51
|
Hoehenwarter W, Mönchgesang S, Neumann S, Majovsky P, Abel S, Müller J. Comparative expression profiling reveals a role of the root apoplast in local phosphate response. BMC PLANT BIOLOGY 2016; 16:106. [PMID: 27121119 PMCID: PMC4849097 DOI: 10.1186/s12870-016-0790-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/18/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plant adaptation to limited phosphate availability comprises a wide range of responses to conserve and remobilize internal phosphate sources and to enhance phosphate acquisition. Vigorous restructuring of root system architecture provides a developmental strategy for topsoil exploration and phosphate scavenging. Changes in external phosphate availability are locally sensed at root tips and adjust root growth by modulating cell expansion and cell division. The functionally interacting Arabidopsis genes, LOW PHOSPHATE RESPONSE 1 and 2 (LPR1/LPR2) and PHOSPHATE DEFICIENCY RESPONSE 2 (PDR2), are key components of root phosphate sensing. We recently demonstrated that the LOW PHOSPHATE RESPONSE 1 - PHOSPHATE DEFICIENCY RESPONSE 2 (LPR1-PDR2) module mediates apoplastic deposition of ferric iron (Fe(3+)) in the growing root tip during phosphate limitation. Iron deposition coincides with sites of reactive oxygen species generation and triggers cell wall thickening and callose accumulation, which interfere with cell-to-cell communication and inhibit root growth. RESULTS We took advantage of the opposite phosphate-conditional root phenotype of the phosphate deficiency response 2 mutant (hypersensitive) and low phosphate response 1 and 2 double mutant (insensitive) to investigate the phosphate dependent regulation of gene and protein expression in roots using genome-wide transcriptome and proteome analysis. We observed an overrepresentation of genes and proteins that are involved in the regulation of iron homeostasis, cell wall remodeling and reactive oxygen species formation, and we highlight a number of candidate genes with a potential function in root adaptation to limited phosphate availability. Our experiments reveal that FERRIC REDUCTASE DEFECTIVE 3 mediated, apoplastic iron redistribution, but not intracellular iron uptake and iron storage, triggers phosphate-dependent root growth modulation. We further highlight expressional changes of several cell wall-modifying enzymes and provide evidence for adjustment of the pectin network at sites of iron accumulation in the root. CONCLUSION Our study reveals new aspects of the elaborate interplay between phosphate starvation responses and changes in iron homeostasis. The results emphasize the importance of apoplastic iron redistribution to mediate phosphate-dependent root growth adjustment and suggest an important role for citrate in phosphate-dependent apoplastic iron transport. We further demonstrate that root growth modulation correlates with an altered expression of cell wall modifying enzymes and changes in the pectin network of the phosphate-deprived root tip, supporting the hypothesis that pectins are involved in iron binding and/or phosphate mobilization.
Collapse
Affiliation(s)
- Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Susann Mönchgesang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Steffen Neumann
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Petra Majovsky
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
- Department of Plant Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - Jens Müller
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany.
| |
Collapse
|
52
|
Johnson KCM, Yu Y, Gao L, Eng RC, Wasteneys GO, Chen X, Li X. A partial loss-of-function mutation in an Arabidopsis RNA polymerase III subunit leads to pleiotropic defects. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2219-30. [PMID: 26865731 PMCID: PMC4809280 DOI: 10.1093/jxb/erw020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants employ five DNA-dependent RNA polymerases (Pols) in transcription. One of these polymerases, Pol III, has previously been reported to transcribe 5S rRNA, tRNAs, and a number of small RNAs. However, in-depth functional analysis is complicated by the fact that knockout mutations in Pol subunits are typically lethal. Here, we report the characterization of the first known viable Pol III subunit mutant,nrpc7-1 This mutant was originally isolated from a forward genetic screen designed to identify enhancers of the autoimmune mutantsnc1, which contains a gain-of-function mutation in a nucleotide-binding leucine-rich repeat (NLR) immune receptor-encoding gene. Thenrpc7-1mutation occurs in an intron-exon splice site and results in intron retention in someNRPC7transcripts. There is a global disruption in RNA equilibrium innrpc7-1, exemplified by the altered expression of a number of RNA molecules, some of which are not reported to be transcribed by Pol III. There are developmental defects associated with the mutation, as homozygous mutant plants are dwarf, have stunted roots and siliques, and possess serrated leaves. These defects are possibly due to altered small RNA stability or activity. Additionally, thenrpc7-1mutation confers anNLR-specific alternative splicing defect that correlates with enhanced disease resistance, highlighting the importance of alternative splicing in regulating NLR activity. Altogether, these results reveal novel roles for Pol III in maintaining RNA homeostasis, adjusting the expression of a diverse suite of genes, and indirectly modulating gene splicing. Future analyses using thenrpc7-1mutant will be instrumental in examining other unknown Pol III functions.
Collapse
Affiliation(s)
- Kaeli C M Johnson
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Yu Yu
- Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Lei Gao
- Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Ryan C Eng
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Geoffrey O Wasteneys
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Xuemei Chen
- Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
53
|
|
54
|
Wege S, Khan GA, Jung JY, Vogiatzaki E, Pradervand S, Aller I, Meyer AJ, Poirier Y. The EXS Domain of PHO1 Participates in the Response of Shoots to Phosphate Deficiency via a Root-to-Shoot Signal. PLANT PHYSIOLOGY 2016; 170:385-400. [PMID: 26546667 PMCID: PMC4704572 DOI: 10.1104/pp.15.00975] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/04/2015] [Indexed: 05/17/2023]
Abstract
The response of shoots to phosphate (Pi) deficiency implicates long-distance communication between roots and shoots, but the participating components are poorly understood. We have studied the topology of the Arabidopsis (Arabidopsis thaliana) PHOSPHATE1 (PHO1) Pi exporter and defined the functions of its different domains in Pi homeostasis and signaling. The results indicate that the amino and carboxyl termini of PHO1 are both oriented toward the cytosol and that the protein spans the membrane twice in the EXS domain, resulting in a total of six transmembrane α-helices. Using transient expression in Nicotiana benthamiana leaf, we demonstrated that the EXS domain of PHO1 is essential for Pi export activity and proper localization to the Golgi and trans-Golgi network, although the EXS domain by itself cannot mediate Pi export. In contrast, removal of the amino-terminal hydrophilic SPX domain does not affect the Pi export capacity of the truncated PHO1 in N. benthamiana. While the Arabidopsis pho1 mutant has low shoot Pi and shows all the hallmarks associated with Pi deficiency, including poor shoot growth and overexpression of numerous Pi deficiency-responsive genes, expression of only the EXS domain of PHO1 in the roots of the pho1 mutant results in a remarkable improvement of shoot growth despite low shoot Pi. Transcriptomic analysis of pho1 expressing the EXS domain indicates an attenuation of the Pi signaling cascade and the up-regulation of genes involved in cell wall synthesis and the synthesis or response to several phytohormones in leaves as well as an altered expression of genes responsive to abscisic acid in roots.
Collapse
Affiliation(s)
- Stefanie Wege
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| | - Ghazanfar Abbas Khan
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| | - Ji-Yul Jung
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| | - Evangelia Vogiatzaki
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| | - Sylvain Pradervand
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| | - Isabel Aller
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| | - Andreas J Meyer
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| | - Yves Poirier
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| |
Collapse
|
55
|
Groszmann M, Gonzalez-Bayon R, Lyons RL, Greaves IK, Kazan K, Peacock WJ, Dennis ES. Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids. Proc Natl Acad Sci U S A 2015; 112:E6397-406. [PMID: 26527659 PMCID: PMC4655576 DOI: 10.1073/pnas.1519926112] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant hybrids are extensively used in agriculture to deliver increases in yields, yet the molecular basis of their superior performance (heterosis) is not well understood. Our transcriptome analysis of a number of Arabidopsis F1 hybrids identified changes to defense and stress response gene expression consistent with a reduction in basal defense levels. Given the reported antagonism between plant immunity and growth, we suggest that these altered patterns of expression contribute to the greater growth of the hybrids. The altered patterns of expression in the hybrids indicate decreases to the salicylic acid (SA) biosynthesis pathway and increases in the auxin [indole-3-acetic acid (IAA)] biosynthesis pathway. SA and IAA are hormones known to control stress and defense responses as well as plant growth. We found that IAA-targeted gene activity is frequently increased in hybrids, correlating with a common heterotic phenotype of greater leaf cell numbers. Reduced SA concentration and target gene responses occur in the larger hybrids and promote increased leaf cell size. We demonstrated the importance of SA action to the hybrid phenotype by manipulating endogenous SA concentrations. Increasing SA diminished heterosis in SA-reduced hybrids, whereas decreasing SA promoted growth in some hybrids and phenocopied aspects of hybrid vigor in parental lines. Pseudomonas syringae infection of hybrids demonstrated that the reductions in basal defense gene activity in these hybrids does not necessarily compromise their ability to mount a defense response comparable to the parents.
Collapse
Affiliation(s)
| | | | - Rebecca L Lyons
- CSIRO Agriculture, Queensland Bioscience Precinct, Brisbane, QLD 4069, Australia
| | | | - Kemal Kazan
- CSIRO Agriculture, Queensland Bioscience Precinct, Brisbane, QLD 4069, Australia
| | - W James Peacock
- CSIRO Agriculture, Canberra, ACT 2601, Australia; University of Technology, Sydney, NSW 2007, Australia
| | - Elizabeth S Dennis
- CSIRO Agriculture, Canberra, ACT 2601, Australia; University of Technology, Sydney, NSW 2007, Australia
| |
Collapse
|
56
|
He X, Qu B, Li W, Zhao X, Teng W, Ma W, Ren Y, Li B, Li Z, Tong Y. The Nitrate-Inducible NAC Transcription Factor TaNAC2-5A Controls Nitrate Response and Increases Wheat Yield. PLANT PHYSIOLOGY 2015; 169:1991-2005. [PMID: 26371233 PMCID: PMC4634051 DOI: 10.1104/pp.15.00568] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/14/2015] [Indexed: 05/18/2023]
Abstract
Nitrate is a major nitrogen resource for cereal crops; thus, understanding nitrate signaling in cereal crops is valuable for engineering crops with improved nitrogen use efficiency. Although several regulators have been identified in nitrate sensing and signaling in Arabidopsis (Arabidopsis thaliana), the equivalent information in cereals is missing. Here, we isolated a nitrate-inducible and cereal-specific NAM, ATAF, and CUC (NAC) transcription factor, TaNAC2-5A, from wheat (Triticum aestivum). A chromatin immunoprecipitation assay showed that TaNAC2-5A could directly bind to the promoter regions of the genes encoding nitrate transporter and glutamine synthetase. Overexpression of TaNAC2-5A in wheat enhanced root growth and nitrate influx rate and, hence, increased the root's ability to acquire nitrogen. Furthermore, we found that TaNAC2-5A-overexpressing transgenic wheat lines had higher grain yield and higher nitrogen accumulation in aerial parts and allocated more nitrogen in grains in a field experiment. These results suggest that TaNAC2-5A is involved in nitrate signaling and show that it is an exciting gene resource for breeding crops with more efficient use of fertilizer.
Collapse
Affiliation(s)
- Xue He
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Baoyuan Qu
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Wenjing Li
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Xueqiang Zhao
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Wan Teng
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Wenying Ma
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Yongzhe Ren
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Bin Li
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Zhensheng Li
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Yiping Tong
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| |
Collapse
|
57
|
Lu L, Chen Y, Lu L, Lu Y, Li L. Transcriptome analysis reveals dynamic changes in the gene expression of tobacco seedlings under low potassium stress. J Genet 2015; 94:397-406. [PMID: 26440078 DOI: 10.1007/s12041-015-0532-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Potassium plays a key role in plant development and reproduction. In agricultural practice, potassium deficiency is common worldwide, and leads to crop growth inhibition and output reduction. In this study, we analysed the transcriptome of tobacco seedlings under low potassium stress. Tobacco seedlings with or without decreased potassium treatment were harvested after 0 (control), 6, 12, or 24 h and were submitted for microarray analysis. The results showed that up to 3790 genes were upregulated or downregulated more than 2-fold as a result of the decreased potassium treatment. Gene ontology analysis revealed significantly differentially expressed genes that were categorized as cation binding, transcription regulation, metabolic processes, transporter activity and enzyme regulation. Some potassium, nitrogen and phosphorus transporters; transcription factors; and plant signal molecules, such as CPKs were also significantly differentially expressed under potassium deficiency. Our results indicate that the expression profiles of a large number of genes involved in various plant physiological processes are significantly altered in response to potassium deficiency, which can result in physiological and morphological changes in tobacco plants.
Collapse
Affiliation(s)
- Liming Lu
- Agronomy College, Sichuan Agriculture University, Huimin Road 211#, Chengdu 611130, Sichuan Province, People's Republic of China.
| | | | | | | | | |
Collapse
|
58
|
Jost R, Pharmawati M, Lapis-Gaza HR, Rossig C, Berkowitz O, Lambers H, Finnegan PM. Differentiating phosphate-dependent and phosphate-independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphite. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2501-14. [PMID: 25697796 PMCID: PMC4986860 DOI: 10.1093/jxb/erv025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phosphite is a less oxidized form of phosphorus than phosphate. Phosphite is considered to be taken up by the plant through phosphate transporters. It can mimic phosphate to some extent, but it is not metabolized into organophosphates. Phosphite could therefore interfere with phosphorus signalling networks. Typical physiological and transcriptional responses to low phosphate availability were investigated and the short-term kinetics of their reversion by phosphite, compared with phosphate, were determined in both roots and shoots of Arabidopsis thaliana. Phosphite treatment resulted in a strong growth arrest. It mimicked phosphate in causing a reduction in leaf anthocyanins and in the expression of a subset of the phosphate-starvation-responsive genes. However, the kinetics of the response were slower than for phosphate, which may be due to discrimination against phosphite by phosphate transporters PHT1;8 and PHT1;9 causing delayed shoot accumulation of phosphite. Transcripts encoding PHT1;7, lipid-remodelling enzymes such as SQD2, and phosphocholine-producing NMT3 were highly responsive to phosphite, suggesting their regulation by a direct phosphate-sensing network. Genes encoding components associated with the 'PHO regulon' in plants, such as At4, IPS1, and PHO1;H1, generally responded more slowly to phosphite than to phosphate, except for SPX1 in roots and MIR399d in shoots. Two uncharacterized phosphate-responsive E3 ligase genes, PUB35 and C3HC4, were also highly phosphite responsive. These results show that phosphite is a valuable tool to identify network components directly responsive to phosphate.
Collapse
Affiliation(s)
- Ricarda Jost
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Made Pharmawati
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia Biology Department, Faculty of Mathematics and Natural Sciences, Bukit Jimbaran Campus, Udayana University, Bali, Indonesia
| | - Hazel R Lapis-Gaza
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Claudia Rossig
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Oliver Berkowitz
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Hans Lambers
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia Institute of Agriculture, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Patrick M Finnegan
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia Institute of Agriculture, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| |
Collapse
|
59
|
Pant BD, Burgos A, Pant P, Cuadros-Inostroza A, Willmitzer L, Scheible WR. The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1907-18. [PMID: 25680792 PMCID: PMC4378627 DOI: 10.1093/jxb/eru535] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 05/19/2023]
Abstract
Lipid remodeling is one of the most dramatic metabolic responses to phosphorus (P) starvation. It consists of the degradation of phospholipids to release the phosphate needed by the cell and the accumulation of glycolipids to replace phospholipids in the membranes. It is shown that PHR1, a well-described transcriptional regulator of P starvation of the MYB family, largely controls this response. Glycerolipid composition and the expression of most lipid-remodeling gene transcripts analysed were altered in the phr1 mutant under phosphate starvation in comparison to wild-type plants. In addition to these results, the lipidomic characterization of wild-type plants showed two novel features of the lipid response to P starvation for Arabidopsis. Triacylglycerol (TAG) accumulates dramatically under P starvation (by as much as ~20-fold in shoots and ~13-fold in roots), a response known to occur in green algae but hardly known in plants. Surprisingly, there was an increase in phosphatidylglycerol (PG) in P-starved roots, a response that may be adaptive as it was suppressed in the phr1 mutant.
Collapse
Affiliation(s)
- Bikram Datt Pant
- Max Planck Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Asdrubal Burgos
- Max Planck Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Pooja Pant
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | | | - Lothar Willmitzer
- Max Planck Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Wolf-Rüdiger Scheible
- Max Planck Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| |
Collapse
|
60
|
Pandey R, Zinta G, AbdElgawad H, Ahmad A, Jain V, Janssens IA. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotechnol Adv 2015; 33:303-16. [PMID: 25797341 DOI: 10.1016/j.biotechadv.2015.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/07/2015] [Accepted: 03/14/2015] [Indexed: 11/24/2022]
Abstract
Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P-limitation responses in plants. Analysis of expression patterns of some typical P-limitation induced genes under high [CO2] suggests that long-term exposure of plants to high [CO2] would have a tendency to stimulate similar transcriptional responses as observed under P-limitation. However, studies on the combined effect of high [CO2] and low P on gene expression are scarce. Such studies would provide insights into the development of P efficient crops in the context of anticipated increases in atmospheric [CO2].
Collapse
Affiliation(s)
- Renu Pandey
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Gaurav Zinta
- Department of Biology, University of Antwerp, 2610, Belgium
| | - Hamada AbdElgawad
- Department of Biology, University of Antwerp, 2610, Belgium; Department of Botany, Faculty of Science, University of Beni-Sueif, Beni-Sueif 62511, Egypt
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 201002, India
| | - Vanita Jain
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | | |
Collapse
|
61
|
Pant BD, Pant P, Erban A, Huhman D, Kopka J, Scheible WR. Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation. PLANT, CELL & ENVIRONMENT 2015; 38:172-87. [PMID: 24894834 DOI: 10.1111/pce.12378] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 05/20/2023]
Abstract
Massive changes in gene expression occur when plants are subjected to phosphorus (P) limitation, but the breadth of metabolic changes in these conditions and their regulation is barely investigated. Nearly 350 primary and secondary metabolites were profiled in shoots and roots of P-replete and P-deprived Arabidopsis thaliana wild type and mutants of the central P-signalling components PHR1 and PHO2, and microRNA399 overexpresser. In the wild type, the levels of 87 primary metabolites, including phosphorylated metabolites but not 3-phosphoglycerate, decreased, whereas the concentrations of most organic acids, amino acids, nitrogenous compounds, polyhydroxy acids and sugars increased. Furthermore, the levels of 35 secondary metabolites, including glucosinolates, benzoides, phenylpropanoids and flavonoids, were altered during P limitation. Observed changes indicated P-saving strategies, increased photorespiration and crosstalk between P limitation and sulphur and nitrogen metabolism. The phr1 mutation had a remarkably pronounced effect on the metabolic P-limitation response, providing evidence that PHR1 is a key factor for metabolic reprogramming during P limitation. The effects of pho2 or microRNA399 overexpression were comparatively minor. In addition, positive correlations between metabolites and gene transcripts encoding pathway enzymes were revealed. This study provides an unprecedented metabolic phenotype during P limitation in Arabidopsis.
Collapse
Affiliation(s)
- Bikram-Datt Pant
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | | | | | | | | | | |
Collapse
|
62
|
Briat JF, Rouached H, Tissot N, Gaymard F, Dubos C. Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). FRONTIERS IN PLANT SCIENCE 2015; 6:290. [PMID: 25972885 PMCID: PMC4411997 DOI: 10.3389/fpls.2015.00290] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/09/2015] [Indexed: 05/18/2023]
Abstract
Phosphate and sulfate are essential macro-elements for plant growth and development, and deficiencies in these mineral elements alter many metabolic functions. Nutritional constraints are not restricted to macro-elements. Essential metals such as zinc and iron have their homeostasis strictly genetically controlled, and deficiency or excess of these micro-elements can generate major physiological disorders, also impacting plant growth and development. Phosphate and sulfate on one hand, and zinc and iron on the other hand, are known to interact. These interactions have been partly described at the molecular and physiological levels, and are reviewed here. Furthermore the two macro-elements phosphate and sulfate not only interact between themselves but also influence zinc and iron nutrition. These intricated nutritional cross-talks are presented. The responses of plants to phosphorus, sulfur, zinc, or iron deficiencies have been widely studied considering each element separately, and some molecular actors of these regulations have been characterized in detail. Although some scarce reports have started to examine the interaction of these mineral elements two by two, a more complex analysis of the interactions and cross-talks between the signaling pathways integrating the homeostasis of these various elements is still lacking. However, a MYB-like transcription factor, PHOSPHATE STARVATION RESPONSE 1, emerges as a common regulator of phosphate, sulfate, zinc, and iron homeostasis, and its role as a potential general integrator for the control of mineral nutrition is discussed.
Collapse
Affiliation(s)
- Jean-François Briat
- *Correspondence: Jean-François Briat, Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique – Université Montpellier 2, SupAgro, Bat 7, 2 Place Viala, 34060 Montpellier Cedex 1, France
| | | | | | | | | |
Collapse
|
63
|
Kuppusamy T, Giavalisco P, Arvidsson S, Sulpice R, Stitt M, Finnegan PM, Scheible WR, Lambers H, Jost R. Lipid biosynthesis and protein concentration respond uniquely to phosphate supply during leaf development in highly phosphorus-efficient Hakea prostrata. PLANT PHYSIOLOGY 2014; 166:1891-911. [PMID: 25315604 PMCID: PMC4256859 DOI: 10.1104/pp.114.248930] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/10/2014] [Indexed: 05/20/2023]
Abstract
Hakea prostrata (Proteaceae) is adapted to severely phosphorus-impoverished soils and extensively replaces phospholipids during leaf development. We investigated how polar lipid profiles change during leaf development and in response to external phosphate supply. Leaf size was unaffected by a moderate increase in phosphate supply. However, leaf protein concentration increased by more than 2-fold in young and mature leaves, indicating that phosphate stimulates protein synthesis. Orthologs of known lipid-remodeling genes in Arabidopsis (Arabidopsis thaliana) were identified in the H. prostrata transcriptome. Their transcript profiles in young and mature leaves were analyzed in response to phosphate supply alongside changes in polar lipid fractions. In young leaves of phosphate-limited plants, phosphatidylcholine/phosphatidylethanolamine and associated transcript levels were higher, while phosphatidylglycerol and sulfolipid levels were lower than in mature leaves, consistent with low photosynthetic rates and delayed chloroplast development. Phosphate reduced galactolipid and increased phospholipid concentrations in mature leaves, with concomitant changes in the expression of only four H. prostrata genes, GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE1, N-METHYLTRANSFERASE2, NONSPECIFIC PHOSPHOLIPASE C4, and MONOGALACTOSYLDIACYLGLYCEROL3. Remarkably, phosphatidylglycerol levels decreased with increasing phosphate supply and were associated with lower photosynthetic rates. Levels of polar lipids with highly unsaturated 32:x (x = number of double bonds in hydrocarbon chain) and 34:x acyl chains increased. We conclude that a regulatory network with a small number of central hubs underpins extensive phospholipid replacement during leaf development in H. prostrata. This hard-wired regulatory framework allows increased photosynthetic phosphorus use efficiency and growth in a low-phosphate environment. This may have rendered H. prostrata lipid metabolism unable to adjust to higher internal phosphate concentrations.
Collapse
Affiliation(s)
- Thirumurugen Kuppusamy
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Patrick Giavalisco
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Samuel Arvidsson
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Ronan Sulpice
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Mark Stitt
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Patrick M Finnegan
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Wolf-Rüdiger Scheible
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Hans Lambers
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Ricarda Jost
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| |
Collapse
|
64
|
Lapis-Gaza HR, Jost R, Finnegan PM. Arabidopsis PHOSPHATE TRANSPORTER1 genes PHT1;8 and PHT1;9 are involved in root-to-shoot translocation of orthophosphate. BMC PLANT BIOLOGY 2014; 14:334. [PMID: 25428623 PMCID: PMC4252992 DOI: 10.1186/s12870-014-0334-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/11/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND In plants, the uptake from soil and intercellular transport of inorganic phosphate (Pi) is mediated by the PHT1 family of membrane-spanning proton : Pi symporters. The Arabidopsis thaliana AtPHT1 gene family comprises nine putative high-affinity Pi transporters. While AtPHT1;1 to AtPHT1;4 are involved in Pi acquisition from the rhizosphere, the role of the remaining transporters is less clear. RESULTS Pi uptake and tissue accumulation studies in AtPHT1;8 and AtPHT1;9 knock-out mutants compared to wild-type plants showed that both transporters are involved in the translocation of Pi from the root to the shoot. Upon inactivation of AtPHT1;9, changes in the transcript profiles of several genes that respond to plant phosphorus (P) status indicated a possible role in the regulation of systemic signaling of P status within the plant. Potential genetic interactions were found among PHT1 transporters, as the transcript profile of AtPHT1;5 and AtPHT1;7 was altered in the absence of AtPHT1;8, and the transcript profile of AtPHT1;7 was altered in the Atpht1;9 mutant. These results indicate that AtPHT1;8 and AtPHT1;9 translocate Pi from the root to the shoot, but not from the soil solution into the root. CONCLUSION AtPHT1;8 and AtPHT1;9 are likely to act sequentially in the interior of the plant during the root-to-shoot translocation of Pi, and play a more complex role in the acclimation of A. thaliana to changes in Pi supply than was previously thought.
Collapse
Affiliation(s)
- Hazel R Lapis-Gaza
- />School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA 6009 Australia
| | - Ricarda Jost
- />School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA 6009 Australia
| | - Patrick M Finnegan
- />School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA 6009 Australia
- />Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA 6009 Australia
| |
Collapse
|
65
|
Bouain N, Shahzad Z, Rouached A, Khan GA, Berthomieu P, Abdelly C, Poirier Y, Rouached H. Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5725-41. [PMID: 25080087 DOI: 10.1093/jxb/eru314] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Inorganic phosphate (Pi) and zinc (Zn) are two essential nutrients for plant growth. In soils, these two minerals are either present in low amounts or are poorly available to plants. Consequently, worldwide agriculture has become dependent on external sources of Pi and Zn fertilizers to increase crop yields. However, this strategy is neither economically nor ecologically sustainable in the long term, particularly for Pi, which is a non-renewable resource. To date, research has emphasized the analysis of mineral nutrition considering each nutrient individually, and showed that Pi and Zn homeostasis is highly regulated in a complex process. Interestingly, numerous observations point to an unexpected interconnection between the homeostasis of the two nutrients. Nevertheless, despite their fundamental importance, the molecular bases and biological significance of these interactions remain largely unknown. Such interconnections can account for shortcomings of current agronomic models that typically focus on improving the assimilation of individual elements. Here, current knowledge on the regulation of the transport and signalling of Pi and Zn individually is reviewed, and then insights are provided on the recent progress made towards a better understanding of the Zn-Pi homeostasis interaction in plants.
Collapse
Affiliation(s)
- Nadia Bouain
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France Laboratoire Des Plantes Extrêmophile, Centre de Biotechnologie de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Zaigham Shahzad
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France
| | - Aida Rouached
- Laboratoire Des Plantes Extrêmophile, Centre de Biotechnologie de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Ghazanfar Abbas Khan
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Pierre Berthomieu
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France
| | - Chedly Abdelly
- Laboratoire Des Plantes Extrêmophile, Centre de Biotechnologie de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Yves Poirier
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hatem Rouached
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France
| |
Collapse
|
66
|
Fan F, Cui B, Zhang T, Qiao G, Ding G, Wen X. The temporal transcriptomic response of Pinus massoniana seedlings to phosphorus deficiency. PLoS One 2014; 9:e105068. [PMID: 25165828 PMCID: PMC4148236 DOI: 10.1371/journal.pone.0105068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/20/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Phosphorus (P) is an essential macronutrient for plant growth and development. Several genes involved in phosphorus deficiency stress have been identified in various plant species. However, a whole genome understanding of the molecular mechanisms involved in plant adaptations to low P remains elusive, and there is particularly little information on the genetic basis of these acclimations in coniferous trees. Masson pine (Pinus massoniana) is grown mainly in the tropical and subtropical regions in China, many of which are severely lacking in inorganic phosphate (Pi). In previous work, we described an elite P. massoniana genotype demonstrating a high tolerance to Pi-deficiency. METHODOLOGY/PRINCIPAL FINDINGS To further investigate the mechanism of tolerance to low P, RNA-seq was performed to give an idea of extent of expression from the two mixed libraries, and microarray whose probes were designed based on the unigenes obtained from RNA-seq was used to elucidate the global gene expression profiles for the long-term phosphorus starvation. A total of 70,896 unigenes with lengths ranging from 201 to 20,490 bp were assembled from 112,108,862 high quality reads derived from RNA-Seq libraries. We identified 1,396 and 943 transcripts that were differentially regulated (P<0.05) under P1 (0.01 mM P) and P2 (0.06 mM P) Pi-deficiency conditions, respectively. Numerous transcripts were consistently differentially regulated under Pi deficiency stress, many of which were also up- or down-regulated in other species under the corresponding conditions, and are therefore ideal candidates for monitoring the P status of plants. The results also demonstrated the impact of different Pi starvation levels on global gene expression in Masson pine. CONCLUSIONS/SIGNIFICANCE To our knowledge, this work provides the first insight into the molecular mechanisms involved in acclimation to long-term Pi starvation and different Pi availability levels in coniferous trees.
Collapse
Affiliation(s)
- Fuhua Fan
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
- School of Forestry Science, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
- The School of Nuclear Technology and Chemical and Biological, Hubei University of Science and Technology, Xianning, Hubei Province, People’s Republic of China
| | - Bowen Cui
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
| | - Ting Zhang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
| | - Guang Qiao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
| | - Guijie Ding
- School of Forestry Science, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
| |
Collapse
|
67
|
Masakapalli SK, Bryant FM, Kruger NJ, Ratcliffe RG. The metabolic flux phenotype of heterotrophic Arabidopsis cells reveals a flexible balance between the cytosolic and plastidic contributions to carbohydrate oxidation in response to phosphate limitation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:964-977. [PMID: 24674596 DOI: 10.1111/tpj.12522] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 05/29/2023]
Abstract
Understanding the mechanisms that allow plants to respond to variable and reduced availability of inorganic phosphate is of increasing agricultural importance because of the continuing depletion of the rock phosphate reserves that are used to combat inadequate phosphate levels in the soil. Changes in gene expression, protein levels, enzyme activities and metabolite levels all point to a reconfiguration of the central metabolic network in response to reduced availability of inorganic phosphate, but the metabolic significance of these changes can only be assessed in terms of the fluxes supported by the network. Steady-state metabolic flux analysis was used to define the metabolic phenotype of a heterotrophic Arabidopsis thaliana cell culture grown on a Murashige and Skoog medium containing 0, 1.25 or 5 mm inorganic phosphate. Fluxes through the central metabolic network were deduced from the redistribution of (13) C into metabolic intermediates and end products when cells were labelled with [1-(13) C], [2-(13) C], or [(13) C6 ]glucose, in combination with (14) C measurements of the rates of biomass accumulation. Analysis of the flux maps showed that reduced levels of phosphate in the growth medium stimulated flux through phosphoenolpyruvate carboxylase and malic enzyme, altered the balance between cytosolic and plastidic carbohydrate oxidation in favour of the plastid, and increased cell maintenance costs. We argue that plant cells respond to phosphate deprivation by reconfiguring the flux distribution through the pathways of carbohydrate oxidation to take advantage of better phosphate homeostasis in the plastid.
Collapse
Affiliation(s)
- Shyam K Masakapalli
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | | | | |
Collapse
|
68
|
Begara-Morales JC, Sánchez-Calvo B, Luque F, Leyva-Pérez MO, Leterrier M, Corpas FJ, Barroso JB. Differential transcriptomic analysis by RNA-Seq of GSNO-responsive genes between Arabidopsis roots and leaves. PLANT & CELL PHYSIOLOGY 2014; 55:1080-95. [PMID: 24599390 DOI: 10.1093/pcp/pcu044] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
S-Nitrosoglutathione (GSNO) is a nitric oxide-derived molecule that can regulate protein function by a post-translational modification designated S-nitrosylation. GSNO has also been detected in different plant organs under physiological and stress conditions, and it can also modulate gene expression. Thirty-day-old Arabidopsis plants were grown under hydroponic conditions, and exogenous 1 mM GSNO was applied to the root systems for 3 h. Differential gene expression analyses were carried out both in roots and in leaves by RNA sequencing (RNA-seq). A total of 3,263 genes were identified as being modulated by GSNO. Most of the genes identified were associated with the mechanism of protection against stress situations, many of these having previously been identified as target genes of GSNO by array-based methods. However, new genes were identified, such as that for methionine sulfoxide reductase (MSR) in leaves or different miscellaneous RNA (miscRNA) genes in Arabidopsis roots. As a result, 1,945 GSNO-responsive genes expressed differently in leaves and roots were identified, and 114 of these corresponded exclusively to one of these organs. In summary, it is demonstrated that RNA-seq extends our knowledge of GSNO as a signaling molecule which differentially modulates gene expression in roots and leaves under non-stress conditions.
Collapse
Affiliation(s)
- Juan C Begara-Morales
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Universitario 'Las Lagunillas' s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Universitario 'Las Lagunillas' s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Francisco Luque
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Universitario 'Las Lagunillas' s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - María O Leyva-Pérez
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Universitario 'Las Lagunillas' s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Marina Leterrier
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas, E-18080 Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas, E-18080 Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Universitario 'Las Lagunillas' s/n, Universidad de Jaén, E-23071 Jaén, Spain
| |
Collapse
|
69
|
Sorin C, Declerck M, Christ A, Blein T, Ma L, Lelandais-Brière C, Njo MF, Beeckman T, Crespi M, Hartmann C. A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis. THE NEW PHYTOLOGIST 2014; 202:1197-1211. [PMID: 24533947 DOI: 10.1111/nph.12735] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/21/2014] [Indexed: 05/20/2023]
Abstract
In plants, roots are essential for water and nutrient acquisition. MicroRNAs (miRNAs) regulate their target mRNAs by transcript cleavage and/or inhibition of protein translation and are known as major post-transcriptional regulators of various developmental pathways and stress responses. In Arabidopsis thaliana, four isoforms of miR169 are encoded by 14 different genes and target diverse mRNAs, encoding subunits A of the NF-Y transcription factor complex. These miRNA isoforms and their targets have previously been linked to nutrient signalling in plants. By using mimicry constructs against different isoforms of miR169 and miR-resistant versions of NF-YA genes we analysed the role of specific miR169 isoforms in root growth and branching. We identified a regulatory node involving the particular miR169defg isoform and NF-YA2 and NF-YA10 genes that acts in the control of primary root growth. The specific expression of MIM169defg constructs altered specific cell type numbers and dimensions in the root meristem. Preventing miR169defg-regulation of NF-YA2 indirectly affected laterial root initiation. We also showed that the miR169defg isoform affects NF-YA2 transcripts both at mRNA stability and translation levels. We propose that a specific miR169 isoform and the NF-YA2 target control root architecture in Arabidopsis.
Collapse
Affiliation(s)
- Céline Sorin
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
- Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France
| | - Marie Declerck
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
| | - Aurélie Christ
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
| | - Thomas Blein
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
- INRA, Institut JP Bourgin, Route de Saint-Cyr, 78026, Versailles Cedex, France
| | - Linnan Ma
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
| | - Christine Lelandais-Brière
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
- Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France
| | - Maria Fransiska Njo
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Martin Crespi
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
| | - Caroline Hartmann
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
- Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France
| |
Collapse
|
70
|
Klecker M, Gasch P, Peisker H, Dörmann P, Schlicke H, Grimm B, Mustroph A. A Shoot-Specific Hypoxic Response of Arabidopsis Sheds Light on the Role of the Phosphate-Responsive Transcription Factor PHOSPHATE STARVATION RESPONSE1. PLANT PHYSIOLOGY 2014; 165:774-790. [PMID: 24753539 PMCID: PMC4044847 DOI: 10.1104/pp.114.237990] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/17/2014] [Indexed: 05/05/2023]
Abstract
Plant responses to biotic and abiotic stresses are often very specific, but signal transduction pathways can partially or completely overlap. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), the transcriptional responses to phosphate starvation and oxygen deficiency stress comprise a set of commonly induced genes. While the phosphate deficiency response is systemic, under oxygen deficiency, most of the commonly induced genes are found only in illuminated shoots. This jointly induced response to the two stresses is under control of the transcription factor PHOSPHATE STARVATION RESPONSE1 (PHR1), but not of the oxygen-sensing N-end rule pathway, and includes genes encoding proteins for the synthesis of galactolipids, which replace phospholipids in plant membranes under phosphate starvation. Despite the induction of galactolipid synthesis genes, total galactolipid content and plant survival are not severely affected by the up-regulation of galactolipid gene expression in illuminated leaves during hypoxia. However, changes in galactolipid molecular species composition point to an adaptation of lipid fluxes through the endoplasmic reticulum and chloroplast pathways during hypoxia. PHR1-mediated signaling of phosphate deprivation was also light dependent. Because a photoreceptor-mediated PHR1 activation was not detectable under hypoxia, our data suggest that a chloroplast-derived retrograde signal, potentially arising from metabolic changes, regulates PHR1 activity under both oxygen and phosphate deficiency.
Collapse
Affiliation(s)
- Maria Klecker
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Philipp Gasch
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Helga Peisker
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Peter Dörmann
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Hagen Schlicke
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Bernhard Grimm
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Angelika Mustroph
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| |
Collapse
|
71
|
Nemie-Feyissa D, Olafsdottir SM, Heidari B, Lillo C. Nitrogen depletion and small R3-MYB transcription factors affecting anthocyanin accumulation in Arabidopsis leaves. PHYTOCHEMISTRY 2014; 98:34-40. [PMID: 24388610 DOI: 10.1016/j.phytochem.2013.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 05/08/2023]
Abstract
Ternary complexes consisting of a R2R3-MYB, a bHLH and a WD40 protein (MBW complexes) regulate trichome formation and anthocyanin synthesis in plants. Small R3-MYBs interact with the MBW complexes to exert a negative feedback, and thereby participate in regulation of epidermal cell fate, for example trichome numbers and clustering in leaves. In Arabidopsis thaliana, GL3, a bHLH transcription factor, is important in the MBW complex regulating trichome formation as well as in the MBW complex induced by nitrogen depletion and promoting anthocyanin formation. The small R3-MYBs: CPC, TRY, ETC1, ETC2, ETC3/CPL3, TCL1, MYBL2, are all known to interact with GL3. We here investigated these R3-MYBs in leaves of Arabidopsis rosette stage plants under nitrogen depletion to examine if the small MYBs would interfere with anthocyanin accumulation in plants under normal (autotrophic) growth conditions. CPC expression was enhanced two-fold in response to nitrogen depletion, and ETC3/CPL3 expression was enhanced by almost an order of magnitude (9×). Knockout of ETC3/CPL3 did not influence anthocyanin accumulation, but the results establish ETC3/CPL3 as a nitrate regulated gene and a putative candidate for being involved in nitrate status signaling and root development. Other R3-MYBs tested were not significantly influenced by nitrogen depletion. In conclusion, only CPC expression increased and clearly exerted a negative feedback on anthocyanin accumulation during nitrogen starvation in rosette leaves.
Collapse
Affiliation(s)
- Dugassa Nemie-Feyissa
- University of Stavanger, Centre for Organelle Research, Faculty of Science and Technology, N-4036 Stavanger, Norway
| | - Solveig Margret Olafsdottir
- University of Stavanger, Centre for Organelle Research, Faculty of Science and Technology, N-4036 Stavanger, Norway
| | - Behzad Heidari
- University of Stavanger, Centre for Organelle Research, Faculty of Science and Technology, N-4036 Stavanger, Norway
| | - Cathrine Lillo
- University of Stavanger, Centre for Organelle Research, Faculty of Science and Technology, N-4036 Stavanger, Norway.
| |
Collapse
|
72
|
Secco D, Whelan J. Toward deciphering the genome-wide transcriptional responses of rice to phosphate starvation and recovery. PLANT SIGNALING & BEHAVIOR 2014; 9:e28319. [PMID: 24614023 PMCID: PMC4091314 DOI: 10.4161/psb.28319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phosphate (Pi) limitation is one of the major factors negatively impacting crop yield worldwide. Next generation sequencing (NGS) was used to profile the transcriptomes of rice (Oryza sativa) roots and shoots after phosphate starvation and recovery, shedding further light on the complex and dynamic mechanisms involved in Pi homeostasis. The use of NGS also enabled the identification of previously not annotated loci and novel isoforms of genes that are specifically induced by Pi starvation. Furthermore, phosphate re-feeding was observed to have a unique response with a variety of transcription factors and kinases induced in a transient manner. Expression profiles of miRNAs were also assessed upon long-term Pi starvation in roots and shoots revealing several novel miRNAs associated with Pi starvation. Altogether, this study provides key findings regarding Pi homeostasis in plants that will provide a valuable resource for research aimed at generating crops with increased Pi acquisition/use efficiency.
Collapse
Affiliation(s)
- David Secco
- Australian Research Council Centre of Excellence in Plant Energy Biology; The University of Western Australia; Perth, WA Australia
- Correspondence to: David Secco,
| | - James Whelan
- Department of Botany; School of Life Sciences; Australian Research Council Centre of Excellence in Plant Energy Biology; La Trobe University; Bundoora, VIC Australia
| |
Collapse
|
73
|
Park BS, Seo JS, Chua NH. NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis. THE PLANT CELL 2014; 26:454-64. [PMID: 24474629 PMCID: PMC3963589 DOI: 10.1105/tpc.113.120311] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 12/26/2013] [Accepted: 01/06/2013] [Indexed: 05/18/2023]
Abstract
The NITROGEN LIMITATION ADAPTION (NLA) gene was initially shown to function in nitrogen limitation responses; however, recent work shows that the nla mutant hyperaccumulates Pi, phenocopying the Pi signaling mutant pho2. PHO2 encodes a putative E2 conjugase, UBC24. Here, we show that NLA is an E3 ligase that specifically requires UBC24 for polyubiquitination in Arabidopsis thaliana. Among five members of the Pht1 Pi-transporter family tested, NLA associates only with PT2 (Pht1;4). The NLA-UBC24 pair mediates polyubiquitination of PT2 but not PT1. Posttranslational decay of PT2 at high Pi is blocked in pho2 and inhibited by MG132, indicating the requirement of UBC24 and 26S proteasomes. Consistent with NLA/UBC24 function, induced NLA expression causes a UBC24-dependent decrease in PT2 levels. Confocal microscopy of fusion proteins revealed an NLA/PT2 interaction at the plasma membrane. Collectively, these results show that under Pi-replete conditions, NLA and UBC24 target the PT2 transporter for destruction. During the Pi deprivation response, NLA and PHO2 transcripts are cleaved by miR399 and miR827, respectively, and our results suggest that this downregulation relieves the posttranslational repression of PT2, allowing it to accumulate and participate in Pi uptake. Our work provides additional molecular details describing Pi signaling/homeostasis regulation by identifying NLA and UBC24 as partners and PT2 as one of their downstream targets.
Collapse
|
74
|
Iglesias J, Trigueros M, Rojas-Triana M, Fernández M, Albar JP, Bustos R, Paz-Ares J, Rubio V. Proteomics identifies ubiquitin–proteasome targets and new roles for chromatin-remodeling in the Arabidopsis response to phosphate starvation. J Proteomics 2013; 94:1-22. [DOI: 10.1016/j.jprot.2013.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 11/29/2022]
|
75
|
Secco D, Jabnoune M, Walker H, Shou H, Wu P, Poirier Y, Whelan J. Spatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery. THE PLANT CELL 2013; 25:4285-304. [PMID: 24249833 PMCID: PMC3875719 DOI: 10.1105/tpc.113.117325] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/07/2013] [Accepted: 10/30/2013] [Indexed: 05/18/2023]
Abstract
Using rice (Oryza sativa) as a model crop species, we performed an in-depth temporal transcriptome analysis, covering the early and late stages of Pi deprivation as well as Pi recovery in roots and shoots, using next-generation sequencing. Analyses of 126 paired-end RNA sequencing libraries, spanning nine time points, provided a comprehensive overview of the dynamic responses of rice to Pi stress. Differentially expressed genes were grouped into eight sets based on their responses to Pi starvation and recovery, enabling the complex signaling pathways involved in Pi homeostasis to be untangled. A reference annotation-based transcript assembly was also generated, identifying 438 unannotated loci that were differentially expressed under Pi starvation. Several genes also showed induction of unannotated splice isoforms under Pi starvation. Among these, PHOSPHATE2 (PHO2), a key regulator of Pi homeostasis, displayed a Pi starvation-induced isoform, which was associated with increased translation activity. In addition, microRNA (miRNA) expression profiles after long-term Pi starvation in roots and shoots were assessed, identifying 20 miRNA families that were not previously associated with Pi starvation, such as miR6250. In this article, we present a comprehensive spatio-temporal transcriptome analysis of plant responses to Pi stress, revealing a large number of potential key regulators of Pi homeostasis in plants.
Collapse
Affiliation(s)
- David Secco
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Australia
- Address correspondence to
| | - Mehdi Jabnoune
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Hayden Walker
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Joint Research Laboratory in Genomics and Nutriomics, Zhejiang University, Hangzhou 310058, China
| | - Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Joint Research Laboratory in Genomics and Nutriomics, Zhejiang University, Hangzhou 310058, China
| | - Yves Poirier
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne CH-1015, Switzerland
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Australia
- Joint Research Laboratory in Genomics and Nutriomics, Zhejiang University, Hangzhou 310058, China
- Department of Botany, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| |
Collapse
|
76
|
Jabnoune M, Secco D, Lecampion C, Robaglia C, Shu Q, Poirier Y. A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. THE PLANT CELL 2013; 25:4166-82. [PMID: 24096344 PMCID: PMC3877805 DOI: 10.1105/tpc.113.116251] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/03/2013] [Accepted: 09/18/2013] [Indexed: 05/16/2023]
Abstract
cis-natural antisense transcripts (cis-NATs) are widespread in plants and are often associated with downregulation of their associated sense genes. We found that a cis-NAT positively regulates the level of a protein critical for phosphate homeostasis in rice (Oryza sativa). PHOSPHATE1;2 (PHO1;2), a gene involved in phosphate loading into the xylem in rice, and its associated cis-NATPHO1;2 are both controlled by promoters active in the vascular cylinder of roots and leaves. While the PHO1;2 promoter is unresponsive to the plant phosphate status, the cis-NATPHO1;2 promoter is strongly upregulated under phosphate deficiency. Expression of both cis-NATPHO1;2 and the PHO1;2 protein increased in phosphate-deficient plants, while the PHO1;2 mRNA level remained stable. Downregulation of cis-NATPHO1;2 expression by RNA interference resulted in a decrease in PHO1;2 protein, impaired the transfer of phosphate from root to shoot, and decreased seed yield. Constitutive overexpression of NATPHO1;2 in trans led to a strong increase of PHO1;2, even under phosphate-sufficient conditions. Under all conditions, no changes occurred in the level of expression, sequence, or nuclear export of PHO1;2 mRNA. However, expression of cis-NATPHO1;2 was associated with a shift of both PHO1;2 and cis-NATPHO1;2 toward the polysomes. These findings reveal an unexpected role for cis-NATPHO1;2 in promoting PHO1;2 translation and affecting phosphate homeostasis and plant fitness.
Collapse
Affiliation(s)
- Mehdi Jabnoune
- Department of Plant Molecular Biology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - David Secco
- Department of Plant Molecular Biology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Cécile Lecampion
- Laboratory of Plant Genetics and Biophysics, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Commissariat à l’Energie Atomique, Institute of Environmental Biology and Biotechnology, Aix Marseille University, Faculty of Sciences, Luminy, Marseille F-13009, France
| | - Christophe Robaglia
- Laboratory of Plant Genetics and Biophysics, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Commissariat à l’Energie Atomique, Institute of Environmental Biology and Biotechnology, Aix Marseille University, Faculty of Sciences, Luminy, Marseille F-13009, France
| | - Qingyao Shu
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
77
|
Schlüter U, Colmsee C, Scholz U, Bräutigam A, Weber APM, Zellerhoff N, Bucher M, Fahnenstich H, Sonnewald U. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics 2013; 14:442. [PMID: 23822863 PMCID: PMC3716532 DOI: 10.1186/1471-2164-14-442] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/21/2013] [Indexed: 12/01/2022] Open
Abstract
Background Abiotic stress causes disturbances in the cellular homeostasis. Re-adjustment of balance in carbon, nitrogen and phosphorus metabolism therefore plays a central role in stress adaptation. However, it is currently unknown which parts of the primary cell metabolism follow common patterns under different stress conditions and which represent specific responses. Results To address these questions, changes in transcriptome, metabolome and ionome were analyzed in maize source leaves from plants suffering low temperature, low nitrogen (N) and low phosphorus (P) stress. The selection of maize as study object provided data directly from an important crop species and the so far underexplored C4 metabolism. Growth retardation was comparable under all tested stress conditions. The only primary metabolic pathway responding similar to all stresses was nitrate assimilation, which was down-regulated. The largest group of commonly regulated transcripts followed the expression pattern: down under low temperature and low N, but up under low P. Several members of this transcript cluster could be connected to P metabolism and correlated negatively to different phosphate concentration in the leaf tissue. Accumulation of starch under low temperature and low N stress, but decrease in starch levels under low P conditions indicated that only low P treated leaves suffered carbon starvation. Conclusions Maize employs very different strategies to manage N and P metabolism under stress. While nitrate assimilation was regulated depending on demand by growth processes, phosphate concentrations changed depending on availability, thus building up reserves under excess conditions. Carbon and energy metabolism of the C4 maize leaves were particularly sensitive to P starvation.
Collapse
Affiliation(s)
- Urte Schlüter
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr, 5, 91058, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Lambers H, Ahmedi I, Berkowitz O, Dunne C, Finnegan PM, Hardy GESJ, Jost R, Laliberté E, Pearse SJ, Teste FP. Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot. CONSERVATION PHYSIOLOGY 2013; 1:cot010. [PMID: 27293594 DOI: 10.1093/conphys/cot1010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/05/2013] [Accepted: 04/17/2013] [Indexed: 05/28/2023]
Abstract
South-western Australia harbours a global biodiversity hotspot on the world's most phosphorus (P)-impoverished soils. The greatest biodiversity occurs on the most severely nutrient-impoverished soils, where non-mycorrhizal species are a prominent component of the flora. Mycorrhizal species dominate where soils contain slightly more phosphorus. In addition to habitat loss and dryland salinity, a major threat to plant biodiversity in this region is eutrophication due to enrichment with P. Many plant species in the south-western Australian biodiversity hotspot are extremely sensitive to P, due to a low capability to down-regulate their phosphate-uptake capacity. Species from the most P-impoverished soils are also very poor competitors at higher P availability, giving way to more competitive species when soil P concentrations are increased. Sources of increased soil P concentrations include increased fire frequency, run-off from agricultural land, and urban activities. Another P source is the P-fertilizing effect of spraying natural environments on a landscape scale with phosphite to reduce the impacts of the introduced plant pathogen Phytophthora cinnamomi, which itself is a serious threat to biodiversity. We argue that alternatives to phosphite for P. cinnamomi management are needed urgently, and propose a strategy to work towards such alternatives, based on a sound understanding of the physiological and molecular mechanisms of the action of phosphite in plants that are susceptible to P. cinnamomi. The threats we describe for the south-western Australian biodiversity hotspot are likely to be very similar for other P-impoverished environments, including the fynbos in South Africa and the cerrado in Brazil.
Collapse
Affiliation(s)
- Hans Lambers
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Idriss Ahmedi
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, WA 6150, Australia
| | - Oliver Berkowitz
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, WA 6150, Australia
| | - Chris Dunne
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Science Division, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia
| | - Patrick M Finnegan
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Giles E St J Hardy
- Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, WA 6150, Australia
| | - Ricarda Jost
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Etienne Laliberté
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stuart J Pearse
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Astron Environmental Services, 129 Royal Street, East Perth, WA 6004, Australia
| | - François P Teste
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
79
|
Lambers H, Ahmedi I, Berkowitz O, Dunne C, Finnegan PM, Hardy GESJ, Jost R, Laliberté E, Pearse SJ, Teste FP. Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot. CONSERVATION PHYSIOLOGY 2013; 1:cot010. [PMID: 27293594 PMCID: PMC4732436 DOI: 10.1093/conphys/cot010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/05/2013] [Accepted: 04/17/2013] [Indexed: 05/03/2023]
Abstract
South-western Australia harbours a global biodiversity hotspot on the world's most phosphorus (P)-impoverished soils. The greatest biodiversity occurs on the most severely nutrient-impoverished soils, where non-mycorrhizal species are a prominent component of the flora. Mycorrhizal species dominate where soils contain slightly more phosphorus. In addition to habitat loss and dryland salinity, a major threat to plant biodiversity in this region is eutrophication due to enrichment with P. Many plant species in the south-western Australian biodiversity hotspot are extremely sensitive to P, due to a low capability to down-regulate their phosphate-uptake capacity. Species from the most P-impoverished soils are also very poor competitors at higher P availability, giving way to more competitive species when soil P concentrations are increased. Sources of increased soil P concentrations include increased fire frequency, run-off from agricultural land, and urban activities. Another P source is the P-fertilizing effect of spraying natural environments on a landscape scale with phosphite to reduce the impacts of the introduced plant pathogen Phytophthora cinnamomi, which itself is a serious threat to biodiversity. We argue that alternatives to phosphite for P. cinnamomi management are needed urgently, and propose a strategy to work towards such alternatives, based on a sound understanding of the physiological and molecular mechanisms of the action of phosphite in plants that are susceptible to P. cinnamomi. The threats we describe for the south-western Australian biodiversity hotspot are likely to be very similar for other P-impoverished environments, including the fynbos in South Africa and the cerrado in Brazil.
Collapse
Affiliation(s)
- Hans Lambers
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Idriss Ahmedi
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, WA 6150, Australia
| | - Oliver Berkowitz
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, WA 6150, Australia
| | - Chris Dunne
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- Science Division, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia
| | - Patrick M. Finnegan
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Giles E. St J. Hardy
- Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, WA 6150, Australia
| | - Ricarda Jost
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Etienne Laliberté
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stuart J. Pearse
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- Astron Environmental Services, 129 Royal Street, East Perth, WA 6004, Australia
| | - François P. Teste
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
80
|
Smith AP. Systemic Signaling in the Maintenance of Phosphate Homeostasis. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|