51
|
Jay-Russell MT, Hake AF, Bengson Y, Thiptara A, Nguyen T. Prevalence and characterization of Escherichia coli and Salmonella strains isolated from stray dog and coyote feces in a major leafy greens production region at the United States-Mexico border. PLoS One 2014; 9:e113433. [PMID: 25412333 PMCID: PMC4239069 DOI: 10.1371/journal.pone.0113433] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/28/2014] [Indexed: 11/28/2022] Open
Abstract
In 2010, Romaine lettuce grown in southern Arizona was implicated in a multi-state outbreak of Escherichia coli O145:H28 infections. This was the first known Shiga toxin-producing E. coli (STEC) outbreak traced to the southwest desert leafy green vegetable production region along the United States-Mexico border. Limited information exists on sources of STEC and other enteric zoonotic pathogens in domestic and wild animals in this region. According to local vegetable growers, unleashed or stray domestic dogs and free-roaming coyotes are a significant problem due to intrusions into their crop fields. During the 2010-2011 leafy greens growing season, we conducted a prevalence survey of STEC and Salmonella presence in stray dog and coyote feces. Fresh fecal samples from impounded dogs and coyotes from lands near produce fields were collected and cultured using extended enrichment and serogroup-specific immunomagnetic separation (IMS) followed by serotyping, pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility testing. A total of 461 fecal samples were analyzed including 358 domestic dog and 103 coyote fecals. STEC was not detected, but atypical enteropathogenic E. coli (aEPEC) strains comprising 14 different serotypes were isolated from 13 (3.6%) dog and 5 (4.9%) coyote samples. Salmonella was cultured from 33 (9.2%) dog and 33 (32%) coyote samples comprising 29 serovars with 58% from dogs belonging to Senftenberg or Typhimurium. PFGE analysis revealed 17 aEPEC and 27 Salmonella distinct pulsotypes. Four (22.2%) of 18 aEPEC and 4 (6.1%) of 66 Salmonella isolates were resistant to two or more antibiotic classes. Our findings suggest that stray dogs and coyotes in the desert southwest may not be significant sources of STEC, but are potential reservoirs of other pathogenic E. coli and Salmonella. These results underscore the importance of good agriculture practices relating to mitigation of microbial risks from animal fecal deposits in the produce production area.
Collapse
Affiliation(s)
- Michele T. Jay-Russell
- Western Center for Food Safety, University of California Davis, Davis, California, United States of America
| | - Alexis F. Hake
- Western Center for Food Safety, University of California Davis, Davis, California, United States of America
| | - Yingjia Bengson
- Western Center for Food Safety, University of California Davis, Davis, California, United States of America
| | - Anyarat Thiptara
- Western Center for Food Safety, University of California Davis, Davis, California, United States of America
| | - Tran Nguyen
- Western Center for Food Safety, University of California Davis, Davis, California, United States of America
| |
Collapse
|
52
|
Caine LA, Nwodo UU, Okoh AI, Ndip RN, Green E. Occurrence of virulence genes associated with diarrheagenic Escherichia coli isolated from raw cow's milk from two commercial dairy farms in the Eastern Cape Province, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:11950-63. [PMID: 25411727 PMCID: PMC4245653 DOI: 10.3390/ijerph111111950] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/05/2014] [Accepted: 11/10/2014] [Indexed: 01/22/2023]
Abstract
Escherichia coli remains a public health concern worldwide as an organism that causes diarrhea and its reservoir in raw milk may play an important role in the survival and transport of pathogenic strains. Diarrheagenic E. coli strains are diverse food-borne pathogens and causes diarrhea with varying virulence in humans. We investigated the prevalence of pathogenic E. coli in raw milk from two commercial dairy farms. Four hundred raw milk samples, 200 from each dairy farm, were screened for the presence of fliCH7, eagR, ial, eagg, lt, and papC genes. In dairy farm A, 100 E. coli were identified based on culture, oxidase and Gram staining, while 88 isolates from dairy farm B were identified in the same manner. Gene detection showed fliCH7 27 (54%) to be the highest gene detected from farm A and lt 2 (4%) to be the lowest. The highest gene detected in dairy farm B was fliCH7 16 (43.2%) and papC 1 (2.7%) was the least. The amplification of pathogenic genes associated with diarrheagenic E. coli from cows' raw milk demonstrates that potentially virulent E. coli strains are widely distributed in raw milk and may be a cause of concern for human health.
Collapse
Affiliation(s)
- Lesley-Anne Caine
- Departments of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Uchechukwu U Nwodo
- Departments of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Anthony I Okoh
- Departments of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Roland N Ndip
- Departments of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Ezekiel Green
- Departments of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| |
Collapse
|
53
|
Haugum K, Johansen J, Gabrielsen C, Brandal LT, Bergh K, Ussery DW, Drabløs F, Afset JE. Comparative genomics to delineate pathogenic potential in non-O157 Shiga toxin-producing Escherichia coli (STEC) from patients with and without haemolytic uremic syndrome (HUS) in Norway. PLoS One 2014; 9:e111788. [PMID: 25360710 PMCID: PMC4216125 DOI: 10.1371/journal.pone.0111788] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/30/2014] [Indexed: 11/19/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause infections in humans ranging from asymptomatic carriage to bloody diarrhoea and haemolytic uremic syndrome (HUS). Here we present whole genome comparison of Norwegian non-O157 STEC strains with the aim to distinguish between strains with the potential to cause HUS and less virulent strains. Whole genome sequencing and comparisons were performed across 95 non-O157 STEC strains. Twenty-three of these were classified as HUS-associated, including strains from patients with HUS (n = 19) and persons with an epidemiological link to a HUS-case (n = 4). Genomic comparison revealed considerable heterogeneity in gene content across the 95 STEC strains. A clear difference in gene profile was observed between strains with and without the Locus of Enterocyte Effacement (LEE) pathogenicity island. Phylogenetic analysis of the core genome showed high degree of diversity among the STEC strains, but all HUS-associated STEC strains were distributed in two distinct clusters within phylogroup B1. However, non-HUS strains were also found in these clusters. A number of accessory genes were found to be significantly overrepresented among HUS-associated STEC, but none of them were unique to this group of strains, suggesting that different sets of genes may contribute to the pathogenic potential in different phylogenetic STEC lineages. In this study we were not able to clearly distinguish between HUS-associated and non-HUS non-O157 STEC by extensive genome comparisons. Our results indicate that STECs from different phylogenetic backgrounds have independently acquired virulence genes that determine pathogenic potential, and that the content of such genes is overlapping between HUS-associated and non-HUS strains.
Collapse
Affiliation(s)
- Kjersti Haugum
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| | - Jostein Johansen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christina Gabrielsen
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lin T. Brandal
- Department of Foodborne Infections, Norwegian Institute of Public Health, Oslo, Norway
| | - Kåre Bergh
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medical Microbiology, St. Olavs University Hospital, Trondheim, Norway
| | - David W. Ussery
- Biosciences Division, Oak Ridge National Labs, Oak Ridge, Tennessee, United States of America
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Egil Afset
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medical Microbiology, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
54
|
Salvador FA, Hernandes RT, Vieira MAM, Rockstroh AC, Gomes TAT. Distribution of non-LEE-encoded type 3 secretion system dependent effectors in enteropathogenic Escherichia coli. Braz J Microbiol 2014; 45:851-5. [PMID: 25477918 PMCID: PMC4204969 DOI: 10.1590/s1517-83822014000300014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 03/14/2014] [Indexed: 01/02/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) are important human gastroenteritis agents. The prevalence of six non-LEE genes encoding type 3 translocated effectors was investigated. The nleC, cif and nleB genes were more prevalent in typical than in atypical EPEC, although a higher diversity of genes combinations was observed in atypical EPEC.
Collapse
Affiliation(s)
- Fábia A Salvador
- Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de São Paulo São PauloSP Brazil Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rodrigo T Hernandes
- Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de São Paulo São PauloSP Brazil Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil. ; Departamento de Microbiologia e Imunologia Instituto de Biociências Universidade Estadual Paulista "Julio de Mesquita Filho" BotucatuSP Brazil Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP, Brazil
| | - Mônica A M Vieira
- Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de São Paulo São PauloSP Brazil Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Anna C Rockstroh
- Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de São Paulo São PauloSP Brazil Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de São Paulo São PauloSP Brazil Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
55
|
Abstract
ABSTRACT
The inflammatory response is an integral part of host defense against enterohemorrhagic
Escherichia coli
(EHEC) infection and also contributes to disease pathology. In this article we explore the factors leading to inflammation during EHEC infection and the mechanisms EHEC and other attaching and effacing (A/E) pathogens have evolved to suppress inflammatory signaling. EHEC stimulates an inflammatory response in the intestine through host recognition of bacterial components such as flagellin and lipopolysaccharide. In addition, the activity of Shiga toxin and some type III secretion system effectors leads to increased tissue inflammation. Various infection models of EHEC and other A/E pathogens have revealed many of the immune factors that mediate this response. In particular, the outcome of infection is greatly influenced by the ability of an infected epithelial cell to mount an effective host inflammatory response. The inflammatory response of infected enterocytes is counterbalanced by the activity of type III secretion system effectors such as NleE and NleC that modify and inhibit components of the signaling pathways that lead to proinflammatory cytokine production. Overall, A/E pathogens have taught us that innate mucosal immune responses in the gastrointestinal tract during infection with A/E pathogens are highly complex and ultimate clearance of the pathogen depends on multiple factors, including inflammatory mediators, bacterial burden, and the function and integrity of resident intestinal epithelial cells.
Collapse
|
56
|
Diverse virulence gene content of Shiga toxin-producing Escherichia coli from finishing swine. Appl Environ Microbiol 2014; 80:6395-402. [PMID: 25107960 DOI: 10.1128/aem.01761-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) infections are a critical public health concern because they can cause severe clinical outcomes, such as hemolytic uremic syndrome, in humans. Determining the presence or absence of virulence genes is essential in assessing the potential pathogenicity of STEC strains. Currently, there is limited information about the virulence genes carried by swine STEC strains; therefore, this study was conducted to examine the presence and absence of 69 virulence genes in STEC strains recovered previously from finishing swine in a longitudinal study. A subset of STEC strains was analyzed by pulsed-field gel electrophoresis (PFGE) to examine their genetic relatedness. Swine STEC strains (n = 150) were analyzed by the use of a high-throughput real-time PCR array system, which included 69 virulence gene targets. Three major pathotypes consisted of 16 different combinations of virulence gene profiles, and serotypes were determined in the swine STEC strains. The majority of the swine STEC strains (n = 120) belonged to serotype O59:H21 and carried the same virulence gene profile, which consisted of 9 virulence genes: stx2e, iha, ecs1763, lpfAO113, estIa (STa), ehaA, paa, terE, and ureD. The eae, nleF, and nleH1-2 genes were detected in one swine STEC strain (O49:H21). Other genes encoding adhesins, including iha, were identified (n = 149). The PFGE results demonstrated that swine STEC strains from pigs raised in the same finishing barn were closely related. Our results revealed diverse virulence gene contents among the members of the swine STEC population and enhance understanding of the dynamics of transmission of STEC strains among pigs housed in the same barn.
Collapse
|
57
|
Trevisani M, Mancusi R, Delle Donne G, Bacci C, Bassi L, Bonardi S. Detection of Shiga toxin (Stx)-producing Escherichia coli (STEC) in bovine dairy herds in Northern Italy. Int J Food Microbiol 2014; 184:45-9. [DOI: 10.1016/j.ijfoodmicro.2013.12.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/22/2022]
|
58
|
PCR-based detection and molecular characterization of shiga toxin-producing Escherichia coli strains in a routine microbiology laboratory over 16 years. J Clin Microbiol 2014; 52:3156-63. [PMID: 24920783 DOI: 10.1128/jcm.00453-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a heterogeneous group of bacteria causing disease ranging from asymptomatic carriage and mild infection to hemolytic uremic syndrome (HUS). Here, we describe patients with STEC infection and characterize the STEC strains detected in our laboratory by use of PCR for stx1, stx2, and eae from 1996 through 2011. Patient information was collected from referral forms and from the Norwegian Surveillance System for Communicable Diseases. STEC isolates were characterized with respect to serogroup or serotype, selected potential virulence genes, and multilocus variable-number tandem-repeat analysis (MLVA) genotype. STEC strains were isolated from 138 (1.09%) of 12,651 patients tested. STEC strains of serogroups O26, O103, O121, O145, and O157 were the most frequent. These serogroups, except non-sorbitol-fermenting O157, were also the most frequent among the 11 patients (all ≤5 years old) who developed HUS. Twenty-four STEC strains were classified as being HUS associated based on an epidemiological link to a HUS case, including an MLVA genotype identical to that of the STEC strain. The age of the patient (≤5 years) and the genes eae and stx2a were significantly associated with HUS-associated STEC (P < 0.05 for each parameter), while stx1 was associated with non-HUS-associated STEC (P < 0.05). All of the potential virulence genes analyzed, except ehxA, were significantly more frequent among HUS-associated than non-HUS-associated strains (P < 0.05 for each gene). However, these genes were also present in some non-HUS-associated STEC strains and could therefore not reliably differentiate between HUS-associated and non-HUS-associated STEC strains.
Collapse
|
59
|
Fontana C, Kovacs H, Widmalm G. NMR structure analysis of uniformly 13C-labeled carbohydrates. JOURNAL OF BIOMOLECULAR NMR 2014; 59:95-110. [PMID: 24771296 DOI: 10.1007/s10858-014-9830-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/16/2014] [Indexed: 05/26/2023]
Abstract
In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra.
Collapse
Affiliation(s)
- Carolina Fontana
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91, Stockholm, Sweden
| | | | | |
Collapse
|
60
|
Genetic diversity and virulence potential of shiga toxin-producing Escherichia coli O113:H21 strains isolated from clinical, environmental, and food sources. Appl Environ Microbiol 2014; 80:4757-63. [PMID: 24858089 DOI: 10.1128/aem.01182-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli strains of serotype O113:H21 have caused severe human diseases, but they are unusual in that they do not produce adherence factors coded by the locus of enterocyte effacement. Here, a PCR microarray was used to characterize 65 O113:H21 strains isolated from the environment, food, and clinical infections from various countries. In comparison to the pathogenic strains that were implicated in hemolytic-uremic syndrome in Australia, there were no clear differences between the pathogens and the environmental strains with respect to the 41 genetic markers tested. Furthermore, all of the strains carried only Shiga toxin subtypes associated with human infections, suggesting that the environmental strains have the potential to cause disease. Most of the O113:H21 strains were closely related and belonged in the same clonal group (ST-223), but CRISPR analysis showed a great degree of genetic diversity among the O113:H21 strains.
Collapse
|
61
|
Shiga toxin-producingE. coli(STEC) in swine: prevalence over the finishing period and characteristics of the STEC isolates. Epidemiol Infect 2014; 143:505-14. [DOI: 10.1017/s0950268814001095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYThis descriptive longitudinal study was conducted to investigate the faecal shedding of Shiga toxin-producingE. coli(STEC) in finishing swine and to characterize the swine STEC isolates that were recovered. Three cohorts of finishing swine (n = 50/cohort; total 150 pigs) were included in the longitudinal study. Individual faecal samples were collected every 2 weeks (8 collections/pig) from the beginning (pig age 10 weeks) to the end (pig age 24 weeks) of the finishing period. STEC isolates were recovered in at least one sample from 65·3% (98/150) of the pigs, and the frequency distribution of first-time STEC detection during the finishing period resembled a point-source outbreak curve. Nineteen O:H serotypes were identified among the STEC isolates. Most STEC isolates (n = 148) belonged to serotype O59:H21 and carried thestx2egene. One O49:H21 STEC isolate carried thestx2eandeaegenes. High prevalence rates of STEC during the finishing period were observed, and STEC isolates in various non-O157 serogroups were recovered. These data enhance understanding of swine STEC epidemiology, and future research is needed to confirm whether or not swine STEC are of public health concern.
Collapse
|
62
|
Mancusi R, Trevisani M. Enumeration of verocytotoxigenic Escherichia coli (VTEC) O157 and O26 in milk by quantitative PCR. Int J Food Microbiol 2014; 184:121-7. [PMID: 24713473 DOI: 10.1016/j.ijfoodmicro.2014.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/03/2014] [Accepted: 03/15/2014] [Indexed: 12/25/2022]
Abstract
Quantitative real-time polymerase chain reaction (qPCR) can be a convenient alternative to the Most Probable Number (MPN) methods to count VTEC in milk. The number of VTEC is normally very low in milk; therefore with the aim of increasing the method sensitivity a qPCR protocol that relies on preliminary enrichment was developed. The growth pattern of six VTEC strains (serogroups O157 and O26) was studied using enrichment in Buffered Peptone Water (BPW) with or without acriflavine for 4-24h. Milk samples were inoculated with these strains over a five Log concentration range between 0.24-0.50 and 4.24-4.50 Log CFU/ml. DNA was extracted from the enriched samples in duplicate and each extract was analysed in duplicate by qPCR using pairs of primers specific for the serogroups O157 and O26. When samples were pre-enriched in BPW at 37°C for 8h, the relationship between threshold cycles (CT values) and VTEC Log numbers was linear over a five Log concentration range. The regression of PCR threshold cycle numbers on VTEC Log CFU/ml had a slope coefficient equal to -3.10 (R(2)=0.96) which is indicative of a 10-fold difference of the gene copy numbers between samples (with a 100 ± 10% PCR efficiency). The same 10-fold proportion used for inoculating the milk samples with VTEC was observed, therefore, also in the enriched samples at 8h. A comparison of the CT values of milk samples and controls revealed that the strains inoculated in milk grew with 3 Log increments in the 8h enrichment period. Regression lines that fitted the qPCR and MPN data revealed that the error of the qPCR estimates is lower than the error of the estimated MPN (r=0.982, R(2)=0.965 vs. r=0.967, R(2)=0.935). The growth rates of VTEC strains isolated from milk should be comparatively assessed before qPCR estimates based on the regression model are considered valid. Comparative assessment of the growth rates can be done using spectrophotometric measurements of standardized cultures of isolates and reference strains cultured in BPW at 37°C for 8h. The method developed for the serogroups O157 and O26 can be easily adapted to the other VTEC serogroups that are relevant for human health. The qPCR method is less laborious and faster than the standard MPN method and has been shown to be a good technique for quantifying VTEC in milk.
Collapse
Affiliation(s)
- Rocco Mancusi
- Department of Veterinary Medical Science, School of Agriculture and Veterinary Medicine, 'Alma Mater Studiorum' University of Bologna, Italy
| | - Marcello Trevisani
- Department of Veterinary Medical Science, School of Agriculture and Veterinary Medicine, 'Alma Mater Studiorum' University of Bologna, Italy.
| |
Collapse
|
63
|
Hering NA, Richter JF, Fromm A, Wieser A, Hartmann S, Günzel D, Bücker R, Fromm M, Schulzke JD, Troeger H. TcpC protein from E. coli Nissle improves epithelial barrier function involving PKCζ and ERK1/2 signaling in HT-29/B6 cells. Mucosal Immunol 2014; 7:369-78. [PMID: 23900194 DOI: 10.1038/mi.2013.55] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 07/02/2013] [Indexed: 02/04/2023]
Abstract
The probiotic Escherichia coli Nissle 1917 (EcN) is widely used to maintain remission in ulcerative colitis. This is thought to be mediated by various immunomodulatory and barrier-stabilizing effects in the intestine. In this study, the mechanisms of barrier modulation by EcN were studied in the human epithelial HT-29/B6 cell culture model.EcN supernatant increased transepithelial resistance (TER) and reduced permeability to mannitol because of sealing of the paracellular passage pathway as revealed by two-path impedance spectroscopy. This increase in TER was attributed to the TcpC protein of EcN. TcpC induced protein kinase C-ζ (PKCζ) and extracellular-signal-regulated kinase 1/2 (ERK1/2) phosphorylation, which in turn resulted in upregulation of the barrier-forming tight junction protein claudin-14. By specific silencing of protein expression by small interfering RNA (siRNA), the sealing function of claudin-14 was confirmed. In conclusion, the TcpC protein of EcN affects innate immunity by improving intestinal barrier function through upregulation of claudin-14 via PKCζ and ERK1/2 signaling.
Collapse
Affiliation(s)
- N A Hering
- Department of Gastroenterology, Division of Nutritional Medicine, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - J F Richter
- 1] Institute of Clinical Physiology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany [2] Institute of Anatomy II, University of Jena, Jena, Germany
| | - A Fromm
- Institute of Clinical Physiology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - A Wieser
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - S Hartmann
- Institute of Immunology, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - D Günzel
- Institute of Clinical Physiology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - R Bücker
- Department of Gastroenterology, Division of Nutritional Medicine, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - M Fromm
- Institute of Clinical Physiology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - J D Schulzke
- 1] Department of Gastroenterology, Division of Nutritional Medicine, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany [2] Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - H Troeger
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
64
|
Barbosa MMC, Pinto FDR, Ribeiro LF, Guriz CSL, Ferraudo AS, Maluta RP, Rigobelo EC, Ávila FA, Amaral LA. Sorologia e suscetibilidade antimicrobiana em isolados de Escherichia coli de pesque-pagues. ARQUIVOS DO INSTITUTO BIOLÓGICO 2014. [DOI: 10.1590/s1808-16572014000100008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pesquisou-se a ocorrência de Escherichia coli (EPEC, EIEC, O157) em água e peixe (pele, trato digestivo e músculo) de pesque-pagues da microbacia do Córrego Rico, Jaboticabal (SP). Foram isoladas 115 cepas de E. coli, entre as quais 49 (43%) foram sorogrupadas como EPEC. Os sorogrupos mais frequentes foram O125, O126 e O158. Dentre as amostras testadas, 60 (52%) apresentaram resistência simultânea a dois antimicrobianos. A análise de correspondência foi realizada com o intuito de verificar as possíveis correspondências envolvendo o local de isolamento, sorogrupos e multirresistência e, com isso, pôde-se observar que o músculo apresentou menor correspondência com os demais fatores analisados. Porém, o isolamento de sorogrupos EPEC neste estudo representa risco à saúde dos consumidores.
Collapse
|
65
|
Amézquita-López BA, Quiñones B, Lee BG, Chaidez C. Virulence profiling of Shiga toxin-producing Escherichia coli recovered from domestic farm animals in Northwestern Mexico. Front Cell Infect Microbiol 2014; 4:7. [PMID: 24551599 PMCID: PMC3908320 DOI: 10.3389/fcimb.2014.00007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/13/2014] [Indexed: 01/13/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic enteric pathogen that causes human gastrointestinal illnesses. The present study characterized the virulence profiles of O157 and non-O157 STEC strains, recovered from domestic animals in small rural farms within the agricultural Culiacan Valley in Mexico. Virulence genes coding for adhesins, cytotoxins, proteases, subtypes of Shiga toxin (Stx), and other effectors were identified in the STEC strains by PCR. The genotyping analysis revealed the presence of the effectors nleA, nleB, nleE, and nleH1-2, espK, and espN in the O157:H7 and O111:H8 STEC strains. Furthermore, the genes encoding the autoagglutinating adhesin (Saa) and subtilase (SubA) were exclusively identified in the O8:H19 eae-negative strains. The adhesin (iha) and the silent hemolysin (sheA) genes were detected in 79% of the O157 and non-O157 strains. To examine the relative toxicities of the STEC strains, a fluorescent Vero cell line, Vero-d2EGFPs, was employed to measure the inhibition of protein synthesis by Stx. Analysis of culture supernatants from serotype O8:H19 strains with the stx gene profile stx1a, stx2a, and stx2c and serotypes O75:H8 and O146:H8 strains with the stx gene profile stx1a, stx1c, and stx2b, resulted in a significant reduction in the Vero-d2EGFP fluorescent signal. These observations suggest that these non-O157 strains may have an enhanced ability to inhibit protein synthesis in Vero cells. Interestingly, analysis of the stx2c-positive O157:H7 strains resulted in a high fluorescent signal, indicating a reduced toxicity in the Vero-d2EGFP cells. These findings indicate that the O157 and non-O157 STEC strains, recovered in the Culiacan Valley, display distinct virulence profiles and relative toxicities in mammalian cells and have provided information for evaluating risks associated with zoonotic STEC in this agricultural region in Mexico.
Collapse
Affiliation(s)
| | - Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture/Agricultural Research Service, Western Regional Research Center Albany, CA, USA
| | - Bertram G Lee
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture/Agricultural Research Service, Western Regional Research Center Albany, CA, USA
| | - Cristóbal Chaidez
- Centro de Investigación en Alimentación y Desarrollo Culiacán, Mexico
| |
Collapse
|
66
|
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are food-borne pathogens that are an important public health concern. STEC infection is associated with severe clinical diseases in human beings, including hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS), which can lead to kidney failure and death. Cattle are the most important STEC reservoir. However, a number of STEC outbreaks and HUS cases have been attributed to pork products. In swine, STEC strains are known to be associated with edema disease. Nevertheless, the relationship between STEC of swine origin and human illness has yet to be determined. This review critically summarizes epidemiologic and biological studies of swine STEC. Several epidemiologic studies conducted in multiple regions of the world have demonstrated that domestic swine can carry and shed STEC. Moreover, animal studies have demonstrated that swine are susceptible to STEC O157:H7 infection and can shed the bacterium for 2 months. A limited number of molecular epidemiologic studies, however, have provided conflicting evidence regarding the relationship between swine STEC and human illness. The role that swine play in STEC transmission to people and the contribution to human disease frequency requires further evaluation.
Collapse
|
67
|
Abstract
In the United States, it is estimated that non-O157 Shiga toxin-producing Escherichia coli (STEC) cause more illnesses than STEC O157:H7, and the majority of cases of non-O157 STEC infections are due to serogroups O26, O45, O103, O111, O121, and O145, referred to as the top six non-O157 STEC. The diseases caused by non-O157 STEC are generally milder than those induced by O157 STEC; nonetheless, non-O157 STEC strains have also been associated with serious illnesses such as hemorrhagic colitis and hemolytic uremic syndrome, as well as death. Ruminants, particularly cattle, are reservoirs for both O157 and non-O157 STEC, which are transmitted to humans by person-to-person or animal contact and by ingestion of food or water contaminated with animal feces. Improved strategies to control STEC colonization and shedding in cattle and contamination of meat and produce are needed. In general, non-O157 STEC respond to stresses such as acid, heat, and other stresses induced during food preparation similar to O157 STEC. Similar to O157:H7, the top six non-O157 STEC are classified as adulterants in beef by the USDA Food Safety and Inspection Service, and regulatory testing for these pathogens began in June 2012. Due to the genetic and phenotypic variability of non-O157 STEC strains, the development of accurate and reliable methods for detection and isolation of these pathogens has been challenging. Since the non-O157 STEC are responsible for a large portion of STEC-related illnesses, more extensive studies on their physiology, genetics, pathogenicity, and evolution are needed in order to develop more effective control strategies.
Collapse
Affiliation(s)
- James L Smith
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Pina M Fratamico
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA.
| | - Nereus W Gunther
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| |
Collapse
|
68
|
Mohammadzadeh M, Oloomi M, Bouzari S. Genetic evaluation of Locus of enterocyte effacement pathogenicity island (LEE) in Enteropathogenic Escherichia coli isolates (EPEC). IRANIAN JOURNAL OF MICROBIOLOGY 2013; 5:345-9. [PMID: 25848503 PMCID: PMC4385159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Enteropathogenic Escherichia coli (EPEC) divided into two groups typical and atypical (aspect). The main virulence genes are located in a pathogenicity island called LEE (Locus of Enterocyte Effacement). LEE frequently inserted in tRNA genes of selC, pheU and pheV in the bacterial chromosome. tEPEC and aEPEC strains have some differences in their pathogenicity. The purpose of this was to investigate the possible differences between tEPEC and aEPEC strains according to the virulence genes encoding by LEE and their relation to insertion sites. MATERIALS AND METHODS In this study 130 E. coli isolates confirmed by biochemical analysis from diarrheal patients, were evaluated for EPEC pathotype by PCR. All EPEC strains tested for presence of some LEE encoded virulence genes and sites of LEE insertion by PCR method. RESULTS Among 50 strains of EPEC 28 (56%) and 22 (44%) were typical and atypical strains respectively. 19 strains (30%) showed insertion in selC, 7 (14%) in pheU, 4 (8%) in pheV, 8 (16%) in pheU and pheV, 1 (2%) in selC and pheU, 6 (12%) in pheV, pheU and selC and 5 (10%) had no insertion in these sites. Moreover, spa (n = 8, 16%), espB (n = 16, 32%), espD (n = 18, 36%), espF (n = 8, 16%), espG (n = 13, 26%), espH (n = 12, 24%), map (n = 11, 32%) and tir (n = 4, 8%) were present among the strains. CONCLUSION Results showed that most of the virulence genes are present in tEPEC isolates. However, aEPEC isolates may acquire other virulence factors. The majority of tEPEC strains showed insertion at selC and aEPEC strains in pheV and pheU.
Collapse
Affiliation(s)
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran
| | - Saeid Bouzari
- Corresponding author: Saeid Bouzari Ph.D, Address: Department of Molecular biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, Iran. Tel: +98-21-66953311, Fax: +98-21-66492619,
| |
Collapse
|
69
|
Miko A, Delannoy S, Fach P, Strockbine NA, Lindstedt BA, Mariani-Kurkdjian P, Reetz J, Beutin L. Genotypes and virulence characteristics of Shiga toxin-producing Escherichia coli O104 strains from different origins and sources. Int J Med Microbiol 2013; 303:410-21. [DOI: 10.1016/j.ijmm.2013.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/07/2013] [Accepted: 05/20/2013] [Indexed: 02/03/2023] Open
|
70
|
Aflatoxin, fumonisin and Shiga toxin-producing Escherichia coli infections in calves and the effectiveness of Celmanax®/Dairyman's Choice™ applications to eliminate morbidity and mortality losses. Toxins (Basel) 2013; 5:1872-95. [PMID: 24152990 PMCID: PMC3813917 DOI: 10.3390/toxins5101872] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 11/24/2022] Open
Abstract
Mycotoxin mixtures are associated with Shiga toxin-producing Escherichia coli (STEC) infections in mature cattle. STEC are considered commensal bacteria in mature cattle suggesting that mycotoxins provide a mechanism that converts this bacterium to an opportunistic pathogen. In this study, we assessed the mycotoxin content of hemorrhaged mucosa in dairy calves during natural disease outbreaks, compared the virulence genes of the STECs, evaluated the effect of the mucosal mycotoxins on STEC toxin expression and evaluated a Celmanax®/Dairyman’s Choice™ application to alleviate disease. As for human infections, the OI-122 encoded nleB gene was common to STEC genotypes eliciting serious disease. Low levels of aflatoxin (1–3 ppb) and fumonisin (50–350 ppb) were detected in the hemorrhaged mucosa. Growth of the STECs with the mycotoxins altered the secreted protein concentration with a corresponding increase in cytotoxicity. Changes in intracellular calcium indicated that the mycotoxins increased enterotoxin and pore-forming toxin activity. A prebiotic/probiotic application eliminated the morbidity and mortality losses associated with the STEC infections. Our study demonstrates: the same STEC disease complex exists for immature and mature cattle; the significance of the OI-122 pathogenicity island to virulence; the significance of mycotoxins to STEC toxin activity; and, finally, provides further evidence that prebiotic/probiotic applications alleviate STEC shedding and mycotoxin/STEC interactions that lead to disease.
Collapse
|
71
|
Quantitative Detection of Shiga Toxin-Producing and Enteropathogenic Escherichia coli Serotypes O157 and O26 in Bulk Raw Milk. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9691-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
72
|
Molecular and phenotypic characterization of Escherichia coli O26:H8 among diarrheagenic E. coli O26 strains isolated in Brazil. Appl Environ Microbiol 2013; 79:6847-54. [PMID: 23974139 DOI: 10.1128/aem.01693-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains of serogroup O26 comprise two distinct groups of pathogens, characterized as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC). Among the several genes related to type III secretion system-secreted effector proteins, espK was found to be highly specific for EHEC O26:H11 and its stx-negative derivative strains isolated in European countries. E. coli O26 strains isolated in Brazil from infant diarrhea, foods, and the environment have consistently been shown to lack stx genes and are thus considered atypical EPEC. However, no further information related to their genetic background is known. Therefore, in this study, we aimed to discriminate and characterize these Brazilian O26 stx-negative strains by phenotypic, genetic, and biochemical approaches. Among 44 isolates confirmed to be O26 isolates, most displayed flagellar antigen H11 or H32. Out of the 13 nonmotile isolates, 2 tested positive for fliCH11, and 11 were fliCH8 positive. The identification of genetic markers showed that several O26:H11 and all O26:H8 strains tested positive for espK and could therefore be discriminated as EHEC derivatives. The presence of H8 among EHEC O26 and its stx-negative derivative isolates is described for the first time. The interaction of three isolates with polarized Caco-2 cells and with intestinal biopsy specimen fragments ex vivo confirmed the ability of the O26 strains analyzed to cause attaching-and-effacing (A/E) lesions. The O26:H32 strains, isolated mostly from meat, were considered nonvirulent. Knowledge of the virulence content of stx-negative O26 isolates within the same serotype helped to avoid misclassification of isolates, which certainly has important implications for public health surveillance.
Collapse
|
73
|
Discrimination of enterohemorrhagic Escherichia coli (EHEC) from non-EHEC strains based on detection of various combinations of type III effector genes. J Clin Microbiol 2013; 51:3257-62. [PMID: 23884997 DOI: 10.1128/jcm.01471-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains comprise a subgroup of Shiga-toxin (Stx)-producing E. coli (STEC) and are characterized by a few serotypes. Among these, seven priority STEC serotypes (O26:H11, O45:H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7) are most frequently implicated in severe clinical illness worldwide. Currently, standard methods using stx, eae, and O-serogroup-specific gene sequences for detecting the top 7 EHEC serotypes bear the disadvantage that these genes can be found in non-EHEC strains as well. Here, we explored the suitability of ureD, espV, espK, espN, Z2098, and espM1 genes and combinations thereof as candidates for a more targeted EHEC screening assay. For a very large panel of E. coli strains (n = 1,100), which comprised EHEC (n = 340), enteropathogenic E. coli (EPEC) (n = 392), STEC (n = 193), and apathogenic strains (n = 175), we showed that these genetic markers were more prevalent in EHEC (67.1% to 92.4%) than in EPEC (13.3% to 45.2%), STEC (0.5% to 3.6%), and apathogenic E. coli strains (0 to 2.9%). It is noteworthy that 38.5% of the EPEC strains that tested positive for at least one of these genetic markers belonged to the top 7 EHEC serotypes, suggesting that such isolates might be Stx-negative derivatives of EHEC. The associations of espK with either espV, ureD, or Z2098 were the best combinations for more specific and sensitive detection of the top 7 EHEC strains, allowing detection of 99.3% to 100% of these strains. In addition, detection of 93.7% of the EHEC strains belonging to other serotypes than the top 7 offers a possibility for identifying new emerging EHEC strains.
Collapse
|
74
|
Donatin E, Buffet S, Leroy Q, Raoult D, Drancourt M. A DNA microarray for the versatile diagnosis of infectious diarrhea. APMIS 2013; 121:634-42. [PMID: 23758523 PMCID: PMC7159548 DOI: 10.1111/apm.12081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/17/2012] [Indexed: 01/08/2023]
Abstract
Several bacteria, viruses, and parasites cause diarrhea as coinfecting pathogens. We designed a DNA microarray comprising 60‐bp probes spotted 194 times for the multiplex detection of 33 enteropathogenic bacteria and seven enteropathogenic viruses, and the archaeon Methanobrevibacter smithii was used as an internal positive control. Nine pathogen‐free stool specimens were used as negative controls. One of these control specimens was further spiked with Salmonella enterica as a positive control. The microarray was then tested with 40 pathological stool specimens, comprising S. enterica (n = 30), Campylobacter jejuni (n = 4), pathogenic Escherichia coli (n = 2), and adenovirus (n = 4). M. smithii was detected in 47/49 (95.9%) specimens, no pathogen was detected in negative controls and S. enterica was identified in the S. enterica‐spiked positive control. The overall specificity was 100% and the overall sensitivity was 97.5% because one S. enterica sample was missed by the microarray. The multiplexed detection of C. jejuni spiked into an adenovirus‐positive stool sample gave positive results, with fluorescence values of 14.3 and 9.1, respectively. These data indicate that using the protocol developed in this article, the DNA array allows for the multiplexed detection of some enteropathogens in stool samples.
Collapse
Affiliation(s)
- Emilie Donatin
- Aix Marseille Université, URMITE, UMR63 CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | | | | | | | | |
Collapse
|
75
|
Distribution of pathogenicity islands OI-122, OI-43/48, and OI-57 and a high-pathogenicity island in Shiga toxin-producing Escherichia coli. Appl Environ Microbiol 2013; 79:3406-12. [PMID: 23524679 DOI: 10.1128/aem.03661-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pathogenicity islands (PAIs) play an important role in Shiga toxin-producing Escherichia coli (STEC) pathogenicity. The distribution of PAIs OI-122, OI-43/48, and OI-57 and a high-pathogenicity island (HPI) were determined among 98 STEC strains assigned to seropathotypes (SPTs) A to E. PCR and PCR-restriction fragment length polymorphism assays were used to identify 14 virulence genes that belonged to the four PAIs and to subtype eae and stx genes, respectively. Phylogenetic trees were constructed based on the sequences of pagC among 34 STEC strains and iha among 67 diverse pathogenic E. coli, respectively. Statistical analysis demonstrated that the prevalences of OI-122 (55.82%) and OI-57 (82.35%) were significantly greater in SPTs (i.e., SPTs A, B, and C) that are frequently associated with severe disease than in other SPTs. terC (62.5%) and ureC (62.5%) in OI-43/48 were also significantly more prevalent in SPTs A, B, and C than in SPTs D and E. In addition, OI-122, OI-57, and OI-43/48 and their associated virulence genes (except iha) were found to be primarily associated with eae-positive STEC, whereas HPI occurred independently of the eae presence. The strong association of OI-122, OI-43/48, and OI-57 with eae-positive STEC suggests in part that different pathogenic mechanisms exist between eae-positive and eae-negative STEC strains. Virulence genes in PAIs that are associated with severe diseases can be used as potential markers to aid in identifying highly virulent STEC.
Collapse
|
76
|
Abstract
Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including nonintimate adherence mediated by various adhesins. These so called "enteroadherent E. coli" categories subsequently produce toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease.
Collapse
|
77
|
Towards a molecular definition of enterohemorrhagic Escherichia coli (EHEC): detection of genes located on O island 57 as markers to distinguish EHEC from closely related enteropathogenic E. coli strains. J Clin Microbiol 2013; 51:1083-8. [PMID: 23325824 DOI: 10.1128/jcm.02864-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Among strains of Shiga-toxin (Stx) producing Escherichia coli (STEC), seven serogroups (O26, O45, O103, O111, O121, O145, and O157) are associated with severe clinical illness in humans. These strains are also called enterohemorrhagic E. coli (EHEC), and the development of methods for their reliable detection from food has been challenging thus far. PCR detection of major EHEC virulence genes stx1, stx2, eae, and O-serogroup-specific genes is useful but does not identify EHEC strains specifically. Searching for the presence of additional genes issued from E. coli O157:H7 genomic islands OI-122 and OI-71 increases the specificity but does not clearly discriminate EHEC from enteropathogenic E. coli (EPEC) strains. Here, we identified two putative genes, called Z2098 and Z2099, from the genomic island OI-57 that were closely associated with EHEC and their stx-negative derivative strains (87% for Z2098 and 91% for Z2099). Z2098 and Z2099 were rarely found in EPEC (10% for Z2098 and 12% for Z2099), STEC (2 and 15%), and apathogenic E. coli (1% each) strains. Our findings indicate that Z2098 and Z2099 are useful genetic markers for a more targeted diagnosis of typical EHEC and new emerging EHEC strains.
Collapse
|
78
|
Weiss A, Brockmeyer J. Prevalence, biogenesis, and functionality of the serine protease autotransporter EspP. Toxins (Basel) 2012; 5:25-48. [PMID: 23274272 PMCID: PMC3564066 DOI: 10.3390/toxins5010025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 11/24/2022] Open
Abstract
Enterohemorrhagic E. coli (EHEC) causes severe diseases in humans worldwide. One of its virulence factors is EspP, which belongs to the serine protease autotransporters of Enterobacteriaceae (SPATE) family. In this review we recapitulate the current data on prevalence, biogenesis, structural properties and functionality. EspP has been used to investigate mechanistic details of autotransport, and recent studies indicate that this transport mechanism is not autonomous but rather dependent on additional factors. Currently, five subtypes have been identified (EspPα-EspPε), with EspPα being associated with highly virulent EHEC serotypes and isolates from patients with severe disease. EspPα has been shown to degrade major proteins of the complement cascade, namely C3 and C5 and probably interferes with hemostasis by cleavage of coagulation factor V. Furthermore, EspPα is believed to contribute to biofilm formation perhaps by polymerization to rope-like structures. Together with the proteolytic activity, EspPα might ameliorate host colonization and interfere with host response.
Collapse
Affiliation(s)
- André Weiss
- Institute of Food Chemistry, Corrensstraße 45, Münster 48149, Germany.
| | | |
Collapse
|
79
|
A laboratory-developed TaqMan Array Card for simultaneous detection of 19 enteropathogens. J Clin Microbiol 2012; 51:472-80. [PMID: 23175269 DOI: 10.1128/jcm.02658-12] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The TaqMan Array Card (TAC) system is a 384-well singleplex real-time PCR format that has been used to detect multiple infection targets. Here we developed an enteric TaqMan Array Card to detect 19 enteropathogens, including viruses (adenovirus, astrovirus, norovirus GII, rotavirus, and sapovirus), bacteria (Campylobacter jejuni/C. coli, Clostridium difficile, Salmonella, Vibrio cholerae, diarrheagenic Escherichia coli strains including enteroaggregative E. coli [EAEC], enterotoxigenic E. coli [ETEC], enteropathogenic E. coli [EPEC], and Shiga-toxigenic E. coli [STEC]), Shigella/enteroinvasive E. coli (EIEC), protozoa (Cryptosporidium, Giardia lamblia, and Entamoeba histolytica), and helminths (Ascaris lumbricoides and Trichuris trichiura), as well as two extrinsic controls to monitor extraction and amplification efficiency (the bacteriophage MS2 and phocine herpesvirus). Primers and probes were newly designed or adapted from published sources and spotted onto microfluidic cards. Fecal samples were spiked with extrinsic controls, and DNA and RNA were extracted using the QiaAmp Stool DNA minikit and the QuickGene RNA Tissue kit, respectively, and then mixed with Ag-Path-ID One Step real-time reverse transcription-PCR (RT-PCR) reagents and loaded into cards. PCR efficiencies were between 90% and 105%, with linearities of 0.988 to 1. The limit of detection of the assays in the TAC was within a 10-fold difference from the cognate assays performed on plates. Precision testing demonstrated a coefficient of variation of below 5% within a run and 14% between runs. Accuracy was evaluated for 109 selected clinical specimens and revealed an average sensitivity and specificity of 85% and 77%, respectively, compared with conventional methods (including microscopy, culture, and immunoassay) and 98% and 96%, respectively, compared with our laboratory-developed PCR-Luminex assays. This TAC allows fast, accurate, and quantitative detection of a broad spectrum of enteropathogens and is well suited for surveillance or clinical purposes.
Collapse
|
80
|
Cho JI, Joo IS, Choi JH, Jung KH, Choi EJ, Lee SH, Hwang IG. Prevalence and characterization of foodborne bacteria from meat products in Korea. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0165-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
81
|
Rodríguez-Caturla MY, Valero A, García-Gimeno RM, Zurera G. Development of a risk-based methodology for estimating survival and growth of enteropathogenic Escherichia coli on iceberg-lettuce exposed at short-term storage in foodservice centers. J Microbiol Methods 2012; 90:273-9. [PMID: 22677605 DOI: 10.1016/j.mimet.2012.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/22/2012] [Accepted: 05/27/2012] [Indexed: 11/24/2022]
Abstract
Ready-to-eat lettuce is a food commodity prone to contamination by pathogenic microorganisms if processing and distribution conditions as well as handling practices are not effective. A challenge testing protocol was applied to ready-to-eat iceberg-lettuce samples by inoculating different initial contamination levels (4.5, 3.5 and 2.5 log cfu/g) of Escherichia coli strain (serotype O158:H23) subsequently stored at 8, 12, 16, 20 and 24°C for 6h. A polynomial regression model for log difference (log(diff)) was developed at each inoculum level studied through the calculation of the effective static temperature (T(eff)). Furthermore, the developed model was integrated within a risk-based approach with real time/Temperature (t/T) data collected in three Spanish foodservice centers: school canteens, long-term care facilities (LTCF) and hospitals. Statistical distributions were fitted to t/T data and estimated log(diff) values were obtained as model outputs through a Monte Carlo simulation (10,000 iterations). The results obtained at static conditions indicated that the maintenance of the lettuce at 8°C slightly reduced the E. coli population from -0.4 to -0.5 log cfu/g. However, if chill chain is not maintained, E. coli can grow up to 1.1 log cfu/g at temperatures above 16°C, even at low contamination levels. Regarding log(diff) estimated in foodservice centers, very low risk was obtained (log(diff)<1.0 log cfu in all cases). Mean T(eff) values obtained in hospitals were the lowest ones (11.1°C) and no growth of E. coli was predicted in >92% of simulated cases. The results presented in this study could serve food operators to set time/Temperature requirements for ready-to-eat foods in foodservice centers, providing a scientific basis through the use of predictive modeling. These findings may also serve to food safety managers to better define the control measures to be adopted in foodservice centers in order to prevent food-borne infections.
Collapse
|
82
|
Specific detection of enteroaggregative hemorrhagic Escherichia coli O104:H4 strains by use of the CRISPR locus as a target for a diagnostic real-time PCR. J Clin Microbiol 2012; 50:3485-92. [PMID: 22895033 DOI: 10.1128/jcm.01656-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 2011, a large outbreak of an unusual bacterial strain occurred in Europe. This strain was characterized as a hybrid of an enteroaggregative Escherichia coli (EAEC) and a Shiga toxin-producing E. coli (STEC) strain of the serotype O104:H4. Here, we present a single PCR targeting the clustered regularly interspaced short palindromic repeats locus of E. coli O104:H4 (CRISPR(O104:H4)) for specific detection of EAEC STEC O104:H4 strains from different geographical locations and time periods. The specificity of the CRISPR(O104:H4) PCR was investigated using 1,321 E. coli strains, including reference strains for E. coli O serogroups O1 to O186 and flagellar (H) types H1 to H56. The assay was compared for specificity using PCR assays targeting different O104 antigen-encoding genes (wbwC(O104), wzx(O104), and wzy(O104)). The PCR assays reacted with all types of E. coli O104 strains (O104:H2, O104:H4, O104:H7, and O104:H21) and with E. coli O8 and O9 strains carrying the K9 capsular antigen and were therefore not specific for detection of the EAEC STEC O104:H4 type. A single PCR developed for the CRISPR(O104:H4) target was sufficient for specific identification and detection of the 48 tested EAEC STEC O104:H4 strains. The 35 E. coli O104 strains expressing H types other than H4 as well as 8 E. coli strains carrying a K9 capsular antigen tested all negative for the CRISPR(O104:H4) locus. Only 12 (0.94%) of the 1,273 non-O104:H4 E. coli strains (serotypes Ont:H2, O43:H2, O141:H2, and O174:H2) reacted positive in the CRISPR(O104:H4) PCR (99.06% specificity).
Collapse
|
83
|
Towards a pathogenic Escherichia coli detection platform using multiplex SYBR®Green Real-time PCR methods and high resolution melting analysis. PLoS One 2012; 7:e39287. [PMID: 22761753 PMCID: PMC3382608 DOI: 10.1371/journal.pone.0039287] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/17/2012] [Indexed: 12/01/2022] Open
Abstract
Escherichia coli is a group of bacteria which has raised a lot of safety concerns in recent years. Five major intestinal pathogenic groups have been recognized amongst which the verocytotoxin or shiga-toxin (stx1 and/or stx2) producing E. coli (VTEC or STEC respectively) have received a lot of attention recently. Indeed, due to the high number of outbreaks related to VTEC strains, the European Food Safety Authority (EFSA) has requested the monitoring of the “top-five” serogroups (O26, O103, O111, O145 and O157) most often encountered in food borne diseases and addressed the need for validated VTEC detection methods. Here we report the development of a set of intercalating dye Real-time PCR methods capable of rapidly detecting the presence of the toxin genes together with intimin (eae) in the case of VTEC, or aggregative protein (aggR), in the case of the O104:H4 strain responsible for the outbreak in Germany in 2011. All reactions were optimized to perform at the same annealing temperature permitting the multiplex application in order to minimize the need of material and to allow for high-throughput analysis. In addition, High Resolution Melting (HRM) analysis allowing the discrimination among strains possessing similar virulence traits was established. The development, application to food samples and the flexibility in use of the methods are thoroughly discussed. Together, these Real-time PCR methods facilitate the detection of VTEC in a new highly efficient way and could represent the basis for developing a simple pathogenic E. coli platform.
Collapse
|
84
|
Norwegian sheep are an important reservoir for human-pathogenic Escherichia coli O26:H11. Appl Environ Microbiol 2012; 78:4083-91. [PMID: 22492457 DOI: 10.1128/aem.00186-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A previous national survey of Escherichia coli in Norwegian sheep detected eae-positive (eae(+)) E. coli O26:H11 isolates in 16.3% (80/491) of the flocks. The purpose of the present study was to evaluate the human-pathogenic potential of these ovine isolates by comparing them with E. coli O26 isolates from humans infected in Norway. All human E. coli O26 isolates studied carried the eae gene and shared flagellar type H11. Two-thirds of the sheep flocks and 95.1% of the patients harbored isolates containing arcA allele type 2 and espK and were classified as enterohemorrhagic E. coli (EHEC) (stx positive) or EHEC-like (stx negative). These isolates were further divided into group A (EspK2 positive), associated with stx(2-EDL933) and stcE(O103), and group B (EspK1 positive), associated with stx(1a). Although the stx genes were more frequently present in isolates from patients (46.3%) than in those from sheep flocks (5%), more than half of the ovine isolates in the EHEC/EHEC-like group had multiple-locus variable number of tandem repeat analysis (MLVA) profiles that were identical to those seen in stx-positive human O26:H11 isolates. This indicates that EHEC-like ovine isolates may be able to acquire stx-carrying bacteriophages and thereby have the possibility to cause serious illness in humans. The remaining one-third of the sheep flocks and two of the patients had isolates fulfilling the criteria for atypical enteropathogenic E. coli (aEPEC): arcA allele type 1 and espK negative (group C). The majority of these ovine isolates showed MLVA profiles not previously seen in E. coli O26:H11 isolates from humans. However, according to their virulence gene profile, the aEPEC ovine isolates should be considered potentially pathogenic for humans. In conclusion, sheep are an important reservoir of human-pathogenic E. coli O26:H11 isolates in Norway.
Collapse
|
85
|
Escherichia coli serotype O55:H7 diversity supports parallel acquisition of bacteriophage at Shiga toxin phage insertion sites during evolution of the O157:H7 lineage. J Bacteriol 2012; 194:1885-96. [PMID: 22328665 DOI: 10.1128/jb.00120-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) continues to be a leading cause of mortality and morbidity in children around the world. Two EPEC genomes have been fully sequenced: those of EPEC O127:H6 strain E2348/69 (United Kingdom, 1969) and EPEC O55:H7 strain CB9615 (Germany, 2003). The O55:H7 serotype is a recent precursor to the virulent enterohemorrhagic E. coli O157:H7. To explore the diversity of O55:H7 and better understand the clonal evolution of O157:H7, we fully sequenced EPEC O55:H7 strain RM12579 (California, 1974), which was collected 1 year before the first U.S. isolate of O157:H7 was identified in California. Phage-related sequences accounted for nearly all differences between the two O55:H7 strains. Additionally, O55:H7 and O157:H7 strains were tested for the presence and insertion sites of Shiga toxin gene (stx)-containing bacteriophages. Analysis of non-phage-associated genes supported core elements of previous O157:H7 stepwise evolutionary models, whereas phage composition and insertion analyses suggested a key refinement. Specifically, the placement and presence of lambda-like bacteriophages (including those containing stx) should not be considered stable evolutionary markers or be required in placing O55:H7 and O157:H7 strains within the stepwise evolutionary models. Additionally, we suggest that a 10.9-kb region (block 172) previously believed unique to O55:H7 strains can be used to identify early O157:H7 strains. Finally, we defined two subsets of O55:H7 strains that share an as-yet-unobserved or extinct common ancestor with O157:H7 strains. Exploration of O55:H7 diversity improved our understanding of the evolution of E. coli O157:H7 and suggested a key revision to accommodate existing and future configurations of stx-containing bacteriophages into current models.
Collapse
|
86
|
Haugum K, Lindstedt BA, Løbersli I, Kapperud G, Brandal LT. Identification of the anti-terminator qO111:H)- gene in Norwegian sorbitol-fermenting Escherichia coli O157:NM. FEMS Microbiol Lett 2012; 329:102-10. [PMID: 22268961 DOI: 10.1111/j.1574-6968.2012.02505.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/10/2012] [Accepted: 01/13/2012] [Indexed: 11/30/2022] Open
Abstract
Sorbitol-fermenting Escherichia coli O157:NM (SF O157) is an emerging pathogen suggested to be more virulent than nonsorbitol-fermenting Escherichia coli O157:H7 (NSF O157). Important virulence factors are the Shiga toxins (stx), encoded by stx1 and/or stx2 located within prophages integrated in the bacterial genome. The stx genes are expressed from p(R) (') as a late protein, and anti-terminator activity from the Q protein is necessary for read through of the late terminator t(R) (') and activation of p(R) (') . We investigated the regulation of stx2(EDL933) expression at the genomic level in 17 Norwegian SF O157. Sequencing of three selected SF O157 strains revealed that the anti-terminator q gene and genes upstream of stx2(EDL933) were identical or similar to the ones observed in the E. coli O111:H- strain AP010960, but different from the ones observed in the NSF O157 strain EDL933 (AE005174). This suggested divergent stx2(EDL933) -encoding bacteriophages between NSF O157 and the SF O157 strains (FR874039-41). Furthermore, different DNA structures were detected in the SF O157 strains, suggesting diversity among bacteriophages also within the SF O157 group. Further investigations are needed to elucidate whether the q(O111:H) (-) gene observed in all our SF O157 contributes to the increased virulence seen in SF O157 compared to NSF O157. An assay for detecting q(O111:H) (-) was developed.
Collapse
Affiliation(s)
- Kjersti Haugum
- Department of Foodborne Infections, The Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | | |
Collapse
|
87
|
Martínez-Castillo A, Allué-Guardia A, Dahbi G, Blanco J, Creuzburg K, Schmidt H, Muniesa M. Type III effector genes and other virulence factors of Shiga toxin-encoding Escherichia coli isolated from wastewater. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:147-155. [PMID: 23757242 DOI: 10.1111/j.1758-2229.2011.00317.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pathogenic Shiga toxin-producing Escherichia coli (STEC) strains share the genes encoding Shiga toxins (stx) and many other virulence factors. The classification and evolutionary studies of pathogenic E. coli based on their virulence genes have been conducted with E. coli isolated from human and animal infections or outbreaks. In this study, we used 103 STEC strains isolated from faecally polluted water environments to analyse 23 virulence genes (stx1 , cdt, hlyA, saa, eae, three type III effector genes encoded within the locus of enterocyte effacement (LEE) and 15 non-LEE-encoded type III effector genes). Despite the presence of several stx2 variants, our isolates demonstrated low prevalence of the virulence genes (only 46.6% of the strains were positive for virulence determinants). Among these, the largest repertoire was found in a few O157:H7 isolates (most from cattle wastewater and one from sewage), while other serotypes showed fewer virulence determinants. The occurrence of most virulence genes seemed to be independent from one another. This was clear for hlyA (the most prevalent), cdt and cif (the least prevalent). Other effector genes, could be found or not in combination with others, suggesting that they can be mobilized independently. Our data suggest that E. coli strains can evolve separately by independently acquiring mobile genetic elements.
Collapse
Affiliation(s)
- Alexandre Martínez-Castillo
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain. Laboratorio de Referencia de E. coli (LREC), Department of Microbiology and Parasitology, Faculty of Veterinary Science, University of Santiago de Compostela, 27002 Lugo, Spain. Institute of Food Science and Biotechnology, Department of Food Microbiology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
88
|
Beutin L, Martin A. Outbreak of Shiga toxin-producing Escherichia coli (STEC) O104:H4 infection in Germany causes a paradigm shift with regard to human pathogenicity of STEC strains. J Food Prot 2012; 75:408-18. [PMID: 22289607 DOI: 10.4315/0362-028x.jfp-11-452] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An outbreak that comprised 3,842 cases of human infections with enteroaggregative hemorrhagic Escherichia coli (EAHEC) O104:H4 occurred in Germany in May 2011. The high proportion of adults affected in this outbreak and the unusually high number of patients that developed hemolytic uremic syndrome makes this outbreak the most dramatic since enterohemorrhagic E. coli (EHEC) strains were first identified as agents of human disease. The characteristics of the outbreak strain, the way it spread among humans, and the clinical signs resulting from EAHEC infections have changed the way Shiga toxin-producing E. coli strains are regarded as human pathogens in general. EAHEC O104:H4 is an emerging E. coli pathotype that is endemic in Central Africa and has spread to Europe and Asia. EAHEC strains have evolved from enteroaggregative E. coli by uptake of a Shiga toxin 2a (Stx2a)-encoding bacteriophage. Except for Stx2a, no other EHEC-specific virulence markers including the locus of enterocyte effacement are present in EAHEC strains. EAHEC O104:H4 colonizes humans through aggregative adherence fimbrial pili encoded by the enteroaggregative E. coli plasmid. The aggregative adherence fimbrial colonization mechanism substitutes for the locus of enterocyte effacement functions for bacterial adherence and delivery of Stx2a into the human intestine, resulting clinically in hemolytic uremic syndrome. Humans are the only known natural reservoir known for EAHEC. In contrast, Shiga toxin-producing E. coli and EHEC are associated with animals as natural hosts. Contaminated sprouted fenugreek seeds were suspected as the primary vehicle of transmission of the EAHEC O104:H4 outbreak strain in Germany. During the outbreak, secondary transmission (human to human and human to food) was important. Epidemiological investigations revealed fenugreek seeds as the source of entry of EAHEC O104:H4 into the food chain; however, microbiological analysis of seeds for this pathogen produced negative results. The survival of EAHEC in seeds and the frequency of human carriers of EAHEC should be investigated for a better understanding of EAHEC transmission routes.
Collapse
Affiliation(s)
- Lothar Beutin
- National Reference Laboratory for Escherichia coli, Unit 41, Microbial Toxins, Germany.
| | | |
Collapse
|
89
|
Tzschoppe M, Martin A, Beutin L. A rapid procedure for the detection and isolation of enterohaemorrhagic Escherichia coli (EHEC) serogroup O26, O103, O111, O118, O121, O145 and O157 strains and the aggregative EHEC O104:H4 strain from ready-to-eat vegetables. Int J Food Microbiol 2011; 152:19-30. [PMID: 22071287 DOI: 10.1016/j.ijfoodmicro.2011.10.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/16/2011] [Accepted: 10/11/2011] [Indexed: 11/28/2022]
Abstract
Human infections with Enterohaemorrhagic Escherichia coli strains (EHEC) as agents of Haemorrhagic Colitis (HC) and Haemolytic Uraemic Syndrome (HUS) are frequently associated with the consumption of EHEC contaminated foodstuffs of different origins. EHEC O26, O103, O111, O118, O121, O145 and O157 strains are responsible for the majority of HC and HUS cases worldwide. In May 2011, the emerging aggregative EHEC O104:H4 strain caused a large outbreak with high HUS incidence in northern Germany. Contaminated sprouted seeds were suspected to be the vehicles of transmission. The examination of vegetables retailed for raw consumption revealed low numbers of E. coli (<100 cfu/g) together with high titres of Enterobacteriaceae and Pseudomonas (approx. 5.6 × 10⁷ cfu/g). Specific methods of EHEC detection adapted to vegetables are not yet published. Therefore, we have developed a rapid and sensitive method for detecting low EHEC contamination in vegetables (1-10 cfu/25 g) with artificially EHEC contaminated ready-to-eat salads. A 6-hour enrichment period in BRILA-broth was sufficient to detect 1-10 EHEC from spiked samples after plating 0.1 ml portions of enrichment culture on selective TBX-agar and CHROMagar STEC plates that were incubated at 44 °C overnight. Unlike EHEC strains, the growth of bacteria of the plant flora was substantially inhibited at 44 °C. DNA for real-time PCR detection of EHEC characteristic genes (stx(1), stx(2), eae, ehxA, and O-antigen associated) was prepared with bacteria grown on TBX-agar plates. The storage of EHEC inoculated salad samples for 72 h at 6 °C resulted in a significant reduction (mean value 14.6%) of detectable EHEC, suggesting interference of EHEC with the resident plant microflora. CHROMagar STEC was evaluated as a selective medium for the detection of EHEC strains. Growth on CHROMagar STEC was closely associated with EHEC O26:[H11], O111:[H8], O118:H16, O121:[H19], O145:[H28], O157:[H7] and aggregative EHEC O104:H4 strains and with the presence of the terB gene (tellurite resistance). TerB sequences were found in 87.2% of 235 EHEC but only in only 12.5% of 567 non-EHEC strains. EHEC strains which did not grow on CHROMagar STEC were negative for terB as frequently observed with EHEC O103:H2 (52.9%) and sorbitol-fermenting O157:NM strains (100%). The enrichment and detection method was applied in the examination of sprouted seeds incriminated as vehicles in the EHEC O104:H4 outbreak in Germany. Aggregative EHEC O104:H4 could be detected and isolated from a sample of sprouted seeds which was suspected as vector of transmission of EHEC O104 to humans.
Collapse
Affiliation(s)
- Markus Tzschoppe
- National Reference Laboratory for Escherichia coli, Unit 41: Microbial Toxins, Germany
| | | | | |
Collapse
|
90
|
Bezuidt O, Pierneef R, Mncube K, Lima-Mendez G, Reva ON. Mainstreams of horizontal gene exchange in enterobacteria: consideration of the outbreak of enterohemorrhagic E. coli O104:H4 in Germany in 2011. PLoS One 2011; 6:e25702. [PMID: 22022434 PMCID: PMC3195076 DOI: 10.1371/journal.pone.0025702] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/08/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Escherichia coli O104:H4 caused a severe outbreak in Europe in 2011. The strain TY-2482 sequenced from this outbreak allowed the discovery of its closest relatives but failed to resolve ways in which it originated and evolved. On account of the previous statement, may we expect similar upcoming outbreaks to occur recurrently or spontaneously in the future? The inability to answer these questions shows limitations of the current comparative and evolutionary genomics methods. PRINCIPAL FINDINGS The study revealed oscillations of gene exchange in enterobacteria, which originated from marine γ-Proteobacteria. These mobile genetic elements have become recombination hotspots and effective 'vehicles' ensuring a wide distribution of successful combinations of fitness and virulence genes among enterobacteria. Two remarkable peculiarities of the strain TY-2482 and its relatives were observed: i) retaining the genetic primitiveness by these strains as they somehow avoided the main fluxes of horizontal gene transfer which effectively penetrated other enetrobacteria; ii) acquisition of antibiotic resistance genes in a plasmid genomic island of β-Proteobacteria origin which ontologically is unrelated to the predominant genomic islands of enterobacteria. CONCLUSIONS Oscillations of horizontal gene exchange activity were reported which result from a counterbalance between the acquired resistance of bacteria towards existing mobile vectors and the generation of new vectors in the environmental microflora. We hypothesized that TY-2482 may originate from a genetically primitive lineage of E. coli that has evolved in confined geographical areas and brought by human migration or cattle trade onto an intersection of several independent streams of horizontal gene exchange. Development of a system for monitoring the new and most active gene exchange events was proposed.
Collapse
Affiliation(s)
- Oliver Bezuidt
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Rian Pierneef
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Kingdom Mncube
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Gipsi Lima-Mendez
- Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Oleg N. Reva
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, South Africa
- * E-mail:
| |
Collapse
|