51
|
Zhang H, Nakauchi Y, Köhnke T, Stafford M, Bottomly D, Thomas R, Wilmot B, McWeeney SK, Majeti R, Tyner JW. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. NATURE CANCER 2020; 1:826-839. [PMID: 33123685 PMCID: PMC7591155 DOI: 10.1038/s43018-020-0103-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/17/2020] [Indexed: 01/05/2023]
Abstract
Deregulation of the BCL2 gene family plays an important role in the pathogenesis of acute myeloid leukemia (AML). The BCL2 inhibitor, venetoclax, has received FDA approval for the treatment of AML. However, upfront and acquired drug resistance ensues due, in part, to the clinical and genetic heterogeneity of AML, highlighting the importance of identifying biomarkers to stratify patients onto the most effective therapies. By integrating clinical characteristics, exome and RNA sequencing, and inhibitor data from primary AML patient samples, we determined that myelomonocytic leukemia, upregulation of BCL2A1 and CLEC7A, as well as mutations of PTPN11 and KRAS conferred resistance to venetoclax and multiple venetoclax combinations. Venetoclax in combination with an MCL1 inhibitor AZD5991 induced synthetic lethality and circumvented venetoclax resistance.
Collapse
Affiliation(s)
- Haijiao Zhang
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Yusuke Nakauchi
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Thomas Köhnke
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Melissa Stafford
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Daniel Bottomly
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Rozario Thomas
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Beth Wilmot
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Shannon K. McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Jeffrey W. Tyner
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| |
Collapse
|
52
|
Kerkhofs M, Vervloessem T, Stopa KB, Smith VM, Vogler M, Bultynck G. DLBCL Cells with Acquired Resistance to Venetoclax Are Not Sensitized to BIRD-2 But Can Be Resensitized to Venetoclax through Bcl-XL Inhibition. Biomolecules 2020; 10:biom10071081. [PMID: 32708132 PMCID: PMC7408247 DOI: 10.3390/biom10071081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Anti-apoptotic Bcl-2-family members are frequently dysregulated in both blood and solid cancers, contributing to their survival despite ongoing oncogenic stress. Yet, such cancer cells often are highly dependent on Bcl-2 for their survival, a feature that is exploited by so-called BH3-mimetic drugs. Venetoclax (ABT-199) is a selective BH3-mimetic Bcl-2 antagonist that is currently used in the clinic for treatment of chronic lymphocytic leukemia patients. Unfortunately, venetoclax resistance has already emerged in patients, limiting the therapeutic success. Here, we examined strategies to overcome venetoclax resistance. Therefore, we used two diffuse large B-cell lymphoma (DLBCL) cell lines, Riva WT and venetoclax-resistant Riva (VR). The latter was obtained by prolonged culturing in the presence of venetoclax. We report that Riva VR cells did not become more sensitive to BIRD-2, a peptide targeting the Bcl-2 BH4 domain, and established cross-resistance towards BDA-366, a putative BH4-domain antagonist of Bcl-2. However, we found that Bcl-XL, another Bcl-2-family protein, is upregulated in Riva VR, while Mcl-1 expression levels are not different in comparison with Riva WT, hinting towards an increased dependence of Riva VR cells to Bcl-XL. Indeed, Riva VR cells could be resensitized to venetoclax by A-1155463, a selective BH3 mimetic Bcl-XL inhibitor. This is underpinned by siRNA experiments, demonstrating that lowering Bcl-XL-expression levels also augmented the sensitivity of Riva VR cells to venetoclax. Overall, this work demonstrates that Bcl-XL upregulation contributes to acquired resistance of DLBCL cancer cells towards venetoclax and that antagonizing Bcl-XL can resensitize such cells towards venetoclax.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- Lab. Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg ON-I, KU Leuven, 3000 Leuven, Belgium; (M.K.); (T.V.)
| | - Tamara Vervloessem
- Lab. Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg ON-I, KU Leuven, 3000 Leuven, Belgium; (M.K.); (T.V.)
| | - Kinga B. Stopa
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Victoria M. Smith
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK;
| | - Meike Vogler
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528 Frankfurt, Germany;
| | - Geert Bultynck
- Lab. Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg ON-I, KU Leuven, 3000 Leuven, Belgium; (M.K.); (T.V.)
- Correspondence:
| |
Collapse
|
53
|
Tariq S, Tariq S, Khan M, Azhar A, Baig M. Venetoclax in the Treatment of Chronic Lymphocytic Leukemia: Evidence, Expectations, and Future Prospects. Cureus 2020; 12:e8908. [PMID: 32742874 PMCID: PMC7389877 DOI: 10.7759/cureus.8908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/21/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in the western adult population; it is also prevalent worldwide. The B cell lymphoma-2 (BCL-2) family proteins play a key role in regulating intrinsic apoptosis and, in many cancers, are the main culprits behind tumor survival and therapy resistance. Hence, the role of BCL-2 inhibitors is very beneficial in the treatment of CLL. Venetoclax is the first selective, orally bioavailable BCL-2 inhibitor. This review article discusses factors such as the pharmacokinetics, pharmacodynamics, acquired resistance to venetoclax, responders vs. non-responders in venetoclax monotherapy, and the synergistic role of venetoclax with other drugs in detail. Venetoclax is the first BH3 mimetic drug and selective BCL-2 inhibitor that has received FDA approval. This drug has proved to provide good therapeutic responses in CLL patients irrespective of the presence of adverse clinical or genetic features, including in patients with relapsed or refractory forms of CLL. We anticipate that novel combination therapies, including venetoclax and immunotherapy, will further alter the treatment landscape for patients with relapsed CLL, particularly for those with deletion 17p (del 17p) CLL, which carries a very poor prognosis.
Collapse
Affiliation(s)
- Saba Tariq
- Pharmacology and Therapeutics, The University of Faisalabad, Faisalabad, PAK
| | - Sundus Tariq
- Physiology, The University of Faisalabad, Faisalabad, PAK
| | - Maliha Khan
- Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Aysha Azhar
- Post Graduate Research Department, Madina Teaching University, Faisalabad, PAK
| | - Mukhtiar Baig
- Clinical Biochemistry, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
54
|
Ringelstein-Harlev S. Immune dysfunction complexity in chronic lymphocytic leukemia ‒ an issue to consider when designing novel therapeutic strategies. Leuk Lymphoma 2020; 61:2050-2058. [PMID: 32336174 DOI: 10.1080/10428194.2020.1755857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A complex interplay between chronic lymphocytic leukemia (CLL) cells and different constituents of the immune system generally results in immune tolerance. As targeted therapies are gaining a critical role in the therapeutic landscape of this disease, their impact on the already perturbed immune milieu needs to be considered. This review addresses the issues of basic immune dysfunction in CLL which is further complicated by the effects of a number of novel targeted therapies used for this malignancy. These new approaches may simultaneously facilitate both anti- and pro-cancer activity, potentially compromising the depth of response to therapy. Current evidence suggests that exploiting combination therapy could potentially overcome at least part of these deleterious effects, thereby prolonging response to treatment and helping to restore immune activity.
Collapse
Affiliation(s)
- Shimrit Ringelstein-Harlev
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
55
|
Hickman KA, Hariharan S, De Melo J, Ylanko J, Lustig LC, Penn LZ, Andrews DW. Image-Based Analysis of Protein Stability. Cytometry A 2020; 97:363-377. [PMID: 31774248 PMCID: PMC7187295 DOI: 10.1002/cyto.a.23928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
Short half-life proteins regulate many essential processes, including cell cycle, transcription, and apoptosis. However, few well-characterized protein-turnover pathways have been identified because traditional methods to measure protein half-life are time and labor intensive. To overcome this barrier, we developed a protein stability probe and high-content screening pipeline for novel regulators of short half-life proteins using automated image analysis. Our pilot probe consists of the short half-life protein c-MYC (MYC) fused to Venus fluorescent protein (MYC-Venus). This probe enables protein half-life to be scored as a function of fluorescence intensity and distribution. Rapid turnover prevents maximal fluorescence of the probe due to the relatively longer maturation time of the fluorescent protein. Cells expressing the MYC-Venus probe were analyzed using a pipeline in which automated confocal microscopy and image analyses were used to score MYC-Venus stability by two strategies: assaying the percentage of cells with Venus fluorescence above background, and phenotypic comparative analysis. To evaluate this high-content screening pipeline and our probe, a kinase inhibitor library was screened by confocal microscopy to identify known and novel kinases that regulate MYC stability. Compounds identified were shown to increase the half-life of both MYC-Venus and endogenous MYC, validating the probe and pipeline. Fusion of another short half-life protein, myeloid cell leukemia 1 (MCL1), with Venus also demonstrated an increase in percent Venus-positive cells after treatment with inhibitors known to stabilize MCL1. Together, the results validate the use of our automated microscopy and image analysis pipeline of stability probe-expressing cells to rapidly and quantitatively identify regulators of short half-life proteins. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- K. Ashley Hickman
- Sunnybrook Research InstituteTorontoON M4N 3M5Canada
- Princess Margaret Cancer CenterTorontoON M5G 1L7Canada
- Faculty of Medicine, Department of Medical BiophysicsUniversity of TorontoTorontoON M5G 1L7Canada
| | - Santosh Hariharan
- Sunnybrook Research InstituteTorontoON M4N 3M5Canada
- Faculty of Medicine, Department of Medical BiophysicsUniversity of TorontoTorontoON M5G 1L7Canada
| | - Jason De Melo
- Princess Margaret Cancer CenterTorontoON M5G 1L7Canada
| | - Jarkko Ylanko
- Sunnybrook Research InstituteTorontoON M4N 3M5Canada
| | - Lindsay C. Lustig
- Princess Margaret Cancer CenterTorontoON M5G 1L7Canada
- Faculty of Medicine, Department of Medical BiophysicsUniversity of TorontoTorontoON M5G 1L7Canada
| | - Linda Z. Penn
- Princess Margaret Cancer CenterTorontoON M5G 1L7Canada
- Faculty of Medicine, Department of Medical BiophysicsUniversity of TorontoTorontoON M5G 1L7Canada
| | - David W. Andrews
- Sunnybrook Research InstituteTorontoON M4N 3M5Canada
- Faculty of Medicine, Department of Medical BiophysicsUniversity of TorontoTorontoON M5G 1L7Canada
| |
Collapse
|
56
|
Jullien M, Gomez-Bougie P, Chiron D, Touzeau C. Restoring Apoptosis with BH3 Mimetics in Mature B-Cell Malignancies. Cells 2020; 9:E717. [PMID: 32183335 PMCID: PMC7140641 DOI: 10.3390/cells9030717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
Apoptosis is a highly conserved mechanism enabling the removal of unwanted cells. Mitochondrial apoptosis is governed by the B-cell lymphoma (BCL-2) family, including anti-apoptotic and pro-apoptotic proteins. Apoptosis evasion by dysregulation of anti-apoptotic BCL-2 members (BCL-2, MCL-1, BCL-XL) is a common hallmark in cancers. To divert this dysregulation into vulnerability, researchers have developed BH3 mimetics, which are small molecules that restore effective apoptosis in neoplastic cells by interfering with anti-apoptotic proteins. Among them, venetoclax is a potent and selective BCL-2 inhibitor, which has demonstrated the strongest clinical activity in mature B-cell malignancies, including chronic lymphoid leukemia, mantle-cell lymphoma, and multiple myeloma. Nevertheless, mechanisms of primary and acquired resistance have been recently described and several features such as cytogenetic abnormalities, BCL-2 family expression, and ex vivo drug testing have to be considered for predicting sensitivity to BH3 mimetics and helping in the identification of patients able to respond. The medical need to overcome resistance to BH3 mimetics supports the evaluation of innovative combination strategies. Novel agents including MCL-1 targeting BH3 mimetics are currently evaluated and may represent new therapeutic options in the field. The present review summarizes the current knowledge regarding venetoclax and other BH3 mimetics for the treatment of mature B-cell malignancies.
Collapse
Affiliation(s)
- Maxime Jullien
- Clinical Hematology, Nantes University Hospital, 1 place A. Ricordeau, 44000 Nantes, France;
| | - Patricia Gomez-Bougie
- CRCINA, INSERM, CNRS, Angers University, Nantes University, 8 quai Moncousu, 44000 Nantes, France; (P.G.-B.); (D.C.)
- Integrated Cancer Research Center (SIRIC), ILIAD, 5 Allée de l’Ile Gloriette, 44093 Nantes, France
| | - David Chiron
- CRCINA, INSERM, CNRS, Angers University, Nantes University, 8 quai Moncousu, 44000 Nantes, France; (P.G.-B.); (D.C.)
- Integrated Cancer Research Center (SIRIC), ILIAD, 5 Allée de l’Ile Gloriette, 44093 Nantes, France
| | - Cyrille Touzeau
- Clinical Hematology, Nantes University Hospital, 1 place A. Ricordeau, 44000 Nantes, France;
- CRCINA, INSERM, CNRS, Angers University, Nantes University, 8 quai Moncousu, 44000 Nantes, France; (P.G.-B.); (D.C.)
- Integrated Cancer Research Center (SIRIC), ILIAD, 5 Allée de l’Ile Gloriette, 44093 Nantes, France
| |
Collapse
|
57
|
Discovery of PROTAC BCL-X L degraders as potent anticancer agents with low on-target platelet toxicity. Eur J Med Chem 2020; 192:112186. [PMID: 32145645 DOI: 10.1016/j.ejmech.2020.112186] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/16/2022]
Abstract
Anti-apoptotic protein BCL-XL plays a key role in tumorigenesis and cancer chemotherapy resistance, rendering it an attractive target for cancer treatment. However, BCL-XL inhibitors such as ABT-263 cannot be safely used in the clinic because platelets solely depend on BCL-XL to maintain their viability. To reduce the on-target platelet toxicity associated with the inhibition of BCL-XL, we designed and synthesized PROTAC BCL-XL degraders that recruit CRBN or VHL E3 ligase because both of these enzymes are poorly expressed in human platelets compared to various cancer cell lines. We confirmed that platelet-toxic BCL-XL/2 dual inhibitor ABT-263 can be converted into platelet-sparing CRBN/VHL-based BCL-XL specific degraders. A number of BCL-XL degraders are more potent in killing cancer cells than their parent compound ABT-263. Specifically, XZ739, a CRBN-dependent BCL-XL degrader, is 20-fold more potent than ABT-263 against MOLT-4 T-ALL cells and has >100-fold selectivity for MOLT-4 cells over human platelets. Our findings further demonstrated the utility of PROTAC technology to achieve tissue selectivity through recruiting differentially expressed E3 ligases.
Collapse
|
58
|
Zhang P, Zhang X, Liu X, Khan S, Zhou D, Zheng G. PROTACs are effective in addressing the platelet toxicity associated with BCL-X L inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:259-272. [PMID: 34296214 PMCID: PMC8293695 DOI: 10.37349/etat.2020.00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BCL-XL is an anti-apoptotic protein that plays an important role in tumorigenesis, metastasis, and intrinsic or therapy-induced cancer drug resistance. More recently, BCL-XL has also been identified as a key survival factor in senescent cells. Accumulation of senescent cells has been indicated as a causal factor of aging and many age-related diseases and contributes to tumor relapse and metastasis. Thus, inhibition of BCL-XL is an attractive strategy for the treatment of cancer and extension of healthspan. However, development of BCL-XL inhibitors such as navitoclax for clinical use has been challenging because human platelets depend on BCL-XL for survival. In this review, the authors discuss how BCL-XL-targeted proteolysis targeting chimeras (PROTACs) afford a novel approach to mitigate the on-target thrombocytopenia associated with BCL-XL inhibition. The authors summarize the progress in the development of BCL-XL PROTACs. The authors highlight the in vitro and in vivo data supporting that by hijacking the ubiquitin protein ligase (E3) that are poorly expressed in human platelets, BCL-XL PROTACs can significantly improve the therapeutic window compared to conventional BCL-XL inhibitors. These findings demonstrated the potentially broad utility of PROTAC technology to achieve tissue selectivity through recruiting differentially expressed E3 ligases and to reduce on-target toxicity.
Collapse
Affiliation(s)
- Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Xingui Liu
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Sajid Khan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
59
|
Farhy C, Hariharan S, Ylanko J, Orozco L, Zeng FY, Pass I, Ugarte F, Forsberg EC, Huang CT, Andrews DW, Terskikh AV. Improving drug discovery using image-based multiparametric analysis of the epigenetic landscape. eLife 2019; 8:e49683. [PMID: 31637999 PMCID: PMC6908434 DOI: 10.7554/elife.49683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022] Open
Abstract
High-content phenotypic screening has become the approach of choice for drug discovery due to its ability to extract drug-specific multi-layered data. In the field of epigenetics, such screening methods have suffered from a lack of tools sensitive to selective epigenetic perturbations. Here we describe a novel approach, Microscopic Imaging of Epigenetic Landscapes (MIEL), which captures the nuclear staining patterns of epigenetic marks and employs machine learning to accurately distinguish between such patterns. We validated the MIEL platform across multiple cells lines and using dose-response curves, to insure the fidelity and robustness of this approach for high content high throughput drug discovery. Focusing on noncytotoxic glioblastoma treatments, we demonstrated that MIEL can identify and classify epigenetically active drugs. Furthermore, we show MIEL was able to accurately rank candidate drugs by their ability to produce desired epigenetic alterations consistent with increased sensitivity to chemotherapeutic agents or with induction of glioblastoma differentiation.
Collapse
Affiliation(s)
- Chen Farhy
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Santosh Hariharan
- Biological Sciences Platform, Sunnybrook Research InstituteUniversity of TorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoOntarioCanada
| | - Jarkko Ylanko
- Biological Sciences Platform, Sunnybrook Research InstituteUniversity of TorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoOntarioCanada
| | - Luis Orozco
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Fu-Yue Zeng
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Ian Pass
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Fernando Ugarte
- Department of Biomolecular EngineeringUniversity of California, Santa CruzSanta CruzUnited States
- Institute for the Biology of Stem CellsUniversity of California, Santa CruzSanta CruzUnited States
| | - E Camilla Forsberg
- Department of Biomolecular EngineeringUniversity of California, Santa CruzSanta CruzUnited States
- Institute for the Biology of Stem CellsUniversity of California, Santa CruzSanta CruzUnited States
| | - Chun-Teng Huang
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - David W Andrews
- Biological Sciences Platform, Sunnybrook Research InstituteUniversity of TorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoOntarioCanada
- Department of BiochemistryUniversity of TorontoOntarioCanada
| | - Alexey V Terskikh
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| |
Collapse
|
60
|
Guièze R, Liu VM, Rosebrock D, Jourdain AA, Hernández-Sánchez M, Martinez Zurita A, Sun J, Ten Hacken E, Baranowski K, Thompson PA, Heo JM, Cartun Z, Aygün O, Iorgulescu JB, Zhang W, Notarangelo G, Livitz D, Li S, Davids MS, Biran A, Fernandes SM, Brown JR, Lako A, Ciantra ZB, Lawlor MA, Keskin DB, Udeshi ND, Wierda WG, Livak KJ, Letai AG, Neuberg D, Harper JW, Carr SA, Piccioni F, Ott CJ, Leshchiner I, Johannessen CM, Doench J, Mootha VK, Getz G, Wu CJ. Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies. Cancer Cell 2019; 36:369-384.e13. [PMID: 31543463 PMCID: PMC6801112 DOI: 10.1016/j.ccell.2019.08.005] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/04/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022]
Abstract
Mitochondrial apoptosis can be effectively targeted in lymphoid malignancies with the FDA-approved B cell lymphoma 2 (BCL-2) inhibitor venetoclax, but resistance to this agent is emerging. We show that venetoclax resistance in chronic lymphocytic leukemia is associated with complex clonal shifts. To identify determinants of resistance, we conducted parallel genome-scale screens of the BCL-2-driven OCI-Ly1 lymphoma cell line after venetoclax exposure along with integrated expression profiling and functional characterization of drug-resistant and engineered cell lines. We identified regulators of lymphoid transcription and cellular energy metabolism as drivers of venetoclax resistance in addition to the known involvement by BCL-2 family members, which were confirmed in patient samples. Our data support the implementation of combinatorial therapy with metabolic modulators to address venetoclax resistance.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Cell Line, Tumor
- Clonal Evolution/drug effects
- Disease Progression
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Energy Metabolism/drug effects
- Energy Metabolism/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Mice
- Middle Aged
- Mitochondria/drug effects
- Mitochondria/pathology
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Oxidative Phosphorylation/drug effects
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Romain Guièze
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA; CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France; Université Clermont Auvergne, EA7453 CHELTER, 63000 Clermont-Ferrand, France
| | - Vivian M Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA; Harvard Medical School, Boston, MA 02215, USA
| | | | - Alexis A Jourdain
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - María Hernández-Sánchez
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA; Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer-IBMCC, Universidad de Salamanca, 37007 Salamanca, Spain; Servicio de Hematología, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | | | - Jing Sun
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elisa Ten Hacken
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Kaitlyn Baranowski
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA
| | - Philip A Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jin-Mi Heo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Zachary Cartun
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA
| | - Ozan Aygün
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - J Bryan Iorgulescu
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA; Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Wandi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA
| | - Giulia Notarangelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Dimitri Livitz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuqiang Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA; Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Anat Biran
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA
| | - Stacey M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Ana Lako
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zoe B Ciantra
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Matthew A Lawlor
- Harvard Medical School, Boston, MA 02215, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02214, USA
| | - Derin B Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | | | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kenneth J Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA
| | - Anthony G Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA; Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Donna Neuberg
- Harvard Medical School, Boston, MA 02215, USA; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Christopher J Ott
- Harvard Medical School, Boston, MA 02215, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02214, USA
| | | | | | - John Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vamsi K Mootha
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02214, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston MA 02215-02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
61
|
Nguyen CDK, Yi C. YAP/TAZ Signaling and Resistance to Cancer Therapy. Trends Cancer 2019; 5:283-296. [PMID: 31174841 DOI: 10.1016/j.trecan.2019.02.010] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/31/2018] [Accepted: 02/15/2019] [Indexed: 12/23/2022]
Abstract
Drug resistance is a major challenge in cancer treatment. Emerging evidence indicates that deregulation of YAP/TAZ signaling may be a major mechanism of intrinsic and acquired resistance to various targeted and chemotherapies. Moreover, YAP/TAZ-mediated expression of PD-L1 and multiple cytokines is pivotal for tumor immune evasion. While direct inhibitors of YAP/TAZ are still under development, FDA-approved drugs that indirectly block YAP/TAZ activation or critical downstream targets of YAP/TAZ have shown promise in the clinic in reducing therapy resistance. Finally, BET inhibitors, which reportedly block YAP/TAZ-mediated transcription, present another potential venue to overcome YAP/TAZ-induced drug resistance.
Collapse
Affiliation(s)
- Chan D K Nguyen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
62
|
Spaner DE, McCaw L, Wang G, Tsui H, Shi Y. Persistent janus kinase-signaling in chronic lymphocytic leukemia patients on ibrutinib: Results of a phase I trial. Cancer Med 2019; 8:1540-1550. [PMID: 30843659 PMCID: PMC6488147 DOI: 10.1002/cam4.2042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/20/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Methods to deepen clinical responses to ibrutinib are needed to improve outcomes for patients with chronic lymphocytic leukemia (CLL). This study aimed to determine the safety and efficacy of combining a janus kinase (JAK)‐inhibitor with ibrutinib because JAK‐mediated cytokine‐signals support CLL cells and may not be inhibited by ibrutinib. The JAK1/2 inhibitor ruxolitinib was prescribed to 12 CLL patients with abnormal serum beta‐2 microglobulin levels after 6 months or persistent lymphadenopathy or splenomegaly after 12 months on ibrutinib using a 3 + 3 phase 1 trial design (NCT02912754). Ibrutinib was continued at 420 mg daily and ruxolitinib was added at 5, 10, 15, or 20 mg BID for 3 weeks out of five for seven cycles. The break was mandated to avoid anemia and thrombocytopenia observed with ruxolitinib as a single agent in CLL. The combination was well‐tolerated without dose‐limiting toxicities. Cyclic changes in platelets, lymphocytes, and associated chemokines and thrombopoietic factors were observed and partial response criteria were met in 2 of 12 patients. The results suggest that JAK‐signaling helps CLL cells persist in the presence of ibrutinib and ruxolitinib with ibrutinib is well‐tolerated and may be a useful regiment to use in combination therapies for CLL.
Collapse
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Sunnybrook Odette Cancer Center, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Lindsay McCaw
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Guizhei Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Hubert Tsui
- Department of Immunology, University of Toronto, Toronto, Canada.,Division of Hematopathology, Sunnybrook Health Sciences Center, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
63
|
Yedjou CG, Mbemi AT, Noubissi F, Tchounwou SS, Tsabang N, Payton M, Miele L, Tchounwou PB. Prostate Cancer Disparity, Chemoprevention, and Treatment by Specific Medicinal Plants. Nutrients 2019; 11:E336. [PMID: 30720759 PMCID: PMC6412894 DOI: 10.3390/nu11020336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/02/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PC) is one of the most common cancers in men. The global burden of this disease is rising. Its incidence and mortality rates are higher in African American (AA) men compared to white men and other ethnic groups. The treatment decisions for PC are based exclusively on histological architecture, prostate-specific antigen (PSA) levels, and local disease state. Despite advances in screening for and early detection of PC, a large percentage of men continue to be diagnosed with metastatic disease including about 20% of men affected with a high mortality rate within the African American population. As such, this population group may benefit from edible natural products that are safe with a low cost. Hence, the central goal of this article is to highlight PC disparity associated with nutritional factors and highlight chemo-preventive agents from medicinal plants that are more likely to reduce PC. To reach this central goal, we searched the PubMed Central database and the Google Scholar website for relevant papers. Our search results revealed that there are significant improvements in PC statistics among white men and other ethnic groups. However, its mortality rate remains significantly high among AA men. In addition, there are limited studies that have addressed the benefits of medicinal plants as chemo-preventive agents for PC treatment, especially among AA men. This review paper addresses this knowledge gap by discussing PC disparity associated with nutritional factors and highlighting the biomedical significance of three medicinal plants (curcumin, garlic, and Vernonia amygdalina) that show a great potential to prevent/treat PC, as well as to reduce its incidence/prevalence and mortality, improve survival rate, and reduce PC-related health disparity.
Collapse
Affiliation(s)
- Clement G Yedjou
- Natural Chemotherapeutics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA.
| | - Ariane T Mbemi
- Natural Chemotherapeutics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA.
| | - Felicite Noubissi
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA.
| | - Solange S Tchounwou
- Department of Biology, University of Mississippi, 214 Shoemaker Hall, P.O. Box 1848, MS 38677, USA.
| | - Nole Tsabang
- Department of Animal Biology, Higher Institute of Environmental Sciences, Yaounde P.O.Box 16317, Cameroon.
| | - Marinelle Payton
- Center of Excellence in Minority Health and Health Disparities, School of Public Health, Jackson State University, Jackson Medical Mall-Thad Cochran Center, 350 West Woodrow Wilson Avenue, Jackson, MS 39213, USA.
| | - Lucio Miele
- Department of Genetics, LSU Health Sciences Center, School of Medicine, 533 Bolivar Street, Room 657, New Orleans, LA 70112, USA.
| | - Paul B Tchounwou
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA.
| |
Collapse
|
64
|
Ibrutinib reprograms the glucocorticoid receptor in chronic lymphocytic leukemia cells. Leukemia 2019; 33:1650-1662. [PMID: 30696950 DOI: 10.1038/s41375-019-0381-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/12/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
Abstract
Glucocorticoid (GC) receptor (GR) phosphorylation and signature genes were studied in chronic lymphocytic leukemia (CLL) cells to help place GCs within modern treatment algorithms. In contrast to normal B and T cells, transcription of GC-regulated genes was not rhythmic and the synthetic GC dexamethasone (DEX) could not inhibit toll-like receptor (TLR)-responses in CLL cells. This intrinsic GC-resistance was associated with aberrant GR-phosphorylation on activating Ser211 and inhibitory Ser226 sites. Ibrutinib increased transcription of the GR-signature gene GILZ in circulating CLL cells along with GR(pS211)/GR(pS226) ratios and lytic sensitivity to DEX that were not reversed by the competitive antagonist mifepristone in vitro. However, ibrutinib could not improve GR-responses in circulating CLL cells activated with IL2 and TLR7/8 agonists to mimic conditions in pseudofollicle microenvironments. Addition of the janus kinase inhibitor ruxolitinib to block ibrutinib-insensitive signals increased GILZ transcription in pseudofollicle conditions in vitro and in a clinical trial (NCT02912754), and also increased GR(S211)/GR(S226) ratios and DEX-mediated killing in patient samples in vitro. These observations suggest that intrinsic resistance to endogenous GCs is characteristic of CLL cells and ibrutinib may help increase the therapeutic activity of GCs by non-canonical activation of GR.
Collapse
|
65
|
Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun 2018; 9:5341. [PMID: 30559424 PMCID: PMC6297231 DOI: 10.1038/s41467-018-07551-w] [Citation(s) in RCA: 365] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/09/2018] [Indexed: 02/04/2023] Open
Abstract
Mcl-1 is a member of the Bcl-2 family of proteins that promotes cell survival by preventing induction of apoptosis in many cancers. High expression of Mcl-1 causes tumorigenesis and resistance to anticancer therapies highlighting the potential of Mcl-1 inhibitors as anticancer drugs. Here, we describe AZD5991, a rationally designed macrocyclic molecule with high selectivity and affinity for Mcl-1 currently in clinical development. Our studies demonstrate that AZD5991 binds directly to Mcl-1 and induces rapid apoptosis in cancer cells, most notably myeloma and acute myeloid leukemia, by activating the Bak-dependent mitochondrial apoptotic pathway. AZD5991 shows potent antitumor activity in vivo with complete tumor regression in several models of multiple myeloma and acute myeloid leukemia after a single tolerated dose as monotherapy or in combination with bortezomib or venetoclax. Based on these promising data, a Phase I clinical trial has been launched for evaluation of AZD5991 in patients with hematological malignancies (NCT03218683).
Collapse
|
66
|
Leber B, Kale J, Andrews DW. Unleashing Blocked Apoptosis in Cancer Cells: New MCL1 Inhibitors Find Their Groove. Cancer Discov 2018; 8:1511-1514. [DOI: 10.1158/2159-8290.cd-18-1167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
67
|
Campo E, Cymbalista F, Ghia P, Jäger U, Pospisilova S, Rosenquist R, Schuh A, Stilgenbauer S. TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics. Haematologica 2018; 103:1956-1968. [PMID: 30442727 PMCID: PMC6269313 DOI: 10.3324/haematol.2018.187583] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic lymphocytic leukemia is associated with a highly heterogeneous disease course in terms of clinical outcomes and responses to chemoimmunotherapy. This heterogeneity is partly due to genetic aberrations identified in chronic lymphocytic leukemia cells such as mutations of TP53 and/or deletions in chromosome 17p [del(17p)], resulting in loss of one TP53 allele. These aberrations are associated with markedly decreased survival and predict impaired response to chemoimmunotherapy thus being among the strongest predictive markers guiding treatment decisions in chronic lymphocytic leukemia. Clinical trials demonstrate the importance of accurately testing for TP53 aberrations [both del(17p) and TP53 mutations] before each line of treatment to allow for appropriate treatment decisions that can optimize patients' outcomes. The current report reviews the diagnostic methods to detect TP53 disruption better, the role of TP53 aberrations in treatment decisions and current therapies available for patients with chronic lymphocytic leukemia carrying these abnormalities. The standardization in sequencing technologies for accurate identification of TP53 mutations and the importance of continued evaluation of TP53 aberrations throughout initial and subsequent lines of therapy remain unmet clinical needs as new therapeutic alternatives become available.
Collapse
Affiliation(s)
- Elias Campo
- Hospital Clinic of Barcelona, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, and CIBERONC, Spain
| | - Florence Cymbalista
- Hôpital Avicenne, AP-HP, UMR INSERMU978/Paris 13 University, Bobigny, France
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Sarka Pospisilova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Stephan Stilgenbauer
- Internal Medicine III, Ulm University, Germany and Innere Medizin I, Universitätsklinikum des Saarlandes, Homburg, Germany
| |
Collapse
|
68
|
Leverson JD, Cojocari D. Hematologic Tumor Cell Resistance to the BCL-2 Inhibitor Venetoclax: A Product of Its Microenvironment? Front Oncol 2018; 8:458. [PMID: 30406027 PMCID: PMC6204401 DOI: 10.3389/fonc.2018.00458] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022] Open
Abstract
BCL-2 family proteins regulate the intrinsic pathway of programmed cell death (apoptosis) and play a key role in the development and health of multicellular organisms. The dynamics of these proteins' expression and interactions determine the survival of all cells in an organism, whether the healthy cells of a fully competent immune system or the diseased cells of an individual with cancer. Anti-apoptotic proteins like BCL-2, BCL-XL, and MCL-1 are well-known for maintaining tumor cell survival and are therefore attractive drug targets. The BCL-2-selective inhibitor venetoclax has been approved for use in chronic lymphocytic leukemia and is now being studied in a number of other hematologic malignancies. As clinical data mature, hypotheses have begun to emerge regarding potential mechanisms of venetoclax resistance. Here, we review accumulating evidence that lymphoid microenvironments play a key role in determining hematologic tumor cell sensitivity to venetoclax.
Collapse
Affiliation(s)
- Joel D. Leverson
- Oncology Development, AbbVie, Inc., North Chicago, IL, United States
| | - Dan Cojocari
- Oncology Discovery, AbbVie, Inc., North Chicago, IL, United States
| |
Collapse
|
69
|
Ediriweera MK, Tennekoon KH, Samarakoon SR. In vitro assays and techniques utilized in anticancer drug discovery. J Appl Toxicol 2018; 39:38-71. [DOI: 10.1002/jat.3658] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Meran Keshawa Ediriweera
- Institute of Biochemistry, Molecular Biology and Biotechnology; University of Colombo; Colombo 03 Sri Lanka
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology; University of Colombo; Colombo 03 Sri Lanka
| | | |
Collapse
|
70
|
Scheeder C, Heigwer F, Boutros M. Machine learning and image-based profiling in drug discovery. CURRENT OPINION IN SYSTEMS BIOLOGY 2018; 10:43-52. [PMID: 30159406 PMCID: PMC6109111 DOI: 10.1016/j.coisb.2018.05.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The increase in imaging throughput, new analytical frameworks and high-performance computational resources open new avenues for data-rich phenotypic profiling of small molecules in drug discovery. Image-based profiling assays assessing single-cell phenotypes have been used to explore mechanisms of action, target efficacy and toxicity of small molecules. Technological advances to generate large data sets together with new machine learning approaches for the analysis of high-dimensional profiling data create opportunities to improve many steps in drug discovery. In this review, we will discuss how recent studies applied machine learning approaches in functional profiling workflows with a focus on chemical genetics. While their utility in image-based screening and profiling is predictably evident, examples of novel insights beyond the status quo based on the applications of machine learning approaches are just beginning to emerge. To enable discoveries, future studies also need to develop methodologies that lower the entry barriers to high-throughput profiling experiments by streamlining image-based profiling assays and providing applications for advanced learning technologies such as easy to deploy deep neural networks.
Collapse
Affiliation(s)
| | | | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Department of Cell and Molecular Biology, Medical Faculty Mannheim, D-69120 Heidelberg, Germany
| |
Collapse
|
71
|
Grant S. Rational combination strategies to enhance venetoclax activity and overcome resistance in hematologic malignancies. Leuk Lymphoma 2018; 59:1292-1299. [PMID: 28838268 PMCID: PMC5826810 DOI: 10.1080/10428194.2017.1366999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Venetoclax (ABT-199) is a Bcl-2-specific BH3-mimetic that has shown significant promise in certain subtypes of CLL as well as in several other hematologic malignancies. As in the case of essentially all targeted agents, intrinsic or acquired resistance to this agent generally occurs, prompting the search for new strategies capable of circumventing this problem. A logical approach to this challenge involves rational combination strategies designed to disable preexisting or induced compensatory survival pathways. Many of these strategies involve downregulation of Mcl-1, a pro-survival Bcl-2 family member that is not targeted by venetoclax, and which often confers resistance to this agent. Given encouraging clinical results involving venetoclax in both lymphoid and myeloid malignancies, it is likely that such combination approaches will be incorporated into the therapeutic armamentarium for multiple hematologic malignancies in the near future.
Collapse
Affiliation(s)
- Steven Grant
- Department of Medicine, Biochemistry, Pharmacology, and Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Translational Research, Developmental Therapeutics Program, Massey Cancer Center, Richmond, VA, USA
- Shirley Carter and Sture Gordon Olsson Professor of Oncology, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| |
Collapse
|
72
|
Elías EE, Almejún MB, Colado A, Cordini G, Vergara-Rubio M, Podaza E, Risnik D, Cabrejo M, Fernández-Grecco H, Bezares RF, Custidiano MDR, Sánchez-Ávalos JC, Vicente Á, Garate GM, Borge M, Giordano M, Gamberale R. Autologous T-cell activation fosters ABT-199 resistance in chronic lymphocytic leukemia: rationale for a combined therapy with SYK inhibitors and anti-CD20 monoclonal antibodies. Haematologica 2018; 103:e458-e461. [PMID: 29748439 DOI: 10.3324/haematol.2018.188680] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Esteban Enrique Elías
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Argentina
| | - María Belén Almejún
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Ana Colado
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Argentina
| | - Gregorio Cordini
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Argentina.,Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Argentina
| | - Maricef Vergara-Rubio
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Argentina
| | - Enrique Podaza
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Argentina
| | - Denise Risnik
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | - Mercedes Borge
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Mirta Giordano
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Romina Gamberale
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Argentina .,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| |
Collapse
|
73
|
Keating SM, Taylor DL, Plant AL, Litwack ED, Kuhn P, Greenspan EJ, Hartshorn CM, Sigman CC, Kelloff GJ, Chang DD, Friberg G, Lee JSH, Kuida K. Opportunities and Challenges in Implementation of Multiparameter Single Cell Analysis Platforms for Clinical Translation. Clin Transl Sci 2018; 11:267-276. [PMID: 29498218 PMCID: PMC5944591 DOI: 10.1111/cts.12536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
The high-content interrogation of single cells with platforms optimized for the multiparameter characterization of cells in liquid and solid biopsy samples can enable characterization of heterogeneous populations of cells ex vivo. Doing so will advance the diagnosis, prognosis, and treatment of cancer and other diseases. However, it is important to understand the unique issues in resolving heterogeneity and variability at the single cell level before navigating the validation and regulatory requirements in order for these technologies to impact patient care. Since 2013, leading experts representing industry, academia, and government have been brought together as part of the Foundation for the National Institutes of Health (FNIH) Biomarkers Consortium to foster the potential of high-content data integration for clinical translation.
Collapse
Affiliation(s)
| | - D. Lansing Taylor
- University of Pittsburgh Drug Discovery InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Anne L. Plant
- Biosystems and Biomaterials Division Materials Measurement LaboratoryNational Institute of Standards and TechnologyGaithersburgMarylandUSA
| | - E. David Litwack
- Office of In Vitro Diagnostics and Radiological HealthCenter for Devices and Radiological HealthFood and Drug AdministrationSilver SpringMarylandUSA
| | - Peter Kuhn
- University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Emily J. Greenspan
- Center for Strategic Scientific InitiativesNational Cancer InstituteBethesdaMarylandUSA
| | | | | | | | | | | | - Jerry S. H. Lee
- Center for Strategic Scientific InitiativesNational Cancer InstituteBethesdaMarylandUSA
| | | |
Collapse
|
74
|
Strati P, Jain N, O'Brien S. Chronic Lymphocytic Leukemia: Diagnosis and Treatment. Mayo Clin Proc 2018; 93:651-664. [PMID: 29728204 DOI: 10.1016/j.mayocp.2018.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/30/2018] [Accepted: 03/02/2018] [Indexed: 12/27/2022]
Abstract
The complexity of the treatment of patients with chronic lymphocytic leukemia has increased substantially over the past several years as a consequence of the advent of novel biological agents such as ibrutinib, idelalisib, and venetoclax, as well as increasingly potent anti-CD20 monoclonal antibodies. In addition, the identification of molecular predictive markers and the introduction of more sensitive and sophisticated techniques to assess minimal residual disease have allowed optimization of the use of chemoimmunotherapy and targeted therapies and may become standard of care in the future. This review summarizes the diagnosis, prognostication, and treatment of patients with chronic lymphocytic leukemia with emphasis on new prognostic and predictive factors and novel treatment strategies.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Humans
- Immunotherapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
Collapse
Affiliation(s)
- Paolo Strati
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Susan O'Brien
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA.
| |
Collapse
|
75
|
Wu CAM, Roth TL, Baglaenko Y, Ferri DM, Brauer P, Zuniga-Pflucker JC, Rosbe KW, Wither JE, Marson A, Allen CDC. Genetic engineering in primary human B cells with CRISPR-Cas9 ribonucleoproteins. J Immunol Methods 2018; 457:33-40. [PMID: 29614266 DOI: 10.1016/j.jim.2018.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022]
Abstract
Genome editing in human cells with targeted nucleases now enables diverse experimental and therapeutic genome engineering applications, but extension to primary human B cells remains limited. Here we report a method for targeted genetic engineering in primary human B cells, utilizing electroporation of CRISPR-Cas9 ribonucleoproteins (RNPs) to introduce gene knockout mutations at protein-coding loci with high efficiencies that in some cases exceeded 80%. Further, we demonstrate knock-in editing of targeted nucleotides with efficiency exceeding 10% through co-delivery of oligonucleotide templates for homology directed repair. We delivered Cas9 RNPs in two distinct in vitro culture systems to achieve editing in both undifferentiated B cells and activated B cells undergoing differentiation, reflecting utility in diverse experimental conditions. In summary, we demonstrate a powerful and scalable research tool for functional genetic studies of human B cell biology that may have further applications in engineered B cell therapeutics.
Collapse
Affiliation(s)
- Chung-An M Wu
- Cardiovascular Research Institute, Sandler Asthma Basic Research Center, 555 Mission Bay Blvd S, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Theodore L Roth
- Department of Microbiology and Immunology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA
| | - Yuriy Baglaenko
- Krembil Research Institute, 60 Leonard Ave, University Health Network, Toronto, Ontario, Canada; Department of Immunology, 60 Leonard Ave, University of Toronto, Toronto, Ontario, Canada
| | - Dario M Ferri
- Krembil Research Institute, 60 Leonard Ave, University Health Network, Toronto, Ontario, Canada; Department of Immunology, 60 Leonard Ave, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Brauer
- Department of Immunology, 60 Leonard Ave, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, 2075 Bayview Ave, University of Toronto, Toronto, Ontario, Canada
| | - Juan Carlos Zuniga-Pflucker
- Department of Immunology, 60 Leonard Ave, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, 2075 Bayview Ave, University of Toronto, Toronto, Ontario, Canada
| | - Kristina W Rosbe
- Department of Otolaryngology, 550 16th St, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joan E Wither
- Krembil Research Institute, 60 Leonard Ave, University Health Network, Toronto, Ontario, Canada; Department of Immunology, 60 Leonard Ave, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, 60 Leonard Ave, University of Toronto, Toronto, Ontario, Canada.
| | - Alexander Marson
- Department of Microbiology and Immunology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Department of Medicine, Diabetes Center, Helen Diller Family Comprehensive Cancer Center, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Innovative Genomics Institute, 2151 Berkeley Way, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA.
| | - Christopher D C Allen
- Cardiovascular Research Institute, Sandler Asthma Basic Research Center, 555 Mission Bay Blvd S, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, 555 Mission Bay Blvd S, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
76
|
Oppermann S, Lam AJ, Tung S, Shi Y, McCaw L, Wang G, Ylanko J, Leber B, Andrews D, Spaner DE. Janus and PI3-kinases mediate glucocorticoid resistance in activated chronic leukemia cells. Oncotarget 2018; 7:72608-72621. [PMID: 27579615 PMCID: PMC5341931 DOI: 10.18632/oncotarget.11618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/21/2016] [Indexed: 11/25/2022] Open
Abstract
Glucorticoids (GCs) such as dexamethasone (DEX) remain important treatments for Chronic Lymphocytic Leukemia (CLL) but the mechanisms are poorly understood and resistance is inevitable. Proliferation centers (PC) in lymph nodes and bone marrow offer protection against many cytotoxic drugs and circulating CLL cells were found to acquire resistance to DEX-mediated killing in conditions encountered in PCs including stimulation by toll-like receptor agonists and interactions with stromal cells. The resistant state was associated with impaired glucocorticoid receptor-mediated gene expression, autocrine activation of STAT3 through Janus Kinases (JAKs), and increased glycolysis. The JAK1/2 inhibitor ruxolitinib blocked STAT3-phosphorylation and partially improved DEX-mediated killing of stimulated CLL cells in vitro but not in CLL patients in vivo. An automated microscopy-based screen of a kinase inhibitor library implicated an additional protective role for the PI3K/AKT/FOXO pathway. Blocking this pathway with the glycolysis inhibitor 2-deoxyglucose (2-DG) or the PI3K-inhibitors idelalisib and buparlisib increased DEX-mediated killing but did not block STAT3-phosphorylation. Combining idelalisib or buparlisib with ruxolitinib greatly increased killing by DEX. These observations suggest that glucocorticoid resistance in CLL cells may be overcome by combining JAK and PI3K inhibitors.
Collapse
Affiliation(s)
- Sina Oppermann
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Avery J Lam
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Stephanie Tung
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Lindsay McCaw
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Guizhei Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jarkko Ylanko
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David Andrews
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Odette Cancer Center, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
77
|
Mihalyova J, Jelinek T, Growkova K, Hrdinka M, Simicek M, Hajek R. Venetoclax: A new wave in hematooncology. Exp Hematol 2018; 61:10-25. [PMID: 29477371 DOI: 10.1016/j.exphem.2018.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Abstract
Inhibitors of antiapoptotic proteins of the BCL2 family can successfully restart the deregulated process of apoptosis in malignant cells. Whereas nonselective agents have been limited by their affinity to different BCL2 members, thus inducing excessive toxicity, the highly selective BCL2 inhibitor venetoclax (ABT-199, Venclexta™) has an acceptable safety profile. To date, it has been approved in monotherapy for the treatment of relapsed or refractory chronic lymphocytic leukemia (CLL) with 17p deletion. Extension of indications can be expected in monotherapy and in combination regimens. Sensitivity to venetoclax is not common in lymphomas, but promising outcomes have been achieved in the mantle cell lymphoma group. Venetoclax is also active in multiple myeloma patients, especially in those with translocation t(11;14), even if high-risk features such as del17p are also present. Surprisingly, positive results are being obtained in elderly acute myeloid leukemia patients, in whom inhibition of BCL2 is able to substantially increase the efficacy of low-dose cytarabine or hypomethylating agents. Here, we provide a summary of available results from clinical trials and describe a specific mechanism of action that stands behind the efficacy of venetoclax in hematological malignancies.
Collapse
Affiliation(s)
- Jana Mihalyova
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Tomas Jelinek
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Katerina Growkova
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Matous Hrdinka
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Michal Simicek
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Roman Hajek
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
78
|
Esteve-Arenys A, Valero JG, Chamorro-Jorganes A, Gonzalez D, Rodriguez V, Dlouhy I, Salaverria I, Campo E, Colomer D, Martinez A, Rymkiewicz G, Pérez-Galán P, Lopez-Guillermo A, Roué G. The BET bromodomain inhibitor CPI203 overcomes resistance to ABT-199 (venetoclax) by downregulation of BFL-1/A1 in in vitro and in vivo models of MYC+/BCL2+ double hit lymphoma. Oncogene 2018; 37:1830-1844. [PMID: 29353886 DOI: 10.1038/s41388-017-0111-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/16/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022]
Abstract
High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements, mostly known as double-hit lymphoma (DHL), is a rare entity characterized by morphologic and molecular features between Burkitt lymphoma and the clinically manageable diffuse large B-cell lymphoma (DLBCL). DHL patients usually undergo a rapidly progressing clinical course associated with resistance to standard chemo-immunotherapy. As a consequence, the prognosis of this entity is particularly poor with a median overall survival inferior to 1 year. ABT-199 (venetoclax) is a potent and selective small-molecule antagonist of BCL-2 recently approved for the treatment of a specific subtype of lymphoid neoplasm. In this study, we demonstrate that single-agent ABT-199 efficiently displaces BAX from BCL-2 complexes but fails to maintain a significant antitumor activity over time in most MYC+/BCL2+DHL cell lines and primary cultures, as well as in a xenograft mouse model of the disease. We further identify the accumulation of the BCL2-like protein BFL-1 to be a major mechanism involved in acquired resistance to ABT-199. Noteworthy, this phenomenon can be counteracted by the BET bromodomain inhibitor CPI203, since gene expression profiling identifies BCL2A1, the BFL-1 coding gene, as one of the top apoptosis-related gene modulated by this compound. Upon CPI203 treatment, simultaneous downregulation of MYC and BFL-1 further overcomes resistance to ABT-199 both in vitro and in vivo, engaging synergistic caspase-mediated apoptosis in DHL cultures and tumor xenografts. Together, these findings highlight the relevance of BFL-1 in DH lymphoma-associated drug resistance and support the combined use of a BCL-2 antagonist and a BET inhibitor as a promising therapeutic strategy for patients with aggressive DHL.
Collapse
Affiliation(s)
- A Esteve-Arenys
- Aggressive B-cell Lymphoma Study Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain.,Division of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain
| | - J G Valero
- Aggressive B-cell Lymphoma Study Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain.,Division of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain
| | - A Chamorro-Jorganes
- Aggressive B-cell Lymphoma Study Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain.,Division of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain
| | - D Gonzalez
- Aggressive B-cell Lymphoma Study Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain.,Division of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain
| | - V Rodriguez
- Division of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain
| | - I Dlouhy
- Department of Hematology, Hospital Clinic, Barcelona, Spain
| | - I Salaverria
- Division of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain
| | - E Campo
- Division of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain.,Hematopathology Unit, Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - D Colomer
- Division of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain.,Hematopathology Unit, Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - A Martinez
- Hematopathology Unit, Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - G Rymkiewicz
- Department of Pathology, The Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - P Pérez-Galán
- Division of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain
| | - A Lopez-Guillermo
- Division of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain.,Department of Hematology, Hospital Clinic, Barcelona, Spain
| | - G Roué
- Aggressive B-cell Lymphoma Study Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain. .,Division of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain. .,Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain.
| |
Collapse
|
79
|
Therapeutics targeting Bcl-2 in hematological malignancies. Biochem J 2017; 474:3643-3657. [PMID: 29061914 DOI: 10.1042/bcj20170080] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/29/2017] [Accepted: 09/19/2017] [Indexed: 12/25/2022]
Abstract
Members of the B-cell lymphoma 2 (BCL-2) gene family are attractive targets for cancer therapy as they play a key role in promoting cell survival, a long-since established hallmark of cancer. Clinical utility for selective inhibition of specific anti-apoptotic Bcl-2 family proteins has recently been realized with the Food and Drug Administration (FDA) approval of venetoclax (formerly ABT-199/GDC-0199) in relapsed chronic lymphocytic leukemia (CLL) with 17p deletion. Despite the impressive monotherapy activity in CLL, such responses have rarely been observed in other B-cell malignancies, and preclinical data suggest that combination therapies will be needed in other indications. Additional selective antagonists of Bcl-2 family members, including Bcl-XL and Mcl-1, are in various stages of preclinical and clinical development and hold the promise of extending clinical utility beyond CLL and overcoming resistance to venetoclax. In addition to direct targeting of Bcl-2 family proteins with BH3 mimetics, combination therapies that aim at down-regulating expression of anti-apoptotic BCL-2 family members or restoring expression of pro-apoptotic BH3 family proteins may provide a means to deepen responses to venetoclax and extend the utility to additional indications. Here, we review recent progress in direct and selective targeting of Bcl-2 family proteins for cancer therapy and the search for rationale combinations.
Collapse
|
80
|
Abstract
The approval of venetoclax, a 'BH3-mimetic' antagonist of the BCL-2 anti-apoptotic protein, for chronic lymphocytic leukemia represents a major milestone in translational apoptosis research. Venetoclax has already received 'breakthrough' designation for acute myeloid leukemia, and is being studied in many other tumor types. However, resistance to BCL-2 inhibitor monotherapy may rapidly ensue. Several studies have shown that the other two major anti-apoptotic BCL-2 family proteins, BCL-XL and MCL-1, are the main determinants of resistance to venetoclax. This opens up possibilities for rationally combining venetoclax with other targeted agents to circumvent resistance. Here, we summarize the most promising combinations, and highlight those already in clinical trials. There is also increasing recognition that different tumors display different degrees of addiction to individual BCL-2 family proteins, and of the need to refine current 'BH3 profiling' techniques. Finally, the successful clinical development of potent and selective antagonists of BCL-XL and MCL-1 is eagerly awaited.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Biomimetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Clinical Trials as Topic
- Drug Discovery
- Drug Resistance, Neoplasm/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/metabolism
- Peptide Fragments/pharmacology
- Peptide Fragments/therapeutic use
- Proto-Oncogene Proteins/pharmacology
- Proto-Oncogene Proteins/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- bcl-X Protein/antagonists & inhibitors
- bcl-X Protein/genetics
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Prithviraj Bose
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Varsha Gandhi
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
- b Department of Experimental Therapeutics , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Marina Konopleva
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
81
|
Pegoraro G, Misteli T. High-Throughput Imaging for the Discovery of Cellular Mechanisms of Disease. Trends Genet 2017; 33:604-615. [PMID: 28732598 DOI: 10.1016/j.tig.2017.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/23/2022]
Abstract
High-throughput imaging (HTI) is a powerful tool in the discovery of cellular disease mechanisms. While traditional approaches to identify disease pathways often rely on knowledge of the causative genetic defect, HTI-based screens offer an unbiased discovery approach based on any morphological or functional defects of disease cells or tissues. In this review, we provide an overview of the use of HTI for the study of human disease mechanisms. We discuss key technical aspects of HTI and highlight representative examples of its practical applications for the discovery of molecular mechanisms of disease, focusing on infectious diseases and host-pathogen interactions, cancer, and rare genetic diseases. We also present some of the current challenges and possible solutions offered by novel cell culture systems and genome engineering approaches.
Collapse
Affiliation(s)
- Gianluca Pegoraro
- NCI High-Throughput Imaging Facility, Bethesda, MD 20892, USA; Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA.
| | - Tom Misteli
- Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
82
|
Crompot E, Van Damme M, Pieters K, Vermeersch M, Perez-Morga D, Mineur P, Maerevoet M, Meuleman N, Bron D, Lagneaux L, Stamatopoulos B. Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications. Haematologica 2017; 102:1594-1604. [PMID: 28596280 PMCID: PMC5685228 DOI: 10.3324/haematol.2016.163337] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
Interactions between chronic lymphocytic leukemia (CLL) B cells and the bone marrow (BM) microenvironment play a major function in the physiopathology of CLL. Extracellular vesicles (EVs), which are composed of exosomes and microparticles, play an important role in cell communication. However, little is known about their role in CLL / microenvironment interactions. In the present study, EVs purified by ultracentrifugation from BM mesenchymal stromal cell (BM-MSC) cultures were added to CLL B cells. After their integration into CLL B cells, we observed a decrease of leukemic cell spontaneous apoptosis and an increase in their chemoresistance to several drugs, including fludarabine, ibrutinib, idelalisib and venetoclax after 24 hours. Spontaneous (P=0.0078) and stromal cell-derived factor 1α -induced migration capacities of CLL B cells were also enhanced (P=0.0020). A microarray study highlighted 805 differentially expressed genes between leukemic cells cultured with or without EVs. Of these, genes involved in the B-cell receptor pathway such as CCL3/4, EGR1/2/3, and MYC were increased. Interestingly, this signature presents important overlaps with other microenvironment stimuli such as B-cell receptor stimulation, CLL/nurse-like cells co-culture or those provided by a lymph node microenvironment. Finally, we showed that EVs from MSCs of leukemic patients also rescue leukemic cells from spontaneous or drug-induced apoptosis. However, they induce a higher migration and also a stronger gene modification compared to EVs of healthy MSCs. In conclusion, we show that EVs play a crucial role in CLL B cells/BM microenvironment communication.
Collapse
Affiliation(s)
- Emerence Crompot
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Jules Bordet Institute, Belgium
| | - Michael Van Damme
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Jules Bordet Institute, Belgium
| | - Karlien Pieters
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Jules Bordet Institute, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - David Perez-Morga
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Philippe Mineur
- Department of Hemato-Oncology, Grand Hôpital de Charleroi, Gilly, Belgium
| | - Marie Maerevoet
- Hematology Department, Jules Bordet Institute, Brussels, Belgium
| | | | - Dominique Bron
- Hematology Department, Jules Bordet Institute, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Jules Bordet Institute, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Jules Bordet Institute, Belgium
| |
Collapse
|
83
|
Younes A, Ansell S, Fowler N, Wilson W, de Vos S, Seymour J, Advani R, Forero A, Morschhauser F, Kersten MJ, Tobinai K, Zinzani PL, Zucca E, Abramson J, Vose J. The landscape of new drugs in lymphoma. Nat Rev Clin Oncol 2017; 14:335-346. [PMID: 28031560 PMCID: PMC5611863 DOI: 10.1038/nrclinonc.2016.205] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The landscape of drugs for the treatment of lymphoma has become crowded in light of the plethora of new agents, necessitating the efficient prioritization of drugs for expedited development. The number of drugs available, and the fact that many can be given for an extended period of time, has resulted in the emergence of new challenges; these include determining the optimal duration of therapy, and the need to balance costs, benefits, and the risk of late-onset toxicities. Moreover, with the increase in the number of available investigational drugs, the number of possible combinations is becoming overwhelming, which necessitates prioritization plans for the selective development of novel combination regimens. In this Review, we describe the most-promising agents in clinical development for the treatment of lymphoma, and provide expert opinion on new strategies that might enable more streamlined drug development. We also address new approaches for patient selection and for incorporating new end points into clinical trials.
Collapse
Affiliation(s)
- Anas Younes
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA
| | - Stephen Ansell
- Division of Haematology, Mayo Clinic, 200 1st St Sw, Rochester, Minnesota 55905, USA
| | - Nathan Fowler
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Wyndham Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Sven de Vos
- Department of Medicine, Ronald Reagan UCLA Medical Center, Santa Monica, California 90404, USA
| | - John Seymour
- Department of Haematology, Peter MacCallum Cancer Centre, A'Beckett Street, East Melbourne, Victoria 8006, Australia
| | - Ranjana Advani
- Division of Oncology, Stanford University Cancer Center, 875 Blake Wilbur Drive, Stanford, California 94305, USA
| | - Andres Forero
- Division of Haematology and Oncology, University of Alabama School of Medicine, 1720 2nd Avenue South, NP2540, Birmingham, Alabama 35294-3300, USA
| | | | - Marie Jose Kersten
- Department of Haematology, Academic Medical Center and LYMMCARE, Amsterdam, Netherlands
| | - Kensei Tobinai
- Haematology Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Pier Luigi Zinzani
- Institute of Haematology "L. e A. Seràgnoli," University of Bologna, Via Massarenti, 9-40138 Bologna, Italy
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Ospedale San Giovanni, 6500 Bellinzona, Switzerland
| | - Jeremy Abramson
- Massachusetts General Hospital Cancer Center, Yawkey Center for Outpatient Care, Mailstop: Yawkey 9A, 32 Fruit Street, Boston, Massachusetts 02114, USA
| | - Julie Vose
- UNMC Oncology/Haematology Division, 987680 Nebraska Medical Center, Omaha, Nebraska 681980-7680, USA
| |
Collapse
|
84
|
Zahr AA, Bose P, Keating MJ. Pharmacotherapy of relapsed/refractory chronic lymphocytic leukemia. Expert Opin Pharmacother 2017; 18:857-873. [PMID: 28446054 PMCID: PMC6488229 DOI: 10.1080/14656566.2017.1324420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The treatment of relapsed/refractory (RR) CLL has been revolutionized by the advent of the new oral inhibitors of B-cell receptor (BCR) signaling and the pro-survival protein, B-cell lymphoma 2 (BCL2). Additionally, new and more potent monoclonal antibodies against CD20 have replaced/may replace rituximab in many settings. Areas covered: Herein, we review the entire therapeutic landscape of RR CLL, with particular attention to the new small-molecule kinase inhibitors and BH3-mimetics. We discuss preclinical data with these agents in CLL, cover available efficacy and safety information, and examine potential resistance mechanisms and possible rational combinations to circumvent them. Expert opinion: The availability of potent and selective inhibitors of BCR signaling and of the anti-apoptotic functions of BCL2 has enormously enhanced our therapeutic armamentarium, with unprecedented efficacy now observed in patients who historically had poor outcomes with chemoimmunotherapy (CIT), e.g., those with deletion 17p/11q and/or IGHV-unmutated disease. The next challenge is to optimally sequence these agents and develop rational combinations that will hopefully lead to deeper and more durable remissions than ever seen before. Indeed, long term relapse free survival, already achievable with CIT in patients with genetically favorable-risk disease, now appears to be a realistic possibility for most patients with CLL.
Collapse
MESH Headings
- Adult
- Agammaglobulinaemia Tyrosine Kinase
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- CD28 Antigens/antagonists & inhibitors
- CD28 Antigens/immunology
- Clinical Trials as Topic
- Drug Interactions
- Humans
- Immunotherapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Recurrence
- Rituximab/administration & dosage
- Rituximab/adverse effects
- Rituximab/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Abdallah Abou Zahr
- Department of Leukemia, University of Texas MD Anderson
Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson
Cancer Center, Houston, TX, USA
| | - Michael J. Keating
- Department of Leukemia, University of Texas MD Anderson
Cancer Center, Houston, TX, USA
| |
Collapse
|
85
|
O'Steen S, Green DJ, Gopal AK, Orozco JJ, Kenoyer AL, Lin Y, Wilbur DS, Hamlin DK, Fisher DR, Hylarides MD, Gooley TA, Waltman A, Till BG, Press OW. Venetoclax Synergizes with Radiotherapy for Treatment of B-cell Lymphomas. Cancer Res 2017; 77:3885-3893. [PMID: 28566329 DOI: 10.1158/0008-5472.can-17-0082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/30/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023]
Abstract
Constitutive B-cell receptor signaling leads to overexpression of the antiapoptotic BCL-2 protein and is implicated in the pathogenesis of many types of B-cell non-Hodgkin lymphoma (B-NHL). The BCL-2 small-molecule inhibitor venetoclax shows promising clinical response rates in several lymphomas, but is not curative as monotherapy. Radiotherapy is a rational candidate for combining with BCL-2 inhibition, as DNA damage caused by radiotherapy increases the activity of pro-apoptotic BCL-2 pathway proteins, and lymphomas are exquisitely sensitive to radiation. We tested B-NHL responses to venetoclax combined with either external beam radiotherapy or radioimmunotherapy (RIT), which joins the selectivity of antibody targeting with the effectiveness of irradiation. We first tested cytotoxicity of cesium-137 irradiation plus venetoclax in 14 B-NHL cell lines representing five lymphoma subtypes. Combination treatment synergistically increased cell death in 10 of 14 lines. Lack of synergy was predicted by resistance to single-agent venetoclax and high BCL-XL expression. We then assessed the efficacy of external beam radiotherapy plus venetoclax in murine xenograft models of mantle cell (MCL), germinal-center diffuse large B-cell (GCB-DLBCL), and activated B-cell (ABC-DLBCL) lymphomas. In each model, external beam radiotherapy plus venetoclax synergistically increased mouse survival time, curing up to 10%. We finally combined venetoclax treatment of MCL and ABC-DLBCL xenografts with a pretargeted RIT (PRIT) system directed against the CD20 antigen. Optimal dosing of PRIT plus venetoclax cured 100% of mice with no detectable toxicity. Venetoclax combined with radiotherapy may be a promising treatment for a wide range of lymphomas Cancer Res; 77(14); 3885-93. ©2017 AACR.
Collapse
Affiliation(s)
- Shyril O'Steen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Damian J Green
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington
| | - Ajay K Gopal
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington
| | - Johnnie J Orozco
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington
| | - Aimee L Kenoyer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yukang Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - D Scott Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Donald K Hamlin
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | | | - Mark D Hylarides
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Theodore A Gooley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Brian G Till
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington
| | - Oliver W Press
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington.,Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
86
|
Kubuschok B, Trepel M. Learning from the failures of drug discovery in B-cell non-Hodgkin lymphomas and perspectives for the future: chronic lymphocytic leukemia and diffuse large B-cell lymphoma as two ends of a spectrum in drug development. Expert Opin Drug Discov 2017; 12:733-745. [PMID: 28494631 DOI: 10.1080/17460441.2017.1329293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Despite substantial recent advances, there is still an unmet need for better therapies in B-cell non Hodgkin lymphomas (B-NHL), especially in relapsed or refractory disease. Many novel targeted drugs have been developed based on a better molecular understanding of B-NHL. Areas covered: This article focuses on chronic lymphocytic leukemia (CLL) as a representative for indolent lymphomas and paradigmatic for the tremendous progress in treating B-NHL on the one hand and diffuse large B-cell lymphoma (DLBCL) as a representative for aggressive lymphomas and paradigmatic for many unsolved problems in lymphoma treatment or the other hand. We highlight salient points in current therapies targeting genetic, epigenetic, immunological and microenvironmental alterations. Possible reasons for drug failure in clinical trials like tumor heterogeneity, clonal evolution and drug resistance mechanisms are discussed. Based thereon, some perspectives for further drug discovery are given. Expert opinion: In view of the pathogenetic complexity of lymphomas, therapies targeting exclusively a single alteration may fail because resistance mechanisms are present either initially or evolve during treatment. Therefore, future therapies in B-NHL may have to target the greatest possible number of genetic, immunological or epigenetic alterations still allowing tolerability and to monitor these alterations during therapy.
Collapse
Affiliation(s)
- Boris Kubuschok
- a Department of Internal Medicine II , Klinikum Augsburg , Augsburg , Germany.,b Department of Hematology and Oncology , University of Saarland Medical School , Homburg , Germany
| | - Martin Trepel
- a Department of Internal Medicine II , Klinikum Augsburg , Augsburg , Germany.,c Department of Oncology and Hematology , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
87
|
Ghamlouch H, Nguyen-Khac F, Bernard OA. Chronic lymphocytic leukaemia genomics and the precision medicine era. Br J Haematol 2017; 178:852-870. [DOI: 10.1111/bjh.14719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hussein Ghamlouch
- Institut National De La Santé Et De La Recherche Médicale (INSERM) U1170; Villejuif France
- Gustave Roussy; Villejuif France
- Université Paris Saclay; Paris France
- Equipe Labellisée Ligue Nationale Contre Le Cancer; Paris France
| | - Florence Nguyen-Khac
- INSERM U1138; Université Pierre et Marie Curie-Paris 6; Service d'Hématologie Biologique; Hôpital Pitié-Salpêtrière; APHP; Paris France
| | - Olivier A. Bernard
- Institut National De La Santé Et De La Recherche Médicale (INSERM) U1170; Villejuif France
- Gustave Roussy; Villejuif France
- Université Paris Saclay; Paris France
- Equipe Labellisée Ligue Nationale Contre Le Cancer; Paris France
| |
Collapse
|
88
|
Advances in the treatment of relapsed/refractory chronic lymphocytic leukemia. Ann Hematol 2017; 96:1185-1196. [PMID: 28389687 PMCID: PMC5486803 DOI: 10.1007/s00277-017-2982-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/21/2017] [Indexed: 11/25/2022]
Abstract
Treatment of chronic lymphocytic leukemia (CLL) has advanced with the introduction of chemoimmunotherapy (CIT) agents that have improved the outcomes of frontline therapy. However, most treated patients will relapse and require subsequent therapy. This review focuses on recent advances in the treatment of relapsed or refractory CLL. Until recently, treatment options for relapsed CLL were of limited efficacy. Retreatment with fludarabine, cyclophosphamide, and rituximab (FCR) was recommended for patients with a durable response to first-line FCR, although acquired genetic aberrations, impaired marrow reserve, and comorbidities often made this suboptimal therapy for many patients. New options include two agents targeting B cell receptor (BCR) signaling pathways (ibrutinib and idelalisib) and a B cell lymphoma-2 (BCL-2) inhibitor (venetoclax). Allogeneic hematopoietic stem cell transplantation (HSCT) remains a potentially curative option for younger patients with a suitable donor.
Collapse
|
89
|
Abstract
B-cell lymphoma-2 (BCL-2) family dysfunction and impairment of apoptosis are common in most B-cell lymphoid malignancies. Venetoclax (Venclexta™, formerly ABT-199, GDC-0199) is a highly selective BCL-2 inhibitor, which mimics its BCL-2 homology 3-domain to induce apoptosis. It was approved for treatment of previously treated chronic lymphocytic leukemia (CLL) patients with 17p deletion early in 2016. It has also been in clinical trials for other B-cell lymphoid malignancies. Unlike the other recently approved targeted agents idelalisib and ibrutinib, so far there has been no relapse reported in some patients. Also, unlike the other targeted agents, it is effective against tumor cells that reside in the blood marrow. Despite its promising outcome in CLL, preclinical data have already uncovered mechanistic insights underlying venetoclax resistance, such as upregulation of MCL-1 or BCL-xL expression and protective signaling from the microenvironment. In this review, we describe the role of the BCL-2 family in the pathogenesis of B-cell lymphoid malignancies, the development of venetoclax, and its current clinical outcome in CLL and other B-cell malignancies. We also discuss the resistance mechanisms that develop following venetoclax therapy, potential strategies to overcome them, and how this knowledge can be translated into clinical applications.
Collapse
Affiliation(s)
- Huayuan Zhu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People’s Republic of China
| | - Alexandru Almasan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
90
|
Huber H, Edenhofer S, Estenfelder S, Stilgenbauer S. Profile of venetoclax and its potential in the context of treatment of relapsed or refractory chronic lymphocytic leukemia. Onco Targets Ther 2017; 10:645-656. [PMID: 28223822 PMCID: PMC5308588 DOI: 10.2147/ott.s102646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the last few years, dramatic changes have occurred in the treatment of chronic lymphocytic leukemia (CLL). The current standard for young and fit patients with CLL remains chemoimmunotherapy, namely the fludarabine, cyclophosphamide, and rituximab (FCR) regimen. However, novel oral therapies are presently being introduced and represent a considerable breakthrough concerning effectiveness and safety profile. In particular, the very high-risk group of CLL patients, defined by the genetic aberration del(17p) and/or TP53 mutation, benefit from the new agents. These genetic abnormalities are the most relevant negative prognostic markers in the context of chemoimmunotherapy. New targeted therapies allow different approaches to improve outcomes.
Collapse
Affiliation(s)
- Henriette Huber
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Simone Edenhofer
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Sven Estenfelder
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | | |
Collapse
|
91
|
PPAR-delta promotes survival of chronic lymphocytic leukemia cells in energetically unfavorable conditions. Leukemia 2017; 31:1905-1914. [PMID: 28050012 DOI: 10.1038/leu.2016.395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/15/2022]
Abstract
Targeting the mechanisms that allow chronic lymphocytic leukemia (CLL) cells to survive in harsh cancer microenvironments should improve patient outcomes. The nuclear receptor peroxisome proliferator activated receptor delta (PPARδ) sustains other cancers, and in silico analysis showed higher PPARD expression in CLL cells than normal lymphocytes and other hematologic cancers. A direct association was found between PPARδ protein levels in CLL cells and clinical score. Transgenic expression of PPARδ increased the growth and survival of CD5+ Daudi cells and primary CLL cells in stressful conditions including exhausted tissue culture media, low extracellular glucose, hypoxia and exposure to cytotoxic drugs. Glucocorticoids and synthetic PPARδ agonists up-regulated PPARD expression and also protected Daudi and primary CLL cells from metabolic stressors. Survival in low glucose was related to increased antioxidant expression, substrate utilization and mitochondrial performance, and was reversed by genetic deletion and synthetic PPARδ antagonists. These findings suggest PPARδ conditions CLL cells to survive in harsh microenvironmental conditions by reducing oxidative stress and increasing metabolic efficiency. Targeting PPARδ may be beneficial in the treatment of CLL.
Collapse
|
92
|
McCaw L, Shi Y, Wang G, Li YJ, Spaner DE. Low Density Lipoproteins Amplify Cytokine-signaling in Chronic Lymphocytic Leukemia Cells. EBioMedicine 2016; 15:24-35. [PMID: 27932296 PMCID: PMC5233814 DOI: 10.1016/j.ebiom.2016.11.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022] Open
Abstract
Recent studies suggest there is a high incidence of elevated low-density lipoprotein (LDL) levels in Chronic Lymphocytic Leukemia (CLL) patients and a survival benefit from cholesterol-lowering statin drugs. The mechanisms of these observations and the kinds of patients they apply to are unclear. Using an in vitro model of the pseudofollicles where CLL cells originate, LDLs were found to increase plasma membrane cholesterol, signaling molecules such as tyrosine-phosphorylated STAT3, and activated CLL cell numbers. The signaling effects of LDLs were not seen in normal lymphocytes or glycolytic lymphoma cell-lines but were restored by transduction with the nuclear receptor PPARδ, which mediates metabolic activity in CLL cells. Breakdown of LDLs in lysosomes was required for the amplification effect, which correlated with down-regulation of HMGCR expression and long lymphocyte doubling times (LDTs) of 53.6 ± 10.4 months. Cholesterol content of circulating CLL cells correlated directly with blood LDL levels in a subgroup of patients. These observations suggest LDLs may enhance proliferative responses of CLL cells to inflammatory signals. Prospective clinical trials are needed to confirm the therapeutic potential of lowering LDL concentrations in CLL, particularly in patients with indolent disease in the “watch-and-wait” phase of management. Slow-growing CLL cells use lysosomal lipase to break low density lipoproteins (LDLs) into free fatty acids and cholesterol. LdL degradation products increase survival of proliferating CLL cells. LDLs decrease oxidative stress and increase plasma membrane cholesterol. LDLs amplify signaling responses to cytokines but not antigens in proliferating CLL cells. Rapidly growing CLL cells, acute leukemia cells, and normal lymphocytes do not exhibit this dependence on LDLs.
Collapse
Affiliation(s)
- Lindsay McCaw
- Biology Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - You-Jun Li
- Biology Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, ON M5G 2C4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada; Sunnybrook Odette Cancer Center, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
93
|
Survival control of malignant lymphocytes by anti-apoptotic MCL-1. Leukemia 2016; 30:2152-2159. [PMID: 27479182 DOI: 10.1038/leu.2016.213] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/24/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
Programmed apoptotic cell death is critical to maintain tissue homeostasis and cellular integrity in the lymphatic system. Accordingly, the evasion of apoptosis is a critical milestone for the transformation of lymphocytes on their way to becoming overt lymphomas. The anti-apoptotic BCL-2 family proteins are pivotal regulators of the mitochondrial apoptotic pathway and genetic aberrations in these genes are associated with lymphomagenesis and chemotherapeutic resistance. Pharmacological targeting of BCL-2 is highly effective in certain indolent B-cell lymphomas; however, recent evidence highlights a critical role for the BCL-2 family member MCL-1 in several lymphoma subtypes. MCL-1 is recurrently highly expressed in various kinds of cancer including non-Hodgkin's lymphoma of B- and T-cell origin. Moreover, both indolent and aggressive forms of lymphoma require MCL-1 for lymphomagenesis and for their continued survival. This review summarizes the role of MCL-1 in B- and T-cell lymphoma and discusses its potential as a therapeutic target.
Collapse
|