinical implications and are essential to directing the development of novel targeted therapies. This review summarizes recent advancements in our understanding of the AML TME and its ramifications on current immunotherapeutic strategies. We further review the role of natural products in modulating the TME to enhance response to immunotherapy.
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.H.); (B.P.); (K.N.); (L.P.); (S.M.K.)
| | - Bryan Pham
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.H.); (B.P.); (K.N.); (L.P.); (S.M.K.)
| | - Daniel Park
- Department of Internal Medicine, School of Medicine, University of California San Francisco–Fresno, Fresno, CA 93701, USA;
| | - Chieh Yang
- Department of Internal Medicine, School of Medicine, University of California Riverside, Riverside, CA 92521, USA;
| | - Michael H.K. Nguyen
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Simmer Kaur
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Mark E. Reeves
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Yi Xu
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Kevin Nishino
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.H.); (B.P.); (K.N.); (L.P.); (S.M.K.)
| | - Lu Pu
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.H.); (B.P.); (K.N.); (L.P.); (S.M.K.)
| | - Sue Min Kwon
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.H.); (B.P.); (K.N.); (L.P.); (S.M.K.)
| | - Jiang F. Zhong
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA;
| | - Ke K. Zhang
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA; (K.K.Z.); (L.X.)
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA; (K.K.Z.); (L.X.)
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Esther G. Chong
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Chien-Shing Chen
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Vinh Nguyen
- Department of Biology, University of California Riverside, Riverside, CA 92521, USA;
| | - Dan Ran Castillo
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
- Correspondence: (D.R.C.); (H.C.)
| | - Huynh Cao
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
- Correspondence: (D.R.C.); (H.C.)
| |
Collapse
|
75
|
High-Risk Acute Myeloid Leukemia: A Pediatric Prospective. Biomedicines 2022; 10:biomedicines10061405. [PMID: 35740427 PMCID: PMC9220202 DOI: 10.3390/biomedicines10061405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric acute myeloid leukemia is a clonal disorder characterized by malignant transformation of the hematopoietic stem cell. The incidence and the outcome remain inferior when compared to pediatric ALL, although prognosis has improved in the last decades, with 80% overall survival rate reported in some studies. The standard therapeutic approach is a combined cytarabine and anthracycline-based regimen followed by consolidation with allogeneic stem cell transplantation (allo-SCT) for high-risk AML and allo-SCT for non-high-risk patients only in second complete remission after relapse. In the last decade, several drugs have been used in clinical trials to improve outcomes in pediatric AML treatment.
Collapse
|
76
|
Huo CD, Yang J, Gu YM, Wang DJ, Zhang XX, Li YM. Overcome tumor relapse in CAR T cell therapy. Clin Transl Oncol 2022; 24:1833-1843. [PMID: 35678948 DOI: 10.1007/s12094-022-02847-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a novel therapeutic approach that uses gene editing techniques and lentiviral transduction to engineer T cells so that they can effectively kill tumors. However, CAR T cell therapy still has some drawbacks: many patients who received CAR T cell therapy and achieve remission, still had tumor relapse and treatment resistance, which may be due to tumor immune escape and CAR T cell dysfunction. To overcome tumor relapse, more researches are being done to optimize CAR T cell therapy to make it more precise and personalized, including screening for more specific tumor antigens, developing novel CAR T cells, and combinatorial treatment approaches. In this review, we will discuss the mechanisms as well as the progress of research on overcoming plans.
Collapse
Affiliation(s)
- Cheng-Dong Huo
- The Second Clinical Medical School of Lanzhou University, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Jie Yang
- Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yan-Mei Gu
- The Second Clinical Medical School of Lanzhou University, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Dai-Jun Wang
- The Second Clinical Medical School of Lanzhou University, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | | | - Yu-Min Li
- The Second Clinical Medical School of Lanzhou University, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China.
| |
Collapse
|
77
|
Laszlo GS, Orozco JJ, Kehret AR, Lunn MC, Huo J, Hamlin DK, Wilbur DS, Dexter SL, Comstock ML, O’Steen S, Sandmaier BM, Green DJ, Walter RB. Development of [ 211At]astatine-based anti-CD123 radioimmunotherapy for acute leukemias and other CD123+ malignancies. Leukemia 2022; 36:1485-1491. [PMID: 35474099 PMCID: PMC9177726 DOI: 10.1038/s41375-022-01580-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
Radioimmunotherapy (RIT) has long been pursued to improve outcomes in acute leukemia and higher-risk myelodysplastic syndrome (MDS). Of increasing interest are alpha-particle-emitting radionuclides such as astatine-211 (211At) as they deliver large amounts of radiation over just a few cell diameters, enabling efficient and selective target cell kill. Here, we developed 211At-based RIT targeting CD123, an antigen widely displayed on acute leukemia and MDS cells including underlying neoplastic stem cells. We generated and characterized new murine monoclonal antibodies (mAbs) specific for human CD123 and selected four, all of which were internalized by CD123+ target cells, for further characterization. All mAbs could be conjugated to a boron cage, isothiocyanatophenethyl-ureido-closo-decaborate(2-) (B10), and labeled with 211At. CD123+ cell targeting studies in immunodeficient mice demonstrated specific uptake of 211At-labeled anti-CD123 mAbs in human CD123+ MOLM-13 cell tumors in the flank. In mice injected intravenously with MOLM-13 cells or a CD123NULL MOLM-13 subline, a single dose of up to 40 µCi of 211At delivered via anti-CD123 mAb decreased tumor burdens and substantially prolonged survival dose dependently in mice bearing CD123+ but not CD123- leukemia xenografts, demonstrating potent and target-specific in vivo anti-leukemia efficacy. These data support the further development of 211At-CD123 RIT toward clinical application.
Collapse
Affiliation(s)
- George S. Laszlo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Johnnie J. Orozco
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA
| | - Allie R. Kehret
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Margaret C. Lunn
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jenny Huo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Donald K. Hamlin
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - D. Scott Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Shannon L. Dexter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Melissa L. Comstock
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shyril O’Steen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brenda M. Sandmaier
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA
| | - Damian J. Green
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA
| | - Roland B. Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA,Department of Epidemiology, University of Washington, Seattle, WA
| |
Collapse
|
78
|
Griffin JM, Healy FM, Dahal LN, Floisand Y, Woolley JF. Worked to the bone: antibody-based conditioning as the future of transplant biology. J Hematol Oncol 2022; 15:65. [PMID: 35590415 PMCID: PMC9118867 DOI: 10.1186/s13045-022-01284-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Conditioning of the bone marrow prior to haematopoietic stem cell transplant is essential in eradicating the primary cause of disease, facilitating donor cell engraftment and avoiding transplant rejection via immunosuppression. Standard conditioning regimens, typically comprising chemotherapy and/or radiotherapy, have proven successful in bone marrow clearance but are also associated with severe toxicities and high incidence of treatment-related mortality. Antibody-based conditioning is a developing field which, thus far, has largely shown an improved toxicity profile in experimental models and improved transplant outcomes, compared to traditional conditioning. Most antibody-based conditioning therapies involve monoclonal/naked antibodies, such as alemtuzumab for graft-versus-host disease prophylaxis and rituximab for Epstein–Barr virus prophylaxis, which are both in Phase II trials for inclusion in conditioning regimens. Nevertheless, alternative immune-based therapies, including antibody–drug conjugates, radio-labelled antibodies and CAR-T cells, are showing promise in a conditioning setting. Here, we analyse the current status of antibody-based drugs in pre-transplant conditioning regimens and assess their potential in the future of transplant biology.
Collapse
Affiliation(s)
- James M Griffin
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Fiona M Healy
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Lekh N Dahal
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Yngvar Floisand
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.,The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | - John F Woolley
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK.
| |
Collapse
|
79
|
Bôle-Richard E, Pemmaraju N, Caël B, Daguindau E, Lane AA. CD123 and More: How to Target the Cell Surface of Blastic Plasmacytoid Dendritic Cell Neoplasm. Cancers (Basel) 2022; 14:2287. [PMID: 35565416 PMCID: PMC9099711 DOI: 10.3390/cancers14092287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive leukemia derived from plasmacytoid dendritic cells (pDCs). It is associated with a remarkably poor prognosis and unmet need for better therapies. Recently, the first-in-class CD123-targeting therapy, tagraxofusp, was approved for treatment of BPDCN. Other CD123-targeting strategies are in development, including bispecific antibodies and combination approaches with tagraxofusp and other novel agents. In other blood cancers, adoptive T-cell therapy using chimeric antigen receptor (CAR)-modified T cells represents a promising new avenue in immunotherapy, showing durable remissions in some relapsed hematologic malignancies. Here, we report on novel and innovative therapies in development to target surface molecules in BPDCN currently in clinical trials or in preclinical stages. We also discuss new cell surface targets that may have implications for future BPDCN treatment.
Collapse
Affiliation(s)
- Elodie Bôle-Richard
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besancon, France; (B.C.); (E.D.)
| | - Naveen Pemmaraju
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Blandine Caël
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besancon, France; (B.C.); (E.D.)
| | - Etienne Daguindau
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besancon, France; (B.C.); (E.D.)
- Service Hématologie, CHU Besançon, F-25000 Besancon, France
| | - Andrew A. Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
80
|
Donnadieu E, Luu M, Alb M, Anliker B, Arcangeli S, Bonini C, De Angelis B, Choudhary R, Espie D, Galy A, Holland C, Ivics Z, Kantari-Mimoun C, Kersten MJ, Köhl U, Kuhn C, Laugel B, Locatelli F, Marchiq I, Markman J, Moresco MA, Morris E, Negre H, Quintarelli C, Rade M, Reiche K, Renner M, Ruggiero E, Sanges C, Stauss H, Themeli M, Van den Brulle J, Hudecek M, Casucci M. Time to evolve: predicting engineered T cell-associated toxicity with next-generation models. J Immunother Cancer 2022; 10:jitc-2021-003486. [PMID: 35577500 PMCID: PMC9115021 DOI: 10.1136/jitc-2021-003486] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Despite promising clinical results in a small subset of malignancies, therapies based on engineered chimeric antigen receptor and T-cell receptor T cells are associated with serious adverse events, including cytokine release syndrome and neurotoxicity. These toxicities are sometimes so severe that they significantly hinder the implementation of this therapeutic strategy. For a long time, existing preclinical models failed to predict severe toxicities seen in human clinical trials after engineered T-cell infusion. However, in recent years, there has been a concerted effort to develop models, including humanized mouse models, which can better recapitulate toxicities observed in patients. The Accelerating Development and Improving Access to CAR and TCR-engineered T cell therapy (T2EVOLVE) consortium is a public–private partnership directed at accelerating the preclinical development and increasing access to engineered T-cell therapy for patients with cancer. A key ambition in T2EVOLVE is to design new models and tools with higher predictive value for clinical safety and efficacy, in order to improve and accelerate the selection of lead T-cell products for clinical translation. Herein, we review existing preclinical models that are used to test the safety of engineered T cells. We will also highlight limitations of these models and propose potential measures to improve them.
Collapse
Affiliation(s)
| | - Maik Luu
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Miriam Alb
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Brigitte Anliker
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Silvia Arcangeli
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy.,Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Biagio De Angelis
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | - Rashmi Choudhary
- Takeda Development Centers Americas, Inc, Lexington, Massachusetts, USA
| | - David Espie
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France.,CAR-T Cells Department, Invectys, Paris, France
| | - Anne Galy
- Accelerator of Technological Research in Genomic Therapy, INSERM US35, Corbeil-Essonnes, France
| | - Cam Holland
- Janssen Research and Development LLC, Spring House, PA, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Marie Jose Kersten
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Chantal Kuhn
- Takeda Development Centers Americas, Inc, Lexington, Massachusetts, USA
| | - Bruno Laugel
- Institut de Recherches Servier, Croissy sur seine, France
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Janet Markman
- Takeda Development Centers Americas, Inc, Lexington, Massachusetts, USA
| | - Marta Angiola Moresco
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Emma Morris
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Helene Negre
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Concetta Quintarelli
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | - Michael Rade
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Kristin Reiche
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Matthias Renner
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmen Sanges
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Hans Stauss
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Maria Themeli
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
81
|
Pretreatment of umbilical cord derived MSCs with IFN-γ and TNF-α enhances the tumor-suppressive effect on acute myeloid leukemia. Biochem Pharmacol 2022; 199:115007. [DOI: 10.1016/j.bcp.2022.115007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 01/27/2023]
|
82
|
Allogeneic TCRαβ deficient CAR T-cells targeting CD123 in acute myeloid leukemia. Nat Commun 2022; 13:2227. [PMID: 35484102 PMCID: PMC9050731 DOI: 10.1038/s41467-022-29668-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/08/2022] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia (AML) is a disease with high incidence of relapse that is originated and maintained from leukemia stem cells (LSCs). Hematopoietic stem cells can be distinguished from LSCs by an array of cell surface antigens such as CD123, thus a candidate to eliminate LSCs using a variety of approaches, including CAR T cells. Here, we evaluate the potential of allogeneic gene-edited CAR T cells targeting CD123 to eliminate LSCs (UCART123). UCART123 cells are TCRαβneg T cells generated from healthy donors using TALEN® gene-editing technology, decreasing the likelihood of graft vs host disease. As safety feature, cells express RQR8 to allow elimination with Rituximab. UCART123 effectively eliminates AML cells in vitro and in vivo with significant benefits in overall survival of AML-patient derived xenograft mice. Furthermore, UCART123 preferentially target AML over normal cells with modest toxicity to normal hematopoietic stem/progenitor cells. Together these results suggest that UCART123 represents an off-the shelf therapeutic approach for AML. CD123, the interleukin-3 receptor alpha chain, is aberrantly expressed in acute myeloid leukemia blasts and leukemia stem cells. Here the authors report the design and characterize the anti-tumor activity of allogeneic CD123-targeted CAR-T cells as a therapeutic approach for acute myeloid leukemia.
Collapse
|
83
|
Boettcher M, Joechner A, Li Z, Yang SF, Schlegel P. Development of CAR T Cell Therapy in Children-A Comprehensive Overview. J Clin Med 2022; 11:2158. [PMID: 35456250 PMCID: PMC9024694 DOI: 10.3390/jcm11082158] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
CAR T cell therapy has revolutionized immunotherapy in the last decade with the successful establishment of chimeric antigen receptor (CAR)-expressing cellular therapies as an alternative treatment in relapsed and refractory CD19-positive leukemias and lymphomas. There are fundamental reasons why CAR T cell therapy has been approved by the Food and Drug administration and the European Medicines Agency for pediatric and young adult patients first. Commonly, novel therapies are developed for adult patients and then adapted for pediatric use, due to regulatory and commercial reasons. Both strategic and biological factors have supported the success of CAR T cell therapy in children. Since there is an urgent need for more potent and specific therapies in childhood malignancies, efforts should also include the development of CAR therapeutics and expand applicability by introducing new technologies. Basic aspects, the evolution and the drawbacks of childhood CAR T cell therapy are discussed as along with the latest clinically relevant information.
Collapse
Affiliation(s)
- Michael Boettcher
- Department of Pediatric Surgery, University Medical Centre Mannheim, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Alexander Joechner
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia;
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Ziduo Li
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Sile Fiona Yang
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Patrick Schlegel
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia;
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
- Department of Pediatric Hematology and Oncology, Westmead Children’s Hospital, Sydney 2145, Australia
| |
Collapse
|
84
|
Shao X, Chen Y, Wang W, Du W, Zhang X, Cai M, Bing S, Cao J, Xu X, Yang B, He Q, Ying M. Blockade of deubiquitinase YOD1 degrades oncogenic PML/RARα and eradicates acute promyelocytic leukemia cells. Acta Pharm Sin B 2022; 12:1856-1870. [PMID: 35847510 PMCID: PMC9279643 DOI: 10.1016/j.apsb.2021.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
In most acute promyelocytic leukemia (APL) cells, promyelocytic leukemia (PML) fuses to retinoic acid receptor α (RARα) due to chromosomal translocation, thus generating PML/RARα oncoprotein, which is a relatively stable oncoprotein for degradation in APL. Elucidating the mechanism regulating the stability of PML/RARα may help to degrade PML/RARα and eradicate APL cells. Here, we describe a deubiquitinase (DUB)-involved regulatory mechanism for the maintenance of PML/RARα stability and develop a novel pharmacological approach to degrading PML/RARα by inhibiting DUB. We utilized a DUB siRNA library to identify the ovarian tumor protease (OTU) family member deubiquitinase YOD1 as a critical DUB of PML/RARα. Suppression of YOD1 promoted the degradation of PML/RARα, thus inhibiting APL cells and prolonging the survival time of APL cell-bearing mice. Subsequent phenotypic screening of small molecules allowed us to identify ubiquitin isopeptidase inhibitor I (G5) as the first YOD1 pharmacological inhibitor. As expected, G5 notably degraded PML/RARα protein and eradicated APL, particularly drug-resistant APL cells. Importantly, G5 also showed a strong killing effect on primary patient-derived APL blasts. Overall, our study not only reveals the DUB-involved regulatory mechanism on PML/RARα stability and validates YOD1 as a potential therapeutic target for APL, but also identifies G5 as a YOD1 inhibitor and a promising candidate for APL, particularly drug-resistant APL treatment.
Collapse
|
85
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
86
|
Koedam J, Wermke M, Ehninger A, Cartellieri M, Ehninger G. Chimeric antigen receptor T-cell therapy in acute myeloid leukemia. Curr Opin Hematol 2022; 29:74-83. [PMID: 35013048 PMCID: PMC8815830 DOI: 10.1097/moh.0000000000000703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Treatment outcome of relapsed or refractory AML patients remains dismal and new treatment options are needed. Adoptive cell therapy using CAR-T cells is a potentially interesting approach in this. RECENT FINDINGS Several potentially interesting AML targets are being investigated with CAR-T therapy with over 60 clinical trials listed on clinicaltrials.gov. The first clinical data are only just emerging with mixed results, once more proving that further research is needed. SUMMARY Adoptive cell therapy using chimeric antigen receptor T cells is being investigated in AML through many clinical trials. So far, no AML-specific antigen has been identified, requiring additional strategies to mitigate on-target off-tumor toxicity and to increase efficacy. Focus point is to acquire control over the CAR T cells once administered. Strategies to do so include biodegradable CARs, inducible CARs, suicide-switch containing CARs and two-component modular CARs. Limited and mixed results are available, confirming the risk of lasting toxicity for nonswitchable CARs. Initial results of modular CARs suggest toxicity can be mitigated whilst maintaining CAR activity by the use of modular CAR concepts that allows for 'ON' and 'OFF' switching.
Collapse
Affiliation(s)
| | - Martin Wermke
- Division of Hematology, Oncology and Stem Cell Transplantation, Medical Clinic I, Department of Medicine I, University Hospital Carl Gustav Carus
- National Center for Tumor Diseases
| | | | | | | |
Collapse
|
87
|
Efficacy of Flotetuzumab in Combination with Cytarabine in Patient-Derived Xenograft Models of Pediatric Acute Myeloid Leukemia. J Clin Med 2022; 11:jcm11051333. [PMID: 35268423 PMCID: PMC8911345 DOI: 10.3390/jcm11051333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 01/21/2023] Open
Abstract
Children with acute myeloid leukemia (AML) have a poor prognosis despite the intensification of chemotherapy. Future efforts to improve outcomes should focus on more precise targeting of leukemia cells. CD123, or IL3RA, is expressed on the surface of nearly all pediatric AML samples and is a high-priority target for immunotherapy. The efficacy of an investigational dual-affinity retargeting antibody (DART) molecule (CD123 × CD3; MGD006 or flotetuzumab) was assessed in two distinct patient-derived xenograft (PDX) models of pediatric AML. MGD006 simultaneously binds to CD123 on target cells and CD3 on effector T cells, thereby activating T cells and redirecting them to induce cytotoxicity in target cells. The concurrent treatment of cytarabine and MGD006 was performed to determine the effect of cytarabine on T-cell counts and MGD006 activity. Treatment with MGD006 along with an allogeneic human T-cell infusion to act as effector cells induced durable responses in both PDX models, with CD123 positivity. This effect was sustained in mice treated with a combination of MGD006 and cytarabine in the presence of T cells. MGD006 enhanced T-cell proliferation and decreased the burden of AML blasts in the peripheral blood with or without cytarabine treatment. These data demonstrate the efficacy of MGD006 in prolonging survival in pediatric AML PDX models in the presence of effector T cells and show that the inclusion of cytarabine in the treatment regimen does not interfere with MGD006 activity.
Collapse
|
88
|
Emerging CAR T Cell Strategies for the Treatment of AML. Cancers (Basel) 2022; 14:cancers14051241. [PMID: 35267549 PMCID: PMC8909045 DOI: 10.3390/cancers14051241] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Chimeric antigen receptors (CARs) targeting CD19 have emerged as a new treatment for hematological malignancies. As a “living therapy”, CARs can precisely target and eliminate tumors while proliferating inside the patient’s body. Various preclinical and clinical studies are ongoing to identify potential CAR-T cell targets for acute myeloid leukemia (AML). We shed light on the continuing efforts of CAR development to overcome tumor escape, exhaustion, and toxicities. Furthermore, we summarize the recent progress of a range of putative targets exploring this unmet need to treat AML. Lastly, we discuss the advances in preclinical models that built the foundation for ongoing clinical trials. Abstract Engineered T cells expressing chimeric antigen receptors (CARs) on their cell surface can redirect antigen specificity. This ability makes CARs one of the most promising cancer therapeutic agents. CAR-T cells for treating patients with B cell hematological malignancies have shown impressive results. Clinical manifestation has yielded several trials, so far five CAR-T cell therapies have received US Food and Drug Administration (FDA) approval. However, emerging clinical data and recent findings have identified some immune-related toxicities due to CAR-T cell therapy. Given the outcome and utilization of the same proof of concept, further investigation in other hematological malignancies, such as leukemias, is warranted. This review discusses the previous findings from the pre-clinical and human experience with CAR-T cell therapy. Additionally, we describe recent developments of novel targets for adoptive immunotherapy. Here we present some of the early findings from the pre-clinical studies of CAR-T cell modification through advances in genetic engineering, gene editing, cellular programming, and formats of synthetic biology, along with the ongoing efforts to restore the function of exhausted CAR-T cells through epigenetic remodeling. We aim to shed light on the new targets focusing on acute myeloid leukemia (AML).
Collapse
|
89
|
Zhang Y, Li Y, Cao W, Wang F, Xie X, Li Y, Wang X, Guo R, Jiang Z, Guo R. Single-Cell Analysis of Target Antigens of CAR-T Reveals a Potential Landscape of "On-Target, Off-Tumor Toxicity". Front Immunol 2022; 12:799206. [PMID: 34975912 PMCID: PMC8716389 DOI: 10.3389/fimmu.2021.799206] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023] Open
Abstract
Cellular immunotherapy represented by CD19-directed chimeric antigen receptor T (CAR-T) cells has achieved great success in recent years. An increasing number of CAR-T therapies are being developed for cancer treatment, but the frequent and varied adverse events, such as “on-target, off-tumor toxicity”, limit CAR-T application. Here, we identify the target antigen expression patterns of CAR therapies in 18 tissues and organs (peripheral blood mononuclear cells, bone marrow, lymph nodes, spleen, heart, ascending aortic tissue, trachea, lung, skin, kidney, bladder, esophagus, stomach, small intestine, rectum, liver, common bile duct, and pancreas) from healthy human samples. The atlas determines target antigens expressed on some normal cell types, which facilitates elucidating the cause of “on-target, off-tumor toxicity” in special tissues and organs by targeting some antigens, but not others. Moreover, we describe the target antigen expression patterns of B-lineage-derived malignant cells, acute myeloid leukemia (AML), and solid tumors. Overall, the present study indicates the pathogenesis of “on-target, off-tumor toxicity” during CAR therapies and provides guidance on taking preventive measures during CAR treatment.
Collapse
Affiliation(s)
- Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yadan Li
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoyi Wang
- Department of Pediatric Hematology and Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
90
|
Zhang X, Ang WX, Du Z, Ng YY, Zha S, Chen C, Xiao L, Ng JY, Chng WJ, Wang S. A CD123-specific chimeric antigen receptor augments anti-acute myeloid leukemia activity of Vγ9Vδ2 T cells. Immunotherapy 2022; 14:321-336. [DOI: 10.2217/imt-2021-0143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To investigate whether anti-CD123 chimeric antigen receptor (CAR)-expressing Vγ9Vδ2 T cells could be an alternative for acute myeloid leukemia (AML) treatment. Materials & methods: Ex vivo expanded Vγ9Vδ2 T cells were electroporated with anti-CD123 CAR-encoding mRNA. The effector function and specificity of the modified Vγ9Vδ2 T cells were examined by in vitro cytotoxicity, degranulation and cytokine release level. The in vivo function was analyzed using the xenograft KG1-luc model with NOD-SCID-γc-/- mice. Results: The modified Vγ9Vδ2 T cells exhibited significantly improved effector activities against both AML cell lines and primary AML cells in vitro. In the xenograft mouse model, the modified Vγ9Vδ2 cells displayed an enhanced tumor control potency. Conclusion: Anti-CD123 CAR-expressing Vγ9Vδ2 T cells may serve as an alternative way to target AML.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Wei Xia Ang
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Zhicheng Du
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Yu Yang Ng
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Shijun Zha
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Can Chen
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Lin Xiao
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Jia Yi Ng
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, 119074, Singapore
| | - Wee Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, 119074, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| |
Collapse
|
91
|
Lejman M, Dziatkiewicz I, Jurek M. Straight to the Point-The Novel Strategies to Cure Pediatric AML. Int J Mol Sci 2022; 23:1968. [PMID: 35216084 PMCID: PMC8878466 DOI: 10.3390/ijms23041968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Although the outcome has improved over the past decades, due to improved supportive care, a better understanding of risk factors, and intensified chemotherapy, pediatric acute myeloid leukemia remains a life-threatening disease, and overall survival (OS) remains near 70%. According to French-American-British (FAB) classification, AML is divided into eight subtypes (M0-M7), and each is characterized by a different pathogenesis and response to treatment. However, the curability of AML is due to the intensification of standard chemotherapy, more precise risk classification, improvements in supportive care, and the use of minimal residual disease to monitor response to therapy. The treatment of childhood AML continues to be based primarily on intensive, conventional chemotherapy. Therefore, it is essential to identify new, more precise molecules that are targeted to the specific abnormalities of each leukemia subtype. Here, we review abnormalities that are potential therapeutic targets for the treatment of AML in the pediatric population.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, II Faculty of Pediatrics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Izabela Dziatkiewicz
- Student Scientific Society, Laboratory of Genetic Diagnostics, II Faculty of Pediatrics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland; (I.D.); (M.J.)
| | - Mateusz Jurek
- Student Scientific Society, Laboratory of Genetic Diagnostics, II Faculty of Pediatrics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland; (I.D.); (M.J.)
| |
Collapse
|
92
|
Smirnov S, Petukhov A, Levchuk K, Kulemzin S, Staliarova A, Lepik K, Shuvalov O, Zaritskey A, Daks A, Fedorova O. Strategies to Circumvent the Side-Effects of Immunotherapy Using Allogeneic CAR-T Cells and Boost Its Efficacy: Results of Recent Clinical Trials. Front Immunol 2022; 12:780145. [PMID: 34975869 PMCID: PMC8714645 DOI: 10.3389/fimmu.2021.780145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Despite the outstanding results of treatment using autologous chimeric antigen receptor T cells (CAR-T cells) in hematological malignancies, this approach is endowed with several constraints. In particular, profound lymphopenia in some patients and the inability to manufacture products with predefined properties or set of cryopreserved batches of cells directed to different antigens in advance. Allogeneic CAR-T cells have the potential to address these issues but they can cause life-threatening graft-versus-host disease or have shorter persistence due to elimination by the host immune system. Novel strategies to create an “off the shelf” allogeneic product that would circumvent these limitations are an extensive area of research. Here we review CAR-T cell products pioneering an allogeneic approach in clinical trials.
Collapse
Affiliation(s)
- Sergei Smirnov
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia
| | - Alexey Petukhov
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia.,Institute of Cytology, Laboratory of Gene Expression Regulation, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Ksenia Levchuk
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia
| | - Sergey Kulemzin
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia.,Institute of Molecular and Cellular Biology SB Russian Academy of Science (RAS), Department of Molecular Immunology, Laboratory of Immunogenetics, Novosibirsk, Russia
| | - Alena Staliarova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Oncological Department 3, Borovliani, Minsk Region, Belarus
| | - Kirill Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Chemotherapy and Bone Marrow Transplantation Department, Saint Petersburg, Russia.,Pavlov University, Department of Hematology, Transfusiology and Transplantology, Saint Petersburg, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Laboratory of Gene Expression Regulation, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Andrey Zaritskey
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia
| | - Alexandra Daks
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia.,Institute of Cytology, Laboratory of Gene Expression Regulation, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Olga Fedorova
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia.,Institute of Cytology, Laboratory of Gene Expression Regulation, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
93
|
Sun X, Wang G, Zuo S, Niu Q, Chen X, Feng X. Preclinical Evaluation of CD64 As a Potential Target For CAR-T-cell Therapy For Acute Myeloid Leukemia. J Immunother 2022; 45:67-77. [PMID: 34864808 DOI: 10.1097/cji.0000000000000406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022]
Abstract
The relapsed and refractory acute myeloid leukemia (AML) patients receiving traditional chemotherapies have poor survival rate. Chimeric antigen receptor (CAR)-modified T cells have demonstrated remarkable effectiveness against some malignancies. However, most of CAR-Ts targeting the candidate proteins on AML cells induce hematopoietic cell suppression. Because of extensive heterogeneity among different types of AML, it is essential to expand the choice of target antigen for the CAR-T treatment of AML. CD64 (FcγRI) is a transmembrane protein with broad expression on various types of AML cells, especially monocytic AML cells, but it is absent on hematopoietic stem cells (HSCs) and most of nonmonocytes. Here, we found that some types of AML patients showed the homogeneous high-level expression of CD64. So, we created a CAR-T targeting CD64 (64bbz) and further verified its high efficiency for eradicating CD64+AML cells. In addition, 64bbz showed no cytotoxicity to HSCs. Overall, we developed a new treatment option for AML by using CD64 CAR-T cells while avoiding ablation of HSCs.
Collapse
Affiliation(s)
- Xiaolei Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Guoling Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Shiyu Zuo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Qing Niu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Xiaoli Chen
- Central Laboratory, Ganzhou Key Laboratory of Molecular Medicine, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou
| |
Collapse
|
94
|
Lamble AJ, Eidenschink Brodersen L, Alonzo TA, Wang J, Pardo L, Sung L, Cooper TM, Kolb EA, Aplenc R, Tasian SK, Loken MR, Meshinchi S. CD123 Expression Is Associated With High-Risk Disease Characteristics in Childhood Acute Myeloid Leukemia: A Report From the Children's Oncology Group. J Clin Oncol 2022; 40:252-261. [PMID: 34855461 PMCID: PMC8769096 DOI: 10.1200/jco.21.01595] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Increased CD123 surface expression has been associated with high-risk disease characteristics in adult acute myeloid leukemia (AML), but has not been well-characterized in childhood AML. In this study, we defined CD123 expression and associated clinical characteristics in a uniformly treated cohort of pediatric patients with newly diagnosed AML enrolled on the Children's Oncology Group AAML1031 phase III trial (NCT01371981). MATERIALS AND METHODS AML blasts within diagnostic bone marrow specimens (n = 1,040) were prospectively analyzed for CD123 protein expression by multidimensional flow cytometry immunophenotyping at a central clinical laboratory. Patients were stratified as low-risk or high-risk on the basis of (1) leukemia-associated cytogenetic and molecular alterations and (2) end-of-induction measurable residual disease levels. RESULTS The study population was divided into CD123 expression-based quartiles (n = 260 each) for analysis. Those with highest CD123 expression (quartile 4 [Q4]) had higher prevalence of high-risk KMT2A rearrangements and FLT3-ITD mutations (P < .001 for both) and lower prevalence of low-risk t(8;21), inv(16), and CEBPA mutations (P < .001 for all). Patients in lower CD123 expression quartiles (Q1-3) had similar relapse risk, event-free survival, and overall survival. Conversely, Q4 patients had a significantly higher relapse risk (53% v 39%, P < .001), lower event-free survival (49% v 69%, P < .001), and lower overall survival (32% v 50%, P < .001) in comparison with Q1-3 patients. CD123 maintained independent significance for outcomes when all known contemporary high-risk cytogenetic and molecular markers were incorporated into multivariable Cox regression analysis. CONCLUSION CD123 is strongly associated with disease-relevant cytogenetic and molecular alterations in childhood AML. CD123 is a critical biomarker and promising immunotherapeutic target for children with relapsed or refractory AML, given its prevalent expression and enrichment in patients with high-risk genetic alterations and inferior clinical outcomes with conventional therapy.
Collapse
Affiliation(s)
- Adam J. Lamble
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA,Adam J. Lamble, MD, University of Washington–Seattle Children's Hospital, M/S MB.8.501, PO Box 5371, Seattle, WA 98145-5005; e-mail:
| | | | - Todd A. Alonzo
- Children's Oncology Group, Monrovia, CA,University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Jim Wang
- Children's Oncology Group, Monrovia, CA
| | | | - Lillian Sung
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, CA
| | - Todd M. Cooper
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - E. Anders Kolb
- Division of Oncology, Nemours/Alfred I. Dupont Hospital for Children, Wilmington, DE
| | - Richard Aplenc
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sarah K. Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
95
|
Badar T, Manna A, Gadd ME, Kharfan-Dabaja MA, Qin H. Prospect of CAR T-cell therapy in acute myeloid leukemia. Expert Opin Investig Drugs 2022; 31:211-220. [PMID: 35051347 DOI: 10.1080/13543784.2022.2032642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Long-term outcome of patients with acute myeloid leukemia (AML) remains dismal, especially for those with high-risk disease or who are refractory to conventional therapy. CAR T-cell therapy provides unique opportunity to improve outcome by specifically targeting leukemia cells through genetically engineered T-cells. AREAS COVERED We summarize the progress of CAR T-cells therapy in AML. We examine its shortcomings in AML therapy and the strategies that are being implemented to improve its safety and effectiveness. PubMed Central, ClinicalTrials.gov and ASH annual meeting abstracts, were searched. Search terms used to identify clinical trials were "CAR T-cells in AML" OR CAR T-cells in leukemia". Relevant clinical trials and CAR T-cell research data was reviewed from June 2009 till July 2021. EXPERT OPINION CAR T-cell therapy has shown promise as a novel therapy, but there are number of barriers to overcome to achieve it full therapeutic potential in AML. Targeting leukemia specific antigen such as CLL1, to avoid myelotoxicity; incorporating checkpoint inhibitors to overcome leukemia induced immunosuppression and allogenic CAR T-cells to increases accessibility to patients with proliferative disease are among the strategies that are being explored to make CAR T-cell a successful immunotherapy for patient with AML.
Collapse
Affiliation(s)
- Talha Badar
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Florida, USA
| | - Alak Manna
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Florida, USA
| | - Martha E Gadd
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Florida, USA
| | | | - Hong Qin
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Florida, USA
| |
Collapse
|
96
|
Haddad F, Daver N. An Update on Immune Based Therapies in Acute Myeloid Leukemia: 2021 and Beyond! ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:273-295. [PMID: 34972969 DOI: 10.1007/978-3-030-79308-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite advances in the treatment of acute myeloid leukemia (AML), relapse is still widely observed and represents the major cause of death among patients with AML. Treatment options in the relapse setting are limited, still relying predominantly on allogeneic hematopoietic stem cell transplantation (allo-HSCT) and cytotoxic chemotherapy, with poor outcomes. Novel targeted and venetoclax-based combinations are being investigated and have shown encouraging results. Immune checkpoint inhibitors in combination with low-intensity chemotherapy demonstrated encouraging response rates and survival among patients with relapsed and/or refractory (R/R) AML, especially in the pre- and post-allo-HSCT setting. Blocking the CD47/SIRPα pathway is another strategy that showed robust anti-leukemic activity, with a response rate of around 70% and an encouraging median overall survival in patients with newly diagnosed, higher-risk myelodysplastic syndrome and patients with AML with a TP53 mutation. One approach that was proven to be very effective in the relapsed setting of lymphoid malignancies is chimeric antigen receptor (CAR) T cells. It relies on the infusion of genetically engineered T cells capable of recognizing specific epitopes on the surface of leukemia cells. In AML, different CAR constructs with different target antigens have been evaluated and demonstrated safety and feasibility in the R/R setting. However, the difficulty of potently targeting leukemic blasts in AML while sparing normal cells represents a major limitation to their use, and strategies are being tested to overcome this obstacle. A different approach is based on endogenously redirecting the patient's system cells to target and destroy leukemic cells via bispecific T-cell engagers (BiTEs) or dual antigen receptor targeting (DARTs). Early results have demonstrated the safety and feasibility of these agents, and research is ongoing to develop BiTEs with longer half-life, allowing for less frequent administration schedules and developing them in earlier and lower disease burden settings.
Collapse
Affiliation(s)
- Fadi Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
97
|
Antoñana-Vildosola A, Zanetti SR, Palazon A. Enabling CAR-T cells for solid tumors: Rage against the suppressive tumor microenvironment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:123-147. [PMID: 35798503 DOI: 10.1016/bs.ircmb.2022.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Adoptive T cell therapies based on chimeric antigen receptors (CAR-T) are emerging as genuine therapeutic options for the treatment of hematological malignancies. The observed clinical success has not yet been extended into solid tumor indications as a result of multiple factors including immunosuppressive features of the tumor microenvironment (TME). In this context, an emerging strategy is to design CAR-T cells for the elimination of defined cellular components of the TME, with the objective of re-shaping the tumor immune contexture to control tumor growth. Relevant cell components that are currently under investigation as targets of CAR-T therapies include the tumor vasculature, cancer-associated fibroblasts (CAFs), and immunosuppressive tumor associated macrophages (TAMs) and myeloid derived suppressor cells (MDSCs). In this review, we recapitulate the rapidly expanding field of CAR-T cell therapies that directly target cellular components within the TME with the ultimate objective of promoting immune function, either alone or in combination with other cancer therapies.
Collapse
Affiliation(s)
- Asier Antoñana-Vildosola
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Samanta Romina Zanetti
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bizkaia, Spain.
| |
Collapse
|
98
|
Current Limitations and Perspectives of Chimeric Antigen Receptor-T-Cells in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246157. [PMID: 34944782 PMCID: PMC8699597 DOI: 10.3390/cancers13246157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is the most frequent type of acute leukemia in adults. Allogeneic hematopoietic cell transplantation (allo-HCT) has been the only potentially curative treatment for the majority of patients. The ability of chimeric antigen receptor (CAR)-modified T-cell therapy directed against the CD19 antigen to induce durable remissions in patients with acute lymphoblastic leukemia (ALL) has provided optimism that this novel treatment paradigm can be extrapolated to AML. In this review, we provide an overview of candidate target antigens for CAR-T-cells in AML, an update on recent progress in preclinical and clinical development of investigational CAR-T-cell products, and discuss challenges for the clinical implementation of CAR-T-cell therapy in AML. Abstract Adoptive transfer of gene-engineered chimeric antigen receptor (CAR)-T-cells has emerged as a powerful immunotherapy for combating hematologic cancers. Several target antigens that are prevalently expressed on AML cells have undergone evaluation in preclinical CAR-T-cell testing. Attributes of an ‘ideal’ target antigen for CAR-T-cell therapy in AML include high-level expression on leukemic blasts and leukemic stem cells (LSCs), and absence on healthy tissues, normal hematopoietic stem and progenitor cells (HSPCs). In contrast to other blood cancer types, where CAR-T therapies are being similarly studied, only a rather small number of AML patients has received CAR-T-cell treatment in clinical trials, resulting in limited clinical experience for this therapeutic approach in AML. For curative AML treatment, abrogation of bulk blasts and LSCs is mandatory with the need for hematopoietic recovery after CAR-T administration. Herein, we provide a critical review of the current pipeline of candidate target antigens and corresponding CAR-T-cell products in AML, assess challenges for clinical translation and implementation in routine clinical practice, as well as perspectives for overcoming them.
Collapse
|
99
|
Pearson AD, Rossig C, Mackall C, Shah NN, Baruchel A, Reaman G, Ricafort R, Heenen D, Bassan A, Berntgen M, Bird N, Bleickardt E, Bouchkouj N, Bross P, Brownstein C, Cohen SB, de Rojas T, Ehrlich L, Fox E, Gottschalk S, Hanssens L, Hawkins DS, Horak ID, Taylor DH, Johnson C, Karres D, Ligas F, Ludwinski D, Mamonkin M, Marshall L, Masouleh BK, Matloub Y, Maude S, McDonough J, Minard-Colin V, Norga K, Nysom K, Pappo A, Pearce L, Pieters R, Pule M, Quintás-Cardama A, Richardson N, Schüßler-Lenz M, Scobie N, Sersch MA, Smith MA, Sterba J, Tasian SK, Weigel B, Weiner SL, Zwaan CM, Lesa G, Vassal G. Paediatric Strategy Forum for medicinal product development of chimeric antigen receptor T-cells in children and adolescents with cancer: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2021; 160:112-133. [PMID: 34840026 DOI: 10.1016/j.ejca.2021.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022]
Abstract
The seventh multi-stakeholder Paediatric Strategy Forum focused on chimeric antigen receptor (CAR) T-cells for children and adolescents with cancer. The development of CAR T-cells for patients with haematological malignancies, especially B-cell precursor acute lymphoblastic leukaemia (BCP-ALL), has been spectacular. However, currently, there are scientific, clinical and logistical challenges for use of CAR T-cells in BCP-ALL and other paediatric malignancies, particularly in acute myeloid leukaemia (AML), lymphomas and solid tumours. The aims of the Forum were to summarise the current landscape of CAR T-cell therapy development in paediatrics, too identify current challenges and future directions, with consideration of other immune effector modalities and ascertain the best strategies to accelerate their development and availability to children. Although the effect is of limited duration in about half of the patients, anti-CD19 CAR T-cells produce high response rates in relapsed/refractory BCP-ALL and this has highlighted previously unknown mechanisms of relapse. CAR T-cell treatment as first- or second-line therapy could also potentially benefit patients whose disease has high-risk features associated with relapse and failure of conventional therapies. Identifying patients with very early and early relapse in whom CAR T-cell therapy may replace haematopoietic stem cell transplantation and be definitive therapy versus those in whom it provides a more effective bridge to haematopoietic stem cell transplantation is a very high priority. Development of approaches to improve persistence, either by improving T cell fitness or using more humanised/fully humanised products and co-targeting of multiple antigens to prevent antigen escape, could potentially further optimise therapy. Many differences exist between paediatric B-cell non-Hodgkin lymphomas (B-NHL) and BCP-ALL. In view of the very small patient numbers with relapsed lymphoma, careful prioritisation is needed to evaluate CAR T-cells in children with Burkitt lymphoma, primary mediastinal B cell lymphoma and other NHL subtypes. Combination trials of alternative targets to CD19 (CD20 or CD22) should also be explored as a priority to improve efficacy in this population. Development of CD30 CAR T-cell immunotherapy strategies in patients with relapsed/refractory Hodgkin lymphoma will likely be most efficiently accomplished by joint paediatric and adult trials. CAR T-cell approaches are early in development for AML and T-ALL, given the unique challenges of successful immunotherapy actualisation in these diseases. At this time, CD33 and CD123 appear to be the most universal targets in AML and CD7 in T-ALL. The results of ongoing or planned first-in-human studies are required to facilitate further understanding. There are promising early results in solid tumours, particularly with GD2 targeting cell therapies in neuroblastoma and central nervous system gliomas that represent significant unmet clinical needs. Further understanding of biology is critical to success. The comparative benefits of autologous versus allogeneic CAR T-cells, T-cells engineered with T cell receptors T-cells engineered with T cell receptor fusion constructs, CAR Natural Killer (NK)-cell products, bispecific T-cell engager antibodies and antibody-drug conjugates require evaluation in paediatric malignancies. Early and proactive academia and multi-company engagement are mandatory to advance cellular immunotherapies in paediatric oncology. Regulatory advice should be sought very early in the design and preparation of clinical trials of innovative medicines, for which regulatory approval may ultimately be sought. Aligning strategic, scientific, regulatory, health technology and funding requirements from the inception of a clinical trial is especially important as these are very expensive therapies. The model for drug development for cell therapy in paediatric oncology could also involve a 'later stage handoff' to industry after early development in academic hands. Finally, and very importantly, strategies must evolve to ensure appropriate ease of access for children who need and could potentially benefit from these therapies.
Collapse
Affiliation(s)
| | - Claudia Rossig
- University Children´s Hospital Muenster, Pediatric Hematology and Oncology, Germany
| | - Crystal Mackall
- Department of Pediatrics and Medicine, Stanford University, Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford, CA, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, National Cancer Institute, USA
| | - Andre Baruchel
- Hôpital Universitaire Robert Debré (APHP) and Université de Paris, France
| | | | | | | | | | - Michael Berntgen
- Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | | | | | - Lynley Marshall
- The Royal Marsden Hospital and the Institute of Cancer Research, London, UK
| | | | | | - Shannon Maude
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | - Veronique Minard-Colin
- Department of Pediatric and Adolescent Oncology, INSERM U1015, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Koen Norga
- Antwerp University Hospital, Paediatric Committee of the European Medicines Agency, Federal Agency for Medicines and Health Products, Belgium
| | | | | | | | - Rob Pieters
- Princess Maxima Center for Pediatric Oncology, Netherlands
| | | | | | | | - Martina Schüßler-Lenz
- Chair of CAT (Committee for Advanced Therapies), European Medicines Agency (EMA), Amsterdam, Netherlands; Paul-Ehrlich-Institut, Germany
| | | | | | | | - Jaroslav Sterba
- University Hospital Brno, Masaryk University, Brno, Czech Republic
| | - Sarah K Tasian
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | - Christian Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, Netherlands; Haematological Malignancies Co-Chair Innovative Therapies for Children with Cancer Consortium (ITCC), Europe; Erasmus University Medical Center Rotterdam, Netherlands
| | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe; Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
100
|
Richards RM, Zhao F, Freitas KA, Parker KR, Xu P, Fan A, Sotillo E, Daugaard M, Oo HZ, Liu J, Hong WJ, Sorensen PH, Chang HY, Satpathy AT, Majzner RG, Majeti R, Mackall CL. NOT-Gated CD93 CAR T Cells Effectively Target AML with Minimized Endothelial Cross-Reactivity. Blood Cancer Discov 2021; 2:648-665. [PMID: 34778803 PMCID: PMC8580619 DOI: 10.1158/2643-3230.bcd-20-0208] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/25/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022] Open
Abstract
CD93 CAR T cells eliminate AML in preclinical models without targeting hematopoietic progenitor cells, and a NOT-gated CAR engineering strategy mitigates on-target, off-tumor toxicity to endothelial cells. Chimeric antigen receptor (CAR) T cells hold promise for the treatment of acute myeloid leukemia (AML), but optimal targets remain to be defined. We demonstrate that CD93 CAR T cells engineered from a novel humanized CD93-specific binder potently kill AML in vitro and in vivo but spare hematopoietic stem and progenitor cells (HSPC). No toxicity is seen in murine models, but CD93 is expressed on human endothelial cells, and CD93 CAR T cells recognize and kill endothelial cell lines. We identify other AML CAR T-cell targets with overlapping expression on endothelial cells, especially in the context of proinflammatory cytokines. To address the challenge of endothelial-specific cross-reactivity, we provide proof of concept for NOT-gated CD93 CAR T cells that circumvent endothelial cell toxicity in a relevant model system. We also identify candidates for combinatorial targeting by profiling the transcriptome of AML and endothelial cells at baseline and after exposure to proinflammatory cytokines.
Collapse
Affiliation(s)
- Rebecca M Richards
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Feifei Zhao
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, California.,Division of Hematology, Department of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | | | - Kevin R Parker
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California
| | - Peng Xu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Amy Fan
- Immunology Graduate Program, Stanford University, Stanford, California
| | - Elena Sotillo
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Htoo Zarni Oo
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Jie Liu
- Division of Hematology, Department of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Wan-Jen Hong
- Genentech, Inc., South San Francisco, California
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California.,Parker Institute for Cancer Immunotherapy, Stanford University School of Medicine, Stanford, California
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Robbie G Majzner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, California.,Division of Hematology, Department of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Crystal L Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, California.,Division of Blood and Stem Cell Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|