51
|
|
52
|
Hagood JS, Ambalavanan N. Systems biology of lung development and regeneration: current knowledge and recommendations for future research. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:125-33. [PMID: 23293056 DOI: 10.1002/wsbm.1205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The lung begins as a simple outpouching of the foregut and develops by stages into a highly complex organ, the proper function of which is essential to life for terrestrial mammals. Interruption of normal lung development can result in death or chronic disease. Conversely, repair after lung injury, as well as many acquired diseases, involves recapitulation, often aberrant, of developmental pathways. The principal paradigms in lung development are branching morphogenesis and alveolar septation, but others, such as vasculogenesis, are critical. These are partially understood at the level of cellular differentiation and molecular signaling, but a true systems biology analysis of lung development and lung repair/regeneration, including bioinformatics analysis and integration of data from unbiased and complementary '-omics' level studies, is still lacking. The past decade has seen increasing numbers of genomic, proteomic, metabolomics, and epigenomic studies of lung development and lung remodeling. In many cases, these studies have confirmed the importance of pathways uncovered painstakingly through single-molecule approaches, but they have also uncovered novel and unexpected pathways and new paradigms such as noncoding RNA. Future studies will need to combine data from multiple repositories and apply novel mathematical and computational models in order to establish a systems-level understanding of this remarkable organ.
Collapse
Affiliation(s)
- James S Hagood
- Division of Respiratory Medicine, Department of Pediatrics, University of California-San Diego and Rady Children's Hospital of San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
53
|
Vasilescu DM, Klinge C, Knudsen L, Yin L, Wang G, Weibel ER, Ochs M, Hoffman EA. Stereological assessment of mouse lung parenchyma via nondestructive, multiscale micro-CT imaging validated by light microscopic histology. J Appl Physiol (1985) 2012; 114:716-24. [PMID: 23264542 DOI: 10.1152/japplphysiol.00855.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Quantitative assessment of the lung microstructure using standard stereological methods such as volume fractions of tissue, alveolar surface area, or number of alveoli, are essential for understanding the state of normal and diseased lung. These measures are traditionally obtained from histological sections of the lung tissue, a process that ultimately destroys the three-dimensional (3-D) anatomy of the tissue. In comparison, a novel X-ray-based imaging method that allows nondestructive sectioning and imaging of fixed lungs at multiple resolutions can overcome this limitation. Scanning of the whole lung at high resolution and subsequent regional sampling at ultrahigh resolution without physically dissecting the organ allows the application of design-based stereology for assessment of the whole lung structure. Here we validate multiple stereological estimates performed on micro-computed tomography (μCT) images by comparing them with those obtained via conventional histology on the same mouse lungs. We explore and discuss the potentials and limitations of the two approaches. Histological examination offers higher resolution and the qualitative differentiation of tissues by staining, but ultimately loses 3-D tissue relationships, whereas μCT allows for the integration of morphometric data with the spatial complexity of lung structure. However, μCT has limited resolution satisfactory for the sterological estimates presented in this study but not for differentiation of tissues. We conclude that introducing stereological methods in μCT studies adds value by providing quantitative information on internal structures while not curtailing more complex approaches to the study of lung architecture in the context of physiological or pathological studies.
Collapse
|
54
|
Gibney BC, Houdek JP, Chamoto K, Lee GS, Ackermann M, Lin M, Collings-Simpson D, Konerding MA, Tsuda A, Mentzer SJ. Mechanostructural adaptations preceding postpneumonectomy lung growth. Exp Lung Res 2012; 38:396-405. [PMID: 22905715 PMCID: PMC4020359 DOI: 10.3109/01902148.2012.715364] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In many species, pneumonectomy results in compensatory growth in the remaining lung. Although the late mechanical consequences of murine pneumonectomy are known, little is known about the anatomic adaptations and respiratory mechanics during compensatory lung growth. To investigate the structural and mechanical changes during compensatory growth, mice were studied for 21 days after left pneumonectomy using microCT and respiratory system impedance (FlexiVent). Anatomic changes after left pneumonectomy included minimal mediastinal shift or chestwall remodeling, but significant displacement of the heart and cardiac lobe. Mean displacement of the cardiac lobe centroid was 5.2 ± 0.8 mm. Lung impedance measurements were used to investigate the associated changes in respiratory mechanics. Quasi-static pressure-volume loops demonstrated progressive increase in volumes with decreased distensibility. Measures of quasi-static compliance and elastance were increased at all time points postpneumonectomy (P < .01). Oscillatory mechanics demonstrated a significant change in tissue impedance on the third day after pneumonectomy. The input impedance on day 3 after pneumonectomy demonstrated a significant increase in tissue damping (5.8 versus 4.3 cm H(2)O/mL) and elastance (36.7 versus 26.6 cm H(2)O/mL) when compared to controls. At all points, hysteresivity was unchanged (0.17). We conclude that the timing and duration of the mechanical changes was consistent with a mechanical signal for compensatory growth.
Collapse
Affiliation(s)
- Barry C. Gibney
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard, Medical School, Boston MA
| | - Jan P. Houdek
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Kenji Chamoto
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard, Medical School, Boston MA
| | - Grace S. Lee
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard, Medical School, Boston MA
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Miao Lin
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard, Medical School, Boston MA
| | - Dinee Collings-Simpson
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard, Medical School, Boston MA
| | - Moritz A. Konerding
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA
| | - Steven J. Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard, Medical School, Boston MA
| |
Collapse
|
55
|
Chamoto K, Gibney BC, Ackermann M, Lee GS, Lin M, Konerding MA, Tsuda A, Mentzer SJ. Alveolar macrophage dynamics in murine lung regeneration. J Cell Physiol 2012; 227:3208-15. [PMID: 22105735 DOI: 10.1002/jcp.24009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In most mammalian species, the removal of one lung results in dramatic compensatory growth of the remaining lung. To investigate the contribution of alveolar macrophages (AMs) to murine post-pneumonectomy lung growth, we studied bronchoalveolar lavage (BAL)-derived AM on 3, 7, 14 and 21 days after left pneumonectomy. BAL demonstrated a 3.0-fold increase in AM (CD45(+), CD11b(-), CD11c(+), F4/80(+), Gr-1(-)) by 14 days after pneumonectomy. Cell cycle flow cytometry of the BAL-derived cells demonstrated an increase in S + G2 phase cells on days 3 (11.3 ± 2.7%) and 7 (12.1 ± 1.8%) after pneumonectomy. Correspondingly, AM demonstrated increased expression of VEGFR1 and MHC class II between days 3 and 14 after pneumonectomy. To investigate the potential contribution of peripheral blood cells to this AM population, parabiotic mice (wild-type/GFP) underwent left pneumonectomy. Analysis of GFP(+) cells in the post-pneumonectomy lung demonstrated that by day 14, less than 1% of the AM population were derived from the peripheral blood. Finally, AM gene transcription demonstrated a significant shift from decreased transcription of angiogenesis-related genes on day 3 to increased transcription on day 7 after pneumonectomy. The increased number of locally proliferating AM, combined with their growth-related gene transcription, suggests that AM actively participate in compensatory lung growth.
Collapse
Affiliation(s)
- Kenji Chamoto
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Chen L, Acciani T, Le Cras T, Lutzko C, Perl AKT. Dynamic regulation of platelet-derived growth factor receptor α expression in alveolar fibroblasts during realveolarization. Am J Respir Cell Mol Biol 2012; 47:517-27. [PMID: 22652199 DOI: 10.1165/rcmb.2012-0030oc] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although the importance of platelet-derived growth factor receptor (PDGFR)-α signaling during normal alveogenesis is known, it is unclear whether this signaling pathway can regulate realveolarization in the adult lung. During alveolar development, PDGFR-α-expressing cells induce α smooth muscle actin (α-SMA) and differentiate to interstitial myofibroblasts. Fibroblast growth factor (FGF) signaling regulates myofibroblast differentiation during alveolarization, whereas peroxisome proliferator-activated receptor (PPAR)-γ activation antagonizes myofibroblast differentiation in lung fibrosis. Using left lung pneumonectomy, the roles of FGF and PPAR-γ signaling in differentiation of myofibroblasts from PDGFR-α-positive precursors during compensatory lung growth were assessed. FGF receptor (FGFR) signaling was inhibited by conditionally activating a soluble dominant-negative FGFR2 transgene. PPAR-γ signaling was activated by administration of rosiglitazone. Changes in α-SMA and PDGFR-α protein expression were assessed in PDGFR-α-green fluorescent protein (GFP) reporter mice using immunohistochemistry, flow cytometry, and real-time PCR. Immunohistochemistry and flow cytometry demonstrated that the cell ratio and expression levels of PDGFR-α-GFP changed dynamically during alveolar regeneration and that α-SMA expression was induced in a subset of PDGFR-α-GFP cells. Expression of a dominant-negative FGFR2 and administration of rosiglitazone inhibited induction of α-SMA in PDGFR-α-positive fibroblasts and formation of new septae. Changes in gene expression of epithelial and mesenchymal signaling molecules were assessed after left lobe pneumonectomy, and results demonstrated that inhibition of FGFR2 signaling and increase in PPAR-γ signaling altered the expression of Shh, FGF, Wnt, and Bmp4, genes that are also important for epithelial-mesenchymal crosstalk during early lung development. Our data demonstrate for the first time that a comparable epithelial-mesenchymal crosstalk regulates fibroblast phenotypes during alveolar septation.
Collapse
Affiliation(s)
- Leiling Chen
- Division of Pulmonary Biology, Perinatal Institute, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | | | | | | | |
Collapse
|
57
|
Konerding MA, Gibney BC, Houdek J, Chamoto K, Ackermann M, Lee GS, Lin M, Tsuda A, Mentzer SJ. Spatial dependence of alveolar angiogenesis in post-pneumonectomy lung growth. Angiogenesis 2012; 15:23-32. [PMID: 21969134 PMCID: PMC3268013 DOI: 10.1007/s10456-011-9236-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/19/2011] [Indexed: 01/24/2023]
Abstract
Growth of the remaining lung after pneumonectomy has been observed in many mammalian species; nonetheless, the pattern and morphology of alveolar angiogenesis during compensatory growth is unknown. Here, we investigated alveolar angiogenesis in a murine model of post-pneumonectomy lung growth. As expected, the volume and weight of the remaining lung returned to near-baseline levels within 21 days of pneumonectomy. The percentage increase in lobar weight was greatest in the cardiac lobe (P < 0.001). Cell cycle flow cytometry demonstrated a peak of lung cell proliferation (12.02 ± 1.48%) 6 days after pneumonectomy. Spatial autocorrelation analysis of the cardiac lobe demonstrated clustering of similar vascular densities (positive autocorrelation) that consistently mapped to subpleural regions of the cardiac lobe. Immunohistochemical staining demonstrated increased cell density and enhanced expression of angiogenesis-related factors VEGFA, and GLUT1 in these subpleural regions. Corrosion casting and scanning electron microscopy 3-6 days after pneumonectomy demonstrated subpleural vessels with angiogenic sprouts. The monopodial sprouts appeared to be randomly oriented along the vessel axis with interbranch distances of 11.4 ± 4.8 μm in the regions of active angiogenesis. Also present within the regions of increased vascular density were frequent "holes" or "pillars" consistent with active intussusceptive angiogenesis. The mean pillar diameter was 4.2 ± 3.8 μm, and the pillars were observed in all regions of active angiogenesis. These findings indicate that the process of alveolar construction involves discrete regions of regenerative growth, particularly in the subpleural regions of the cardiac lobe, characterized by both sprouting and intussusceptive angiogenesis.
Collapse
Affiliation(s)
- Moritz A. Konerding
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Barry C. Gibney
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA
| | - Jan Houdek
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Kenji Chamoto
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Grace S. Lee
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA
| | - Miao Lin
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA
| | - Steven J. Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA
| |
Collapse
|
58
|
Transplantation of alveolar type II cells stimulates lung regeneration during compensatory lung growth in adult rats. J Thorac Cardiovasc Surg 2012; 143:711-719.e2. [DOI: 10.1016/j.jtcvs.2011.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/17/2011] [Accepted: 09/21/2011] [Indexed: 11/20/2022]
|
59
|
Waters CM, Roan E, Navajas D. Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr Physiol 2012; 2:1-29. [PMID: 23728969 PMCID: PMC4457445 DOI: 10.1002/cphy.c100090] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis.
Collapse
|
60
|
Ding BS, Nolan DJ, Guo P, Babazadeh AO, Cao Z, Rosenwaks Z, Crystal RG, Simons M, Sato TN, Worgall S, Shido K, Rabbany SY, Rafii S. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 2011; 147:539-53. [PMID: 22036563 DOI: 10.1016/j.cell.2011.10.003] [Citation(s) in RCA: 369] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/15/2011] [Accepted: 10/05/2011] [Indexed: 12/31/2022]
Abstract
To identify pathways involved in adult lung regeneration, we employ a unilateral pneumonectomy (PNX) model that promotes regenerative alveolarization in the remaining intact lung. We show that PNX stimulates pulmonary capillary endothelial cells (PCECs) to produce angiocrine growth factors that induce proliferation of epithelial progenitor cells supporting alveologenesis. Endothelial cells trigger expansion of cocultured epithelial cells, forming three-dimensional angiospheres reminiscent of alveolar-capillary sacs. After PNX, endothelial-specific inducible genetic ablation of Vegfr2 and Fgfr1 in mice inhibits production of MMP14, impairing alveolarization. MMP14 promotes expansion of epithelial progenitor cells by unmasking cryptic EGF-like ectodomains that activate the EGF receptor (EGFR). Consistent with this, neutralization of MMP14 impairs EGFR-mediated alveolar regeneration, whereas administration of EGF or intravascular transplantation of MMP14(+) PCECs into pneumonectomized Vegfr2/Fgfr1-deficient mice restores alveologenesis and lung inspiratory volume and compliance function. VEGFR2 and FGFR1 activation in PCECs therefore increases MMP14-dependent bioavailability of EGFR ligands to initiate and sustain alveologenesis.
Collapse
Affiliation(s)
- Bi-Sen Ding
- Ansary Stem Cell Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Chamoto K, Gibney BC, Lee GS, Lin M, Collings-Simpson D, Voswinckel R, Konerding MA, Tsuda A, Mentzer SJ. CD34+ progenitor to endothelial cell transition in post-pneumonectomy angiogenesis. Am J Respir Cell Mol Biol 2011; 46:283-9. [PMID: 21921238 DOI: 10.1165/rcmb.2011-0249oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In many species, pneumonectomy triggers compensatory lung growth that results in an increase not only in lung volume, but also in alveolar number. Whether the associated alveolar angiogenesis involves the contribution of blood-borne progenitor cells is unknown. To identify and characterize blood-borne progenitor cells contributing to lung growth after pneumonectomy in mice, we studied wild-type and wild-type/green fluorescence protein (GFP) parabiotic mice after left pneumonectomy. Within 21 days of pneumonectomy, a 3.2-fold increase occurred in the number of lung endothelial cells. This increase in total endothelial cells was temporally associated with a 7.3-fold increase in the number of CD34(+) endothelial cells. Seventeen percent of the CD34(+) endothelial cells were actively proliferating, compared with only 4.2% of CD34(-) endothelial cells. Using wild-type/GFP parabiotic mice, we demonstrated that 73.4% of CD34(+) cells were derived from the peripheral blood. Furthermore, lectin perfusion studies demonstrated that CD34(+) cells derived from peripheral blood were almost uniformly incorporated into the lung vasculature. Finally, CD34(+) endothelial cells demonstrated a similar profile, but had enhanced transcriptional activity relative to CD34(-) endothelial cells. We conclude that blood-borne CD34(+) endothelial progenitor cells, characterized by active cell division and an amplified transcriptional signature, transition into resident endothelial cells during compensatory lung growth.
Collapse
Affiliation(s)
- Kenji Chamoto
- Division of Thoracic Surgery, Brigham and Women's Hospital, Room 259, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Paxson JA, Gruntman A, Parkin CD, Mazan MR, Davis A, Ingenito EP, Hoffman AM. Age-dependent decline in mouse lung regeneration with loss of lung fibroblast clonogenicity and increased myofibroblastic differentiation. PLoS One 2011; 6:e23232. [PMID: 21912590 PMCID: PMC3166052 DOI: 10.1371/journal.pone.0023232] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/13/2011] [Indexed: 12/15/2022] Open
Abstract
While aging leads to a reduction in the capacity for regeneration after pneumonectomy (PNX) in most mammals, this biological phenomenon has not been characterized over the lifetime of mice. We measured the age-specific (3, 9, 24 month) effects of PNX on physiology, morphometry, cell proliferation and apoptosis, global gene expression, and lung fibroblast phenotype and clonogenicity in female C57BL6 mice. The data show that only 3 month old mice were fully capable of restoring lung volumes by day 7 and total alveolar surface area by 21 days. By 9 months, the rate of regeneration was slower (with incomplete regeneration by 21 days), and by 24 months there was no regrowth 21 days post-PNX. The early decline in regeneration rate was not associated with changes in alveolar epithelial cell type II (AECII) proliferation or apoptosis rate. However, significant apoptosis and lack of cell proliferation was evident after PNX in both total cells and AECII cells in 24 mo mice. Analysis of gene expression at several time points (1, 3 and 7 days) post-PNX in 9 versus 3 month mice was consistent with a myofibroblast signature (increased Tnc, Lox1, Col3A1, Eln and Tnfrsf12a) and more alpha smooth muscle actin (αSMA) positive myofibroblasts were present after PNX in 9 month than 3 month mice. Isolated lung fibroblasts showed a significant age-dependent loss of clonogenicity. Moreover, lung fibroblasts isolated from 9 and 17 month mice exhibited higher αSMA, Col3A1, Fn1 and S100A expression, and lower expression of the survival gene Mdk consistent with terminal differentiation. These data show that concomitant loss of clonogenicity and progressive myofibroblastic differentiation contributes to the age-dependent decline in the rate of lung regeneration.
Collapse
Affiliation(s)
- Julia A. Paxson
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Alisha Gruntman
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Christopher D. Parkin
- Center for Neuroscience Research, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Melissa R. Mazan
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Airiel Davis
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Edward P. Ingenito
- Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
| | - Andrew M. Hoffman
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
63
|
Angiogenesis gene expression in murine endothelial cells during post-pneumonectomy lung growth. Respir Res 2011; 12:98. [PMID: 21794125 PMCID: PMC3199770 DOI: 10.1186/1465-9921-12-98] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/27/2011] [Indexed: 11/10/2022] Open
Abstract
Although blood vessel growth occurs readily in the systemic bronchial circulation, angiogenesis in the pulmonary circulation is rare. Compensatory lung growth after pneumonectomy is an experimental model with presumed alveolar capillary angiogenesis. To investigate the genes participating in murine neoalveolarization, we studied the expression of angiogenesis genes in lung endothelial cells. After left pneumonectomy, the remaining right lung was examined on days 3, 6, 14 and 21days after surgery and compared to both no surgery and sham thoracotomy controls. The lungs were enzymatically digested and CD31+ endothelial cells were isolated using flow cytometry cell sorting. The transcriptional profile of the CD31+ endothelial cells was assessed using quantitative real-time polymerase chain reaction (PCR) arrays. Focusing on 84 angiogenesis-associated genes, we identified 22 genes with greater than 4-fold regulation and significantly enhanced transcription (p <.05) within 21 days of pneumonectomy. Cluster analysis of the 22 genes indicated that changes in gene expression did not occur in a single phase, but in at least four waves of gene expression: a wave demonstrating decreased gene expression more than 3 days after pneumonectomy and 3 sequential waves of increased expression on days 6, 14, and 21 after pneumonectomy. These findings indicate that a network of gene interactions contributes to angiogenesis during compensatory lung growth.
Collapse
|
64
|
Jackson SR, Williams GN, Lee J, Baer JF, Warburton D, Driscoll B. A modified technique for partial pneumonectomy in the mouse. J INVEST SURG 2011; 24:81-6. [PMID: 21345008 DOI: 10.3109/08941939.2010.543261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Partial pneumonectomy (PNX) in mice results in compensatory growth in the remaining lung and is a useful model for lung repair. However, common pitfalls to the technique present a challenge for researchers. A complete description of murine PNX is thus provided, with a modification that, in our hands, enhanced animal survival. MATERIALS AND METHODS 10 ± 2 weeks old mice were anesthetized using 5% inhalational isoflurane via tracheotomy. Mechanical ventilation was provided using a Harvard Model 687 ventilator. In a procedure optimized to be performed in ≤20 min, left lateral thoracotomy was used to access to the left lung, which was grasped with a blunt forceps just distal to the hilum and clipped using a single 5-mm neuro clip. The left lung was resected, leaving a small rim of lung tissue immediately adjacent to the clip. The thoracotomy was closed, and while anesthesia was titrated, sterile saline was injected subcutaneously to replace insensible fluid losses. Upon return of spontaneous breaths, the trachea was decannulated, and the tracheotomy was closed. RESULTS Even when performed by a single operator, this modified technique produced a survival rate of >85% during the procedure and >90% up to seven days postoperatively in wild-type C57BL/6J mice. CONCLUSIONS Minimizing the time required to perform left lobe pneumonectomy is critical for animal survival. Using a 5-mm neuro clip, rather than silk suture, to isolate the lobe streamlines the procedure, helps reduce cardiac arrythmia, and results in significantly increased rates of intraoperative and immediate postoperative survival.
Collapse
Affiliation(s)
- Sha-Ron Jackson
- Department of Pediatric Surgery, Developmental Biology Program and Regenerative Medicine, The Saban Institute for Research, Children's Hospital Los Angeles, University of Southern California School of Medicine, Los Angeles, California 90027, USA
| | | | | | | | | | | |
Collapse
|
65
|
Jackson SR, Lee J, Reddy R, Williams GN, Kikuchi A, Freiberg Y, Warburton D, Driscoll B. Partial pneumonectomy of telomerase null mice carrying shortened telomeres initiates cell growth arrest resulting in a limited compensatory growth response. Am J Physiol Lung Cell Mol Physiol 2011; 300:L898-909. [PMID: 21460122 PMCID: PMC3119124 DOI: 10.1152/ajplung.00409.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/29/2011] [Indexed: 01/05/2023] Open
Abstract
Telomerase mutations and significantly shortened chromosomal telomeres have recently been implicated in human lung pathologies. Natural telomere shortening is an inevitable consequence of aging, which is also a risk factor for development of lung disease. However, the impact of shortened telomeres and telomerase dysfunction on the ability of lung cells to respond to significant challenge is still largely unknown. We have previously shown that lungs of late generation, telomerase null B6.Cg-Terc(tm1Rdp) mice feature alveolar simplification and chronic stress signaling at baseline, a phenocopy of aged lung. To determine the role telomerase plays when the lung is challenged, B6.Cg-Terc(tm1Rdp) mice carrying shortened telomeres and wild-type controls were subjected to partial pneumonectomy. We found that telomerase activity was strongly induced in alveolar epithelial type 2 cells (AEC2) of the remaining lung immediately following surgery. Eighty-six percent of wild-type animals survived the procedure and exhibited a burst of early compensatory growth marked by upregulation of proliferation, stress response, and DNA repair pathways in AEC2. In B6.Cg-Terc(tm1Rdp) mice carrying shortened telomeres, response to pneumonectomy was characterized by decreased survival, diminished compensatory lung growth, attenuated distal lung progenitor cell response, persistent DNA damage, and cell growth arrest. Overall, survival correlated strongly with telomere length. We conclude that functional telomerase and properly maintained telomeres play key roles in both long-term survival and the early phase of compensatory lung growth following partial pneumonectomy.
Collapse
Affiliation(s)
- Sha-Ron Jackson
- Department of Surgery and Developmental Biology, Regenerative Medicine Program, The Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Takahashi Y, Izumi Y, Kohno M, Kawamura M, Ikeda E, Nomori H. Airway administration of dexamethasone, 3'-5'-cyclic adenosine monophosphate, and isobutylmethylxanthine facilitates compensatory lung growth in adult mice. Am J Physiol Lung Cell Mol Physiol 2010; 300:L453-61. [PMID: 21224213 DOI: 10.1152/ajplung.00100.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The combination of dexamethasone, 8-bromo-3'-5'-cyclic adenosine monophosphate, and isobutylmethylxanthine, referred to as DCI, has been reported to optimally induce cell differentiation in fetal lung explants and type II epithelial cells. DCI administration is also known to modulate the expression levels of many genes known to be involved in the facilitation of lung growth. Recently, we found that RNA silencing of thyroid transcription factor 1 (TTF-1) delayed compensatory lung growth. DCI is also known to induce TTF-1 expression in pulmonary epithelial cells. From these findings, we hypothesized that DCI administration may facilitate compensatory lung growth. In the present study, using a postpneumonectomy lung growth model in 9-wk-old male mice, we found that compensatory lung growth was significantly facilitated by airway administration of DCI immediately following left pneumonectomy, as indicated by the increase in the residual right lung dry weight index. TTF-1 expression was significantly elevated by DCI administration, and transient knockdown of TTF-1 attenuated the facilitation of compensatory lung growth by DCI. These results suggested that DCI facilitated compensatory lung growth, at least in part, through the induction of TTF-1. Morphological analyses suggested that DCI administration increased the number of alveoli, made each of them smaller, and produced a net increase in the calculated surface area of the alveoli per volume of lung. The effect of a single administration was maintained during the observation period, which was 28 days. DCI with further modifications may provide the material to potentially augment residual lung function after resection.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Division of General Thoracic Surgery, Dept. of Surgery, School of Medicine, Keio Univ., Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
67
|
Wang W, Nguyen NM, Yablonskiy DA, Sukstanskii AL, Osmanagic E, Atkinson JJ, Conradi MS, Woods JC. Imaging lung microstructure in mice with hyperpolarized 3He diffusion MRI. Magn Reson Med 2010; 65:620-6. [PMID: 21337400 DOI: 10.1002/mrm.22737] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 11/11/2022]
Abstract
Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. The technique for MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this study, the 3He lung morphometry technique is successfully implemented for in vivo studies of mice. Results indicate excellent agreement between in vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. This opens up new avenues for application of the technique as a precise, noninvasive, in vivo biomarker of changes in lung microstructure, within various mouse models of lung disease.
Collapse
Affiliation(s)
- Wei Wang
- Department of Physics, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Rawlins EL. The building blocks of mammalian lung development. Dev Dyn 2010; 240:463-76. [PMID: 21337459 DOI: 10.1002/dvdy.22482] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2010] [Indexed: 01/26/2023] Open
Abstract
Progress has recently been made in identifying progenitor cell populations in the embryonic lung. Some progenitor cell types have been definitively identified by lineage-tracing studies. However, others are not as well characterized and their existence is inferred on the basis of lung morphology, or mutant phenotypes. Here, I focus on lung development after the specification of the initial lung primordium. The evidence for various lung embryonic progenitor cell types is discussed and future experiments are suggested. The regulation of progenitor proliferation in the embryonic lung, and its coordinate control with morphogenesis, is also discussed. In addition, the relationship between embryonic and adult lung progenitors is considered.
Collapse
Affiliation(s)
- Emma L Rawlins
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
69
|
Kneidinger N, Yildirim AÖ, Callegari J, Takenaka S, Stein MM, Dumitrascu R, Bohla A, Bracke KR, Morty RE, Brusselle GG, Schermuly RT, Eickelberg O, Königshoff M. Activation of the WNT/β-catenin pathway attenuates experimental emphysema. Am J Respir Crit Care Med 2010; 183:723-33. [PMID: 20889911 DOI: 10.1164/rccm.200910-1560oc] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is a devastating disease, for which no causal therapy is available. OBJECTIVES To characterize WNT/β-catenin signaling in COPD in humans and elucidate its potential role as a preventive and therapeutic target in experimental emphysema in mice. METHODS The expression, localization, and activity of WNT/β-catenin signaling was assessed in 12 COPD and 12 transplant donor samples using quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry, and Western blotting. The role of WNT/β-catenin signaling was assessed in elastase- and cigarette smoke-induced emphysema and therapeutic modulation thereof in elastase-induced emphysema in TOPGAL reporter and wild-type mice in vivo. MEASUREMENTS AND MAIN RESULTS No differences in the mRNA expression profile of the main WNT/β-catenin signaling components were observed comparing COPD and donor lung homogenates. Immunohistochemical analysis revealed reduced numbers of nuclear β-catenin-positive alveolar epithelial cells in COPD. Similarly, WNT/β-catenin signaling was down-regulated in both experimental emphysema models. Preventive and therapeutic, WNT/β-catenin activation by lithium chloride attenuated experimental emphysema, as assessed by decreased airspace enlargement, improved lung function, reduced collagen content, and elevated expression of alveolar epithelial cell markers. CONCLUSIONS Decreased WNT/β-catenin signaling is involved in parenchymal tissue destruction and impaired repair capacity in emphysema. These data indicate a crucial role of WNT/β-catenin signaling in lung repair mechanisms in vivo, and highlight WNT/β-catenin activation as a future therapeutic approach for emphysema.
Collapse
Affiliation(s)
- Nikolaus Kneidinger
- Department of Medicine, University of Giessen Lung Center, University of Giessen, Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
WULFSOHN D, KNUST J, OCHS M, NYENGAARD J, GUNDERSEN H. Stereological estimation of the total number of ventilatory units in mice lungs. J Microsc 2010; 238:75-89. [DOI: 10.1111/j.1365-2818.2009.03332.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
71
|
Yildirim AO, Muyal V, John G, Müller B, Seifart C, Kasper M, Fehrenbach H. Palifermin induces alveolar maintenance programs in emphysematous mice. Am J Respir Crit Care Med 2009; 181:705-17. [PMID: 20007933 DOI: 10.1164/rccm.200804-573oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
RATIONALE Emphysema is characterized by destruction of alveoli with ensuing airspace enlargement and loss of alveoli. Induction of alveolar regeneration is still a major challenge in emphysema therapy. OBJECTIVES To investigate whether therapeutic application of palifermin (DeltaN23-KGF) is able to induce a regenerative response in distal lung parenchyma after induction of pulmonary emphysema. METHODS Mice were therapeutically treated at three occasions by oropharyngeal aspiration of 10 mg DeltaN23-KGF per kg body weight after induction of emphysema by porcine pancreatic elastase. MEASUREMENTS AND MAIN RESULTS Airflow limitation associated with emphysema was largely reversed as assessed by noninvasive head-out body plethysmography. Porcine pancreatic elastase-induced airspace enlargement and loss of alveoli were partially reversed as assessed by design-based stereology. DeltaN23-KGF induced proliferation of epithelium, endothelium, and fibroblasts being associated with enhanced differentiation as well as increased expression of vascular endothelial growth factor, vascular endothelial growth factor receptors, transforming growth factor (TGF)-beta1, TGF-beta2, (phospho-) Smad2, plasminogen activator inhibitor-1, and elastin as assessed by quantitative reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemistry. DeltaN23-KGF induced the expression of TGF-beta1 in and release of active TGF-beta1 from primary mouse alveolar epithelial type 2 (AE2) cells, murine AE2-like cells LA-4, and cocultures of LA-4 and murine lung fibroblasts (MLF), but not in MLF cultured alone. Recombinant TGF-beta1 but not DeltaN23-KGF induced elastin gene expression in MLF. Blockade of TGF-signaling by neutralizing antibody abolished these effects of DeltaN23-KGF in LA-4/MLF cocultures. CONCLUSIONS Our data demonstrate that therapeutic application of DeltaN23-KGF has the potential to induce alveolar maintenance programs in emphysematous lungs and suggest that the regenerative effect on interstitial tissue is linked to AE2 cell-derived TGF-beta1.
Collapse
Affiliation(s)
- Ali O Yildirim
- Clinical Research Group Chronic Airway Diseases, Medical Faculty, Philipps-University Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
72
|
Hoffman AM, Shifren A, Mazan MR, Gruntman AM, Lascola KM, Nolen-Walston RD, Kim CF, Tsai L, Pierce RA, Mecham RP, Ingenito EP. Matrix modulation of compensatory lung regrowth and progenitor cell proliferation in mice. Am J Physiol Lung Cell Mol Physiol 2009; 298:L158-68. [PMID: 19915155 DOI: 10.1152/ajplung.90594.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mechanical stress is an important modulator of lung morphogenesis, postnatal lung development, and compensatory lung regrowth. The effect of mechanical stress on stem or progenitor cells is unclear. We examined whether proliferative responses of epithelial progenitor cells, including dually immunoreactive (CCSP and proSP-C) progenitor cells (CCSP+/SP-C+) and type II alveolar epithelial cells (ATII), are affected by physical factors found in the lung of emphysematics, including loss of elastic recoil, reduced elastin content, and alveolar destruction. Mice underwent single lung pneumonectomy (PNY) to modulate transpulmonary pressure (mechanical stress) and to stimulate lung regeneration. Control mice underwent sham thoracotomy. Plombage of different levels was employed to partially or completely abolish this mechanical stress. Responses to graded changes in transpulmonary pressure were assessed in elastin-insufficient mice (elastin +/-, ELN+/-) and elastase-treated mice with elastase-induced emphysema. Physiological regrowth, morphometry (linear mean intercept; Lmi), and the proliferative responses of CCSP+/SP-C+, Clara cells, and ATII were evaluated. Plombage following PNY significantly reduced transpulmonary pressure, regrowth, and CCSP+/SP-C+, Clara cell, and ATII proliferation following PNY. In the ELN+/- group, CCSP+/SP-C+ and ATII proliferation responses were completely abolished, although compensatory lung regrowth was not significantly altered. In contrast, in elastase-injured mice, compensatory lung regrowth was significantly reduced, and ATII but not CCSP+/SP-C+ proliferation responses were impaired. Elastase injury also reduced the baseline abundance of CCSP+/SP-C+, and CCSP+/SP-C+ were found to be displaced from the bronchioalveolar duct junction. These data suggest that qualities of the extracellular matrix including elastin content, mechanical stress, and alveolar integrity strongly influence the regenerative capacity of the lung, and the patterns of cell proliferation in the lungs of adult mice.
Collapse
Affiliation(s)
- A M Hoffman
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Paxson JA, Parkin CD, Iyer LK, Mazan MR, Ingenito EP, Hoffman AM. Global gene expression patterns in the post-pneumonectomy lung of adult mice. Respir Res 2009; 10:92. [PMID: 19804646 PMCID: PMC2770038 DOI: 10.1186/1465-9921-10-92] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 10/05/2009] [Indexed: 11/29/2022] Open
Abstract
Background Adult mice have a remarkable capacity to regenerate functional alveoli following either lung resection or injury that exceeds the regenerative capacity observed in larger adult mammals. The molecular basis for this unique capability in mice is largely unknown. We examined the transcriptomic responses to single lung pneumonectomy in adult mice in order to elucidate prospective molecular signaling mechanisms used in this species during lung regeneration. Methods Unilateral left pneumonectomy or sham thoracotomy was performed under general anesthesia (n = 8 mice per group for each of the four time points). Total RNA was isolated from the remaining lung tissue at four time points post-surgery (6 hours, 1 day, 3 days, 7 days) and analyzed using microarray technology. Results The observed transcriptomic patterns revealed mesenchymal cell signaling, including up-regulation of genes previously associated with activated fibroblasts (Tnfrsf12a, Tnc, Eln, Col3A1), as well as modulation of Igf1-mediated signaling. The data set also revealed early down-regulation of pro-inflammatory cytokine transcripts and up-regulation of genes involved in T cell development/function, but few similarities to transcriptomic patterns observed during embryonic or post-natal lung development. Immunohistochemical analysis suggests that early fibroblast but not myofibroblast proliferation is important during lung regeneration and may explain the preponderance of mesenchymal-associated genes that are over-expressed in this model. This again appears to differ from embryonic alveologenesis. Conclusion These data suggest that modulation of mesenchymal cell transcriptome patterns and proliferation of S100A4 positive mesenchymal cells, as well as modulation of pro-inflammatory transcriptome patterns, are important during post-pneumonectomy lung regeneration in adult mice.
Collapse
Affiliation(s)
- Julia A Paxson
- Department of Clinical Sciences, Lung Function Testing Laboratory, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| | | | | | | | | | | |
Collapse
|
74
|
Abstract
Lung function is inextricably linked to mechanics. On short timescales every breath generates dynamic cycles of cell and matrix stretch, along with convection of fluids in the airways and vasculature. Perturbations such airway smooth muscle shortening or surfactant dysfunction rapidly alter respiratory mechanics, with profound influence on lung function. On longer timescales, lung development, maturation, and remodeling all strongly depend on cues from the mechanical environment. Thus mechanics has long played a central role in our developing understanding of lung biology and respiratory physiology. This concise review focuses on progress over the past 5 years in elucidating the molecular origins of lung mechanical behavior, and the cellular signaling events triggered by mechanical perturbations that contribute to lung development, homeostasis, and injury. Special emphasis is placed on the tools and approaches opening new avenues for investigation of lung behavior at integrative cellular and molecular scales. We conclude with a brief summary of selected opportunities and challenges that lie ahead for the lung mechanobiology research community.
Collapse
|
75
|
Roehr CC, Proquitté H, Jung A, Ackert U, Bamberg C, Degenhardt P, Hammer H, Wauer RR, Schmalisch G. Impaired somatic growth and delayed lung development in infants with congenital diaphragmatic hernia--evidence from a 10-year, single center prospective follow-up study. J Pediatr Surg 2009; 44:1309-14. [PMID: 19573653 DOI: 10.1016/j.jpedsurg.2008.10.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 08/08/2008] [Accepted: 10/06/2008] [Indexed: 11/17/2022]
Abstract
PURPOSE In infants with congenital diaphragmatic hernia (CDH), somatic growth and pulmonary development are key issues beyond the time of intensive care treatment. The aim of the study was to investigate the somatic growth and pulmonary function after discharge and to compare CDH patients with a group of matched controls. METHODS Anthropometric measurements and lung function tests were performed in 26 infants after surgical repair of CDH and 26 non-CDH intensive care patients, matched for gestational age and birth weight. Spontaneously breathing infants were tested at a mean of 44 weeks postconceptional age (range, 36-58 weeks). Body weight, body length, respiratory rate (RR), tidal volume (V(T)), functional residual capacity by body plethysmography (FRC(pleth)), respiratory compliance (C(rs)), and respiratory resistance (R(rs)) were measured. RESULTS The mean (SD) weight gain per week in the CDH infants was significantly lower compared to non-CDH infants (89 [39] g vs 141 [49] g; P = .002). The breathing pattern between both groups differed considerably. In CDH infants, V(T) was significantly lower (P < .001) and RR significantly higher (P = .005). The respiratory compliance was also significantly (P < .001) reduced, whereas R(rs) did not differ significantly. No statistically significant differences were seen in FRC(pleth) related to the body weight between CDH and non-CDH infants (20.3 [4.4] mL/kg vs 21.5 [4.9] mL/kg). CONCLUSION Despite apparently well-inflated lungs after surgery, evidence of early and significantly reduced weight gain and impaired lung function in CHD patients should prompt careful dietary monitoring and regular lung function testing.
Collapse
Affiliation(s)
- Charles Christoph Roehr
- Department of Neonatology, Charité Campus Mitte, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Bourbon JR, Boucherat O, Boczkowski J, Crestani B, Delacourt C. Bronchopulmonary dysplasia and emphysema: in search of common therapeutic targets. Trends Mol Med 2009; 15:169-79. [DOI: 10.1016/j.molmed.2009.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/11/2009] [Accepted: 02/11/2009] [Indexed: 11/15/2022]
|
77
|
Nolen-Walston RD, Kim CF, Mazan MR, Ingenito EP, Gruntman AM, Tsai L, Boston R, Woolfenden AE, Jacks T, Hoffman AM. Cellular kinetics and modeling of bronchioalveolar stem cell response during lung regeneration. Am J Physiol Lung Cell Mol Physiol 2008; 294:L1158-65. [PMID: 18375744 PMCID: PMC2593913 DOI: 10.1152/ajplung.00298.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Organ regeneration in mammals is hypothesized to require a functional pool of stem or progenitor cells, but the role of these cells in lung regeneration is unknown. Whereas postnatal regeneration of alveolar tissue has been attributed to type II alveolar epithelial cells (AECII), we reasoned that bronchioalveolar stem cells (BASCs) have the potential to contribute substantially to this process. To test this hypothesis, unilateral pneumonectomy (PNX) was performed on adult female C57/BL6 mice to stimulate compensatory lung regrowth. The density of BASCs and AECII, and morphometric and physiological measurements, were recorded on days 1, 3, 7, 14, 28, and 45 after surgery. Vital capacity was restored by day 7 after PNX. BASC numbers increased by day 3, peaked to 220% of controls (P<0.05) by day 14, and then returned to baseline after active lung regrowth was complete, whereas AECII cell densities increased to 124% of baseline (N/S). Proliferation studies revealed significant BrdU uptake in BASCs and AECII within the first 7 days after PNX. Quantitative analysis using a systems biology model was used to evaluate the potential contribution of BASCs and AECII. The model demonstrated that BASC proliferation and differentiation contributes between 0 and 25% of compensatory alveolar epithelial (type I and II cell) regrowth, demonstrating that regeneration requires a substantial contribution from AECII. The observed cell kinetic profiles can be reconciled using a dual-compartment (BASC and AECII) proliferation model assuming a linear hierarchy of BASCs, AECII, and AECI cells to achieve lung regrowth.
Collapse
Affiliation(s)
- R D Nolen-Walston
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts 01536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Bishai JM, Mitzner W. Effect of severe calorie restriction on the lung in two strains of mice. Am J Physiol Lung Cell Mol Physiol 2008; 295:L356-62. [PMID: 18515406 DOI: 10.1152/ajplung.00514.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is a body of literature in animal models that has suggested the development of emphysema following severe calorie restriction. This has led to the notion of "nutritional emphysema" that might have relevance in COPD patients. There have been few studies, however, that have looked closely at both the mechanics and lung structure in the same animals. In the present work, we examined lung mechanics and histological changes in two strains of mice that have substantial differences in alveolar size, the C57BL/6 and C3H/HeJ strains. We quantified the dynamic elastance and resistance at 2.5 Hz, the quasistatic pressure volume curve, and the alveolar chord lengths in lungs inflated to a lung capacity at 25-30 cm H(2)O. We found that after 2 or 3 wk of calorie restriction to 1/3 their normal diet, the lungs became stiffer with increased resistance. In addition, the lung capacity was also decreased. These mechanical changes were reversed after 2 wk on a normal ad libitum diet. Histology of the postmortem fixed lungs showed no changes in the mean alveolar chord lengths with calorie restriction. Although the baseline mechanics and alveolar size were quantitatively different in the two strains, both strains showed similar qualitative changes during the starvation and refeeding periods. Thus, in two strains of mice with genetically determined differences in alveolar size, neither the mechanics nor the histology show any evidence of emphysema-like changes with this severe caloric insult.
Collapse
Affiliation(s)
- John M Bishai
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|