51
|
Downes K, Borry P, Ericson K, Gomez K, Greinacher A, Lambert M, Leinoe E, Noris P, Van Geet C, Freson K. Clinical management, ethics and informed consent related to multi-gene panel-based high throughput sequencing testing for platelet disorders: Communication from the SSC of the ISTH. J Thromb Haemost 2020; 18:2751-2758. [PMID: 33079472 PMCID: PMC7589386 DOI: 10.1111/jth.14993] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
Abstract
Molecular diagnostics of inherited platelet disorders (IPD) has been revolutionized by the implementation of high-throughput sequencing (HTS) approaches. A conclusive diagnosis using HTS tests can be obtained quickly and cost-effectively in many, but not all patients. The expanding use of HTS tests has raised concerns regarding complex variant interpretation and the ethical implications of detecting unsolicited findings such as variants in IPD genes RUNX1, ETV6, and ANKRD26, which are associated with increased leukemic risk. This guidance document has been developed and written by a multidisciplinary team of researchers and clinicians, with expertise in hematology, clinical and molecular genetics, and bioethics, alongside a RUNX1 patient advocacy representative. We recommend that for clinical diagnostics, HTS for IPD should use a multigene panel of curated diagnostic-grade genes. Critically, we advise that an HTS test for clinical diagnostics should only be ordered by a clinical expert that is: (a) fully aware of the complexity of genotype-phenotype correlations for IPD; (b) able to discuss these complexities with a patient and family members before the test is initiated; and (c) able to interpret and appropriately communicate the results of a HTS diagnostic report, including the implication of variants of uncertain clinical significance. Each patient should know what an HTS test could mean for his or her clinical management before initiating a test. We hereby propose an exemplified informed consent document that includes information on these ethical concerns and can be used by the community for implementation of HTS of IPD in a clinical diagnostic setting. This paper does not include recommendations for HTS of IPD in a research setting.
Collapse
Affiliation(s)
- Kate Downes
- East Genomic Laboratory HubCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridge Biomedical CampusCambridgeUK
| | - Pascal Borry
- Department of Public Health and Primary CareKU LeuvenLeuvenBelgium
| | | | - Keith Gomez
- Haemophilia Centre and Thrombosis UnitRoyal Free London NHS Foundation TrustLondonUK
| | - Andreas Greinacher
- Institut für Immunologie und TransfusionsmedizinUniversitätsmedizin GreifswaldGreifswaldGermany
| | - Michele Lambert
- Division of HematologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Leinoe
- Department of HaematologyRigshospitaletNational University HospitalCopenhagenDenmark
| | - Patrizia Noris
- IRCCS Policlinico San Matteo Foundation and University of PaviaPaviaItaly
| | - Chris Van Geet
- Department of Cardiovascular SciencesCenter or Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | - Kathleen Freson
- Department of Cardiovascular SciencesCenter or Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | | |
Collapse
|
52
|
Zuidscherwoude M, Haining EJ, Simms VA, Watson S, Grygielska B, Hardy AT, Bacon A, Watson SP, Thomas SG. Loss of mDia1 and Fhod1 impacts platelet formation but not platelet function. Platelets 2020; 32:1051-1062. [PMID: 32981398 PMCID: PMC8635707 DOI: 10.1080/09537104.2020.1822522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
An organized and dynamic cytoskeleton is required for platelet formation and function. Formins are a large family of actin regulatory proteins which are also able to regulate microtubule dynamics. There are four formin family members expressed in human and mouse megakaryocytes and platelets. We have previously shown that the actin polymerization activity of formin proteins is required for cytoskeletal dynamics and platelet spreading using a small molecule inhibitor. In the current study, we analyze transgenic mouse models deficient in two of these proteins, mDia1 and Fhod1, along with a model lacking both proteins. We demonstrate that double knockout mice display macrothrombocytopenia which is due to aberrant megakaryocyte function and a small decrease in platelet lifespan. Platelet function is unaffected by the loss of these proteins. This data indicates a critical role for formins in platelet and megakaryocyte function.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Elizabeth J. Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Victoria A. Simms
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stephanie Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Beata Grygielska
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alex T. Hardy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrea Bacon
- Genome Editing Facility, Technology Hub, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stephen P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Steven G. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
53
|
The integrity of cochlear hair cells is established and maintained through the localization of Dia1 at apical junctional complexes and stereocilia. Cell Death Dis 2020; 11:536. [PMID: 32678080 PMCID: PMC7366933 DOI: 10.1038/s41419-020-02743-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Dia1, which belongs to the diaphanous-related formin family, influences a variety of cellular processes through straight actin elongation activity. Recently, novel DIA1 mutants such as p.R1213X (p.R1204X) and p.A265S, have been reported to cause an autosomal dominant sensorineural hearing loss (DFNA1). Additionally, active DIA1 mutants induce progressive hearing loss in a gain-of-function manner. However, the subcellular localization and pathological function of DIA1(R1213X/R1204X) remains unknown. In the present study, we demonstrated the localization of endogenous Dia1 and the constitutively active DIA1 mutant in the cochlea, using transgenic mice expressing FLAG-tagged DIA1(R1204X) (DIA1-TG). Endogenous Dia1 and the DIA1 mutant were regionally expressed at the organ of Corti and the spiral ganglion from early life; alongside cochlear maturation, they became localized at the apical junctional complexes (AJCs) between hair cells (HCs) and supporting cells (SCs). To investigate HC vulnerability in the DIA1-TG mice, we exposed 4-week-old mice to moderate noise, which induced temporary threshold shifts with cochlear synaptopathy and ultrastructural changes in stereocilia 4 weeks post noise exposure. Furthermore, we established a knock-in (KI) mouse line expressing AcGFP-tagged DIA1(R1213X) (DIA1-KI) and confirmed mutant localization at AJCs and the tips of stereocilia in HCs. In MDCKAcGFP-DIA1(R1213X) cells with stable expression of AcGFP-DIA1(R1213X), AcGFP-DIA1(R1213X) revealed marked localization at microvilli on the apical surface of cells and decreased localization at cell-cell junctions. The DIA1-TG mice demonstrated hazy and ruffled circumferential actin belts at AJCs and abnormal stereocilia accompanied with HC loss at 5 months of age. In conclusion, Dia1 plays a pivotal role in the development and maintenance of AJCs and stereocilia, ensuring cochlear and HC integrity. Subclinical/latent vulnerability of HCs may be the cause of progressive hearing loss in DFNA1 patients, thus suggesting new therapeutic targets for preventing HC degeneration and progressive hearing loss associated with DFNA1.
Collapse
|
54
|
Anaerobic metabolism of Foraminifera thriving below the seafloor. ISME JOURNAL 2020; 14:2580-2594. [PMID: 32641728 PMCID: PMC7490399 DOI: 10.1038/s41396-020-0708-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Foraminifera are single-celled eukaryotes (protists) of large ecological importance, as well as environmental and paleoenvironmental indicators and biostratigraphic tools. In addition, they are capable of surviving in anoxic marine environments where they represent a major component of the benthic community. However, the cellular adaptations of Foraminifera to the anoxic environment remain poorly constrained. We sampled an oxic-anoxic transition zone in marine sediments from the Namibian shelf, where the genera Bolivina and Stainforthia dominated the Foraminifera community, and use metatranscriptomics to characterize Foraminifera metabolism across the different geochemical conditions. Relative Foraminifera gene expression in anoxic sediment increased an order of magnitude, which was confirmed in a 10-day incubation experiment where the development of anoxia coincided with a 20–40-fold increase in the relative abundance of Foraminifera protein encoding transcripts, attributed primarily to those involved in protein synthesis, intracellular protein trafficking, and modification of the cytoskeleton. This indicated that many Foraminifera were not only surviving but thriving, under the anoxic conditions. The anaerobic energy metabolism of these active Foraminifera was characterized by fermentation of sugars and amino acids, fumarate reduction, and potentially dissimilatory nitrate reduction. Moreover, the gene expression data indicate that under anoxia Foraminifera use the phosphogen creatine phosphate as an ATP store, allowing reserves of high-energy phosphate pool to be maintained for sudden demands of increased energy during anaerobic metabolism. This was co-expressed alongside genes involved in phagocytosis and clathrin-mediated endocytosis (CME). Foraminifera may use CME to utilize dissolved organic matter as a carbon and energy source, in addition to ingestion of prey cells via phagocytosis. These anaerobic metabolic mechanisms help to explain the ecological success of Foraminifera documented in the fossil record since the Cambrian period more than 500 million years ago.
Collapse
|
55
|
Turro E, Astle WJ, Megy K, Gräf S, Greene D, Shamardina O, Allen HL, Sanchis-Juan A, Frontini M, Thys C, Stephens J, Mapeta R, Burren OS, Downes K, Haimel M, Tuna S, Deevi SVV, Aitman TJ, Bennett DL, Calleja P, Carss K, Caulfield MJ, Chinnery PF, Dixon PH, Gale DP, James R, Koziell A, Laffan MA, Levine AP, Maher ER, Markus HS, Morales J, Morrell NW, Mumford AD, Ormondroyd E, Rankin S, Rendon A, Richardson S, Roberts I, Roy NBA, Saleem MA, Smith KGC, Stark H, Tan RYY, Themistocleous AC, Thrasher AJ, Watkins H, Webster AR, Wilkins MR, Williamson C, Whitworth J, Humphray S, Bentley DR, Kingston N, Walker N, Bradley JR, Ashford S, Penkett CJ, Freson K, Stirrups KE, Raymond FL, Ouwehand WH. Whole-genome sequencing of patients with rare diseases in a national health system. Nature 2020; 583:96-102. [PMID: 32581362 PMCID: PMC7610553 DOI: 10.1038/s41586-020-2434-2] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/05/2020] [Indexed: 02/02/2023]
Abstract
Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.
Collapse
Affiliation(s)
- Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK.
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK.
| | - William J Astle
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Stefan Gräf
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Daniel Greene
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Olga Shamardina
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Hana Lango Allen
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Alba Sanchis-Juan
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
- British Heart Foundation Cambridge Centre of Excellence, University of Cambridge, Cambridge, UK
| | - Chantal Thys
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Jonathan Stephens
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Rutendo Mapeta
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Oliver S Burren
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Matthias Haimel
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Salih Tuna
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Sri V V Deevi
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Timothy J Aitman
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, UK
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - David L Bennett
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Paul Calleja
- High Performance Computing Service, University of Cambridge, Cambridge, UK
| | - Keren Carss
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Mark J Caulfield
- Genomics England Ltd, London, UK
- William Harvey Research Institute, NIHR Biomedical Research Centre at Barts, Queen Mary University of London, London, UK
| | - Patrick F Chinnery
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Peter H Dixon
- Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK
- Rare Renal Disease Registry, UK Renal Registry, Bristol, UK
| | - Roger James
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Ania Koziell
- King's College London, London, UK
- Department of Paediatric Nephrology, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Michael A Laffan
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
- Centre for Haematology, Imperial College London, London, UK
| | - Adam P Levine
- Department of Renal Medicine, University College London, London, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Bristol, UK
| | - Joannella Morales
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Nicholas W Morrell
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Andrew D Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Elizabeth Ormondroyd
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- Department of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stuart Rankin
- High Performance Computing Service, University of Cambridge, Cambridge, UK
| | - Augusto Rendon
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Genomics England Ltd, London, UK
| | - Sylvia Richardson
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Irene Roberts
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Noemi B A Roy
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Moin A Saleem
- Bristol Renal and Children's Renal Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Kenneth G C Smith
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Hannah Stark
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Rhea Y Y Tan
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Bristol, UK
| | - Andreas C Themistocleous
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Hugh Watkins
- Department of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrew R Webster
- Moorfields Eye Hospital NHS Trust, London, UK
- UCL Institute of Opthalmology, University College London, London, UK
| | | | - Catherine Williamson
- Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - James Whitworth
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | | | | | - Nathalie Kingston
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Neil Walker
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - John R Bradley
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Renal Medicine, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sofie Ashford
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Christopher J Penkett
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Kathleen E Stirrups
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - F Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK.
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK.
- British Heart Foundation Cambridge Centre of Excellence, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
56
|
Karki NR, Ajebo G, Savage N, Kutlar A. DIAPH1 Mutation as a Novel Cause of Autosomal Dominant Macrothrombocytopenia and Hearing Loss. Acta Haematol 2020; 144:91-94. [PMID: 32594080 DOI: 10.1159/000506727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
Abstract
Macrothrombocytopenia (MTP) is a group of rare disorders characterized by giant platelets, thrombocytopenia, and variable association with abnormal bleeding. Inherited MTP are frequently misdiagnosed as immune thrombocytopenia. Associated second-organ manifestation can help narrow down syndromic MTPs. We describe a case of autosomal dominant sensorineural hearing loss and MTP caused by a gain of function mutation in DIAPH1. This mutation causes altered megarkaryopoiesis and platelet cytoskeletal deregulation. Although hearing loss and MTP were likely progressive, clinically significant bleeding was not observed. DIAPH1-related MTP can be distinguished clinically from MYH9 mutation by the absence of cataracts and glomerular disease.
Collapse
Affiliation(s)
- Nabin Raj Karki
- Division of Hematology/Oncology, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA,
| | - Germame Ajebo
- Division of Hematology/Oncology, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Natasha Savage
- Department of Pathology, Augusta University, Augusta, Georgia, USA
| | - Abdullah Kutlar
- Division of Hematology/Oncology, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
57
|
Nurden AT, Nurden P. Inherited thrombocytopenias: history, advances and perspectives. Haematologica 2020; 105:2004-2019. [PMID: 32527953 PMCID: PMC7395261 DOI: 10.3324/haematol.2019.233197] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Over the last 100 years the role of platelets in hemostatic events and their production by megakaryocytes have gradually been defined. Progressively, thrombocytopenia was recognized as a cause of bleeding, first through an acquired immune disorder; then, since 1948, when Bernard-Soulier syndrome was first described, inherited thrombocytopenia became a fascinating example of Mendelian disease. The platelet count is often severely decreased and platelet size variable; associated platelet function defects frequently aggravate bleeding. Macrothrombocytopenia with variable proportions of enlarged platelets is common. The number of circulating platelets will depend on platelet production, consumption and lifespan. The bulk of macrothrombocytopenias arise from defects in megakaryopoiesis with causal variants in transcription factor genes giving rise to altered stem cell differentiation and changes in early megakaryocyte development and maturation. Genes encoding surface receptors, cytoskeletal and signaling proteins also feature prominently and Sanger sequencing associated with careful phenotyping has allowed their early classification. It quickly became apparent that many inherited thrombocytopenias are syndromic while others are linked to an increased risk of hematologic malignancies. In the last decade, the application of next-generation sequencing, including whole exome sequencing, and the use of gene platforms for rapid testing have greatly accelerated the discovery of causal genes and extended the list of variants in more common disorders. Genes linked to an increased platelet turnover and apoptosis have also been identified. The current challenges are now to use next-generation sequencing in first-step screening and to define bleeding risk and treatment better.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Pessac, France
| | | |
Collapse
|
58
|
Wu K, Wang H, Guan J, Lan L, Zhao C, Zhang M, Wang D, Wang Q. A novel variant in diaphanous homolog 1 (DIAPH1) as the cause of auditory neuropathy in a Chinese family. Int J Pediatr Otorhinolaryngol 2020; 133:109947. [PMID: 32087478 DOI: 10.1016/j.ijporl.2020.109947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To determine the genetic cause of non-syndromic autosomal dominant deafness segregating in a Chinese Auditory neuropathy (AN) family. INTRODUCTION AN is a genetically related rare disease characterized by sensorineural hearing loss and retention of hair cell function. Diaphanous Homolog 1 (DIAPH1) is the causative gene of DFNA1. To date, no evidence has been detected to reveal the connection between gene DIAPH1 and AN. MATERIAL AND METHODS Audiological and imageological examinations, genome-wide linkage analysis, and whole exome sequencing (WES) were carried out on the family members. RESULTS In the 13-member branch of the family, 4 patients with preserved otoacoustic emission or cochlear microphonic and abnormal auditory brainstem responses were diagnosed with AN. Linkage analysis detected an interval with a LOD (log odds) score >4 on chr5:138.845-149.509 cM. Using WES we identified a novel frameshift variant c.3551_3552del (p.Glu1184AlafsTer11) in exon 26 of DIAPH1 located in the linkage region. The variant was co-segregated with hearing impairment phenotype in the family except 4 members below the average age of onset. We have found sufficient evidence conforming with the American College of Medical Genetics and Genomics Guideline to consider c.3551_3552del as the genetic cause of the family patients. CONCLUSION It is the first report to expand DIAPH1-related phenotypic spectrum to include AN. Our findings could facilitate the clinical diagnosis and genetic counselling for AN, especially for those with DIAPH1 variants.
Collapse
Affiliation(s)
- Kan Wu
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hongyang Wang
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Guan
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lan Lan
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Cui Zhao
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Mengqian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Dayong Wang
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qiuju Wang
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
59
|
Liu D, Fu X, Wang Y, Wang X, Wang H, Wen J, Kang N. Protein diaphanous homolog 1 (Diaph1) promotes myofibroblastic activation of hepatic stellate cells by regulating Rab5a activity and TGFβ receptor endocytosis. FASEB J 2020; 34:7345-7359. [PMID: 32304339 PMCID: PMC7686927 DOI: 10.1096/fj.201903033r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 01/19/2023]
Abstract
TGFβ induces the differentiation of hepatic stellate cells (HSCs) into tumor-promoting myofibroblasts but underlying mechanisms remain incompletely understood. Because endocytosis of TGFβ receptor II (TβRII), in response to TGFβ stimulation, is a prerequisite for TGF signaling, we investigated the role of protein diaphanous homolog 1 (known as Diaph1 or mDia1) for the myofibroblastic activation of HSCs. Using shRNA to knockdown Diaph1 or SMIFH2 to target Diaph1 activity of HSCs, we found that the inactivation of Diaph1 blocked internalization and intracellular trafficking of TβRII and reduced SMAD3 phosphorylation induced by TGFβ1. Mechanistic studies revealed that the N-terminal portion of Diaph1 interacted with both TβRII and Rab5a directly and that Rab5a activity of HSCs was increased by Diaph1 overexpression and decreased by Diaph1 knockdown. Additionally, expression of Rab5aQ79L (active Rab5a mutant) increased whereas the expression of Rab5aS34N (inactive mutant) reduced the endosomal localization of TβRII in HSCs compared to the expression of wild-type Rab5a. Functionally, TGFβ stimulation promoted HSCs to express tumor-promoting factors, and α-smooth muscle actin, fibronection, and CTGF, markers of myofibroblastic activation of HSCs. Targeting Diaph1 or Rab5a suppressed HSC activation and limited tumor growth in a tumor implantation mouse model. Thus, Dipah1 and Rab5a represent targets for inhibiting HSC activation and the hepatic tumor microenvironment.
Collapse
Affiliation(s)
- Donglian Liu
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xinhui Fu
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Hua Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Jialing Wen
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ningling Kang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| |
Collapse
|
60
|
Green HLH, Zuidscherwoude M, Alenazy F, Smith CW, Bender M, Thomas SG. SMIFH2 inhibition of platelets demonstrates a critical role for formin proteins in platelet cytoskeletal dynamics. J Thromb Haemost 2020; 18:955-967. [PMID: 31930764 PMCID: PMC7186844 DOI: 10.1111/jth.14735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Reorganization of the actin cytoskeleton is required for proper functioning of platelets following activation in response to vascular damage. Formins are a family of proteins that regulate actin polymerization and cytoskeletal organization via a number of domains including the FH2 domain. However, the role of formins in platelet spreading has not been studied in detail. OBJECTIVES Several formin proteins are expressed in platelets so we used an inhibitor of FH2 domains (SMIFH2) to uncover the role of these proteins in platelet spreading and in maintenance of resting platelet shape. METHODS Washed human and mouse platelets were treated with various concentrations of SMIFH2 and the effects on platelet spreading, platelet size, platelet cytoskeletal dynamics, and organization were analyzed using fluorescence and electron microscopy. RESULTS Pretreatment with SMIFH2 completely blocks platelet spreading in both mouse and human platelets through effects on the organization and dynamics of actin and microtubules. However, platelet aggregation and secretion are unaffected. SMIFH2 also caused a decrease in resting platelet size and disrupted the balance of tubulin post-translational modification. CONCLUSIONS These data therefore demonstrated an important role for formin-mediated actin polymerization in platelet spreading and highlighted the importance of formins in cross-talk between the actin and tubulin cytoskeletons.
Collapse
Affiliation(s)
- Hannah L. H. Green
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Present address:
School of Cardiovascular Medicine & SciencesBHF Centre of Research ExcellenceKing's College LondonLondonUK
| | - Malou Zuidscherwoude
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamMidlandsUK
| | - Fawaz Alenazy
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
| | | | - Markus Bender
- Institute of Experimental Biomedicine – Chair IUniversity Hospital and Rudolf Virchow CenterWürzburgGermany
| | - Steven G. Thomas
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamMidlandsUK
| |
Collapse
|
61
|
Egaña-Gorroño L, López-Díez R, Yepuri G, Ramirez LS, Reverdatto S, Gugger PF, Shekhtman A, Ramasamy R, Schmidt AM. Receptor for Advanced Glycation End Products (RAGE) and Mechanisms and Therapeutic Opportunities in Diabetes and Cardiovascular Disease: Insights From Human Subjects and Animal Models. Front Cardiovasc Med 2020; 7:37. [PMID: 32211423 PMCID: PMC7076074 DOI: 10.3389/fcvm.2020.00037] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity and diabetes are leading causes of cardiovascular morbidity and mortality. Although extensive strides have been made in the treatments for non-diabetic atherosclerosis and its complications, for patients with diabetes, these therapies provide less benefit for protection from cardiovascular disease (CVD). These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify, especially as the epidemics of obesity and diabetes continue to expand. Hence, as hyperglycemia is a defining feature of diabetes, it is logical to probe the impact of the specific consequences of hyperglycemia on the vessel wall, immune cell perturbation, and endothelial dysfunction-all harbingers to the development of CVD. In this context, high levels of blood glucose stimulate the formation of the irreversible advanced glycation end products, the products of non-enzymatic glycation and oxidation of proteins and lipids. AGEs accumulate in diabetic circulation and tissues and the interaction of AGEs with their chief cellular receptor, receptor for AGE or RAGE, contributes to vascular and immune cell perturbation. The cytoplasmic domain of RAGE lacks endogenous kinase activity; the discovery that this intracellular domain of RAGE binds to the formin, DIAPH1, and that DIAPH1 is essential for RAGE ligand-mediated signal transduction, identifies the specific cellular means by which RAGE functions and highlights a new target for therapeutic interruption of RAGE signaling. In human subjects, prominent signals for RAGE activity include the presence and levels of two forms of soluble RAGE, sRAGE, and endogenous secretory (es) RAGE. Further, genetic studies have revealed single nucleotide polymorphisms (SNPs) of the AGER gene (AGER is the gene encoding RAGE) and DIAPH1, which display associations with CVD. This Review presents current knowledge regarding the roles for RAGE and DIAPH1 in the causes and consequences of diabetes, from obesity to CVD. Studies both from human subjects and animal models are presented to highlight the breadth of evidence linking RAGE and DIAPH1 to the cardiovascular consequences of these metabolic disorders.
Collapse
Affiliation(s)
- Lander Egaña-Gorroño
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Gautham Yepuri
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Lisa S. Ramirez
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, United States
| | - Sergey Reverdatto
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, United States
| | - Paul F. Gugger
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Alexander Shekhtman
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
62
|
Zaninetti C, Greinacher A. Diagnosis of Inherited Platelet Disorders on a Blood Smear. J Clin Med 2020; 9:jcm9020539. [PMID: 32079152 PMCID: PMC7074415 DOI: 10.3390/jcm9020539] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited platelet disorders (IPDs) are rare diseases featured by low platelet count and defective platelet function. Patients have variable bleeding diathesis and sometimes additional features that can be congenital or acquired. Identification of an IPD is desirable to avoid misdiagnosis of immune thrombocytopenia and the use of improper treatments. Diagnostic tools include platelet function studies and genetic testing. The latter can be challenging as the correlation of its outcomes with phenotype is not easy. The immune-morphological evaluation of blood smears (by light- and immunofluorescence microscopy) represents a reliable method to phenotype subjects with suspected IPD. It is relatively cheap, not excessively time-consuming and applicable to shipped samples. In some forms, it can provide a diagnosis by itself, as for MYH9-RD, or in addition to other first-line tests as aggregometry or flow cytometry. In regard to genetic testing, it can guide specific sequencing. Since only minimal amounts of blood are needed for the preparation of blood smears, it can be used to characterize thrombocytopenia in pediatric patients and even newborns further. In principle, it is based on visualizing alterations in the distribution of proteins, which result from specific genetic mutations by using monoclonal antibodies. It can be applied to identify deficiencies in membrane proteins, disturbed distribution of cytoskeletal proteins, and alpha as well as delta granules. On the other hand, mutations associated with impaired signal transduction are difficult to identify by immunofluorescence of blood smears. This review summarizes technical aspects and the main diagnostic patterns achievable by this method.
Collapse
Affiliation(s)
- Carlo Zaninetti
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany;
- University of Pavia, and IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- PhD Program of Experimental Medicine, University of Pavia, 27100 Pavia, Italy
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany;
- Correspondence: ; Tel.: +49-3834-865482; Fax: +49-3834-865489
| |
Collapse
|
63
|
Association of DIAPH1 gene polymorphisms with ischemic stroke. Aging (Albany NY) 2020; 12:416-435. [PMID: 31899686 PMCID: PMC6977662 DOI: 10.18632/aging.102631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022]
Abstract
DIAPH1 is a formin protein involved in actin polymerization with important roles in vascular remodeling and thrombosis. To investigate potential associations of DIAPH1 single-nucleotide polymorphisms (SNPs) with hypertension and stroke, 2,012 patients with hypertension and 2,210 controls, 2,966 stroke cases [2,212 ischemic stroke (IS), 754 hemorrhagic stroke (HS)] and 2,590 controls were enrolled respectively in the case-control study. A total of 4,098 individual were included in the cohort study. DIAPH1 mRNA expression was compared between 66 IS [43 small artery occlusion (SAO) and 23 large-artery atherosclerosis (LAA)] and 58 controls. Odds ratio (OR), hazard ratio (HR) and 95% confidence interval (CI) were calculated by logistic and cox regression analysis. Rs7703688 T>C variation was significantly associated with an increased risk of IS [OR (95% CI) was 1.721 (1.486-1.993), P=4.139×10-12]. Association of rs7703688 with stroke risk was further validated in the cohort study [adjusted HRs (95% CIs) for additive and recessive models were 1.385 (1.001-1.918), P=0.049, and 2.882 (1.038-8.004), P=0.042, respectively)]. DIAPH1 mRNA expression was significantly downregulated in IS. In SAO stroke subtype, DIAPH1 expression has an increased trend among rs251019 genotypes (Ptrend=0.048). These novel findings suggest that DIAPH1 variation contributes to genetic susceptibility to stroke risk, especially the SAO subtype of IS.
Collapse
|
64
|
Scheller I, Stritt S, Beck S, Peng B, Pleines I, Heinze KG, Braun A, Otto O, Ahrends R, Sickmann A, Bender M, Nieswandt B. Coactosin-like 1 integrates signaling critical for shear-dependent thrombus formation in mouse platelets. Haematologica 2019; 105:1667-1676. [PMID: 31582545 PMCID: PMC7271572 DOI: 10.3324/haematol.2019.225516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/26/2019] [Indexed: 11/09/2022] Open
Abstract
Platelet aggregate formation is a multistep process involving receptor-mediated, as well as biomechanical, signaling cascades, which are highly dependent on actin dynamics. We have previously shown that actin depolymerizing factor (ADF)/n-cofilin and Twinfilin 2a, members of the ADF homology (ADF-H) protein family, have distinct roles in platelet formation and function. Coactosin-like 1 (Cotl1) is another ADF-H protein that binds actin and was also shown to enhance biosynthesis of pro-inflammatory leukotrienes (LT) in granulocytes. Here, we generated mice lacking Cotl1 in the megakaryocyte lineage (Cotl1-/- ) to investigate its role in platelet production and function. Absence of Cotl1 had no impact on platelet counts, platelet activation or cytoskeletal reorganization under static conditions in vitro In contrast, Cotl1 deficiency markedly affected platelet aggregate formation on collagen and adhesion to immobilized von Willebrand factor at high shear rates in vitro, pointing to an impaired function of the platelet mechanoreceptor glycoprotein (GP) Ib. Furthermore, Cotl1 -/-platelets exhibited increased deformability at high shear rates, indicating that the GPIb defect may be linked to altered biomechanical properties of the deficient cells. In addition, we found that Cotl1 deficiency markedly affected platelet LT biosynthesis. Strikingly, exogenous LT addition restored defective aggregate formation of Cotl1-/- platelets at high shear in vitro, indicating a critical role of platelet-derived LT in thrombus formation. In vivo, Cotl1 deficiency translated into prolonged tail bleeding times and protection from occlusive arterial thrombus formation. Together, our results show that Cotl1 in platelets is an integrator of biomechanical and LT signaling in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Inga Scheller
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, Würzburg.,Rudolf Virchow Center, University of Würzburg, Würzburg
| | - Simon Stritt
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, Würzburg.,Rudolf Virchow Center, University of Würzburg, Würzburg
| | - Sarah Beck
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, Würzburg.,Rudolf Virchow Center, University of Würzburg, Würzburg
| | - Bing Peng
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Lipidomics, Dortmund
| | - Irina Pleines
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, Würzburg.,Rudolf Virchow Center, University of Würzburg, Würzburg
| | | | - Attila Braun
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, Würzburg.,Rudolf Virchow Center, University of Würzburg, Würzburg
| | - Oliver Otto
- Center for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases, Biomechanics, University of Greifswald, Greifswald, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Lipidomics, Dortmund
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Lipidomics, Dortmund
| | - Markus Bender
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, Würzburg.,Rudolf Virchow Center, University of Würzburg, Würzburg
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, Würzburg .,Rudolf Virchow Center, University of Würzburg, Würzburg
| |
Collapse
|
65
|
Ghalloussi D, Dhenge A, Bergmeier W. New insights into cytoskeletal remodeling during platelet production. J Thromb Haemost 2019; 17:1430-1439. [PMID: 31220402 PMCID: PMC6760864 DOI: 10.1111/jth.14544] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
The past decade has brought unprecedented advances in our understanding of megakaryocyte (MK) biology and platelet production, processes that are strongly dependent on the cytoskeleton. Facilitated by technological innovations, such as new high-resolution imaging techniques (in vitro and in vivo) and lineage-specific gene knockout and reporter mouse strains, we are now able to visualize and characterize the molecular machinery required for MK development and proplatelet formation in live mice. Whole genome and RNA sequencing analysis of patients with rare platelet disorders, combined with targeted genetic interventions in mice, has led to the identification and characterization of numerous new genes important for MK development. Many of the genes important for proplatelet formation code for proteins that control cytoskeletal dynamics in cells, such as Rho GTPases and their downstream targets. In this review, we discuss how the final stages of MK development are controlled by the cellular cytoskeletons, and we compare changes in MK biology observed in patients and mice with mutations in cytoskeleton regulatory genes.
Collapse
Affiliation(s)
- Dorsaf Ghalloussi
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ankita Dhenge
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Wolfgang Bergmeier
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
66
|
Kim BJ, Ueyama T, Miyoshi T, Lee S, Han JH, Park HR, Kim AR, Oh J, Kim MY, Kang YS, Oh DY, Yun J, Hwang SM, Kim NKD, Park WY, Kitajiri SI, Choi BY. Differential disruption of autoinhibition and defect in assembly of cytoskeleton during cell division decide the fate of human DIAPH1-related cytoskeletopathy. J Med Genet 2019; 56:818-827. [DOI: 10.1136/jmedgenet-2019-106282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022]
Abstract
BackgroundDiaphanous-related formin 1 (DIA1), which assembles the unbranched actin microfilament and microtubule cytoskeleton, is encoded by DIAPH1. Constitutive activation by the disruption of autoinhibitory interactions between the N-terminal diaphanous inhibitory domain (DID) and C-terminal diaphanous autoregulatory domain (DAD) dysregulates DIA1, resulting in both hearing loss and blood cell abnormalities.Methods and resultsHere, we report the first constitutively active mutant in the DID (p.A265S) of humans with only hearing loss and not blood cell abnormality through whole exome sequencing. The previously reported DAD mutants and our DID mutant (p.A265S) shared the finding of diminished autoinhibitory interaction, abnormally upregulated actin polymerisation activity and increased localisations at the plasma membrane. However, the obvious defect in the DIA1-driven assembly of cytoskeleton ‘during cell division’ was only from the DAD mutants, not from p.A265S, which did not show any blood cell abnormality. We also evaluated the five DID mutants in the hydrophobic pocket since four of these five additional mutants were predicted to critically disrupt interaction between the DID and DAD. These additional pathogenic DID mutants revealed varying degrees of defect in the DIA1-driven cytoskeleton assembly, including nearly normal phenotype during cell division as well as obvious impaired autoinhibition, again coinciding with our key observation in DIA1 mutant (p.A265S) in the DID.ConclusionHere, we report the first mutant in the DID of humans with only hearing loss. The differential cell biological phenotypes of DIA1 during cell division appear to be potential determinants of the clinical severity of DIAPH1-related cytoskeletopathy in humans.
Collapse
|
67
|
Phenotype description and response to thrombopoietin receptor agonist in DIAPH1-related disorder. Blood Adv 2019; 2:2341-2346. [PMID: 30232087 DOI: 10.1182/bloodadvances.2018020370] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Key Points
DIAPH1-related disorder has a bilineage hematological phenotype of macrothrombocytopenia and neutropenia associated with hearing loss. Eltrombopag increased proplatelet formation from cultured DIAPH1-related disorder megakaryocytes and improved platelet counts in vivo.
Collapse
|
68
|
Oza AM, DiStefano MT, Hemphill SE, Cushman BJ, Grant AR, Siegert RK, Shen J, Chapin A, Boczek NJ, Schimmenti LA, Murry JB, Hasadsri L, Nara K, Kenna M, Booth KT, Azaiez H, Griffith A, Avraham KB, Kremer H, Rehm HL, Amr SS, Abou Tayoun AN. Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Hum Mutat 2019; 39:1593-1613. [PMID: 30311386 DOI: 10.1002/humu.23630] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/23/2018] [Accepted: 08/25/2018] [Indexed: 12/23/2022]
Abstract
Due to the high genetic heterogeneity of hearing loss (HL), current clinical testing includes sequencing large numbers of genes, which often yields a significant number of novel variants. Therefore, the standardization of variant interpretation is crucial to provide consistent and accurate diagnoses. The Hearing Loss Variant Curation Expert Panel was created within the Clinical Genome Resource to provide expert guidance for standardized genomic interpretation in the context of HL. As one of its major tasks, our Expert Panel has adapted the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for the interpretation of sequence variants in HL genes. Here, we provide a comprehensive illustration of the newly specified ACMG/AMP HL rules. Three rules remained unchanged, four rules were removed, and the remaining 21 rules were specified. These rules were further validated and refined using a pilot set of 51 variants assessed by curators and disease experts. Of the 51 variants evaluated in the pilot, 37% (19/51) changed category based upon application of the expert panel specified rules and/or aggregation of evidence across laboratories. These HL-specific ACMG/AMP rules will help standardize variant interpretation, ultimately leading to better care for individuals with HL.
Collapse
Affiliation(s)
- Andrea M Oza
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts
| | - Marina T DiStefano
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sarah E Hemphill
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Brandon J Cushman
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Andrew R Grant
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Rebecca K Siegert
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Jun Shen
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | | | - Nicole J Boczek
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Lisa A Schimmenti
- Department of Otorhinolaryngology, Clinical Genomics and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jaclyn B Murry
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kiyomitsu Nara
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Margaret Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospital and Clinics, Iowa City, Iowa.,The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Andrew Griffith
- Audiology Unit, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hannie Kremer
- Department of Otorhinolaryngology and Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heidi L Rehm
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sami S Amr
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | - Ahmad N Abou Tayoun
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
69
|
Almazni I, Stapley R, Morgan NV. Inherited Thrombocytopenia: Update on Genes and Genetic Variants Which may be Associated With Bleeding. Front Cardiovasc Med 2019; 6:80. [PMID: 31275945 PMCID: PMC6593073 DOI: 10.3389/fcvm.2019.00080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Inherited thrombocytopenia (IT) is comprised of a group of hereditary disorders characterized by a reduced platelet count as the main feature, and often with abnormal platelet function, which can subsequently lead to impaired haemostasis. Inherited thrombocytopenia results from genetic mutations in genes implicated in megakaryocyte differentiation and/or platelet formation and clearance. The identification of the underlying causative gene of IT is challenging given the high degree of heterogeneity, but important due to the presence of various clinical presentations and prognosis, where some defects can lead to hematological malignancies. Traditional platelet function tests, clinical manifestations, and hematological parameters allow for an initial diagnosis. However, employing Next-Generation Sequencing (NGS), such as Whole Genome and Whole Exome Sequencing (WES) can be an efficient method for discovering causal genetic variants in both known and novel genes not previously implicated in IT. To date, 40 genes and their mutations have been implicated to cause many different forms of inherited thrombocytopenia. Nevertheless, despite this advancement in the diagnosis of IT, the molecular mechanism underlying IT in some patients remains unexplained. In this review, we will discuss the genetics of thrombocytopenia summarizing the recent advancement in investigation and diagnosis of IT using phenotypic approaches, high-throughput sequencing, targeted gene panels, and bioinformatics tools.
Collapse
Affiliation(s)
- Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rachel Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
70
|
Schurr Y, Spindler M, Kurz H, Bender M. The cytoskeletal crosslinking protein MACF1 is dispensable for thrombus formation and hemostasis. Sci Rep 2019; 9:7726. [PMID: 31118482 PMCID: PMC6531446 DOI: 10.1038/s41598-019-44183-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022] Open
Abstract
Coordinated reorganization of cytoskeletal structures is critical for key aspects of platelet physiology. While several studies have addressed the role of microtubules and filamentous actin in platelet production and function, the significance of their crosstalk in these processes has been poorly investigated. The microtubule-actin cross-linking factor 1 (MACF1; synonym: Actin cross-linking factor 7, ACF7) is a member of the spectraplakin family, and one of the few proteins expressed in platelets, which possess actin and microtubule binding domains thereby facilitating actin-microtubule interaction and regulation. We used megakaryocyte- and platelet-specific Macf1 knockout (Macf1fl/fl, Pf4-Cre) mice to study the role of MACF1 in platelet production and function. MACF1 deficient mice displayed comparable platelet counts to control mice. Analysis of the platelet cytoskeletal ultrastructure revealed a normal marginal band and actin network. Platelet spreading on fibrinogen was slightly delayed but platelet activation and clot traction was unaffected. Ex vivo thrombus formation and mouse tail bleeding responses were similar between control and mutant mice. These results suggest that MACF1 is dispensable for thrombopoiesis, platelet activation, thrombus formation and the hemostatic function in mice.
Collapse
Affiliation(s)
- Yvonne Schurr
- Institute of Experimental Biomedicine - Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Markus Spindler
- Institute of Experimental Biomedicine - Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Hendrikje Kurz
- Institute of Experimental Biomedicine - Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Markus Bender
- Institute of Experimental Biomedicine - Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany.
| |
Collapse
|
71
|
Nurden AT, Nurden P. High-throughput sequencing for rapid diagnosis of inherited platelet disorders: a case for a European consensus. Haematologica 2019; 103:6-8. [PMID: 29290630 DOI: 10.3324/haematol.2017.182295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Alan T Nurden
- Institut de Rythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France
| | - Paquita Nurden
- Institut de Rythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France
| |
Collapse
|
72
|
Lambert MP. Inherited Platelet Disorders: A Modern Approach to Evaluation and Treatment. Hematol Oncol Clin North Am 2019; 33:471-487. [PMID: 31030814 DOI: 10.1016/j.hoc.2019.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The inherited platelet disorders are a heterogeneous group of disorders that can be pleotropic in their clinical presentations. They may present with variable platelet counts and bleeding, making their diagnosis difficult. New diagnostic tools range from flow cytometric platelet function assessments to next-generation sequencing. Several platelet disorders may now be treated with gene therapy or bone marrow transplant. Improved understanding of the molecular and biologic mechanisms of the inherited platelet disorders may lead to novel targeted therapies.
Collapse
Affiliation(s)
- Michele P Lambert
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Special Coagulation Laboratory, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Frontier Program in Immune Dysregulation, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
73
|
Ueyama T. Rho-Family Small GTPases: From Highly Polarized Sensory Neurons to Cancer Cells. Cells 2019; 8:cells8020092. [PMID: 30696065 PMCID: PMC6406560 DOI: 10.3390/cells8020092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases of the Rho-family (Rho-family GTPases) have various physiological functions, including cytoskeletal regulation, cell polarity establishment, cell proliferation and motility, transcription, reactive oxygen species (ROS) production, and tumorigenesis. A relatively large number of downstream targets of Rho-family GTPases have been reported for in vitro studies. However, only a small number of signal pathways have been established at the in vivo level. Cumulative evidence for the functions of Rho-family GTPases has been reported for in vivo studies using genetically engineered mouse models. It was based on different cell- and tissue-specific conditional genes targeting mice. In this review, we introduce recent advances in in vivo studies, including human patient trials on Rho-family GTPases, focusing on highly polarized sensory organs, such as the cochlea, which is the primary hearing organ, host defenses involving reactive oxygen species (ROS) production, and tumorigenesis (especially associated with RAC, novel RAC1-GSPT1 signaling, RHOA, and RHOBTB2).
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
74
|
|
75
|
|
76
|
Lambert MP, Poncz M. Inherited Thrombocytopenias. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
77
|
Andres O, König EM, Althaus K, Bakchoul T, Bugert P, Eber S, Knöfler R, Kunstmann E, Manukjan G, Meyer O, Strauß G, Streif W, Thiele T, Wiegering V, Klopocki E, Schulze H. Use of Targeted High-Throughput Sequencing for Genetic Classification of Patients with Bleeding Diathesis and Suspected Platelet Disorder. TH OPEN 2018; 2:e445-e454. [PMID: 31249973 PMCID: PMC6524924 DOI: 10.1055/s-0038-1676813] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Inherited platelet disorders (IPD) form a rare and heterogeneous disease entity that is present in about 8% of patients with non-acquired bleeding diathesis. Identification of the defective cellular pathway is an important criterion for stratifying the patient's individual risk profile and for choosing personalized therapeutic options. While costs of high-throughput sequencing technologies have rapidly declined over the last decade, molecular genetic diagnosis of bleeding and platelet disorders is getting more and more suitable within the diagnostic algorithms. In this study, we developed, verified, and evaluated a targeted, panel-based next-generation sequencing approach comprising 59 genes associated with IPD for a cohort of 38 patients with a history of recurrent bleeding episodes and functionally suspected, but so far genetically undefined IPD. DNA samples from five patients with genetically defined IPD with disease-causing variants in
WAS
,
RBM8A
,
FERMT3
,
P2YR12
, and
MYH9
served as controls during the validation process. In 40% of 35 patients analyzed, we were able to finally detect 15 variants, eight of which were novel, in 11 genes,
ACTN1
,
AP3B1
,
GFI1B
,
HPS1
,
HPS4
,
HPS6
,
MPL
,
MYH9
,
TBXA2R
,
TPM4
, and
TUBB1
, and classified them according to current guidelines. Apart from seven variants of uncertain significance in 11% of patients, nine variants were classified as likely pathogenic or pathogenic providing a molecular diagnosis for 26% of patients. This report also emphasizes on potentials and pitfalls of this tool and prospectively proposes its rational implementation within the diagnostic algorithms of IPD.
Collapse
Affiliation(s)
- Oliver Andres
- University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Eva-Maria König
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Karina Althaus
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany.,Institute for Transfusion Medicine, University of Greifswald, Greifswald, Germany
| | - Tamam Bakchoul
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany.,Institute for Transfusion Medicine, University of Greifswald, Greifswald, Germany
| | - Peter Bugert
- DRK-Blutspendedienst Baden-Württemberg-Hessen, Institute for Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
| | - Stefan Eber
- University Children's Hospital, Technical University Munich, Munich, Germany
| | - Ralf Knöfler
- Department of Pediatrics, Carl Gustav Carus University Hospital, Dresden, Germany
| | - Erdmute Kunstmann
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Georgi Manukjan
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Oliver Meyer
- Institute for Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriele Strauß
- Department for Pediatric Oncology and Hematology, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Werner Streif
- Department of Pediatrics, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Thiele
- Institute for Transfusion Medicine, University of Greifswald, Greifswald, Germany
| | - Verena Wiegering
- University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Eva Klopocki
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | | |
Collapse
|
78
|
van Dijk J, Bompard G, Cau J, Kunishima S, Rabeharivelo G, Mateos-Langerak J, Cazevieille C, Cavelier P, Boizet-Bonhoure B, Delsert C, Morin N. Microtubule polyglutamylation and acetylation drive microtubule dynamics critical for platelet formation. BMC Biol 2018; 16:116. [PMID: 30336771 PMCID: PMC6194603 DOI: 10.1186/s12915-018-0584-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/03/2018] [Indexed: 11/10/2022] Open
Abstract
Background Upon maturation in the bone marrow, polyploid megakaryocytes elongate very long and thin cytoplasmic branches called proplatelets. Proplatelets enter the sinusoids blood vessels in which platelets are ultimately released. Microtubule dynamics, bundling, sliding, and coiling, drive these dramatic morphological changes whose regulation remains poorly understood. Microtubule properties are defined by tubulin isotype composition and post-translational modification patterns. It remains unknown whether microtubule post-translational modifications occur in proplatelets and if so, whether they contribute to platelet formation. Results Here, we show that in proplatelets from mouse megakaryocytes, microtubules are both acetylated and polyglutamylated. To bypass the difficulties of working with differentiating megakaryocytes, we used a cell model that allowed us to test the functions of these modifications. First, we show that α2bβ3integrin signaling in D723H cells is sufficient to induce β1tubulin expression and recapitulate the specific microtubule behaviors observed during proplatelet elongation and platelet release. Using this model, we found that microtubule acetylation and polyglutamylation occur with different spatio-temporal patterns. We demonstrate that microtubule acetylation, polyglutamylation, and β1tubulin expression are mandatory for proplatelet-like elongation, swelling formation, and cytoplast severing. We discuss the functional importance of polyglutamylation of β1tubulin-containing microtubules for their efficient bundling and coiling during platelet formation. Conclusions We characterized and validated a powerful cell model to address microtubule behavior in mature megakaryocytes, which allowed us to demonstrate the functional importance of microtubule acetylation and polyglutamylation for platelet release. Furthermore, we bring evidence of a link between the expression of a specific tubulin isotype, the occurrence of microtubule post-translational modifications, and the acquisition of specific microtubule behaviors. Thus, our findings could widen the current view of the regulation of microtubule behavior in cells such as osteoclasts, spermatozoa, and neurons, which express distinct tubulin isotypes and display specific microtubule activities during differentiation. Electronic supplementary material The online version of this article (10.1186/s12915-018-0584-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliette van Dijk
- Universités de Montpellier, 34293, Montpellier, France.,CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293, Montpellier, France
| | - Guillaume Bompard
- Universités de Montpellier, 34293, Montpellier, France.,IGH, CNRS UMR9002, 141, rue de la Cardonille, 34396, Montpellier, France
| | - Julien Cau
- Universités de Montpellier, 34293, Montpellier, France.,IGH, CNRS UMR9002, 141, rue de la Cardonille, 34396, Montpellier, France.,Montpellier Rio Imaging, 34293, Montpellier, France
| | - Shinji Kunishima
- Department of Advanced Diagnosis, National Hospital Organization Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya, 4600001, Japan.,Present address: Department of Medical Technology, Gifu University of Medical Science, Seki, Gifu, 5013892, Japan
| | - Gabriel Rabeharivelo
- Universités de Montpellier, 34293, Montpellier, France.,CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293, Montpellier, France
| | - Julio Mateos-Langerak
- Universités de Montpellier, 34293, Montpellier, France.,IGH, CNRS UMR9002, 141, rue de la Cardonille, 34396, Montpellier, France.,Montpellier Rio Imaging, 34293, Montpellier, France
| | - Chantal Cazevieille
- Universités de Montpellier, 34293, Montpellier, France.,INM, INSERM UMR1051, 34293, Montpellier, France
| | - Patricia Cavelier
- Universités de Montpellier, 34293, Montpellier, France.,IGMM, CNRS, UMR 5535, 1919 Route de Mende, 34293, Montpellier, France
| | - Brigitte Boizet-Bonhoure
- Universités de Montpellier, 34293, Montpellier, France.,IGH, CNRS UMR9002, 141, rue de la Cardonille, 34396, Montpellier, France
| | - Claude Delsert
- Universités de Montpellier, 34293, Montpellier, France.,CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293, Montpellier, France.,3AS Station Expérimentale d'Aquaculture Ifremer, Chemin de Maguelone, 34250, Palavas-les-Flots, France
| | - Nathalie Morin
- Universités de Montpellier, 34293, Montpellier, France. .,CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
79
|
Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia. Nat Commun 2018; 9:4250. [PMID: 30315159 PMCID: PMC6185941 DOI: 10.1038/s41467-018-06713-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023] Open
Abstract
Germline mutations in the ubiquitously expressed ACTB, which encodes β-cytoplasmic actin (CYA), are almost exclusively associated with Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF). Here, we report six patients with previously undescribed heterozygous variants clustered in the 3′-coding region of ACTB. Patients present with clinical features distinct from BWCFF, including mild developmental disability, microcephaly, and thrombocytopenia with platelet anisotropy. Using patient-derived fibroblasts, we demonstrate cohort specific changes to β-CYA filament populations, which include the enhanced recruitment of thrombocytopenia-associated actin binding proteins (ABPs). These perturbed interactions are supported by in silico modeling and are validated in disease-relevant thrombocytes. Co-examination of actin and microtubule cytoskeleton constituents in patient-derived megakaryocytes and thrombocytes indicates that these β-CYA mutations inhibit the final stages of platelet maturation by compromising microtubule organization. Our results define an ACTB-associated clinical syndrome with a distinct genotype-phenotype correlation and delineate molecular mechanisms underlying thrombocytopenia in this patient cohort. Genetic variants in ACTB and ACTG1 have been associated with Baraitser-Winter Cerebrofrontofacial syndrome. Here, the authors report of a syndromic thrombocytopenia caused by variants in ACTB exons 5 or 6 that compromise the organization and coupling of the cytoskeleton, leading to impaired platelet maturation.
Collapse
|
80
|
Affiliation(s)
- Melissa A Haendel
- From the Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, and the Linus Pauling Institute and the Center for Genome Research and Biocomputing, Oregon State University, Corvallis (M.A.H.); Johns Hopkins University Schools of Medicine, Public Health, and Nursing, Baltimore (C.G.C.); and the Jackson Laboratory for Genomic Medicine and the Institute for Systems Genomics, University of Connecticut - both in Farmington (P.N.R.)
| | - Christopher G Chute
- From the Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, and the Linus Pauling Institute and the Center for Genome Research and Biocomputing, Oregon State University, Corvallis (M.A.H.); Johns Hopkins University Schools of Medicine, Public Health, and Nursing, Baltimore (C.G.C.); and the Jackson Laboratory for Genomic Medicine and the Institute for Systems Genomics, University of Connecticut - both in Farmington (P.N.R.)
| | - Peter N Robinson
- From the Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, and the Linus Pauling Institute and the Center for Genome Research and Biocomputing, Oregon State University, Corvallis (M.A.H.); Johns Hopkins University Schools of Medicine, Public Health, and Nursing, Baltimore (C.G.C.); and the Jackson Laboratory for Genomic Medicine and the Institute for Systems Genomics, University of Connecticut - both in Farmington (P.N.R.)
| |
Collapse
|
81
|
Fisher MH, Di Paola J. Genomics and transcriptomics of megakaryocytes and platelets: Implications for health and disease. Res Pract Thromb Haemost 2018; 2:630-639. [PMID: 30349880 PMCID: PMC6178711 DOI: 10.1002/rth2.12129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/03/2018] [Indexed: 01/07/2023] Open
Abstract
The field of megakaryocyte and platelet biology has been transformed with the implementation of high throughput sequencing. The use of modern sequencing technologies has led to the discovery of causative mutations in congenital platelet disorders and has been a useful tool in uncovering many other mechanisms of altered platelet formation and function. Although the understanding of the presence of RNA in platelets is relatively novel, mRNA and miRNA expression profiles are being shown to play an increasingly important role in megakaryopoiesis and platelet function in normal physiology as well as in disease states. Understanding the genetic perturbations underlying platelet dysfunction provides insight into normal megakaryopoiesis and thrombopoiesis, as well as guiding the development of novel therapeutics.
Collapse
Affiliation(s)
- Marlie H. Fisher
- Department of PediatricsUniversity of Colorado School of MedicineAuroraColorado
- Medical Scientist Training ProgramUniversity of Colorado School of MedicineAuroraColorado
| | - Jorge Di Paola
- Department of PediatricsUniversity of Colorado School of MedicineAuroraColorado
- Medical Scientist Training ProgramUniversity of Colorado School of MedicineAuroraColorado
| |
Collapse
|
82
|
Heremans J, Freson K. High-throughput sequencing for diagnosing platelet disorders: lessons learned from exploring the causes of bleeding disorders. Int J Lab Hematol 2018; 40 Suppl 1:89-96. [PMID: 29741246 DOI: 10.1111/ijlh.12812] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
Inherited platelet disorders (IPDs) are a heterogeneous group of disorders caused by multiple genetic defects. Obtaining a molecular diagnosis for IPD patients using a phenotype- and laboratory-based approach is complex, expensive, time-consuming, and not always successful. High-throughput sequencing (HTS) methods offer a genotype-based approach to facilitate molecular diagnostics. Such approaches are expected to decrease time to diagnosis, increase the diagnostic rate, and they have provided novel insights into the genotype-phenotype correlation of IPDs. Some of these approaches have also focused on the discovery of novel genes and unexpected molecular pathways which modulate megakaryocyte and platelet biology were discovered. A growing number of genetic defects underlying IPDs have been identified and we will here provide an overview of the diverse molecular players. Screening of these genes will deliver a genetic diagnosis for about 40%-50% of the IPDs patients and we will compare different HTS applications that have been developed. A brief focus on gene variant interpretation and classification in a diagnostic setting will be given. Although it is true that successes in diagnostics and gene discovery have been reached, a large fraction of patients still remains without a conclusive diagnosis. In these patients, the sum of non-diagnostic variants in known genes or in potential novel genes might only be proven informative in future studies with larger patient cohorts and by data sharing among the diverse genome medicine initiatives. Finally, we still do not understand the role of the non-coding genome space for IPDs.
Collapse
Affiliation(s)
- J Heremans
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - K Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
83
|
Yang Y, Wang X, Liu Y, Fu Q, Tian C, Wu C, Shi H, Yuan Z, Tan S, Liu S, Gao D, Dunham R, Liu Z. Transcriptome analysis reveals enrichment of genes associated with auditory system in swimbladder of channel catfish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 27:30-39. [DOI: 10.1016/j.cbd.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/20/2022]
|
84
|
Abstract
PURPOSE OF REVIEW Platelets are small, anucleate cells that circulate within the blood and play essential roles in preserving vascular integrity. However, abnormalities in either platelet production or destruction can result in thrombocytopenia, clinically defined by a platelet count lower than 150 000/μL of whole blood. Thrombocytopenia is frequently associated with impaired hemostatic responses to vascular injury and can be life-threatening because of bleeding complications. Megakaryocytes are the precursor cells responsible for platelet production, a process commonly referred to as thrombopoiesis. This review specifically discusses how perturbation of molecular mechanisms governing megakaryocyte differentiation and development manifest in various forms of thrombocytopenia. RECENT FINDINGS This review highlights the identification of novel transcriptional regulators of megakaryocyte maturation and platelet production. We also provide an update into the essential role of cytoskeletal regulation in thrombopoiesis, and how both megakaryopoiesis and platelet production are altered by anticancer therapeutics. Lastly, we focus on recent investigative approaches to treat thrombocytopenia and discuss future prospects in the field of megakaryocyte research. SUMMARY In patients where thrombocytopenia is not due to heightened platelet destruction or clearance, defects in megakaryocyte development should be considered.
Collapse
Affiliation(s)
- Harvey G Roweth
- Division of Hematology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Harvard Institutes of Medicine, Boston, Massachusetts, USA
| | | | | |
Collapse
|
85
|
Wang Q, Cao L, Sheng G, Shen H, Ling J, Xie J, Ma Z, Yin J, Wang Z, Yu Z, Chen S, Zhao Y, Ruan C, Xia L, Jiang M. Application of High-Throughput Sequencing in the Diagnosis of Inherited Thrombocytopenia. Clin Appl Thromb Hemost 2018; 24:94S-103S. [PMID: 30103613 PMCID: PMC6714838 DOI: 10.1177/1076029618790696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inherited thrombocytopenia is a group of hereditary diseases with a reduction in platelet
count as the main clinical manifestation. Clinically, there is an urgent need for a
convenient and rapid diagnosis method. We introduced a high-throughput, next-generation
sequencing (NGS) platform into the routine diagnosis of patients with unexplained
thrombocytopenia and analyzed the gene sequencing results to evaluate the value of NGS
technology in the screening and diagnosis of inherited thrombocytopenia. From a cohort of
112 patients with thrombocytopenia, we screened 43 patients with hereditary features. For
the blood samples of these 43 patients, a gene sequencing platform for hemorrhagic and
thrombotic diseases comprising 89 genes was used to perform gene detection using NGS
technology. When we combined the screening results with clinical features and other
findings, 15 (34.9%) of 43patients were diagnosed with inherited thrombocytopenia. In
addition, 19 pathogenic variants, including 8 previously unreported variants, were
identified in these patients. Through the use of this detection platform, we expect to
establish a more effective diagnostic approach to such disorders.
Collapse
Affiliation(s)
- Qi Wang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lijuan Cao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Guangying Sheng
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hongjie Shen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jing Ling
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jundan Xie
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhenni Ma
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jie Yin
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhaoyue Wang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ziqiang Yu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yiming Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lijun Xia
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Miao Jiang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
86
|
Heremans J, Garcia-Perez JE, Turro E, Schlenner SM, Casteels I, Collin R, de Zegher F, Greene D, Humblet-Baron S, Lesage S, Matthys P, Penkett CJ, Put K, Stirrups K, Thys C, Van Geet C, Van Nieuwenhove E, Wouters C, Meyts I, Freson K, Liston A. Abnormal differentiation of B cells and megakaryocytes in patients with Roifman syndrome. J Allergy Clin Immunol 2018; 142:630-646. [DOI: 10.1016/j.jaci.2017.11.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/28/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
|
87
|
Nurden P, Nurden A, Favier R, Gleyze M. Management of pregnancy for a patient with the new syndromic macrothrombocytopenia, DIAPH1-related disease. Platelets 2018; 29:737-738. [PMID: 29985732 DOI: 10.1080/09537104.2018.1492710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The number of genes involved in the identification of macrothrombocytopenia (MTP) is growing but the clinical consequences for the affected patients are not well determined. Here, we report the management of the bleeding risk for a patient with the newly reported and rare DIAPH1-related disease during surgery for infertility and then during her subsequent pregnancy. The R1213* DIAPH1 variant responsible for a mild bleeding syndrome in six families was considered a potential risk factor for our patient. Preliminary laparoscopic surgery was followed by neosalpingostomy to open the obstructed fallopian tube that was followed by an ectopic pregnancy requiring further surgery, tranexamic acid was used on each occasion and no bleeding complications were observed. A second pregnancy proceeded to term; the mother's platelet count was controlled throughout the gestation period and remained close to her basal values. No bleeding occurred at delivery or during the postpartum period. In conclusion, with strict repeated assessments of blood parameters and maintenance of the platelet count, the bleeding risk in pregnancy in DIAPH1-related disease can be successfully controlled.
Collapse
Affiliation(s)
- Paquita Nurden
- a Institut Hospitalo-Universitaire LIRYC , Hôpital Xavier Arnozan , Pessac , France
| | - Alan Nurden
- a Institut Hospitalo-Universitaire LIRYC , Hôpital Xavier Arnozan , Pessac , France
| | - Rémi Favier
- b Assistance Publique-Hôpitaux de Paris , Hôpital A Trousseau , Paris , France
| | - Matthieu Gleyze
- c Service de Gynécologie-Obstétrique , Hôpital Pellegrin , Bordeaux , France
| |
Collapse
|
88
|
Ghosh K, Bhattacharya M, Chowdhury R, Mishra K, Ghosh M. Inherited Macrothrombocytopenia: Correlating Morphology, Epidemiology, Molecular Pathology and Clinical Features. Indian J Hematol Blood Transfus 2018; 34:387-397. [PMID: 30127546 PMCID: PMC6081320 DOI: 10.1007/s12288-018-0950-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/14/2018] [Indexed: 01/19/2023] Open
Abstract
Inherited macrothrombocytopenia is increasingly being recognized as a relatively common condition. This descriptive review aims at focusing on the different areas of advancement that have taken place with this condition with particular reference to India. A pubmed search of articles between January 1990 and October 2017 with the key words-macrothrombocytopenia, asymptomatic macrothrombocytopenia, macrothrombocytopenia India, syndromic macrothrombocytopenia, molecular pathology, megakaryopoiesis and platelet formation were searched. The shortlisted articles were then read. Review articles provided additional references and the articles thus obtained were also read. Special interest and research conducted by the authors provided further sources of information. A total of 487 articles were found of which 68 articles were related to our subject of review. Review articles were read and additional articles from the reference quoted. Forty-four percent of nonsyndromic Inherited macrothrombocytopenia showed mutations of MYH9, GP1BB, GP1Ba, GPIX, ABCG5 and 8, ACTN, FLI, TUBB and RUNX1 frequently in heterozygous state. All types of inheritance pattern namely autosomal dominant, recessive and sex linked patterns have been described. Syndromic causes of this phenomenon are well known and have been described. Many asymptomatic patients do have mild or moderate bleeding history. Clinical algorithms to differentiate chronic ITP associated macrothrombocytopenia from inherited variety have been explored. Inherited macrothrombocytopenia is an emerging area of interest in platelet biology with its implication in diagnosis, prognosis, genetic counseling, management and in transfusion medicine.
Collapse
Affiliation(s)
- Kanjaksha Ghosh
- Surat Raktadan Kendra and Research Centre, Udhna Magdalla Road, Near Chosath Joganio Mataji Temple, Surat, 395002 India
| | - Maitreyee Bhattacharya
- Institute of Haematology and Transfusion Medicine, Medical College, Kolkata, 12 College Street, Kolkata, 700078 India
| | - Ranjini Chowdhury
- Institute of Haematology and Transfusion Medicine, Medical College, Kolkata, 12 College Street, Kolkata, 700078 India
| | - Kanchan Mishra
- Surat Raktadan Kendra and Research Centre, Udhna Magdalla Road, Near Chosath Joganio Mataji Temple, Surat, 395002 India
| | - Malay Ghosh
- P-78 Green View, Garia-P.O., Kolkata, 700084 India
| |
Collapse
|
89
|
Pleines I, Cherpokova D, Bender M. Rho GTPases and their downstream effectors in megakaryocyte biology. Platelets 2018; 30:9-16. [DOI: 10.1080/09537104.2018.1478071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Irina Pleines
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Deya Cherpokova
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Markus Bender
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
90
|
Zuidscherwoude M, Green HLH, Thomas SG. Formin proteins in megakaryocytes and platelets: regulation of actin and microtubule dynamics. Platelets 2018; 30:23-30. [PMID: 29913076 PMCID: PMC6406210 DOI: 10.1080/09537104.2018.1481937] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The platelet and megakaryocyte cytoskeletons are essential for formation and function of these cells. A dynamic, properly organised tubulin and actin cytoskeleton is critical for the development of the megakaryocyte and the extension of proplatelets. Tubulin in particular plays a pivotal role in the extension of these proplatelets and the release of platelets from them. Tubulin is further required for the maintenance of platelet size, and actin is the driving force for shape change, spreading and platelet contraction during platelet activation. Whilst several key proteins which regulate these cytoskeletons have been described in detail, the formin family of proteins has received less attention. Formins are intriguing as, although they were initially believed to simply be a nucleator of actin polymerisation, increasing evidence shows they are important regulators of the crosstalk between the actin and microtubule cytoskeletons. In this review, we will introduce the formin proteins and consider the recent evidence that they play an important role in platelets and megakaryocytes in mediating both the actin and tubulin cytoskeletons.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK.,b Centre of Membrane Proteins and Receptors (COMPARE) , University of Birmingham and University of Nottingham , Midlands , UK
| | - Hannah L H Green
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK
| | - Steven G Thomas
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK.,b Centre of Membrane Proteins and Receptors (COMPARE) , University of Birmingham and University of Nottingham , Midlands , UK
| |
Collapse
|
91
|
Abstract
Mucocutaneous bleeding symptoms and/or persistent thrombocytopenia occur in individuals with congenital disorders of platelet function and number. Apart from bleeding, these disorders are often associated with additional hematologic and clinical manifestations, including auditory, immunologic, and oncologic disease. Autosomal recessive, dominant, and X-linked inheritance patterns have been demonstrated. Precise delineation of the molecular cause of the platelet disorder can aid the pediatrician in the detection and prevention of specific disorder-associated manifestations and guide appropriate treatment and anticipatory care for the patient and family.
Collapse
Affiliation(s)
- Ruchika Sharma
- BloodCenter of Wisconsin, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | - Shawn M Jobe
- Blood Center of Wisconsin, Blood Research Institute, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
92
|
Kentala H, Koponen A, Kivelä AM, Andrews R, Li C, Zhou Y, Olkkonen VM. Analysis of ORP2-knockout hepatocytes uncovers a novel function in actin cytoskeletal regulation. FASEB J 2018; 32:1281-1295. [PMID: 29092904 DOI: 10.1096/fj.201700604r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ORP2 is implicated in cholesterol transport, triglyceride metabolism, and adrenocortical steroid hormone production. We addressed ORP2 function in hepatocytes by generating ORP2-knockout (KO) HuH7 cells by CRISPR-Cas9 gene editing, followed by analyses of transcriptome, F-actin morphology, migration, adhesion, and proliferation. RNA sequencing of ORP2-KO cells revealed >2-fold changes in 579 mRNAs. The Ingenuity Pathway Analysis (IPA) uncovered alterations in the following functional categories: cellular movement, cell-cell signaling and interaction, cellular development, cellular function and maintenance, cellular growth and proliferation, and cell morphology. Many pathways in these categories involved actin cytoskeleton, cell migration, adhesion, or proliferation. Analysis of the ORP2 interactome uncovered 109 putative new partners. Their IPA analysis revealed Ras homolog A (RhoA) signaling as the most significant pathway. Interactions of ORP2 with SEPT9, MLC12, and ARHGAP12 were validated by independent assays. ORP2-KO resulted in abnormal F-actin morphology characterized by impaired capacity to form lamellipodia, migration defect, and impaired adhesion and proliferation. Rescue of the migration phenotype and generation of typical cell surface morphology required an intact ORP2 phosphoinositide binding site, suggesting that ORP2 function involves phosphoinositide binding and transport. The results point at a novel function of ORP2 as a lipid-sensing regulator of the actin cytoskeleton, with impacts on hepatocellular migration, adhesion, and proliferation.-Kentala, H., Koponen, A., Kivelä, A. M., Andrews, R., Li, C., Zhou, Y., Olkkonen, V. M. Analysis of ORP2-knockout hepatocytes uncovers a novel function in actin cytoskeletal regulation.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annika Koponen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annukka M Kivelä
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Robert Andrews
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - ChunHei Li
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - You Zhou
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
93
|
Noris P, Pecci A. Hereditary thrombocytopenias: a growing list of disorders. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:385-399. [PMID: 29222283 PMCID: PMC6142591 DOI: 10.1182/asheducation-2017.1.385] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The introduction of high throughput sequencing (HTS) techniques greatly improved the knowledge of inherited thrombocytopenias (ITs) over the last few years. A total of 33 different forms caused by molecular defects affecting at least 32 genes have been identified; along with the discovery of new disease-causing genes, pathogenetic mechanisms of thrombocytopenia have been better elucidated. Although the clinical picture of ITs is heterogeneous, bleeding has been long considered the major clinical problem for patients with IT. Conversely, the current scenario indicates that patients with some of the most common ITs are at risk of developing additional disorders more dangerous than thrombocytopenia itself during life. In particular, MYH9 mutations result in congenital macrothrombocytopenia and predispose to kidney failure, hearing loss, and cataracts, MPL and MECOM mutations cause congenital thrombocytopenia evolving into bone marrow failure, whereas thrombocytopenias caused by RUNX1, ANKRD26, and ETV6 mutations are characterized by predisposition to hematological malignancies. Making a definite diagnosis of these forms is crucial to provide patients with the most appropriate treatment, follow-up, and counseling. In this review, the ITs known to date are discussed, with specific attention focused on clinical presentations and diagnostic criteria for ITs predisposing to additional illnesses. The currently available therapeutic options for the different forms of IT are illustrated.
Collapse
Affiliation(s)
- Patrizia Noris
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| |
Collapse
|
94
|
Messaoudi K, Ali A, Ishaq R, Palazzo A, Sliwa D, Bluteau O, Souquère S, Muller D, Diop KM, Rameau P, Lapierre V, Marolleau JP, Matthias P, Godin I, Pierron G, Thomas SG, Watson SP, Droin N, Vainchenker W, Plo I, Raslova H, Debili N. Critical role of the HDAC6-cortactin axis in human megakaryocyte maturation leading to a proplatelet-formation defect. Nat Commun 2017; 8:1786. [PMID: 29176689 PMCID: PMC5702605 DOI: 10.1038/s41467-017-01690-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Thrombocytopenia is a major side effect of a new class of anticancer agents that target histone deacetylase (HDAC). Their mechanism is poorly understood. Here, we show that HDAC6 inhibition and genetic knockdown lead to a strong decrease in human proplatelet formation (PPF). Unexpectedly, HDAC6 inhibition-induced tubulin hyperacetylation has no effect on PPF. The PPF decrease induced by HDAC6 inhibition is related to cortactin (CTTN) hyperacetylation associated with actin disorganization inducing important changes in the distribution of megakaryocyte (MK) organelles. CTTN silencing in human MKs phenocopies HDAC6 inactivation and knockdown leads to a strong PPF defect. This is rescued by forced expression of a deacetylated CTTN mimetic. Unexpectedly, unlike human-derived MKs, HDAC6 and CTTN are shown to be dispensable for mouse PPF in vitro and platelet production in vivo. Our results highlight an unexpected function of HDAC6–CTTN axis as a positive regulator of human but not mouse MK maturation. Histone deacetylase (HDAC) inhibitors, a class of cancer therapeutics, cause thrombocytopenia via an unknown mechanism. Here, the authors show that HDAC6 inhibition impairs proplatelet formation in human megakaryocytes, and show that this is linked to hyperacetylation of the actin-binding protein cortactin.
Collapse
Affiliation(s)
- Kahia Messaoudi
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France.,Paris7 Diderot University, 75013, Paris, France
| | - Ashfaq Ali
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France.,Paris7 Diderot University, 75013, Paris, France
| | - Rameez Ishaq
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France.,Paris7 Diderot University, 75013, Paris, France
| | - Alberta Palazzo
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France.,Paris7 Diderot University, 75013, Paris, France
| | - Dominika Sliwa
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France
| | - Olivier Bluteau
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France
| | - Sylvie Souquère
- CNRS-UMR-9196, Institut Gustave Roussy, 94805, Villejuif, France
| | - Delphine Muller
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France
| | - Khadija M Diop
- Genomic Platform, Institut Gustave Roussy, 94805, Villejuif, France
| | - Philippe Rameau
- Gustave Roussy, Integrated Biology Core Facility, 94805, Villejuif, France
| | | | - Jean-Pierre Marolleau
- Clinical Hematology and Cell Therapy Department, Amiens Hospital, UPJV University EA4666, 80054, Amiens, France
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4002, Basel, Switzerland
| | - Isabelle Godin
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France
| | - Gérard Pierron
- CNRS-UMR-9196, Institut Gustave Roussy, 94805, Villejuif, France
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Stephen P Watson
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Nathalie Droin
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France.,Genomic Platform, Institut Gustave Roussy, 94805, Villejuif, France
| | - William Vainchenker
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France
| | - Isabelle Plo
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France
| | - Hana Raslova
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France
| | - Najet Debili
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France. .,Paris-Saclay University, UMR 1170, 94805, Villejuif, France. .,Gustave Roussy, 94805, Villejuif, France.
| |
Collapse
|
95
|
Abstract
PURPOSE OF REVIEW Inherited thrombocytopenias are a heterogeneous group of diseases caused by mutations in many genes. They account for approximately only 50% of cases, suggesting that novel genes have yet to be identified for a comprehensive understanding of platelet biogenesis defects. This review provides an update of the last year of discoveries on inherited thrombocytopenias focusing on the molecular basis and potential pathogenic mechanisms affecting megakaryopoiesis and platelet production. RECENT FINDINGS Most of the novel discoveries are related to identification of mutations in novel inherited thrombocytopenia genes using a next-generation sequencing approach. They include MECOM, DIAPH1, TRPM7, SRC, FYB, and SLFN14, playing different roles in megakaryopoiesis and platelet production. Moreover, it is worth mentioning data on hypomorphic mutations of FLI1 and the association of single nucleotide polymorphisms, such as that identified in ACTN1, with thrombocytopenia. SUMMARY Thanks to the application of next-generation sequencing, the number of inherited thrombocytopenia genes is going to increase rapidly. Considering the wide genetic heterogeneity (more than 30 genes), these technologies can also be used for diagnostic purpose. Whatever is the aim, extreme caution should be taken in interpreting data, as inherited thrombocytopenias are mainly autosomal dominant diseases caused by variants of apparent unknown significance.
Collapse
|
96
|
Bastida JM, Lozano ML, Benito R, Janusz K, Palma-Barqueros V, Del Rey M, Hernández-Sánchez JM, Riesco S, Bermejo N, González-García H, Rodriguez-Alén A, Aguilar C, Sevivas T, López-Fernández MF, Marneth AE, van der Reijden BA, Morgan NV, Watson SP, Vicente V, Hernández-Rivas JM, Rivera J, González-Porras JR. Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders. Haematologica 2017; 103:148-162. [PMID: 28983057 PMCID: PMC5777202 DOI: 10.3324/haematol.2017.171132] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/29/2017] [Indexed: 12/30/2022] Open
Abstract
Inherited platelet disorders are a heterogeneous group of rare diseases, caused by inherited defects in platelet production and/or function. Their genetic diagnosis would benefit clinical care, prognosis and preventative treatments. Until recently, this diagnosis has usually been performed via Sanger sequencing of a limited number of candidate genes. High-throughput sequencing is revolutionizing the genetic diagnosis of diseases, including bleeding disorders. We have designed a novel high-throughput sequencing platform to investigate the unknown molecular pathology in a cohort of 82 patients with inherited platelet disorders. Thirty-four (41.5%) patients presented with a phenotype strongly indicative of a particular type of platelet disorder. The other patients had clinical bleeding indicative of platelet dysfunction, but with no identifiable features. The high-throughput sequencing test enabled a molecular diagnosis in 70% of these patients. This sensitivity increased to 90% among patients suspected of having a defined platelet disorder. We found 57 different candidate variants in 28 genes, of which 70% had not previously been described. Following consensus guidelines, we qualified 68.4% and 26.3% of the candidate variants as being pathogenic and likely pathogenic, respectively. In addition to establishing definitive diagnoses of well-known inherited platelet disorders, high-throughput sequencing also identified rarer disorders such as sitosterolemia, filamin and actinin deficiencies, and G protein-coupled receptor defects. This included disease-causing variants in DIAPH1 (n=2) and RASGRP2 (n=3). Our study reinforces the feasibility of introducing high-throughput sequencing technology into the mainstream laboratory for the genetic diagnostic practice in inherited platelet disorders.
Collapse
Affiliation(s)
- José M Bastida
- Servicio de Hematología, Hospital Universitario de Salamanca-IBSAL-USAL, Spain .,On behalf of the Project "Functional and Molecular Characterization of Patients with Inherited Platelet Disorders" of the Hemorrhagic Diathesis Working Group of the Spanish Society of Thrombosis and Haemostasis
| | - María L Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CB15/00055-CIBERER, Spain.,On behalf of the Project "Functional and Molecular Characterization of Patients with Inherited Platelet Disorders" of the Hemorrhagic Diathesis Working Group of the Spanish Society of Thrombosis and Haemostasis
| | - Rocío Benito
- IBSAL, IBMCC, CIC, Universidad de Salamanca-CSIC, Spain
| | - Kamila Janusz
- IBSAL, IBMCC, CIC, Universidad de Salamanca-CSIC, Spain
| | - Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CB15/00055-CIBERER, Spain
| | | | | | - Susana Riesco
- Servicio de Pediatría, Hospital Universitario de Salamanca-IBSAL, Spain
| | - Nuria Bermejo
- Servicio de Hematología, Complejo Hospitalario San Pedro Alcántara, Cáceres, Spain
| | | | - Agustín Rodriguez-Alén
- Servicio de Hematología y Hemoterapia, Hospital Virgen de la Salud, Complejo Hospitalario de Toledo, Spain
| | - Carlos Aguilar
- Servicio de Hematología, Complejo Asistencial de Soria, Spain
| | - Teresa Sevivas
- Serviço de Imunohemoterapia, Sangue e Medicina Transfusional do Centro Hospitalar e Universitário de Coimbra, EPE, Portugal
| | | | - Anna E Marneth
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Neil V Morgan
- Birmingham Platelet Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Steve P Watson
- Birmingham Platelet Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Vicente Vicente
- On behalf of the Project "Functional and Molecular Characterization of Patients with Inherited Platelet Disorders" of the Hemorrhagic Diathesis Working Group of the Spanish Society of Thrombosis and Haemostasis
| | - Jesús M Hernández-Rivas
- Servicio de Hematología, Hospital Universitario de Salamanca-IBSAL-USAL, Spain.,IBSAL, IBMCC, CIC, Universidad de Salamanca-CSIC, Spain
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CB15/00055-CIBERER, Spain.,On behalf of the Project "Functional and Molecular Characterization of Patients with Inherited Platelet Disorders" of the Hemorrhagic Diathesis Working Group of the Spanish Society of Thrombosis and Haemostasis
| | | |
Collapse
|
97
|
Racicot K, VanOeveren S, Alberts A. Viral Hijacking of Formins in Neurodevelopmental Pathologies. Trends Mol Med 2017; 23:778-785. [DOI: 10.1016/j.molmed.2017.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 01/19/2023]
|
98
|
Affiliation(s)
- Sarah K Westbury
- a School of Clinical Sciences, University of Bristol , Bristol , UK
| | | | - Andrew D Mumford
- c School of Cellular and Molecular Medicine, University of Bristol , Bristol , UK
| |
Collapse
|
99
|
Ganaha A, Kaname T, Shinjou A, Chinen Y, Yanagi K, Higa T, Kondo S, Suzuki M. Progressive macrothrombocytopenia and hearing loss in a large family with DIAPH1
related disease. Am J Med Genet A 2017; 173:2826-2830. [DOI: 10.1002/ajmg.a.38411] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/27/2017] [Accepted: 07/29/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Akira Ganaha
- Department of Otorhinolaryngology-Head and Neck Surgery; University of the Ryukyus; Okinawa Japan
| | - Tadashi Kaname
- Department of Genome Medicine; National Center for Child Health and Development; Tokyo Japan
| | - Ayano Shinjou
- Department of Otorhinolaryngology-Head and Neck Surgery; University of the Ryukyus; Okinawa Japan
| | - Yasutsugu Chinen
- Department of Pediatrics; Faculty of Medicine; University of the Ryukyus; Nishihara Japan
| | - Kumiko Yanagi
- Department of Genome Medicine; National Center for Child Health and Development; Tokyo Japan
| | - Teruyuki Higa
- Department of Otorhinolaryngology-Head and Neck Surgery; University of the Ryukyus; Okinawa Japan
| | - Shunsuke Kondo
- Department of Otorhinolaryngology-Head and Neck Surgery; University of the Ryukyus; Okinawa Japan
| | - Mikio Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery; University of the Ryukyus; Okinawa Japan
| |
Collapse
|
100
|
Twinfilin 2a regulates platelet reactivity and turnover in mice. Blood 2017; 130:1746-1756. [PMID: 28743718 DOI: 10.1182/blood-2017-02-770768] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/21/2017] [Indexed: 01/22/2023] Open
Abstract
Regulated reorganization of the actin cytoskeleton is a prerequisite for proper platelet production and function. Consequently, defects in proteins controlling actin dynamics have been associated with platelet disorders in humans and mice. Twinfilin 2a (Twf2a) is a small actin-binding protein that inhibits actin filament assembly by sequestering actin monomers and capping filament barbed ends. Moreover, Twf2a binds heterodimeric capping proteins, but the role of this interaction in cytoskeletal dynamics has remained elusive. Even though Twf2a has pronounced effects on actin dynamics in vitro, only little is known about its function in vivo. Here, we report that constitutive Twf2a-deficient mice (Twf2a-/-) display mild macrothrombocytopenia due to a markedly accelerated platelet clearance in the spleen. Twf2a-/- platelets showed enhanced integrin activation and α-granule release in response to stimulation of (hem) immunoreceptor tyrosine-based activation motif (ITAM) and G-protein-coupled receptors, increased adhesion and aggregate formation on collagen I under flow, and accelerated clot retraction and spreading on fibrinogen. In vivo, Twf2a deficiency resulted in shortened tail bleeding times and faster occlusive arterial thrombus formation. The hyperreactivity of Twf2a-/- platelets was attributed to enhanced actin dynamics, characterized by an increased activity of n-cofilin and profilin 1, leading to a thickened cortical cytoskeleton and hence sustained integrin activation by limiting calpain-mediated integrin inactivation. In summary, our results reveal the first in vivo functions of mammalian Twf2a and demonstrate that Twf2a-controlled actin rearrangements dampen platelet activation responses in a n-cofilin- and profilin 1-dependent manner, thereby indirectly regulating platelet reactivity and half-life in mice.
Collapse
|