51
|
Borthakur G, Kantarjian H. Core binding factor acute myelogenous leukemia-2021 treatment algorithm. Blood Cancer J 2021; 11:114. [PMID: 34135311 PMCID: PMC8209225 DOI: 10.1038/s41408-021-00503-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Core binding factor acute myelogenous leukemia (CBF-AML), characterized by the presence of either t(8;21) (q22;q22) or inv(16) (p13q22)/t(16;16), is considered good-risk AML in the context of cytarabine based intensive chemotherapy. Still, outcome can be improved significantly through the effective implementation of available therapeutic measures and appropriate disease monitoring. The incorporation of gemtuzumab ozogamicin into frontline therapy should be standard. Cytarabine based induction/consolidation regimen may be combined with anthracycline (3 + 7 standard) or antimetabolite, fludarabine. Serial quantitative polymerase chain reaction (QPCR) monitoring of unique fusion transcripts allows monitoring for measurable residual disease clearance; this allows for better prognostication and well as treatment modifications.
Collapse
Affiliation(s)
- Gautam Borthakur
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA.
| | - Hagop Kantarjian
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
52
|
An update on the molecular pathogenesis and potential therapeutic targeting of AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1. Blood Adv 2021; 4:229-238. [PMID: 31935293 DOI: 10.1182/bloodadvances.2019000168] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) with t(8;21)(q22;q22.1);RUNX1-RUNX1T1, one of the core-binding factor leukemias, is one of the most common subtypes of AML with recurrent genetic abnormalities and is associated with a favorable outcome. The translocation leads to the formation of a pathological RUNX1-RUNX1T1 fusion that leads to the disruption of the normal function of the core-binding factor, namely, its role in hematopoietic differentiation and maturation. The consequences of this alteration include the recruitment of repressors of transcription, thus blocking the expression of genes involved in hematopoiesis, and impaired apoptosis. A number of concurrent and cooperating mutations clearly play a role in modulating the proliferative potential of cells, including mutations in KIT, FLT3, and possibly JAK2. RUNX1-RUNX1T1 also appears to interact with microRNAs during leukemogenesis. Epigenetic factors also play a role, especially with the recruitment of histone deacetylases. A better understanding of the concurrent mutations, activated pathways, and epigenetic modulation of the cellular processes paves the way for exploring a number of approaches to achieve cure. Potential approaches include the development of small molecules targeting the RUNX1-RUNX1T1 protein, the use of tyrosine kinase inhibitors such as dasatinib and FLT3 inhibitors to target mutations that lead to a proliferative advantage of the leukemic cells, and experimentation with epigenetic therapies. In this review, we unravel some of the recently described molecular pathways and explore potential therapeutic strategies.
Collapse
|
53
|
Prospective evaluation of prognostic impact of KIT mutations on acute myeloid leukemia with RUNX1-RUNX1T1 and CBFB-MYH11. Blood Adv 2021; 4:66-75. [PMID: 31899799 DOI: 10.1182/bloodadvances.2019000709] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023] Open
Abstract
The prognostic impact of KIT mutation on core-binding factor acute myeloid leukemia (CBF-AML) remains controversial. We registered 199 newly diagnosed de novo CBF-AML patients, aged 16 to 64 years, who achieved complete remission. They received 3 courses of high-dose cytarabine therapy and no further treatment until hematological relapse. Mutations in exons 8, 10-11, and 17 of the KIT gene were analyzed. Furthermore, we analyzed mutations in 56 genes that are frequently identified in myeloid malignancies and evaluated minimal residual disease (MRD). The primary end point was relapse-free survival (RFS) according to KIT mutations. The RFS in KIT-mutated patients was inferior to that in unmutated patients (hazard ratio, 1.92; 95% confidence interval, 1.23-3.00; P = .003). Based on subgroup analysis, KIT mutations had a prognostic impact in patients with RUNX1-RUNX1T1, but not in those with CBFB-MYH11, and only exon 17 mutation had a significant prognostic impact. Multivariate Cox regression analysis with stepwise selection revealed that the KIT exon 17 mutation and the presence of extramedullary tumors in patients with RUNX1-RUNX1T1, and loss of chromosome X or Y and NRAS mutation in patients with CBFB-MYH11 were poor prognostic factors for RFS. MRD was evaluated in 112 patients, and it was associated with a poorer RFS in the patients with CBFB-MYH11, but not in those with RUNX1-RUNX1T1. These results suggested that it is necessary to separately evaluate AML with RUNX1-RUNX1T1 or CBFB-MYH11 according to appropriate prognostic factors. This study was registered at www.umin.ac.jp/ctr/ as #UMIN000003434.
Collapse
|
54
|
Zhuang Q, Jin Z, Zheng X, Jin T, Xiang L. Long non‑coding RNA LINC00460 serves as a potential biomarker and oncogene via regulation of the miR‑320b/PBX3 axis in acute myeloid leukemia. Mol Med Rep 2021; 23:435. [PMID: 33846790 PMCID: PMC8060808 DOI: 10.3892/mmr.2021.12074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNA 00460 (LINC00460) has been reported to be involved in the tumorigenesis of various cancer types. However, the function of LINC00460 in acute myeloid leukemia (AML) remains elusive. Therefore, the present study aimed to investigate the role of LINC00460 in AML. The expression of LINC00460 in the serum of 80 diagnosed patients with AML and 67 healthy controls was measured via reverse transcription-quantitative polymerase chain reaction, and the results were compared with clinical features and patient outcomes. The expression of LINC00460 in 45 patients with cytogenetically normal-AML (CN-AML) was also assayed. Receiver operating characteristic (ROC) curves were generated to evaluate the sensitivity and specificity of serum LINC00460. In addition, the effects of LINC00460 on the viability, cell cycle distribution and apoptosis of AML cells were investigated. Bioinformatics tools were used to identify the possible mechanisms of how LINC00460 affects AML cells. It was found that the expression of LINC00460 was significantly upregulated in the serum of patients with AML and those with CN-AML. Higher expression of serum LINC00460 was positively associated with French-American-British classification and cytogenetics. Furthermore, ROC curve analyses demonstrated that serum LINC00460 could differentiate patients with AML from healthy individuals with an area under the curve of 0.8488 (95% CI, 0.7697–0.9279). The serum LINC00460 expression was also significantly decreased when the patients achieved complete remission. Kaplan-Meier analysis indicated that patients with high serum LINC00460 expression had a shorter overall survival time compared with the low serum LINC00460 expression group. Knockdown of LINC00460 inhibited viability, while inducing cell cycle arrest and apoptosis in AML cells. LINC00460 was also a decoy of microRNA (miR)-320b, which can further inhibit the expression of PBX homeobox 3 (PBX3). Collectively, the results suggested that LINC00460 may be applied as a potential diagnostic and prognostic biomarker for patients with AML. It was identified that LINC00460 may exert its effects, at least partly, via the miR-320b/PBX3 axis in AML.
Collapse
Affiliation(s)
- Qiang Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhenlin Jin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiangkuo Zheng
- Department of Experimental Center, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Ting Jin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Lina Xiang
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
55
|
Hoyer K, Hablesreiter R, Inoue Y, Yoshida K, Briest F, Christen F, Kakiuchi N, Yoshizato T, Shiozawa Y, Shiraishi Y, Striefler JK, Bischoff S, Lohneis P, Putter H, Blau O, Keilholz U, Bullinger L, Pelzer U, Hummel M, Riess H, Ogawa S, Sinn M, Damm F. A genetically defined signature of responsiveness to erlotinib in early-stage pancreatic cancer patients: Results from the CONKO-005 trial. EBioMedicine 2021; 66:103327. [PMID: 33862582 PMCID: PMC8054140 DOI: 10.1016/j.ebiom.2021.103327] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Background high recurrence rates of up to 75% within 2 years in pancreatic ductal adenocarcinoma (PDAC) patients resected for cure indicate a high medical need for clinical prediction tools and patient specific treatment approaches. Addition of the EGFR inhibitor erlotinib to adjuvant chemotherapy failed to improve outcome but its efficacy in some patients warrants predictors of responsiveness. Patients and Methods we analysed tumour samples from 293 R0-resected patients from the randomized, multicentre phase III CONKO-005 trial (gemcitabine ± erlotinib) with targeted sequencing, copy number, and RNA expression analyses. Findings a total of 1086 mutations and 4157 copy-number aberrations (CNAs) with a mean of 17.9 /tumour were identified. Main pathways affected by genetic aberrations were the MAPK-pathway (99%), cell cycle control (92%), TGFβ signalling (77%), chromatin remodelling (71%), and the PI3K/AKT pathway (65%). Based on genetic signatures extracted with non-negative matrix factorization we could define five patient clusters, which differed in mutation patterns, gene expression profiles, and survival. In multivariable Cox regression analysis, SMAD4 aberrations were identified as a negative prognostic marker in the gemcitabine arm, an effect that was counteracted when treated with erlotinib (DFS: HR=1.59, p = 0.016, and OS: HR = 1.67, p = 0.014). Integration of differential gene expression analysis established SMAD4 alterations with low MAPK9 expression (n = 91) as a predictive biomarker for longer DFS (HR=0.49; test for interaction, p = 0.02) and OS (HR = 0.32; test for interaction, p = 0.001). Interpretation this study identified five biologically distinct patient clusters with different actionable lesions and unravelled a previously unappreciated association of SMAD4 alteration status with erlotinib effectiveness. Confirmatory studies and mechanistic experiments are warranted to challenge the hypothesis that SMAD4 status might guide addition of erlotinib treatment in early-stage PDAC patients.
Collapse
Affiliation(s)
- K Hoyer
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - R Hablesreiter
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Inoue
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - K Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - F Briest
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - F Christen
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - N Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Yoshizato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Shiraishi
- Laboratory of DNA information Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - J K Striefler
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - S Bischoff
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - P Lohneis
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany; Institute of Pathology, University of Cologne, Cologne, Germany
| | - H Putter
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - O Blau
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - U Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - L Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - U Pelzer
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - M Hummel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - H Riess
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - S Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan; Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - M Sinn
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - F Damm
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
56
|
Han C, Gao X, Li Y, Zhang J, Yang E, Zhang L, Yu L. Characteristics of Cohesin Mutation in Acute Myeloid Leukemia and Its Clinical Significance. Front Oncol 2021; 11:579881. [PMID: 33928020 PMCID: PMC8076553 DOI: 10.3389/fonc.2021.579881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
The occurrence of gene mutation is a major contributor to the initiation and propagation of acute myeloid leukemia (AML). Accumulating evidence suggests that genes encoding cohesin subunits have a high prevalence of mutations in AML, especially in the t(8;21) subtype. Therefore, it is important to understand how cohesin mutations contribute to leukemogenesis. However, the fundamental understanding of cohesin mutation in clonal expansion and myeloid transformation in hematopoietic cells remains ambiguous. Previous studies briefly introduced the cohesin mutation in AML; however, an in-depth summary of mutations in AML was not provided, and the correlation between cohesin and AML1-ETO in t (8;21) AML was also not analyzed. By summarizing the major findings regarding the cohesin mutation in AML, this review aims to define the characteristics of the cohesin complex mutation, identify its relationships with co-occurring gene mutations, assess its roles in clonal evolution, and discuss its potential for the prognosis of AML. In particular, we focus on the function of cohesin mutations in RUNX1-RUNX1T1 fusion.
Collapse
Affiliation(s)
- Caixia Han
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Yonghui Li
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Juan Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Erna Yang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
57
|
Qin YZ, Jiang Q, Wang Y, Jiang H, Xu LP, Zhao XS, Zhang XH, Liu KY, Huang XJ. The impact of the combination of KIT mutation and minimal residual disease on outcome in t(8;21) acute myeloid leukemia. Blood Cancer J 2021; 11:67. [PMID: 33795645 PMCID: PMC8016839 DOI: 10.1038/s41408-021-00461-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/27/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Affiliation(s)
- Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
58
|
Hematopoietic stem cells acquire survival advantage by loss of RUNX1 methylation identified in familial leukemia. Blood 2021; 136:1919-1932. [PMID: 32573733 DOI: 10.1182/blood.2019004292] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
RUNX1 is among the most frequently mutated genes in human leukemia, and the loss or dominant-negative suppression of RUNX1 function is found in myelodysplastic syndrome and acute myeloid leukemia (AML). How posttranslational modifications (PTMs) of RUNX1 affect its in vivo function, however, and whether PTM dysregulation of RUNX1 can cause leukemia are largely unknown. We performed targeted deep sequencing on a family with 3 occurrences of AML and identified a novel RUNX1 mutation, R237K. The mutated R237 residue is a methylation site by protein arginine methyltransferase 1, and loss of methylation reportedly impairs the transcriptional activity of RUNX1 in vitro. To explore the biologic significance of RUNX1 methylation in vivo, we used RUNX1 R233K/R237K double-mutant mice, in which 2 arginine-to-lysine mutations precluded RUNX1 methylation. Genetic ablation of RUNX1 methylation led to loss of quiescence and expansion of hematopoietic stem cells (HSCs), and it changed the genomic and epigenomic signatures of phenotypic HSCs to a poised progenitor state. Furthermore, loss of RUNX1 R233/R237 methylation suppressed endoplasmic reticulum stress-induced unfolded protein response genes, including Atf4, Ddit3, and Gadd34; the radiation-induced p53 downstream genes Bbc3, Pmaip1, and Cdkn1a; and subsequent apoptosis in HSCs. Mechanistically, activating transcription factor 4 was identified as a direct transcriptional target of RUNX1. Collectively, defects in RUNX1 methylation in HSCs confer resistance to apoptosis and survival advantage under stress conditions, a hallmark of a preleukemic clone that may predispose affected individuals to leukemia. Our study will lead to a better understanding of how dysregulation of PTMs can contribute to leukemogenesis.
Collapse
|
59
|
Li X, Dai Y, Chen B, Huang J, Chen S, Jiang L. Clinical significance of CD34 +CD117 dim/CD34 +CD117 bri myeloblast-associated gene expression in t(8;21) acute myeloid leukemia. Front Med 2021; 15:608-620. [PMID: 33754282 DOI: 10.1007/s11684-021-0836-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/09/2020] [Indexed: 01/22/2023]
Abstract
t(8;21)(q22;q22) acute myeloid leukemia (AML) is a highly heterogeneous hematological malignancy with a high relapse rate in China. Two leukemic myeloblast populations (CD34+CD117dim and CD34+CD117bri) were previously identified in t(8;21) AML, and CD34+CD117dim cell proportion was determined as an independent factor for this disease outcome. Here, we examined the impact of CD34+CD117dim/CD34+CD117bri myeloblast-associated gene expression on t(8;21) AML clinical prognosis. In this study, 85 patients with t(8;21) AML were enrolled. The mRNA expression levels of CD34+CD117dim-associated genes (LGALS1, EMP3, and CRIP1) and CD34+CD117bri-associated genes (TRH, PLAC8, and IGLL1) were measured using quantitative reverse transcription PCR. Associations between gene expression and clinical outcomes were determined using Cox regression models. Results showed that patients with high LGALS1, EMP3, or CRIP1 expression had significantly inferior overall survival (OS), whereas those with high TRH or PLAC8 expression showed relatively favorable prognosis. Univariate analysis revealed that CD19, CD34+CD117dim proportion, KIT mutation, minimal residual disease (MRD), and expression levels of LGALS1, EMP3, CRIP1, TRH and PLAC8 were associated with OS. Multivariate analysis indicated that KIT mutation, MRD and CRIP1 and TRH expression levels were independent prognostic variables for OS. Identifying the clinical relevance of CD34+CD117dim/CD34+CD117bri myeloblast-associated gene expression may provide new clinically prognostic markers for t(8;21) AML.
Collapse
Affiliation(s)
- Xueping Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bing Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
60
|
Ochi Y, Ogawa S. Chromatin-Spliceosome Mutations in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13061232. [PMID: 33799787 PMCID: PMC7999050 DOI: 10.3390/cancers13061232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Recent genomic studies have identified chromatin-spliceosome (CS)-acute myeloid leukemia (AML) as a new subgroup of AML. CS-AML is defined by several mutations that perturb epigenetic regulation, such as those affecting splicing factors, cohesin components, transcription factors, and chromatin modifiers, which are also frequently mutated in other myeloid malignancies, such as myelodysplastic syndrome and secondary AML. Thus, these mutations identify myeloid neoplasms that lie on the boundaries of conventional differential diagnosis. CS-AML shares several clinical characteristics with secondary AML. Therefore, the presence of CS-mutations may help to better classify and manage patients with AML and related disorders. The aim of this review is to discuss the genetic and clinical characteristics of CS-AML and roles of driver mutations defining this unique genomic subgroup of AML. Abstract Recent genetic studies on large patient cohorts with acute myeloid leukemia (AML) have cataloged a comprehensive list of driver mutations, resulting in the classification of AML into distinct genomic subgroups. Among these subgroups, chromatin-spliceosome (CS)-AML is characterized by mutations in the spliceosome, cohesin complex, transcription factors, and chromatin modifiers. Class-defining mutations of CS-AML are also frequently identified in myelodysplastic syndrome (MDS) and secondary AML, indicating the molecular similarity among these diseases. CS-AML is associated with myelodysplasia-related changes in hematopoietic cells and poor prognosis, and, thus, can be treated using novel therapeutic strategies and allogeneic stem cell transplantation. Functional studies of CS-mutations in mice have revealed that CS-mutations typically cause MDS-like phenotypes by altering the epigenetic regulation of target genes. Moreover, multiple CS-mutations often synergistically induce more severe phenotypes, such as the development of lethal MDS/AML, suggesting that the accumulation of many CS-mutations plays a crucial role in the progression of MDS/AML. Indeed, the presence of multiple CS-mutations is a stronger indicator of CS-AML than a single mutation. This review summarizes the current understanding of the genetic and clinical features of CS-AML and the functional roles of driver mutations characterizing this unique category of AML.
Collapse
Affiliation(s)
- Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm 171 77, Sweden
- Correspondence: ; Tel.: +81-75-753-9285
| |
Collapse
|
61
|
Swart LE, Heidenreich O. The RUNX1/RUNX1T1 network: translating insights into therapeutic options. Exp Hematol 2021; 94:1-10. [PMID: 33217477 PMCID: PMC7854360 DOI: 10.1016/j.exphem.2020.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
RUNX1/RUNX1T1 is the most common fusion gene found in acute myeloid leukemia. Seminal contributions by many different research groups have revealed a complex regulatory network promoting leukemic self-renewal and propagation. Perturbation of RUNX1/RUNX1T1 levels and its DNA binding affects chromatin accessibility and transcription factor occupation at multiple gene loci associated with changes in gene expression levels. Exploration of this transcriptional program by targeted RNAi screens uncovered a crucial role of RUNX1/RUNX1T1 in cell cycle progression by regulating CCND2. This dependency results in a high vulnerability toward inhibitors of CDK4 and CDK6 and suggests new avenues for therapeutic intervention against acute myeloid leukemia.
Collapse
MESH Headings
- Animals
- Cell Cycle
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Gene Expression Regulation, Leukemic
- Gene Regulatory Networks
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein Interaction Maps
- RUNX1 Translocation Partner 1 Protein/genetics
- RUNX1 Translocation Partner 1 Protein/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Laura E Swart
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
62
|
Zhang R, Dong L, Yu J. Concomitant Pathogenic Mutations and Fusions of Driver Oncogenes in Tumors. Front Oncol 2021; 10:544579. [PMID: 33520689 PMCID: PMC7844084 DOI: 10.3389/fonc.2020.544579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 11/27/2020] [Indexed: 01/01/2023] Open
Abstract
Driver oncogene alterations have always been one of leading causes in the process of occurrence and development of tumors. And the effects of driver oncogene alterations on tumorigenesis and progression in different kinds of tumors have been studied heatedly. And the roles that the driver oncogenes alterations play have been elucidated clearly in previous studies. The phenomenon of concomitant driver oncogenes mutations and driver genes fusions has gained much concentration in the past two decades. And a growing number of studies reported this phenomenon, either coexistence or mutually exclusivity. Here we reviewed on the phenomenon of concomitant mutations in three common types of carcinomas—lung cancer, thyroid cancer, and leukemia, which have been studied relatively more detailed and more general compared with others.
Collapse
Affiliation(s)
- Runjiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Li Dong
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
63
|
Jahn N, Terzer T, Sträng E, Dolnik A, Cocciardi S, Panina E, Corbacioglu A, Herzig J, Weber D, Schrade A, Götze K, Schröder T, Lübbert M, Wellnitz D, Koller E, Schlenk RF, Gaidzik VI, Paschka P, Rücker FG, Heuser M, Thol F, Ganser A, Benner A, Döhner H, Bullinger L, Döhner K. Genomic heterogeneity in core-binding factor acute myeloid leukemia and its clinical implication. Blood Adv 2020; 4:6342-6352. [PMID: 33351131 PMCID: PMC7757000 DOI: 10.1182/bloodadvances.2020002673] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
Core-binding factor (CBF) acute myeloid leukemia (AML) encompasses AML with inv(16)(p13.1q22) and AML with t(8;21)(q22;q22.1). Despite sharing a common pathogenic mechanism involving rearrangements of the CBF transcriptional complex, there is growing evidence for considerable genotypic heterogeneity. We comprehensively characterized the mutational landscape of 350 adult CBF-AML [inv(16): n = 160, t(8;21): n = 190] performing targeted sequencing of 230 myeloid cancer-associated genes. Apart from common mutations in signaling genes, mainly NRAS, KIT, and FLT3, both CBF-AML entities demonstrated a remarkably diverse pattern with respect to the underlying cooperating molecular events, in particular in genes encoding for epigenetic modifiers and the cohesin complex. In addition, recurrent mutations in novel collaborating candidate genes such as SRCAP (5% overall) and DNM2 (6% of t(8;21) AML) were identified. Moreover, aberrations altering transcription and differentiation occurred at earlier leukemic stages and preceded mutations impairing proliferation. Lasso-penalized models revealed an inferior prognosis for t(8;21) AML, trisomy 8, as well as FLT3 and KIT exon 17 mutations, whereas NRAS and WT1 mutations conferred superior prognosis. Interestingly, clonal heterogeneity was associated with a favorable prognosis. When entering mutations by functional groups in the model, mutations in genes of the methylation group (ie, DNMT3A, TET2) had a strong negative prognostic impact.
Collapse
Affiliation(s)
- Nikolaus Jahn
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Tobias Terzer
- Division of Biostatistics, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Eric Sträng
- Department of Hematology, Oncology, Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Anna Dolnik
- Department of Hematology, Oncology, Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Sibylle Cocciardi
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Ekaterina Panina
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Andrea Corbacioglu
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Julia Herzig
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Daniela Weber
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Anika Schrade
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Katharina Götze
- Department of Internal Medicine III, University Hospital Klinikum Rechts der Isar, Munich, Germany
| | - Thomas Schröder
- Department of Hematology, Oncology, and Clinical Immunology, University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Michael Lübbert
- Department of Internal Medicine I, Faculty of Medicine, University Hospital of Freiburg, Freiburg, Germany
| | - Dominique Wellnitz
- Department of Internal Medicine II, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Elisabeth Koller
- Department of Internal Medicine III, Hanuschkrankenhaus Wien, Wien, Austria
| | - Richard F Schlenk
- National Center of Tumor Diseases-Trial Center, German Cancer Research Center, Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany; and
| | - Verena I Gaidzik
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Peter Paschka
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Frank G Rücker
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
64
|
Kellaway S, Chin PS, Barneh F, Bonifer C, Heidenreich O. t(8;21) Acute Myeloid Leukemia as a Paradigm for the Understanding of Leukemogenesis at the Level of Gene Regulation and Chromatin Programming. Cells 2020; 9:E2681. [PMID: 33322186 PMCID: PMC7763303 DOI: 10.3390/cells9122681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous disease with multiple sub-types which are defined by different somatic mutations that cause blood cell differentiation to go astray. Mutations occur in genes encoding members of the cellular machinery controlling transcription and chromatin structure, including transcription factors, chromatin modifiers, DNA-methyltransferases, but also signaling molecules that activate inducible transcription factors controlling gene expression and cell growth. Mutant cells in AML patients are unable to differentiate and adopt new identities that are shaped by the original driver mutation and by rewiring their gene regulatory networks into regulatory phenotypes with enhanced fitness. One of the best-studied AML-subtypes is the t(8;21) AML which carries a translocation fusing the DNA-binding domain of the hematopoietic master regulator RUNX1 to the ETO gene. The resulting oncoprotein, RUNX1/ETO has been studied for decades, both at the biochemical but also at the systems biology level. It functions as a dominant-negative version of RUNX1 and interferes with multiple cellular processes associated with myeloid differentiation, growth regulation and genome stability. In this review, we summarize our current knowledge of how this protein reprograms normal into malignant cells and how our current knowledge could be harnessed to treat the disease.
Collapse
Affiliation(s)
- Sophie Kellaway
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Paulynn S. Chin
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Farnaz Barneh
- Princess Máxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, The Netherlands;
| | - Constanze Bonifer
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Olaf Heidenreich
- Princess Máxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, The Netherlands;
| |
Collapse
|
65
|
Aypar U, Yao J, Londono DM, Khoobyar R, Scalise A, Arcila ME, Roshal M, Xiao W, Zhang Y. Rare and novel RUNX1 fusions in myeloid neoplasms: A single-institute experience. Genes Chromosomes Cancer 2020; 60:100-107. [PMID: 33078873 DOI: 10.1002/gcc.22901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/06/2022] Open
Abstract
Chromosome translocations involving the RUNX1 gene at 21q22 are recurring abnormalities in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), that is, t(8;21) and t(3;21) and in B-cell acute lymphoblastic leukemia with t(12;21). These translocations result in the fusion of RUNX1 with RUNX1T1, MECOM, and ETV6, respectively, and are implicated in leukemogenesis. Here we describe 10 rare RUNX1 fusion gene partners, including six novel fusions, in myeloid neoplasia. Comprehensive molecular testing revealed the partner genes and features of these fusions in all the tested patients, and detected various recurring myeloid related gene mutations in eight patients. In two patients, RUNX1 mutations were identified. Most of these fusions were detected in patients with high-grade MDS and AML with a relatively short survival. Integration of conventional chromosome analysis, FISH testing and molecular genetic studies allow a comprehensive characterization of these rare RUNX1 fusions. Our study may help define myeloid neoplasms with rare and novel RUNX1 translocations and support appropriate patient management.
Collapse
Affiliation(s)
- Umut Aypar
- Department of Pathology, Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jinjuan Yao
- Department of Pathology, Molecular Diagnostic Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dory M Londono
- Department of Pathology, Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Rose Khoobyar
- Department of Pathology, Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Angela Scalise
- Department of Pathology, Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria E Arcila
- Department of Pathology, Molecular Diagnostic Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mikhail Roshal
- Department of Pathology, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Wenbin Xiao
- Department of Pathology, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yanming Zhang
- Department of Pathology, Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
66
|
Shaikh AF, Kakirde C, Dhamne C, Bhanshe P, Joshi S, Chaudhary S, Chatterjee G, Tembhare P, Prasad M, Roy Moulik N, Gokarn A, Bonda A, Nayak L, Punatkar S, Jain H, Bagal B, Shetty D, Sengar M, Narula G, Khattry N, Banavali S, Gujral S, P G S, Patkar N. Machine learning derived genomics driven prognostication for acute myeloid leukemia with RUNX1-RUNX1T1. Leuk Lymphoma 2020; 61:3154-3160. [PMID: 32757686 PMCID: PMC7116445 DOI: 10.1080/10428194.2020.1798951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Panel based next generation sequencing was performed on a discovery cohort of AML with RUNX1-RUNX1T1. Supervised machine learning identified NRAS mutation and absence of mutations in ASXL2, RAD21, KIT and FLT3 genes as well as a low mutation to be associated with favorable outcome. Based on this data patients were classified into favorable and poor genetic risk classes. Patients classified as poor genetic risk had a significantly lower overall survival (OS) and relapse free survival (RFS). We could validate these findings independently on a validation cohort (n=61). Patients in the poor genetic risk group were more likely to harbor measurable residual disease. Poor genetic risk emerged as an independent risk factor predictive of inferior outcome. Using an unbiased computational approach based we provide evidence for gene panel-based testing in AML with RUNX1-RUNX1T1 and a framework for integration of genomic markers toward clinical decision making in this heterogeneous disease entity.
Collapse
Affiliation(s)
- Anam Fatima Shaikh
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Chinmayee Kakirde
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Chetan Dhamne
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Pediatric Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Prasanna Bhanshe
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Swapnali Joshi
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Shruti Chaudhary
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Gaurav Chatterjee
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Prashant Tembhare
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Maya Prasad
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Pediatric Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Nirmalya Roy Moulik
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Pediatric Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Anant Gokarn
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Avinash Bonda
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Lingaraj Nayak
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Sachin Punatkar
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Hasmukh Jain
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Bhausaheb Bagal
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Dhanalaxmi Shetty
- Deparment of Cytogenetics, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Manju Sengar
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Gaurav Narula
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Pediatric Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Navin Khattry
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Shripad Banavali
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Pediatric Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Sumeet Gujral
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Subramanian P G
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Nikhil Patkar
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
67
|
Multidimensional study of the heterogeneity of leukemia cells in t(8;21) acute myelogenous leukemia identifies the subtype with poor outcome. Proc Natl Acad Sci U S A 2020; 117:20117-20126. [PMID: 32747558 DOI: 10.1073/pnas.2003900117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
t(8;21)(q22;q22) acute myelogenous leukemia (AML) is morphologically characterized by a continuum of heterogeneous leukemia cells from myeloblasts to differentiated myeloid elements. Thus, t(8;21) AML is an excellent model for studying heterogeneous cell populations and cellular evolution during disease progression. Using integrative analyses of immunophenotype, RNA-sequencing (RNA-seq), and single-cell RNA-sequencing (scRNA-seq), we identified three distinct intrapatient leukemic cell populations that were arrested at different stages of myeloid differentiation: CD34+CD117dim blasts, CD34+CD117bri blasts, and abnormal myeloid cells with partial maturation (AM). CD117 is also known as c-KIT protein. CD34+CD117dim cells were blocked in the G0/G1 phase at disease onset, presenting with the regular morphology of myeloblasts showing features of granulocyte-monocyte progenitors (GMP), and were drug-resistant to chemotherapy. Genes associated with cell migration and adhesion (LGALS1, EMP3, and ANXA 2) were highly expressed in the CD34+CD117dim population. CD34+CD117bri blasts were blocked a bit later than the CD34+CD117dim population in the hematopoietic differentiation stage and displayed high proliferation ability. AM cells, which bear abnormal myelocyte morphology, especially overexpressed granule genes AZU1, ELANE, and PRTN3 and were sensitive to chemotherapy. scRNA-seq at different time points identified CD34+CD117dim blasts as an important leukemic cluster that expanded at postrelapse refractory stage after several cycles of chemotherapy. Patients with t(8;21) AML with a higher proportion of CD34+CD117dim cells had significantly worse clinical outcomes than those with a lower CD34+CD117dim proportion. Univariate and multivariate analyses identified CD34+CD117dim proportion as an independent factor for poor disease outcome. Our study provides evidence for the multidimensional heterogeneity of t(8;21)AML and may offer new tools for future disease stratification.
Collapse
|
68
|
Quan X, Deng J. Core binding factor acute myeloid leukemia: Advances in the heterogeneity of KIT, FLT3, and RAS mutations (Review). Mol Clin Oncol 2020; 13:95-100. [PMID: 32714530 DOI: 10.3892/mco.2020.2052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Core binding factor (CBF) is a heterodimer protein complex involved in the transcriptional regulation of normal hematopoietic process. In addition, CBF molecular aberrations represent approximately 20% of all adult Acute Myeloid Leukemia (AML) patients. Treated with standard therapy, adult CBF AML has higher complete remission (CR) rate, longer CR duration, and better prognosis than that of AML patients with normal karyotype or other chromosomal aberrations. Although the prognosis of CBF AML is better than other subtypes of adult AML, it is still a group of heterogeneous diseases, and the prognosis is often different. Recurrence and relapse-related death are the main challenges to be faced following treatment. Mounting research shows the gene heterogeneity of CBF AML. Therefore, to achieve an improved clinical outcome, the differences in clinical and genotypic characteristics should be taken into account in the evaluation and management of such patients, so as to further improve the risk stratification of prognosis and develop targeted therapy. The present article is a comprehensive review of the differences in some common mutant genes between two subtypes of CBF AML.
Collapse
Affiliation(s)
- Xi Quan
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jianchuan Deng
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
69
|
Hou HA, Tien HF. Genomic landscape in acute myeloid leukemia and its implications in risk classification and targeted therapies. J Biomed Sci 2020; 27:81. [PMID: 32690020 PMCID: PMC7372828 DOI: 10.1186/s12929-020-00674-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy in terms of clinical features, underlying pathogenesis and treatment outcomes. Recent advances in genomic techniques have unraveled the molecular complexity of AML leukemogenesis, which in turn have led to refinement of risk stratification and personalized therapeutic strategies for patients with AML. Incorporation of prognostic and druggable genetic biomarkers into clinical practice to guide patient-specific treatment is going to be the mainstay in AML therapeutics. Since 2017 there has been an explosion of novel treatment options to tailor personalized therapy for AML patients. In the past 3 years, the U.S. Food and Drug Administration approved a total of eight drugs for the treatment of AML; most specifically target certain gene mutations, biological pathways, or surface antigen. These novel agents are especially beneficial for older patients or those with comorbidities, in whom the treatment choice is limited and the clinical outcome is very poor. How to balance efficacy and toxicity to further improve patient outcome is clinically relevant. In this review article, we give an overview of the most relevant genetic markers in AML with special focus on the therapeutic implications of these aberrations.
Collapse
Affiliation(s)
- Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
70
|
McElderry J, Carrington B, Bishop K, Kim E, Pei W, Chen Z, Ramanagoudr-Bhojappa R, Prakash A, Burgess SM, Liu PP, Sood R. Splicing factor DHX15 affects tp53 and mdm2 expression via alternate splicing and promoter usage. Hum Mol Genet 2020; 28:4173-4185. [PMID: 31691804 DOI: 10.1093/hmg/ddz261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022] Open
Abstract
DHX15, a DEAH box containing RNA helicase, is a splicing factor required for the last step of splicing. Recent studies identified a recurrent mutational hotspot, R222G, in DHX15 in ∼ 6% of acute myeloid leukemia (AML) patients that carry the fusion protein RUNX1-RUNX1T1 produced by t (8;21) (q22;q22). Studies using yeast mutants showed that substitution of G for the residue equivalent to R222 leads to loss of its helicase function, suggesting that it is a loss-of-function mutation. To elucidate the role of DHX15 during development, we established the first vertebrate knockout model with CRISPR/Cas9 in zebrafish. Our data showed that dhx15 expression is enriched in the brain, eyes, pectoral fin primordia, liver and intestinal bulb during embryonic development. Dhx15 deficiency leads to pleiotropic morphological phenotypes in homozygous mutant embryos starting at 3 days post fertilization (dpf) that result in lethality by 7 dpf, revealing an essential role during embryonic development. RNA-seq analysis suggested important roles of Dhx15 in chromatin and nucleosome assembly and regulation of the Mdm2-p53 pathway. Interestingly, exons corresponding to the alternate transcriptional start sites for tp53 and mdm2 were preferentially expressed in the mutant embryos, leading to significant upregulation of their alternate isoforms, Δ113p53 (orthologous to Δ133p53 isoform in human) and mdm2-P2 (isoform using distal promoter P2), respectively. We speculate that these alterations in the Mdm2-p53 pathway contribute to the development of AML in patients with t(8;21) and somatically mutated DHX15.
Collapse
Affiliation(s)
- John McElderry
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Blake Carrington
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Bishop
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erika Kim
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wuhong Pei
- Developmental Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zelin Chen
- Developmental Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramanagouda Ramanagoudr-Bhojappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anupam Prakash
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shawn M Burgess
- Developmental Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - P Paul Liu
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raman Sood
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
71
|
Targeted deep sequencing reveals clonal and subclonal mutational signatures in Adult T-cell leukemia/lymphoma and defines an unfavorable indolent subtype. Leukemia 2020; 35:764-776. [PMID: 32555298 DOI: 10.1038/s41375-020-0900-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATL) carries a poor prognosis even in indolent subtypes. We performed targeted deep sequencing combined with mapping of HTLV-1 proviral integration sites of 61 ATL patients of African and Caribbean origin. This revealed mutations mainly affecting TCR/NF-kB (74%), T-cell trafficking (46%), immune escape (29%), and cell cycle (26%) related pathways, consistent with the genomic landscape previously reported in a large Japanese cohort. To examine the evolution of mutational signatures upon disease progression while tracking the viral integration architecture of the malignant clone, we carried out a longitudinal study of patients who either relapsed or progressed from an indolent to an aggressive subtype. Serial analysis of relapsing patients identified several patterns of clonal evolution. In progressing patients, the longitudinal study revealed NF-kB/NFAT mutations at progression that were present at a subclonal level at diagnosis (allelic frequency < 5%). Moreover, the presence in indolent subtypes of mutations affecting the TCR/NF-kB pathway, whether clonal or subclonal, was associated with significantly shorter time to progression and overall survival. Our observations reveal the clonal dynamics of ATL mutational signatures at relapse and during progression. Our study defines a new subgroup of indolent ATLs characterized by a mutational signature at high risk of transformation.
Collapse
|
72
|
Tóth B, Kiss N, Hársing J, Kárpáti S, Csomor J, Bödör C, Tímár J, Rásó E. Frequent KIT mutations in skin lesions of patients with BRAF wild-type Langerhans cell histiocytosis. Virchows Arch 2020; 477:749-753. [PMID: 32372223 PMCID: PMC7581584 DOI: 10.1007/s00428-020-02820-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022]
Abstract
Langerhans cell histiocytosis (LCH) is characterized by mutations of the RAS-RAF-MAPK signaling pathway. We analyzed MAP2K1, NRAS and KIT mutation incidence in skin lesions of BRAF wild-type (wt) LCH patients. We evaluated the occurrence of MAP2K1, NRAS and KIT mutations in seven LCH and one indeterminate cell histiocytosis (ICH) patients. MAP2K1 mutation frequency was found to be 3/7 (42.9%) in LCH and also found in ICH. Similarly, the KIT mutation frequency was found to be equally prevalent (4/7, 57.1%) in LCH and also occurred in ICH. Involvement of KIT exons in LCH-ICH indicated that exon 9/11/18 were equally prevalent followed by exon 13. This exploratory analysis on BRAF-wt LCH revealed a KIT mutation rate comparable to MAP2K1. Although the detected KIT mutations are different from activating mutations found in other KIT-dependent neoplasms, our data suggest that KIT-inhibitors might have a role in treating BRAF-wt LCH patients.
Collapse
Affiliation(s)
- Béla Tóth
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária utca, Budapest, H-1085, Hungary.
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária utca, Budapest, H-1085, Hungary
| | - Judit Hársing
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária utca, Budapest, H-1085, Hungary
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária utca, Budapest, H-1085, Hungary
| | - Judit Csomor
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Erzsébet Rásó
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
73
|
Yu J, Li Y, Zhang D, Wan D, Jiang Z. Clinical implications of recurrent gene mutations in acute myeloid leukemia. Exp Hematol Oncol 2020; 9:4. [PMID: 32231866 PMCID: PMC7099827 DOI: 10.1186/s40164-020-00161-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous clonal malignancy characterized by recurrent gene mutations. Genomic heterogeneity, patients’ individual variability, and recurrent gene mutations are the major obstacles among many factors that impact treatment efficacy of the AML patients. With the application of cost- and time-effective next-generation sequencing (NGS) technologies, an enormous diversity of genetic mutations has been identified. The recurrent gene mutations and their important roles in acute myeloid leukemia (AML) pathogenesis have been studied extensively. In this review, we summarize the recent development on the gene mutation in patients with AML.
Collapse
Affiliation(s)
- Jifeng Yu
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China.,2Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yingmei Li
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Danfeng Zhang
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Dingming Wan
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhongxing Jiang
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
74
|
Redondo Monte E, Wilding A, Leubolt G, Kerbs P, Bagnoli JW, Hartmann L, Hiddemann W, Chen-Wichmann L, Krebs S, Blum H, Cusan M, Vick B, Jeremias I, Enard W, Theurich S, Wichmann C, Greif PA. ZBTB7A prevents RUNX1-RUNX1T1-dependent clonal expansion of human hematopoietic stem and progenitor cells. Oncogene 2020; 39:3195-3205. [PMID: 32115572 PMCID: PMC7142018 DOI: 10.1038/s41388-020-1209-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
ZBTB7A is frequently mutated in acute myeloid leukemia (AML) with t(8;21) translocation. However, the oncogenic collaboration between mutated ZBTB7A and the RUNX1–RUNX1T1 fusion gene in AML t(8;21) remains unclear. Here, we investigate the role of ZBTB7A and its mutations in the context of normal and malignant hematopoiesis. We demonstrate that clinically relevant ZBTB7A mutations in AML t(8;21) lead to loss of function and result in perturbed myeloid differentiation with block of the granulocytic lineage in favor of monocytic commitment. In addition, loss of ZBTB7A increases glycolysis and hence sensitizes leukemic blasts to metabolic inhibition with 2-deoxy-d-glucose. We observed that ectopic expression of wild-type ZBTB7A prevents RUNX1-RUNX1T1-mediated clonal expansion of human CD34+ cells, whereas the outgrowth of progenitors is enabled by ZBTB7A mutation. Finally, ZBTB7A expression in t(8;21) cells lead to a cell cycle arrest that could be mimicked by inhibition of glycolysis. Our findings suggest that loss of ZBTB7A may facilitate the onset of AML t(8;21), and that RUNX1-RUNX1T1-rearranged leukemia might be treated with glycolytic inhibitors.
Collapse
Affiliation(s)
- Enric Redondo Monte
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Anja Wilding
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Georg Leubolt
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Paul Kerbs
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Johannes W Bagnoli
- Anthropology & Human Genomics, Department of Biology II, LMU Munich, 82152, Martinsried, Germany
| | - Luise Hartmann
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Wolfgang Hiddemann
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Linping Chen-Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Stefan Krebs
- Gene Center-Laboratory for Functional Genome Analysis, LMU Munich, 81377, Munich, Germany
| | - Helmut Blum
- Gene Center-Laboratory for Functional Genome Analysis, LMU Munich, 81377, Munich, Germany
| | - Monica Cusan
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Binje Vick
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, 81377, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, 81377, Munich, Germany
| | - Wolfgang Enard
- Anthropology & Human Genomics, Department of Biology II, LMU Munich, 82152, Martinsried, Germany
| | - Sebastian Theurich
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,Cancer & Immunometabolism Research Group, Gene Center, LMU Munich, 81377, Munich, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Philipp A Greif
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany. .,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany. .,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany.
| |
Collapse
|
75
|
Osman SH, Abu N, Aziz H, Chow YP, Wan Mohamad Nazarie WF, Ab Mutalib NS, Alias H, Jamal R. Deep Transcriptome Sequencing of Pediatric Acute Myeloid Leukemia Patients at Diagnosis, Remission and Relapse: Experience in 3 Malaysian Children in a Single Center Study. Front Genet 2020; 11:66. [PMID: 32174960 PMCID: PMC7056821 DOI: 10.3389/fgene.2020.00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/20/2020] [Indexed: 12/03/2022] Open
Affiliation(s)
- Siti Hawa Osman
- UKM Medical Molecular Biology Institute, The National University of Malaysia, Cheras, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute, The National University of Malaysia, Cheras, Malaysia
| | - Habsah Aziz
- UKM Medical Molecular Biology Institute, The National University of Malaysia, Cheras, Malaysia
| | - Yock Ping Chow
- UKM Medical Molecular Biology Institute, The National University of Malaysia, Cheras, Malaysia
| | | | | | - Hamidah Alias
- Department of Pediatrics, UKM Medical Centre, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
- *Correspondence: Hamidah Alias, ; Rahman Jamal,
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, The National University of Malaysia, Cheras, Malaysia
- *Correspondence: Hamidah Alias, ; Rahman Jamal,
| |
Collapse
|
76
|
Xiong Q, Huang S, Li YH, Lv N, Lv C, Ding Y, Liu WW, Wang LL, Chen Y, Sun L, Zhao Y, Liao SY, Zhang MQ, Zhu BL, Yu L. Single‑cell RNA sequencing of t(8;21) acute myeloid leukemia for risk prediction. Oncol Rep 2020; 43:1278-1288. [PMID: 32323795 PMCID: PMC7057921 DOI: 10.3892/or.2020.7507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) of bone marrow or peripheral blood samples from patients with acute myeloid leukemia (AML) enables the characterization of heterogeneous malignant cells. A total of 87 cells from two patients with t(8;21) AML were analyzed using scRNA-seq. Clustering methods were used to separate leukemia cells into different sub-populations, and the expression patterns of specific marker genes were used to annotate these populations. Among the 31 differentially expressed genes in the cells of a patient who relapsed after hematopoietic stem cell transplantation, 13 genes were identified to be associated with leukemia. Furthermore, three genes, namely AT-rich interaction domain 2, lysine methyltransferase 2A and synaptotagmin binding cytoplasmic RNA interacting protein were validated as possible prognostic biomarkers using two bulk expression datasets. Taking advantage of scRNA-seq, the results of the present study may provide clinicians with several possible biomarkers to predict the prognostic outcomes of t(8;21) AML.
Collapse
Affiliation(s)
- Qian Xiong
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Sai Huang
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yong-Hui Li
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Na Lv
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Chao Lv
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yi Ding
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wen-Wen Liu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Li-Li Wang
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yang Chen
- School of Medicine, MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, P.R. China
| | - Liang Sun
- School of Medicine, MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, P.R. China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Sheng-You Liao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Michael Q Zhang
- School of Medicine, MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, P.R. China
| | - Bao-Li Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Li Yu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
77
|
Du X, He K, Huang Y, Xu Z, Kong M, Zhang J, Cao J, Teng L. Establishment of a novel human cell line retaining the characteristics of the original pancreatic adenocarcinoma, and evaluation of MEK as a therapeutic target. Int J Oncol 2020; 56:761-771. [PMID: 32124956 PMCID: PMC7010221 DOI: 10.3892/ijo.2020.4965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a lethal solid malignancy with limited therapeutic options. The development of novel therapeutic drugs requires adequate new cell line models. A new pancreatic cancer cell line, designated PDXPC1, was established from one pancreatic ductal adenocarcinoma (PDAC) patient-derived xenograft. The PDXPC1 cells were stably cultured for >2 years and had a stable short tandem repeat profile. The PDXPC1 cell line retained the key mutations of the primary tumor, along with the epithelial origin and other important protein expression. The PDXPC1 cells induced rapid in vivo tumor growth, both subcutaneously and orthotopically, in a mouse model with an elevated CA199 level. The PDXPC1 cells showed weak growth, invasion and migration potency compared to another pancreatic cancer cell line, but were relatively resistant to multiple anti-cancer drugs. Interestingly, the MEK inhibitor trametinib significantly inhibited the proliferation of PDXPC1 cells, and not that of Panc-1 cells, by inactivating MEK/ERK/MYC signaling and activating the apoptotic pathway via Bcl-2 degradation. In conclusion, the PDXPC1 cell line, capturing the major characteristics of the primary tumor, may be a suitable tool for studying the underlying mechanisms of chemo-resistance in PDAC and developing new targeted therapeutic options.
Collapse
Affiliation(s)
- Xiaoxiao Du
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Kuifeng He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhenzhen Xu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Mei Kong
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jiang Cao
- Clinical Research Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
78
|
Single-cell analysis based dissection of clonality in myelofibrosis. Nat Commun 2020; 11:73. [PMID: 31911629 PMCID: PMC6946829 DOI: 10.1038/s41467-019-13892-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/28/2019] [Indexed: 12/29/2022] Open
Abstract
Cancer development is an evolutionary genomic process with parallels to Darwinian selection. It requires acquisition of multiple somatic mutations that collectively cause a malignant phenotype and continuous clonal evolution is often linked to tumor progression. Here, we show the clonal evolution structure in 15 myelofibrosis (MF) patients while receiving treatment with JAK inhibitors (mean follow-up 3.9 years). Whole-exome sequencing at multiple time points reveal acquisition of somatic mutations and copy number aberrations over time. While JAK inhibition therapy does not seem to create a clear evolutionary bottleneck, we observe a more complex clonal architecture over time, and appearance of unrelated clones. Disease progression associates with increased genetic heterogeneity and gain of RAS/RTK pathway mutations. Clonal diversity results in clone-specific expansion within different myeloid cell lineages. Single-cell genotyping of circulating CD34 + progenitor cells allows the reconstruction of MF phylogeny demonstrating loss of heterozygosity and parallel evolution as recurrent events. Myelofibrosis is a myeloproliferative neoplasm. Here, the authors show the clonal evolution of myelofibrosis during JAK inhibitor therapy, revealing how the treatment results in an increase in clonal complexity and a gain of RAS pathway mutations.
Collapse
|
79
|
Opatz S, Bamopoulos SA, Metzeler KH, Herold T, Ksienzyk B, Bräundl K, Tschuri S, Vosberg S, Konstandin NP, Wang C, Hartmann L, Graf A, Krebs S, Blum H, Schneider S, Thiede C, Middeke JM, Stölzel F, Röllig C, Schetelig J, Ehninger G, Krämer A, Braess J, Görlich D, Sauerland MC, Berdel WE, Wörmann BJ, Hiddemann W, Spiekermann K, Bohlander SK, Greif PA. The clinical mutatome of core binding factor leukemia. Leukemia 2020; 34:1553-1562. [PMID: 31896782 PMCID: PMC7266744 DOI: 10.1038/s41375-019-0697-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022]
Abstract
The fusion genes CBFB/MYH11 and RUNX1/RUNX1T1 block differentiation through disruption of the core binding factor (CBF) complex and are found in 10–15% of adult de novo acute myeloid leukemia (AML) cases. This AML subtype is associated with a favorable prognosis; however, nearly half of CBF-rearranged patients cannot be cured with chemotherapy. This divergent outcome might be due to additional mutations, whose spectrum and prognostic relevance remains hardly defined. Here, we identify nonsilent mutations, which may collaborate with CBF-rearrangements during leukemogenesis by targeted sequencing of 129 genes in 292 adult CBF leukemia patients, and thus provide a comprehensive overview of the mutational spectrum (‘mutatome’) in CBF leukemia. Thereby, we detected fundamental differences between CBFB/MYH11- and RUNX1/RUNX1T1-rearranged patients with ASXL2, JAK2, JAK3, RAD21, TET2, and ZBTB7A being strongly correlated with the latter subgroup. We found prognostic relevance of mutations in genes previously known to be AML-associated such as KIT, SMC1A, and DHX15 and identified novel, recurrent mutations in NFE2 (3%), MN1 (4%), HERC1 (3%), and ZFHX4 (5%). Furthermore, age >60 years, nonprimary AML and loss of the Y-chromosomes are important predictors of survival. These findings are important for refinement of treatment stratification and development of targeted therapy approaches in CBF leukemia.
Collapse
Affiliation(s)
- Sabrina Opatz
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanos A Bamopoulos
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Klaus H Metzeler
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Bianka Ksienzyk
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Kathrin Bräundl
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Tschuri
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Vosberg
- Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Nikola P Konstandin
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Christine Wang
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Luise Hartmann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis at the Gene Center, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis at the Gene Center, LMU Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis at the Gene Center, LMU Munich, Munich, Germany
| | - Stephanie Schneider
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | - Christian Thiede
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine 1, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jan Moritz Middeke
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine 1, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Friedrich Stölzel
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine 1, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Christoph Röllig
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine 1, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Johannes Schetelig
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine 1, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Gerhard Ehninger
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine 1, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Alwin Krämer
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Braess
- Oncology and Hematology, St. John of God Hospital, Regensburg, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | | | - Wolfgang E Berdel
- Department of Medicine A, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | - Bernhard J Wörmann
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Campus Virchow, Berlin, Germany
| | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Philipp A Greif
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany. .,Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
80
|
Abstract
Modern management of acute myeloid leukaemia (AML) relies on the integration of phenotypic and genetic data to assign classification, establish prognosis, enhance monitoring and guide treatment. The prism through which we can now disperse a patient's leukaemia, interpret and apply our understanding has fundamentally changed since the completion of the first whole-genome sequencing (WGS) of an AML patient in 2008 and where possible, many clinicians would now prefer to delay treatment decisions until the karyotype and genetic status of a new patient is known. The success of global sequencing initiatives such as The Cancer Genome Atlas (TCGA) have brought us significantly closer to cataloguing the full spectrum of coding mutations involved in human malignancy. Indeed, genetic capability has raced ahead of our capacity to apply much of this knowledge into clinical practice and we are in the peculiar position of having routine access to genetic information on an individual patient's leukaemia that cannot be reliably interpreted or utilised. This is a measure of how rapid the progress has been, and this rate of change is likely to continue into the foreseeable future as research intensifies on the non-coding genome and the epigenome, as we scrutinise disease at a single cell level, and as initiatives like Beat AML and the Harmony Alliance progress. In this review, we will examine how interrogation of the coding genome is revolutionising our understanding of AML and improving our ability to underscore differences between paediatric and adult onset, sporadic and inherited forms of disease. We will look at how this knowledge is informing improvements in outcome prediction and the development of novel treatments, bringing us a step closer to personalised therapy for myeloid malignancy.
Collapse
Affiliation(s)
- Sarah Charrot
- Centre for Haemato-oncology, Barts Cancer Institute, QMUL, London, UK
| | - Hannah Armes
- Centre for Haemato-oncology, Barts Cancer Institute, QMUL, London, UK
| | - Ana Rio-Machin
- Centre for Haemato-oncology, Barts Cancer Institute, QMUL, London, UK
| | - Jude Fitzgibbon
- Centre for Haemato-oncology, Barts Cancer Institute, QMUL, London, UK
| |
Collapse
|
81
|
Horibata S, Alyateem G, DeStefano CB, Gottesman MM. The Evolving AML Genomic Landscape: Therapeutic Implications. Curr Cancer Drug Targets 2020; 20:532-544. [PMID: 32329691 PMCID: PMC7442715 DOI: 10.2174/1568009620666200424150321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/24/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
Abstract
Improved understanding of the genomic and molecular landscape of acute myeloid leukemia (AML) has resulted in a significant evolution of our understanding of AML biology and allows refined prognostication for those receiving standard combination chemotherapy induction. This dramatic increase in knowledge preceded, and was somewhat responsible for, at least some of eight new FDA drug approvals for AML. This review discusses the impact of genomics on clinical care of AML patients and highlights newly approved FDA drugs. Despite these recent clinical advances, however, the outcome for most patients diagnosed with AML remains dire. Thus, we describe here some of the challenges identified with treating AML including off-target toxicity, drug transporters, clonal heterogeneity, and adaptive resistance, and some of the most promising opportunities for improved therapy.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antimetabolites, Antineoplastic/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Drug Approval
- Genomics/methods
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Mutation
- Protein Kinase Inhibitors/therapeutic use
- Risk Assessment
- Treatment Outcome
Collapse
Affiliation(s)
- Sachi Horibata
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - George Alyateem
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Christin B. DeStefano
- Department of Hematology and Oncology, David Grant USAF Medical Center, Fairfield, CA, 93425
| | - Michael M. Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| |
Collapse
|
82
|
Abstract
Data on the KIT mutation rate in melanoma in the central European region is missing. Accordingly, in a cohort of 79 BRAF/NRAS double wild type cutaneous melanoma and 17 mucosal melanoma KIT mutation was assessed by Sanger sequencing of exons 9,11,13,17 and 18. In this cutaneous melanoma cohort KIT mutation frequency was found to be 34/79 (43.04%) with a significantly higher rate in acrolentiginous melanoma (ALM) as compared to UV-induced common variants (20/34, 58.8% versus 14/45, 31.1%, p = 0.014). In the double wild type mucosal melanoma cohort the KIT mutation frequency was found to be comparable (41.2%). The actual frequency of KIT mutation in the original 227 patient cutaneous melanoma cohort was 34/227, 14.9%. Exon 11 was the most frequent mutation site (44.7%) followed by exon 9 (21.1%) equally characterizing UV-induced common histotypes and ALM tumors. In mucosal melanoma exon 9 was the most frequently involved exon followed by exon 13 and 17. KIT mutation hotspots were identified in exon 9 (c482/491/492), in exon 11 (c559,c572, c570), in exon 13 (c642), in exon 17 (c822) and in exon 18 (c853). The relatively high KIT mutation rate in cutaneous melanoma in this central-European cohort justifies regular testing of this molecular target in this entity, not only in mucosal variants.
Collapse
|
83
|
Nieborowska-Skorska M, Paietta EM, Levine RL, Fernandez HF, Tallman MS, Litzow MR, Skorski T. Inhibition of the mutated c-KIT kinase in AML1-ETO-positive leukemia cells restores sensitivity to PARP inhibitor. Blood Adv 2019; 3:4050-4054. [PMID: 31816060 PMCID: PMC6963253 DOI: 10.1182/bloodadvances.2019000756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
c-KIT activating mutations cause resistance to PARP inhibitor in AML1-ETO–positive leukemias. c-KIT inhibitor avapritinib downregulates BRCA1/2 and DNA-PK catalytic subunit to restore the sensitivity to PARP inhibitor.
Collapse
Affiliation(s)
- Margaret Nieborowska-Skorska
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | | | - Ross L Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hugo F Fernandez
- Moffitt Malignant Hematology and Cellular Therapy at Memorial Healthcare System, Pembroke Pines, FL; and
| | - Martin S Tallman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark R Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Tomasz Skorski
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
84
|
Flach J, Shumilov E, Joncourt R, Porret N, Tchinda J, Legros M, Scarpelli I, Hewer E, Novak U, Schoumans J, Bacher U, Pabst T. Detection of rare reciprocal RUNX1 rearrangements by next-generation sequencing in acute myeloid leukemia. Genes Chromosomes Cancer 2019; 59:268-274. [PMID: 31756777 DOI: 10.1002/gcc.22829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023] Open
Abstract
Reciprocal RUNX1 fusions are traditionally found in up to 10% of acute myeloid leukemia (AML) patients, usually associated with a translocation (8;21)(q22;q22) corresponding to the RUNX1-RUNX1T1 fusion gene. So far, alternative RUNX1 rearrangements have been reported only rarely in AML, and the few reports so far have focused on results based on cytogenetics, fluorescence in situ hybridization, and polymerase chain reaction. Acknowledging the inherent limitations of these diagnostic techniques, the true incidence of rare RUNX1 rearrangements may be underestimated. In this report, we present two cases of adult AML, in which we detected rare RUNX1 rearrangements not by conventional cytogenetics but rather by next-generation panel sequencing. These include t(16;21)(q24;q22)/RUNX1-CBFA2T3 and t(7;21)(p22;q22)/RUNX1-USP42, respectively. In both patients the AML was therapy-related and associated with additional structural and numerical alterations thereby conferring bad prognosis. This is in line with previous reports on rare RUNX1 fusions in AML and emphasizes the clinical importance of their detection. In summary, our report not only confirms the clinical utility of NGS for diagnostics of rare reciprocal rearrangements in AML in a real-life scenario but also sheds light on the variety and complexity within AML. It further emphasizes the need for collection of additional cases for deepening insights on their clinical meaning as well as their frequency.
Collapse
Affiliation(s)
- Johanna Flach
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Evgenii Shumilov
- Department of Hematology and Medical Oncology, University Medicine Göttingen, Göttingen, Germany
| | - Raphael Joncourt
- University Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Naomi Porret
- University Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Joëlle Tchinda
- Oncology Laboratory, University Children's Hospital Zurich, Zurich, Switzerland
| | - Myriam Legros
- Center of Laboratory Medicine (ZLM), Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ilaria Scarpelli
- Department of Cancer Genetics, Laboratory Department, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Ekkehard Hewer
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Urban Novak
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Jacqueline Schoumans
- Department of Cancer Genetics, Laboratory Department, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Ulrike Bacher
- University Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland.,Center of Laboratory Medicine (ZLM), Inselspital, Bern University Hospital, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
85
|
Vosberg S, Greif PA. Clonal evolution of acute myeloid leukemia from diagnosis to relapse. Genes Chromosomes Cancer 2019; 58:839-849. [PMID: 31478278 PMCID: PMC6852285 DOI: 10.1002/gcc.22806] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Based on the individual genetic profile, acute myeloid leukemia (AML) patients are classified into clinically meaningful molecular subtypes. However, the mutational profile within these groups is highly heterogeneous and multiple AML subclones may exist in a single patient in parallel. Distinct alterations of single cells may be key factors in providing the fitness to survive in this highly competitive environment. Although the majority of AML patients initially respond to induction chemotherapy and achieve a complete remission, most patients will eventually relapse. These points toward an evolutionary process transforming treatment-sensitive cells into treatment-resistant cells. As described by Charles Darwin, evolution by natural selection is the selection of individuals that are optimally adapted to their environment, based on the random acquisition of heritable changes. By changing their mutational profile, AML cell populations are able to adapt to the new environment defined by chemotherapy treatment, ultimately leading to cell survival and regrowth. In this review, we will summarize the current knowledge about clonal evolution in AML, describe different models of clonal evolution, and provide the methodological background that allows the detection of clonal evolution in individual AML patients. During the last years, numerous studies have focused on delineating the molecular patterns that are associated with AML relapse, each focusing on a particular genetic subgroup of AML. Finally, we will review the results of these studies in the light of Darwinian evolution and discuss open questions regarding the molecular background of relapse development.
Collapse
Affiliation(s)
- Sebastian Vosberg
- Department of Medicine IIIUniversity Hospital, LMU MunichMunichGermany
- Experimental Leukemia and Lymphoma Research (ELLF)University Hospital, LMU MunichMunichGermany
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Philipp A. Greif
- Department of Medicine IIIUniversity Hospital, LMU MunichMunichGermany
- Experimental Leukemia and Lymphoma Research (ELLF)University Hospital, LMU MunichMunichGermany
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
86
|
Leubolt G, Redondo Monte E, Greif PA. GATA2
mutations in myeloid malignancies: Two zinc fingers in many pies. IUBMB Life 2019; 72:151-158. [DOI: 10.1002/iub.2204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/13/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Georg Leubolt
- Department of Medicine IIIUniversity Hospital, LMU Munich Munich Germany
| | | | - Philipp A. Greif
- Department of Medicine IIIUniversity Hospital, LMU Munich Munich Germany
| |
Collapse
|
87
|
Gupta R, Yadav S, Parashar Y, Rahman K, Singh MK, Chandra D, Gupta A, Nityanand S. Morphological characteristics, cytogenetic profile, and outcome of RUNX1-RUNX1T1-positive acute myeloid leukemia: Experience of an Indian tertiary care center. Int J Lab Hematol 2019; 42:37-45. [PMID: 31725954 DOI: 10.1111/ijlh.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/29/2019] [Accepted: 10/21/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION A prototype of good prognosis, t(8;21)-positive AML, has diverse clinical and genetic features which affect its outcome. This study aimed at evaluating the clinico-pathological spectrum of t(8;21)-positive AML and ascertaining prognostic factors influencing its outcome in the Indian subcontinent. METHODS A retrospective analysis of 75 cases of t(8;21)-positive AML diagnosed over a period of six years (2013-2018) was carried out. Detailed clinical and laboratory data of the patients were collected from the electronic medical records and reviewed. RESULTS Median age was 19.5 years (range 5-75 years) with a M:F of 1.7. Myeloid sarcoma was observed in 9.3% cases. There were 85% FAB AML-M2, 8% AML-M1, and 7% AML-M4 subtypes. Prominent morphological characteristics included dyspoiesis in maturing myeloid cells (83%), long thin tapered Auer rods (58%), cytoplasmic vacuoles (58%), eosinophilia (50%), and mast cells (22%). Auer rods in maturing granulocytes (4% cases) were highly suggestive of the translocation. Additional cytogenetic abnormalities were present in 53% cases. Seventy-one percent (25/35) achieved CR. The overall survival (OS) was 40%, with a median follow-up of 27 months (range 4-57 months). None of the hematological or cytogenetic factors correlated with OS, except for the presence of myeloid sarcoma which had a trend toward poor survival (P = .07). CONCLUSION Outcome of t(8;21) AML is not influenced by any of the clinico-pathological parameters, except for a myeloid sarcoma, which may herald a poor prognosis. Recognition of this distinct subtype of AML would facilitate further molecular screening for risk stratification in resource-constrained settings.
Collapse
Affiliation(s)
- Ruchi Gupta
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Uttar Pradesh, Lucknow, India
| | - Sanjeev Yadav
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Uttar Pradesh, Lucknow, India
| | - Yatendra Parashar
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Uttar Pradesh, Lucknow, India
| | - Khaliqur Rahman
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Uttar Pradesh, Lucknow, India
| | - Manish Kumar Singh
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Uttar Pradesh, Lucknow, India
| | - Dinesh Chandra
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Uttar Pradesh, Lucknow, India
| | - Anshul Gupta
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Uttar Pradesh, Lucknow, India
| | - Soniya Nityanand
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Uttar Pradesh, Lucknow, India
| |
Collapse
|
88
|
Nafria M, Bonifer C. Standing at odds: mutated RAS and hematopoietic stem cells. Haematologica 2019; 104:2125-2128. [PMID: 31666341 PMCID: PMC6821623 DOI: 10.3324/haematol.2019.230029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Monica Nafria
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| |
Collapse
|
89
|
|
90
|
Gyurina K, Kárai B, Ujfalusi A, Hevessy Z, Barna G, Jáksó P, Pálfi-Mészáros G, Póliska S, Scholtz B, Kappelmayer J, Zahuczky G, Kiss C. Coagulation FXIII-A Protein Expression Defines Three Novel Sub-populations in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia Characterized by Distinct Gene Expression Signatures. Front Oncol 2019; 9:1063. [PMID: 31709175 PMCID: PMC6823876 DOI: 10.3389/fonc.2019.01063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Leukemic B-cell precursor (BCP) lymphoblasts were identified as a novel expression site for coagulation factor XIII subunit A (FXIII-A). Flow cytometry (FC) revealed three distinct expression patterns, i.e., FXIII-A negative, FXIII-A dim, and FXIII-A bright subgroups. The FXIII-A negative subgroup was significantly associated with the “B-other” genetic category and had an unfavorable disease outcome. Methods: RNA was extracted from bone marrow lymphoblasts of 42 pediatric patients with BCP-acute lymphoblastic leukemia (ALL). FXIII-A expression was determined by multiparameter FC. Genetic diagnosis was based on conventional cytogenetic method and fluorescence in situ hybridization. Affymetrix GeneChip Human Primeview array was used to analyze global expression pattern of 28,869 well-annotated genes. Microarray data were analyzed by Genespring GX14.9.1 software. Gene Ontology analysis was performed using Cytoscape 3.4.0 software with ClueGO application. Selected differentially expressed genes were validated by RT-Q-PCR. Results: We demonstrated, for the first time, the general expression of F13A1 gene in pediatric BCP-ALL samples. The intensity of F13A1 expression corresponded to the FXIII-A protein expression subgroups which defined three characteristic and distinct gene expression signatures detected by Affymetrix oligonucleotide microarrays. Relative gene expression intensity of ANGPTL2, EHMT1 FOXO1, HAP1, NUCKS1, NUP43, PIK3CG, RAPGEF5, SEMA6A, SPIN1, TRH, and WASF2 followed the pattern of change in the intensity of the expression of the F13A1 gene. Common enhancer elements of these genes revealed by in silico analysis suggest that common transcription factors may regulate the expression of these genes in a similar fashion. PLAC8 was downregulated in the FXIII-A bright subgroup. Gene expression signature of the FXIII-A negative subgroup showed an overlap with the signature of “B-other” samples. DFFA, GIGYF1, GIGYF2, and INTS3 were upregulated and CD3G was downregulated in the “B-other” subgroup. Validated genes proved biologically and clinically relevant. We described differential expression of genes not shown previously to be associated with pediatric BCP-ALL. Conclusions: Gene expression signature according to FXIII-A protein expression status defined three novel subgroups of pediatric BCP-ALL. Multiparameter FC appears to be an easy-to-use and affordable method to help in selecting FXIII-A negative patients who require a more elaborate and expensive molecular genetic investigation to design precision treatment.
Collapse
Affiliation(s)
- Katalin Gyurina
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Bettina Kárai
- Department of Laboratory of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Hevessy
- Department of Laboratory of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Barna
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Pál Jáksó
- Department of Pathology, University of Pécs, Pécs, Hungary
| | | | - Szilárd Póliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Scholtz
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Kappelmayer
- Department of Laboratory of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Zahuczky
- UD GenoMed Medical Genomic Technologies Ltd., Debrecen, Hungary
| | - Csongor Kiss
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
91
|
Arends CM, Weiss M, Christen F, Eulenberg-Gustavus C, Rousselle A, Kettritz R, Eckardt KU, Chan W, Hoyer K, Frick M, Bullinger L, Bieringer M, Schreiber A, Damm F. Clonal hematopoiesis in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Haematologica 2019; 105:e264-e267. [PMID: 31582546 DOI: 10.3324/haematol.2019.223305] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Christopher Maximilian Arends
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Berlin
| | - Marlene Weiss
- Experimental and Clinical Research Center, Charité, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin.,Charité - Universitätsmedizin Berlin, Department of Nephrology and Intensive Care Medicine, Berlin
| | - Friederike Christen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Berlin
| | - Claudia Eulenberg-Gustavus
- Experimental and Clinical Research Center, Charité, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin
| | - Anthony Rousselle
- Experimental and Clinical Research Center, Charité, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin
| | - Ralph Kettritz
- Experimental and Clinical Research Center, Charité, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin.,Charité - Universitätsmedizin Berlin, Department of Nephrology and Intensive Care Medicine, Berlin
| | - Kai-Uwe Eckardt
- Charité - Universitätsmedizin Berlin, Department of Nephrology and Intensive Care Medicine, Berlin
| | - Willy Chan
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Berlin
| | - Kaja Hoyer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Berlin
| | - Mareike Frick
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Berlin
| | - Lars Bullinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Berlin.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg
| | - Markus Bieringer
- HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Adrian Schreiber
- Experimental and Clinical Research Center, Charité, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin .,Charité - Universitätsmedizin Berlin, Department of Nephrology and Intensive Care Medicine, Berlin
| | - Frederik Damm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Berlin .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg
| |
Collapse
|
92
|
Meyer T, Jahn N, Lindner S, Röhner L, Dolnik A, Weber D, Scheffold A, Köpff S, Paschka P, Gaidzik VI, Heckl D, Wiese S, Ebert BL, Döhner H, Bullinger L, Döhner K, Krönke J. Functional characterization of BRCC3 mutations in acute myeloid leukemia with t(8;21)(q22;q22.1). Leukemia 2019; 34:404-415. [PMID: 31576005 PMCID: PMC7214237 DOI: 10.1038/s41375-019-0578-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/28/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
Abstract
BRCA1/BRCA2-containing complex 3 (BRCC3) is a Lysine 63-specific deubiquitinating enzyme (DUB) involved in inflammasome activity, interferon signaling, and DNA damage repair. Recurrent mutations in BRCC3 have been reported in myelodysplastic syndromes (MDS) but not in de novo AML. In one of our recent studies, we found BRCC3 mutations selectively in 9/191 (4.7%) cases with t(8;21)(q22;q22.1) AML but not in 160 cases of inv(16)(p13.1q22) AML. Clinically, AML patients with BRCC3 mutations had an excellent outcome with an event-free survival of 100%. Inactivation of BRCC3 by CRISPR/Cas9 resulted in improved proliferation in t(8;21)(q22;q22.1) positive AML cell lines and together with expression of AML1-ETO induced unlimited self-renewal in mouse hematopoietic progenitor cells in vitro. Mutations in BRCC3 abrogated its deubiquitinating activity on IFNAR1 resulting in an impaired interferon response and led to diminished inflammasome activity. In addition, BRCC3 inactivation increased release of several cytokines including G-CSF which enhanced proliferation of AML cell lines with t(8;21)(q22;q22.1). Cell lines and primary mouse cells with inactivation of BRCC3 had a higher sensitivity to doxorubicin due to an impaired DNA damage response providing a possible explanation for the favorable outcome of BRCC3 mutated AML patients.
Collapse
Affiliation(s)
- Tatjana Meyer
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Nikolaus Jahn
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Stefanie Lindner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Linda Röhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Anna Dolnik
- Department of Hematology, Oncology, and Tumorimmunology, Charité University Medicine, Berlin, Germany
| | - Daniela Weber
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Annika Scheffold
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Simon Köpff
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Peter Paschka
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Verena I Gaidzik
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Dirk Heckl
- Department of Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Sebastian Wiese
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumorimmunology, Charité University Medicine, Berlin, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Jan Krönke
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany.
| |
Collapse
|
93
|
Gimple RC, Wang X. RAS: Striking at the Core of the Oncogenic Circuitry. Front Oncol 2019; 9:965. [PMID: 31681559 PMCID: PMC6798062 DOI: 10.3389/fonc.2019.00965] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer is a devastating disease process that touches the lives of millions worldwide. Despite advances in our understanding of the genomic architecture of cancers and the mechanisms that underlie cancer development, a great therapeutic challenge remains. Here, we revisit the birthplace of cancer biology and review how one of the first discovered oncogenes, RAS, drives cancers in new and unexpected ways. As our understanding of oncogenic signaling has evolved, it is clear that RAS signaling is not homogenous, but activates distinct downstream effectors in different cancer types and grades. RAS signaling is tightly controlled through a series of post-transcriptional mechanisms, which are frequently distorted in the context of cancer, and establish key metabolic and immunologic states that support cancer growth, migration, survival, metastasis, and plasticity. While targeting RAS has been fiercely pursued for decades, new strategies have recently emerged with the potential for therapeutic efficacy. Thus, understanding the complexities of RAS biology may translate into improved therapies for patients with RAS-driven cancers.
Collapse
Affiliation(s)
- Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, United States.,Department of Pathology, Case Western University, Cleveland, OH, United States
| | - Xiuxing Wang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
94
|
CD123 as a Therapeutic Target in the Treatment of Hematological Malignancies. Cancers (Basel) 2019; 11:cancers11091358. [PMID: 31547472 PMCID: PMC6769702 DOI: 10.3390/cancers11091358] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
The interleukin-3 receptor alpha chain (IL-3Rα), more commonly referred to as CD123, is widely overexpressed in various hematological malignancies, including acute myeloid leukemia (AML), B-cell acute lymphoblastic leukemia, hairy cell leukemia, Hodgkin lymphoma and particularly, blastic plasmacytoid dendritic neoplasm (BPDCN). Importantly, CD123 is expressed at both the level of leukemic stem cells (LSCs) and more differentiated leukemic blasts, which makes CD123 an attractive therapeutic target. Various agents have been developed as drugs able to target CD123 on malignant leukemic cells and on the normal counterpart. Tagraxofusp (SL401, Stemline Therapeutics), a recombinant protein composed of a truncated diphtheria toxin payload fused to IL-3, was approved for use in patients with BPDCN in December of 2018 and showed some clinical activity in AML. Different monoclonal antibodies directed against CD123 are under evaluation as antileukemic drugs, showing promising results either for the treatment of AML minimal residual disease or of relapsing/refractory AML or BPDCN. Finally, recent studies are exploring T cell expressing CD123 chimeric antigen receptor-modified T-cells (CAR T) as a new immunotherapy for the treatment of refractory/relapsing AML and BPDCN. In December of 2018, MB-102 CD123 CAR T developed by Mustang Bio Inc. received the Orphan Drug Designation for the treatment of BPDCN. In conclusion, these recent studies strongly support CD123 as an important therapeutic target for the treatment of BPDCN, while a possible in the treatment of AML and other hematological malignancies will have to be evaluated by in the ongoing clinical studies.
Collapse
|
95
|
Thoms JAI, Beck D, Pimanda JE. Transcriptional networks in acute myeloid leukemia. Genes Chromosomes Cancer 2019; 58:859-874. [PMID: 31369171 DOI: 10.1002/gcc.22794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease characterized by a diverse range of recurrent molecular aberrations that occur in many different combinations. Components of transcriptional networks are a common target of these aberrations, leading to network-wide changes and deployment of novel or developmentally inappropriate transcriptional programs. Genome-wide techniques are beginning to reveal the full complexity of normal hematopoietic stem cell transcriptional networks and the extent to which they are deregulated in AML, and new understandings of the mechanisms by which AML cells maintain self-renewal and block differentiation are starting to emerge. The hope is that increased understanding of the network architecture in AML will lead to identification of key oncogenic dependencies that are downstream of multiple network aberrations, and that this knowledge will be translated into new therapies that target these dependencies. Here, we review the current state of knowledge of network perturbation in AML with a focus on major mechanisms of transcription factor dysregulation, including mutation, translocation, and transcriptional dysregulation, and discuss how these perturbations propagate across transcriptional networks. We will also review emerging mechanisms of network disruption, and briefly discuss how increased knowledge of network disruption is already being used to develop new therapies.
Collapse
Affiliation(s)
- Julie A I Thoms
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Dominik Beck
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - John E Pimanda
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
96
|
Ahn JS, Kim T, Kim YK, Cho YC, Cho S, Jung SH, Ahn SY, Jung SY, Yang DH, Lee JJ, Choi S, Lee JY, Shin MG, Yoshida K, Ogawa S, Kim IC, Zhang Z, Kim HJ, Kim DDH. Remission clone in acute myeloid leukemia shows growth advantage after chemotherapy but is distinct from leukemic clone. Exp Hematol 2019; 75:26-30. [PMID: 31199945 DOI: 10.1016/j.exphem.2019.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023]
Abstract
In a previously published case study of acute myeloid leukemia, we tracked the dynamics of somatic mutations over 9 years. Interestingly, we observed a group of mutations that expanded during remission, which we named the "remission clone." To determine the nature of the remission clones, we performed flow cytometry-based cell sorting followed by ultradeep sequencing. The remission clone repeatedly expanded after chemotherapeutic cycles and was suppressed during relapse in the myeloid lineage (multipotent hematopoietic stem, progenitor, and myeloid cells). On the other hand, the remission clone was consistently observed in lymphoid lineages (B and T cells) regardless of the disease state. When transfected into the HEK-293 cell line, the NR2C2(A93V) mutant exhibited a growth advantage (all p values < 0.05). The results indicate that the remission clone seems to be another form of clonal hematopoiesis, but without a clear association with leukemia. As the remission clone is present in both myeloid and lymphoid lineages, it likely originates from ancestral hematopoietic cell lineages. More importantly, the remission clone is distinct from the leukemic clone; therefore, mutations expanded during remission require special interpretation when performing next-generation sequencing-based measurable residual disease assessment.
Collapse
Affiliation(s)
- Jae-Sook Ahn
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea; Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea; The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - TaeHyung Kim
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | | | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - SaYeon Cho
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sung-Hoon Jung
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - Seo-Yeon Ahn
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Yeon Jung
- St. Carollo General Hospital, Jeollanam-do, Republic of Korea
| | - Deok-Hwan Yang
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - Je-Jung Lee
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - SeungHyun Choi
- Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Ja-Yeon Lee
- Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Kenichi Yoshida
- Department of Pathology and Tumour Biology, Kyoto University Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Kyoto University Kyoto, Japan
| | - Il-Chul Kim
- Department of Biological Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Zhaolei Zhang
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hyeoung-Joon Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea; Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea.
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
97
|
Castelli G, Pelosi E, Testa U. Emerging Therapies for Acute Myelogenus Leukemia Patients Targeting Apoptosis and Mitochondrial Metabolism. Cancers (Basel) 2019; 11:E260. [PMID: 30813354 PMCID: PMC6406361 DOI: 10.3390/cancers11020260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
Acute Myelogenous Leukemia (AML) is a malignant disease of the hematopoietic cells, characterized by impaired differentiation and uncontrolled clonal expansion of myeloid progenitors/precursors, resulting in bone marrow failure and impaired normal hematopoiesis. AML comprises a heterogeneous group of malignancies, characterized by a combination of different somatic genetic abnormalities, some of which act as events driving leukemic development. Studies carried out in the last years have shown that AML cells invariably have abnormalities in one or more apoptotic pathways and have identified some components of the apoptotic pathway that can be targeted by specific drugs. Clinical results deriving from studies using B-cell lymphoma 2 (BCL-2) inhibitors in combination with standard AML agents, such as azacytidine, decitabine, low-dose cytarabine, provided promising results and strongly support the use of these agents in the treatment of AML patients, particularly of elderly patients. TNF-related apoptosis-inducing ligand (TRAIL) and its receptors are frequently deregulated in AML patients and their targeting may represent a promising strategy for development of new treatments. Altered mitochondrial metabolism is a common feature of AML cells, as supported through the discovery of mutations in the isocitrate dehydrogenase gene and in mitochondrial electron transport chain and of numerous abnormalities of oxidative metabolism existing in AML subgroups. Overall, these observations strongly support the view that the targeting of mitochondrial apoptotic or metabolic machinery is an appealing new therapeutic perspective in AML.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|