51
|
Guilloux CA, Lamoureux C, Beauruelle C, Héry-Arnaud G. Porphyromonas: A neglected potential key genus in human microbiomes. Anaerobe 2020; 68:102230. [PMID: 32615270 DOI: 10.1016/j.anaerobe.2020.102230] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 01/16/2023]
Abstract
Anaerobes form a large part of microbial communities, and have begun to be specifically studied in both healthy and pathologic contexts. Porphyromonas is one of the top ten anaerobic taxa in the microbiome (anaerobiome) in healthy subjects. However, to date, most studies focused on the deleterious role of P. gingivalis, the most widely described species. Interestingly, targeted metagenomics reveals Porphyromonas other than gingivalis (POTG), highlighting other species such as P. catoniae or P. pasteri as potential biomarkers in disease progression or pathogen colonization susceptibility. From the sparse data, it appears that the Porphyromonas genus may also be a relevant target of investigation in several pulmonary diseases. Moreover, deciphering cutaneous, gastric and oral microbiomes hint that Porphyromonas may be a genus of interest in non-pulmonary diseases. This review aims to summarize the major data on POTG and to report their impact on the various human microbiomes in different clinical states.
Collapse
Affiliation(s)
| | - Claudie Lamoureux
- Unité de Bactériologie, Pôle de Biologie-Pathologie, Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche, Boulevard Tanguy Prigent, Brest, France.
| | - Clémence Beauruelle
- Univ Brest, Inserm, EFS, UMR, 1078, GGB, F-29200, Brest, France; Unité de Bactériologie, Pôle de Biologie-Pathologie, Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche, Boulevard Tanguy Prigent, Brest, France.
| | - Geneviève Héry-Arnaud
- Univ Brest, Inserm, EFS, UMR, 1078, GGB, F-29200, Brest, France; Unité de Bactériologie, Pôle de Biologie-Pathologie, Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche, Boulevard Tanguy Prigent, Brest, France.
| |
Collapse
|
52
|
Prevention of chronic infection with Pseudomonas aeruginosa infection in cystic fibrosis. Curr Opin Pulm Med 2020; 25:636-645. [PMID: 31397692 DOI: 10.1097/mcp.0000000000000616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW This review provides an update on definitions of chronicity of infection, approaches to airway sampling to detect infection, strategies for Pseudomonas aeruginosa eradication, impact of cystic fibrosis transmembrane regulator protein (CFTR) modulators and future challenges for clinical trials. RECENT FINDINGS Rates of P. aeruginosa have decreased over the past two decades with establishment of effective eradication protocols. Definitions of chronic P. aeruginosa infection have required adaptation for healthier populations. Although molecular (PCR) approaches to early P. aeruginosa detection are sensitive, to date, earlier diagnosis has not impacted on clinical outcomes. Despite eradication regimens, some people with early P. aeruginosa fail to clear their infection. Most people also experience a recurrence and eventual transition to chronic infection. Several recent studies sought to address this gap. CFTR modulators (predominantly ivacaftor) demonstrated reduced P. aeruginosa density, although infection may persist or recur demonstrating the need for continued antiinfective therapies in the modulator era. SUMMARY Future studies of approaches to P. aeruginosa eradication will be complex due to expanded availability and ongoing competitive clinical trials of CFTR modulators. Studies to address optimal eradication therapy, particularly in adults, will be required, though adequate recruitment to power these studies may prove challenging.
Collapse
|
53
|
Vandeplassche E, Sass A, Ostyn L, Burmølle M, Kragh KN, Bjarnsholt T, Coenye T, Crabbé A. Antibiotic susceptibility of cystic fibrosis lung microbiome members in a multispecies biofilm. Biofilm 2020; 2:100031. [PMID: 33447816 PMCID: PMC7798459 DOI: 10.1016/j.bioflm.2020.100031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The lungs of cystic fibrosis (CF) patients are often chronically colonized by multiple microbial species that can form biofilms, including the major CF pathogen Pseudomonas aeruginosa. Herewith, lower microbial diversity in CF airways is typically associated with worse health outcomes. In an attempt to treat CF lung infections patients are frequently exposed to antibiotics, which may affect microbial diversity. This study aimed at understanding if common antibiotics that target P. aeruginosa influence microbial diversity. To this end, a microaerophilic multispecies biofilm model of frequently co-isolated members of the CF lung microbiome (Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus anginosus, Achromobacter xylosoxidans, Rothia mucilaginosa, and Gemella haemolysans) was exposed to antipseudomonal antibiotics. We found that antibiotics that affected several dominant species (i.e. ceftazidime, tobramycin) resulted in higher species evenness compared to colistin, which is only active against P. aeruginosa. Furthermore, susceptibility of individual species in the multispecies biofilm following antibiotic treatment was compared to that of the respective single-species biofilms, showing no differences. Adding three anaerobic species (Prevotella melaninogenica, Veillonella parvula, and Fusobacterium nucleatum) to the multispecies biofilm did not influence antibiotic susceptibility. In conclusion, our study demonstrates antibiotic-dependent effects on microbial community diversity of multispecies biofilms comprised of CF microbiome members.
Collapse
Affiliation(s)
- Eva Vandeplassche
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Mette Burmølle
- Department of Microbiology, University of Copenhagen, Denmark
| | - Kasper Nørskov Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Denmark
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| |
Collapse
|
54
|
Françoise A, Héry-Arnaud G. The Microbiome in Cystic Fibrosis Pulmonary Disease. Genes (Basel) 2020; 11:E536. [PMID: 32403302 PMCID: PMC7288443 DOI: 10.3390/genes11050536] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease with mutational changes leading to profound dysbiosis, both pulmonary and intestinal, from a very young age. This dysbiosis plays an important role in clinical manifestations, particularly in the lungs, affected by chronic infection. The range of microbiological tools has recently been enriched by metagenomics based on next-generation sequencing (NGS). Currently applied essentially in a gene-targeted manner, metagenomics has enabled very exhaustive description of bacterial communities in the CF lung niche and, to a lesser extent, the fungi. Aided by progress in bioinformatics, this now makes it possible to envisage shotgun sequencing and opens the door to other areas of the microbial world, the virome, and the archaeome, for which almost everything remains to be described in cystic fibrosis. Paradoxically, applying NGS in microbiology has seen a rebirth of bacterial culture, but in an extended manner (culturomics), which has proved to be a perfectly complementary approach to NGS. Animal models have also proved indispensable for validating microbiome pathophysiological hypotheses. Description of pathological microbiomes and correlation with clinical status and therapeutics (antibiotic therapy, cystic fibrosis transmembrane conductance regulator (CFTR) modulators) revealed the richness of microbiome data, enabling description of predictive and follow-up biomarkers. Although monogenic, CF is a multifactorial disease, and both genotype and microbiome profiles are crucial interconnected factors in disease progression. Microbiome-genome interactions are thus important to decipher.
Collapse
Affiliation(s)
- Alice Françoise
- UMR 1078 GGB, University of Brest, Inserm, EFS, F-29200 Brest, France;
| | - Geneviève Héry-Arnaud
- UMR 1078 GGB, University of Brest, Inserm, EFS, F-29200 Brest, France;
- Unité de Bactériologie, Pôle de Biologie-Pathologie, Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche, Boulevard Tanguy Prigent, 29200 Brest, France
| |
Collapse
|
55
|
Susceptibility of Pseudomonas aeruginosa Recovered from Cystic Fibrosis Patients to Murepavadin and 13 Comparator Antibiotics. Antimicrob Agents Chemother 2020; 64:AAC.01541-19. [PMID: 31767727 DOI: 10.1128/aac.01541-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/20/2019] [Indexed: 11/20/2022] Open
Abstract
The objective was to determine the in vitro antimicrobial susceptibility of Pseudomonas aeruginosa isolates cultured from cystic fibrosis (CF) patients and explore associations between strain sequence type and susceptibility. Fourteen antibiotics and antibiotic combinations, including the novel antibacterial peptide murepavadin, were tested for activity against 414 Pseudomonas aeruginosa isolates cultured from respiratory samples of CF patients. The complete genomes of the isolates were sequenced, and minimum spanning trees were constructed based on the sequence types (STs). Percentages of resistance according to CLSI 2019 breakpoints were as follows: cefepime, 14%; ceftazidime, 11%; ceftazidime-avibactam, 7%; ceftolozane-tazobactam, 3%; piperacillin-tazobactam, 12%; meropenem, 18%; imipenem, 32%; aztreonam, 23%; ciprofloxacin, 30%; gentamicin, 30%; tobramycin, 12%; amikacin, 18%; and colistin, 4%. Murepavadin MIC50 and MIC90 were 0.12 mg/liter and 2 mg/liter, respectively. There were no apparent clonal clusters associated with resistance, but higher MICs did appear to occur more often in STs with multiple isolates than in single ST isolates. In general, the CF isolates showed a wide genetic distribution. P. aeruginosa CF isolates exhibited the lowest resistance rates against ceftolozane-tazobactam, ceftazidime-avibactam, and colistin. Murepavadin demonstrated the highest activity on a per-weight basis and may therefore become a valuable addition to the currently available antibiotics for treatment of respiratory infection in people with CF.
Collapse
|
56
|
Abstract
Cystic fibrosis (CF) is a genetic, multisystem disease due to defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an anion channel responsible for chloride and bicarbonate trafficking. Although this channel is expressed in many tissues, its impaired function in airway epithelial cells leads to hyperviscous mucous secretions impeding effective mucociliary clearance. Impaired clearance of inhaled microorganisms results in the establishment of chronic infection, triggering an overexaggerated inflammatory response. The resulting release of inflammatory cytokines and enzymes causes pulmonary damage in the form of bronchiectasis, further impairing mucociliary action, forming a vicious cycle. Subsequent respiratory failure remains the leading cause of death in individuals with CF.
Collapse
Affiliation(s)
- Stephanie Duggins Davis
- The University of North Carolina at Chapel Hill, Department of Pediatrics, UNC Children’s Hospital, Chapel Hill, NC USA
| | - Margaret Rosenfeld
- Department of Pediatrics, University of Washington School of Medicine, Division of Pulmonary and Sleep Medicine Seattle Children’s Hospital, Seattle, WA USA
| | - James Chmiel
- Department of Pediatrics, Indiana University School of Medicine, Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Riley Hospital for Children at IU Health, Indianapolis, IN USA
| |
Collapse
|
57
|
Abstract
Although survival of individuals with cystic fibrosis (CF) has been continuously improving for the past 40 years, respiratory failure secondary to recurrent pulmonary infections remains the leading cause of mortality in this patient population. Certain pathogens such as Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and species of the Burkholderia cepacia complex continue to be associated with poorer clinical outcomes including accelerated lung function decline and increased mortality. In addition, other organisms such as anaerobes, viruses, and fungi are increasingly recognized as potential contributors to disease progression. Culture-independent molecular methods are also being used for diagnostic purposes and to examine the interaction of microorganisms in the CF airway. Given the importance of CF airway infections, ongoing initiatives to promote understanding of the epidemiology, clinical course, and treatment options for these infections are needed.
Collapse
Affiliation(s)
- Ana C Blanchard
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Valerie J Waters
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
58
|
Bayjanov JR, Ekkelenkamp MB, Rogers MR, Cantón R, Benaissa-Trouw BJ, Díez-Aguilar M, Tunney M, Fluit AC. Whole-genome analysis of Pandoraea species strains from cystic fibrosis patients. Future Microbiol 2019; 14:1357-1367. [PMID: 31762328 DOI: 10.2217/fmb-2019-0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: Genetic characterization of Pandoraea strains recovered from cystic fibrosis patients. Materials & methods: The whole-genome sequence of 12 Pandoraea strains was determined using Illumina technology. The position of the strains within the genus Pandoraea was analyzed using selected partial gene sequences, core genome multi-locus sequence typing and average nucleotide identity analysis. Furthermore, the sequences were annotated. Results: The results show that some strains previously identified as Pandoraea pnomenusa, Pandoraea sputorum, Pandoraea oxalativorans and Pandoraea pulmonicola belong to novel species. The strains did not harbor acquired antibiotic resistance genes but encoded an OXA-type ß-lactamase. Conclusion: The taxonomy of the genus Pandoraea needs to be revised.
Collapse
Affiliation(s)
- Jumamurat R Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Miquel B Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Malbert Rc Rogers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Barry J Benaissa-Trouw
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - María Díez-Aguilar
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Michael Tunney
- Department of Pulmonology, Queen's University Belfast, Northern Ireland, UK
| | - Ad C Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
59
|
Dolma K, Freeman AE, Rezonzew G, Payne GA, Xu X, Jilling T, Blalock JE, Gaggar A, Ambalavanan N, Lal CV. Effects of hyperoxia on alveolar and pulmonary vascular development in germ-free mice. Am J Physiol Lung Cell Mol Physiol 2019; 318:L421-L428. [PMID: 31644312 DOI: 10.1152/ajplung.00316.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway microbial dysbiosis is associated with subsequent bronchopulmonary dysplasia (BPD) development in very preterm infants. However, the relationship of airway microbiome in normal pulmonary development has not been defined. To better understand the role of the airway microbiome, we compared normal and abnormal alveolar and pulmonary vascular development in mice with or without a microbiome. We hypothesized that the lungs of germ-free (GF) mice would have an exaggerated phenotypic response to hyperoxia compared with non-germ-free (NGF) mice. With the use of a novel gnotobiotic hyperoxia chamber, GF and NGF mice were exposed to either normoxia or hyperoxia. Alveolar morphometry, pulmonary mechanics, echocardiograms, inflammatory markers, and measures of pulmonary hypertension were studied. GF and NGF mice in normoxia showed no difference, whereas GF mice in hyperoxia showed protected lung structure and mechanics and decreased markers of inflammation compared with NGF mice. We speculate that an increase in abundance of pathogenic bacteria in NGF mice may play a role in BPD pathogenesis by regulating the proinflammatory signaling and neutrophilic inflammation in lungs. Manipulation of the airway microbiome may be a potential therapeutic intervention in BPD and other lung diseases.
Collapse
Affiliation(s)
- Kalsang Dolma
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Neonatology, Department of Pediatrics, University of South Alabama, Mobile, Alabama
| | - Amelia E Freeman
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gabriel Rezonzew
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gregory A Payne
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xin Xu
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - J Edwin Blalock
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amit Gaggar
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Charitharth Vivek Lal
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Neonatology, Department of Pediatrics, University of South Alabama, Mobile, Alabama
| |
Collapse
|
60
|
Fraser TA, Bell MG, Harris PNA, Bell SC, Bergh H, Nguyen TK, Kidd TJ, Nimmo GR, Sarovich DS, Price EP. Quantitative real-time PCR assay for the rapid identification of the intrinsically multidrug-resistant bacterial pathogen Stenotrophomonas maltophilia. Microb Genom 2019; 5. [PMID: 31617838 PMCID: PMC6861864 DOI: 10.1099/mgen.0.000307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stenotrophomonas maltophilia is emerging as an important cause of disease in nosocomial and community-acquired settings, including bloodstream, wound and catheter-associated infections. Cystic fibrosis (CF) airways also provide optimal growth conditions for various opportunistic pathogens with high antibiotic tolerance, including S. maltophilia. Currently, there is no rapid, cost-effective and accurate molecular method for detecting this potentially life-threatening pathogen, particularly in polymicrobial specimens, suggesting that its true prevalence is underestimated. Here, we used large-scale comparative genomics to identify a specific genetic target for S. maltophilia, with subsequent development and validation of a real-time PCR assay for its detection. Analysis of 167 Stenotrophomonas spp. genomes identified a conserved 4 kb region in S. maltophilia, which was targeted for Black Hole Quencher assay design. Our assay yielded the positive detection of 89 of 89 (100%) clinical S. maltophilia strains, and no amplification of 23 non-S. maltophilia clinical isolates. S. maltophilia was detected in 10 of 16 CF sputa, demonstrating the assay's utility for direct detection in respiratory specimens. The assay demonstrated good sensitivity, with limits of detection and quantitation on pure culture of ~10 and ~100 genome equivalents, respectively. Our assay provides a highly specific, sensitive and cost-effective method for the accurate identification of S. maltophilia, and will improve the diagnosis and treatment of this under-recognized pathogen by enabling its accurate and rapid detection from polymicrobial clinical and environmental samples.
Collapse
Affiliation(s)
- Tamieka A Fraser
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia.,GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mikaela G Bell
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia.,GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Patrick N A Harris
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,Microbiology Department, Central Laboratory, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Scott C Bell
- Adult Cystic Fibrosis Centre, Prince Charles Hospital, Chermside, Queensland, Australia.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Haakon Bergh
- Microbiology Department, Central Laboratory, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Thuy-Khanh Nguyen
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, St Lucia, Queensland, Australia.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Graeme R Nimmo
- Microbiology Department, Central Laboratory, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Derek S Sarovich
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia.,GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Erin P Price
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| |
Collapse
|
61
|
Richardson H, Dicker AJ, Barclay H, Chalmers JD. The microbiome in bronchiectasis. Eur Respir Rev 2019; 28:28/153/190048. [DOI: 10.1183/16000617.0048-2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022] Open
Abstract
Bronchiectasis is increasing in prevalence worldwide, yet current treatments available are limited to those alleviating symptoms and reducing exacerbations. The pathogenesis of the disease and the inflammatory, infective and molecular drivers of disease progression are not fully understood, making the development of novel treatments challenging. Understanding the role bacteria play in disease progression has been enhanced by the use of next-generation sequencing techniques such as 16S rRNA sequencing. The microbiome has not been extensively studied in bronchiectasis, but existing data show lung bacterial communities dominated by Pseudomonas, Haemophilus and Streptococcus, while exhibiting intraindividual stability and large interindividual variability. Pseudomonas- and Haemophilus-dominated microbiomes have been shown to be linked to severe disease and frequent exacerbations. Studies completed to date are limited in size and do not fully represent all clinically observed disease subtypes. Further research is required to understand the microbiomes role in bronchiectasis disease progression. This review discusses recent developments and future perspectives on the lung microbiome in bronchiectasis.
Collapse
|
62
|
Pienkowska K, Wiehlmann L, Tümmler B. Metagenome – Inferred bacterial replication rates in cystic fibrosis airways. J Cyst Fibros 2019; 18:653-656. [DOI: 10.1016/j.jcf.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/15/2018] [Accepted: 01/11/2019] [Indexed: 01/23/2023]
|
63
|
Abstract
Aside from the traditional CF pathogens, Haemophilus influenzae, Staphylococcus aureus and Pseudomonas aeruginosa, there are an increasing number of organisms found to have chronic carriage in patients with cystic fibrosis, including gram-negative bacteria, non-tuberculous mycobacteria, anaerobic bacteria and fungal species. Some of these lower prevalence organisms, such as Burkholderia cenocepacia and Mycobacterium abscessus complex, are recognised as true pathogens associated with significant adverse clinical consequences, whilst for others the relative pathogenicity and need for treatment are unclear. This article will highlight some of the challenges in assessing what is a pathogen in CF and the potential implications of infection with different organisms for individual patients.
Collapse
|
64
|
Sherrard LJ, Einarsson GG, Johnston E, O'Neill K, McIlreavey L, McGrath SJ, Gilpin DF, Downey DG, Reid A, McElvaney NG, Boucher RC, Muhlebach MS, Elborn JS, Tunney MM. Assessment of stability and fluctuations of cultured lower airway bacterial communities in people with cystic fibrosis. J Cyst Fibros 2019; 18:808-816. [PMID: 30905581 DOI: 10.1016/j.jcf.2019.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Routine clinical culture detects a subset of the cystic fibrosis (CF) airways microbiota based on culture-independent (molecular) methods. This study aimed to determine how extended sputum culture of viable bacteria changes over time in relation to clinical status and predicts exacerbations. METHODS Sputa from patients at a baseline stable and up to three subsequent time-points were analysed by extended-quantitative culture; aerobe/anaerobe densities, ecological indexes and community structure were assessed together with clinical outcomes. RESULTS Eighty patients were prospectively recruited. Sputa were successfully collected and cultured at 199/267 (74.5%) study visits. Eighty-two sputa from 25 patients comprised a complete sample-set for longitudinal analyses. Bacterial density, ecological indexes and clinical outcomes were unchanged in 18 patients with three sequential stable visits. Conversely, in 7 patients who had an exacerbation, total bacterial and aerobe densities differed over four study visits (P < .001) with this difference particularly apparent between the baseline visit and completion of acute antibiotic treatment where a decrease in density was observed. Bacterial communities were more similar within than between patients but stable patients had the least variation in community structure over time. Using logistic regression in a further analysis, baseline features in 37 patients without compared to 15 patients with a subsequent exacerbation showed that clinical measures rather than bacterial density or ecological indexes were independent predictors of an exacerbation. CONCLUSIONS Greater fluctuation in the viable bacterial community during treatment of an exacerbation than between stable visits was observed. Extended-quantitative culture did not provide prognostic information of a future exacerbation.
Collapse
Affiliation(s)
- Laura J Sherrard
- Halo Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK.
| | - Gisli G Einarsson
- Halo Research Group, Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Elinor Johnston
- Halo Research Group, Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Katherine O'Neill
- Halo Research Group, Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Leanne McIlreavey
- Halo Research Group, Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Stephanie J McGrath
- Halo Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Deirdre F Gilpin
- Halo Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Damian G Downey
- Halo Research Group, Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK; Belfast Health and Social Care Trust, Belfast, UK
| | | | - Noel G McElvaney
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marianne S Muhlebach
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Stuart Elborn
- Halo Research Group, Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK; Imperial College and Royal Brompton Hospital and Harefield NHS Foundation Trust, London, UK
| | - Michael M Tunney
- Halo Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
65
|
Keravec M, Mounier J, Guilloux CA, Fangous MS, Mondot S, Vallet S, Gouriou S, Le Berre R, Rault G, Férec C, Barbier G, Lepage P, Héry-Arnaud G. Porphyromonas, a potential predictive biomarker of Pseudomonas aeruginosa pulmonary infection in cystic fibrosis. BMJ Open Respir Res 2019; 6:e000374. [PMID: 30956802 PMCID: PMC6424284 DOI: 10.1136/bmjresp-2018-000374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/31/2019] [Indexed: 01/12/2023] Open
Abstract
Introduction Pseudomonas aeruginosa pulmonary infections are the primary cause of morbi-mortality in patients with cystic fibrosis (CF). In this cohort study, the objective was to identify candidate biomarkers of P. aeruginosa infection within the airway microbiota. Methods A 3-year prospective multicentre study (PYOMUCO study) was conducted in Western France and included patients initially P. aeruginosa free for at least 1 year. A 16S-targeted metagenomics approach was applied on iterative sputum samples of a first set of patients (n=33). The composition of airway microbiota was compared according to their P. aeruginosa status at the end of the follow-up (colonised vs non-colonised), and biomarkers associated with P. aeruginosa were screened. In a second step, the distribution of a candidate biomarker according to the two groups of patients was verified by qPCR on a second set of patients (n=52) coming from the same cohort and its load quantified throughout the follow-up. Results Porphyromonas (mainly P. catoniae) was found to be an enriched phylotype in patients uninfected by P. aeruginosa (p<0.001). This result was confirmed by quantitative PCR. Conversely, in patients who became P. aeruginosa-positive, P. catoniae significantly decreased before P. aeruginosa acquisition (p=0.014). Discussion Further studies on replication cohorts are needed to validate this potential predictive biomarker, which may be relevant for the follow-up in the early years of patients with CF. The identification of infection candidate biomarkers may offer new strategies for CF precision medicine.
Collapse
Affiliation(s)
- Marlène Keravec
- EA3882-Laboratoire de Biodiversité et Ecologie Microbienne (LUBEM), Universite de Bretagne Occidentale, Brest, France
| | - Jérôme Mounier
- EA3882-Laboratoire de Biodiversité et Ecologie Microbienne (LUBEM), Universite de Bretagne Occidentale, Brest, France
| | - Charles-Antoine Guilloux
- UMR1078 'Génétique, Génomique Fonctionnelle et Biotechnologies', INSERM, EFS, Université de Brest, IBSAM, CHU de Brest, University of Brest, Brest, France
| | - Marie-Sarah Fangous
- UMR1078 'Génétique, Génomique Fonctionnelle et Biotechnologies', INSERM, EFS, Université de Brest, IBSAM, CHU de Brest, University of Brest, Brest, France
| | - Stanislas Mondot
- Micalis Institute, INRA, AgroParisTech, University Paris-Saclay, Jouy-en-Josas, France
| | - Sophie Vallet
- UMR1078 'Génétique, Génomique Fonctionnelle et Biotechnologies', INSERM, EFS, Université de Brest, IBSAM, CHU de Brest, University of Brest, Brest, France
| | - Stéphanie Gouriou
- UMR1078 'Génétique, Génomique Fonctionnelle et Biotechnologies', INSERM, EFS, Université de Brest, IBSAM, CHU de Brest, University of Brest, Brest, France
| | - Rozenn Le Berre
- UMR1078 'Génétique, Génomique Fonctionnelle et Biotechnologies', INSERM, EFS, Université de Brest, IBSAM, CHU de Brest, University of Brest, Brest, France
| | - Gilles Rault
- Centre de Ressources et de Compétences de la Mucoviscidose, Ildys, Roscoff, France
| | - Claude Férec
- UMR1078 'Génétique, Génomique Fonctionnelle et Biotechnologies', INSERM, EFS, Université de Brest, IBSAM, CHU de Brest, University of Brest, Brest, France
| | - Georges Barbier
- EA3882-Laboratoire de Biodiversité et Ecologie Microbienne (LUBEM), Universite de Bretagne Occidentale, Brest, France
| | - Patricia Lepage
- Micalis Institute, INRA, AgroParisTech, University Paris-Saclay, Jouy-en-Josas, France
| | - Geneviève Héry-Arnaud
- EA3882-Laboratoire de Biodiversité et Ecologie Microbienne (LUBEM), Universite de Bretagne Occidentale, Brest, France.,UMR1078 'Génétique, Génomique Fonctionnelle et Biotechnologies', INSERM, EFS, Université de Brest, IBSAM, CHU de Brest, University of Brest, Brest, France.,Micalis Institute, INRA, AgroParisTech, University Paris-Saclay, Jouy-en-Josas, France.,Centre de Ressources et de Compétences de la Mucoviscidose, Ildys, Roscoff, France.,Micalis Institute, INRA, AgroParisTech, University Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
66
|
Héry-Arnaud G, Boutin S, Cuthbertson L, Elborn SJ, Tunney MM. The lung and gut microbiome: what has to be taken into consideration for cystic fibrosis? J Cyst Fibros 2018; 18:13-21. [PMID: 30487080 DOI: 10.1016/j.jcf.2018.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 12/20/2022]
Abstract
The 15th European Cystic Fibrosis Society (ECFS) Basic Science pre-conference Symposium focused on the topic of the microbiome, asking the question "The lung and gut microbiome: what has to be considered for cystic fibrosis (CF)?" This review gives an overview of the main points raised during the symposium, which dealt with the technical considerations, pathophysiology and clinical implications of the microbiome in CF.
Collapse
Affiliation(s)
- Geneviève Héry-Arnaud
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; Unité de Bactériologie, Pôle de Biologie-Pathologie, Hôpital La Cavale Blanche, CHRU de Brest, Brest, France.
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | | | - Stuart J Elborn
- National Heart and Lung Institute, Imperial College, London, UK; Halo Research Group, Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Michael M Tunney
- Halo Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
67
|
Caverly LJ, LiPuma JJ. Good cop, bad cop: anaerobes in cystic fibrosis airways. Eur Respir J 2018; 52:52/1/1801146. [PMID: 29997183 DOI: 10.1183/13993003.01146-2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Lindsay J Caverly
- Dept of Pediatrics and Communicable Diseases, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - John J LiPuma
- Dept of Pediatrics and Communicable Diseases, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|