51
|
Martins CS, Leitão RFC, Costa DVS, Melo IM, Santos GS, Lima V, Baldim V, Wong DVT, Bonfim LE, Melo CB, G. de Oliveira M, Brito GAC. Topical HPMC/S-Nitrosoglutathione Solution Decreases Inflammation and Bone Resorption in Experimental Periodontal Disease in Rats. PLoS One 2016; 11:e0153716. [PMID: 27116554 PMCID: PMC4846037 DOI: 10.1371/journal.pone.0153716] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
Abstract
S-nitrosoglutathione (GSNO) is a nitric oxide (NO) donor, which exerts antioxidant, anti-inflammatory, and microbicidal actions. Intragingival application of GSNO was already shown to decrease alveolar bone loss, inflammation and oxidative stress in an experimental periodontal disease (EPD) model. In the present study, we evaluated the potential therapeutic effect of topical applications of hydroxypropylmethylcellulose (HPMC)/GSNO solutions on EPD in Wistar rats. EPD was induced by placing a sterilized nylon (3.0) thread ligature around the cervix of the second left upper molar of the animals, which received topical applications of a HPMC solutions containing GSNO 2 or 10 mM or vehicle (HPMC solution), 1 h prior to the placement of the ligature and then twice daily until sacrifice on day 11. Treatment with HPMC/GSNO 10 mM solution significantly reduced alveolar bone loss, oxidative stress and TNF-α e IL-1β levels in the surrounding gingival tissue, and led to a decreased transcription of RANK and TNF-α genes and elevated bone alkaline phosphatase, compared to the HPMC group. In conclusion, topical application of HPMC/GSNO solution is a potential treatment to reduce inflammation and bone loss in periodontal disease.
Collapse
Affiliation(s)
- Conceição S. Martins
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Renata F. C. Leitão
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Deiziane V. S. Costa
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Iracema M. Melo
- Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, School of Dentistry. Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Glaylton S. Santos
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Vilma Lima
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Victor Baldim
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Deysi V. T. Wong
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Luana E. Bonfim
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cíntia B. Melo
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcelo G. de Oliveira
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
- * E-mail: (MGO); (GACB)
| | - Gerly A. C. Brito
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
- * E-mail: (MGO); (GACB)
| |
Collapse
|
52
|
Therapeutic benefits of combined treatment with tissue plasminogen activator and 2-(4-methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-d-pyranoside in an animal model of ischemic stroke. Neuroscience 2016; 327:44-52. [PMID: 27060484 DOI: 10.1016/j.neuroscience.2016.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/19/2016] [Accepted: 04/03/2016] [Indexed: 01/10/2023]
Abstract
Tissue plasminogen activator (tPA) is the only approved therapy for acute ischemic stroke, but tPA therapy is limited by a short therapeutic window and some adverse side effects. 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-d-pyranoside, a salidroside analog (code-named SalA-4g), has shown potent neuroprotective effects. In this study, a rat model of embolic middle cerebral artery occlusion (MCAO) was used to mimic ischemic stroke. The embolic MCAO rats were intravenously (iv) injected with tPA alone, SalA-4g alone, or a combination of tPA and SalA-4g. Compared to treatment with tPA alone at 4h post MCAO, combined treatment with tPA at 4h post MCAO and SalA-4g starting at 4h post MCAO and continuing for 3days at an interval of 24h significantly reduced neurological deficits and infarct volume, and significantly inhibited the intracerebral bleeding, edema formation, neuronal loss, and cellular apoptosis in the ischemic brain. Our results suggested that additive neuroprotective actions of SalA-4g contributed to widening the therapeutic window of tPA therapy and ameliorating its side effects in treating MCAO rats. The therapeutic benefits of combined treatment with tPA and SalA-4g for ischemic stroke might be associated with its effects on cerebral glucose metabolism.
Collapse
|
53
|
Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers 2016; 4:e1154641. [PMID: 27141427 DOI: 10.1080/21688370.2016.1154641] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 01/05/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly complex and dynamic barrier. It is formed by an interdependent network of brain capillary endothelial cells, endowed with barrier properties, and perivascular cells (astrocytes and pericytes) responsible for inducing and maintaining those properties. One of the primary properties of the BBB is a strict regulation of paracellular permeability due to the presence of junctional complexes (tight, adherens and gap junctions) between the endothelial cells. Alterations in junction assembly and function significantly affect BBB properties, particularly barrier permeability. However, such alterations are also involved in remodeling the brain endothelial cell surface and regulating brain endothelial cell phenotype. This review summarizes the characteristics of brain endothelial tight, adherens and gap junctions and highlights structural and functional alterations in junctional proteins that may contribute to BBB dysfunction.
Collapse
Affiliation(s)
| | - Allison M Johnson
- Department of Pathology; University of Michigan Medical School ; Ann Arbor, MI USA
| | - Richard F Keep
- Department of Neurosurgery; University of Michigan Medical School; Ann Arbor, MI USA; Molecular and Integrative Physiology, University of Michigan Medical School; Ann Arbor, MI USA
| | - Anuska V Andjelkovic
- Department of Pathology; University of Michigan Medical School; Ann Arbor, MI USA; Department of Neurosurgery; University of Michigan Medical School; Ann Arbor, MI USA
| |
Collapse
|
54
|
Shah SU, Socha M, Fries I, Gibaud S. Synthesis of S-nitrosoglutathione-alginate for prolonged delivery of nitric oxide in intestines. Drug Deliv 2015; 23:2927-2935. [DOI: 10.3109/10717544.2015.1122676] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Shefaat Ullah Shah
- EA 3452/CITHEFOR, Université De Lorraine, Nancy, France and
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan (KPK), Pakistan
| | - Marie Socha
- EA 3452/CITHEFOR, Université De Lorraine, Nancy, France and
| | - Isabelle Fries
- EA 3452/CITHEFOR, Université De Lorraine, Nancy, France and
| | | |
Collapse
|
55
|
Khan M, Dhammu TS, Matsuda F, Annamalai B, Dhindsa TS, Singh I, Singh AK. Targeting the nNOS/peroxynitrite/calpain system to confer neuroprotection and aid functional recovery in a mouse model of TBI. Brain Res 2015; 1630:159-70. [PMID: 26596859 DOI: 10.1016/j.brainres.2015.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/04/2015] [Accepted: 11/07/2015] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) derails nitric oxide (NO)-based anti-inflammatory and anti-excitotoxicity mechanisms. NO is consumed by superoxide to form peroxynitrite, leading to decreased NO bioavailability for S-nitrosoglutathione (GSNO) synthesis and regulation of neuroprotective pathways. Neuronal peroxynitrite is implicated in neuronal loss and functional deficits following TBI. Using a contusion mouse model of TBI, we investigated mechanisms for the opposed roles of GSNO versus peroxynitrite for neuroprotection and functional recovery. TBI was induced by controlled cortical impact (CCI) in adult male mice. GSNO treatment at 2h after CCI decreased the expression levels of phospho neuronal nitric oxide synthase (pnNOS), alpha II spectrin degraded products, and 3-NT, while also decreasing the activities of nNOS and calpains. Treatment of TBI with FeTPPS, a peroxynitrite scavenger, had effects similar to GSNO treatment. GSNO treatment of TBI also reduced neuronal degeneration and improved neurobehavioral function in a two-week TBI study. In a cell free system, SIN-1 (a peroxynitrite donor and 3-nitrotyrosinating agent) increased whereas GSNO (an S-nitrosylating agent) decreased calpain activity, and these activities were reversed by, respectively, FeTPPS and mercuric chloride, a cysteine-NO bond cleaving agent. These data indicate that peroxynitrite-mediated activation and GSNO-mediated inhibition of the deleterious nNOS/calpain system play critical roles in the pathobiology of neuronal protection and functional recovery in TBI disease. Given GSNO׳s safety record in other diseases, its neuroprotective efficacy and promotion of functional recovery in this TBI study make low-dose GSNO a potential candidate for preclinical evaluation.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States..
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States..
| | - Fumiyo Matsuda
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.; School of Health Science, Kagoshima University, Kagoshima, Japan.
| | | | - Tejbir Singh Dhindsa
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States..
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States..
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
56
|
Jin Y, Lei J, Lin Y, Gao GY, Jiang JY. Autophagy Inhibitor 3-MA Weakens Neuroprotective Effects of Posttraumatic Brain Injury Moderate Hypothermia. World Neurosurg 2015; 88:433-446. [PMID: 26547006 DOI: 10.1016/j.wneu.2015.10.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The role of autophagy in moderate hypothermia in posttraumatic brain injury (post-TBI) remains elusive. In this study, we evaluated the protective role of autophagy in post-TBI moderate hypothermia. METHODS Adult male Sprague-Dawley rats were randomly divided into 3 groups (n = 36/group): TBI with hypothermia group (sham), TBI with hypothermia and a single intracerebroventricular injection of saline (saline, 5 μL), and TBI with hypothermia and a single intracerebroventricular injection of 3-methyladenine (600 nmol, diluted in 0.9% saline to a final volume of 5 μL). All rats, except those in the behavioral tests, were killed at 24 hours after fluid percussion TBI. Immunohistochemistry staining, western blot, and transmission electron microscopy were performed to assess changes in apoptosis and autophagy after injection of 3-methyladenine. Motor function (beam-walk test) and spatial learning/memory (Morris water maze) were assessed on postoperative days 1-5 and 11-15, respectively. RESULTS Our results showed downregulation of the expression level of microtubule-associated protein 1 light chain 3 and Beclin-1, aggravation of behavioral outcome, and increase of apoptosis. CONCLUSION Our results suggest that the autophagy pathway is involved in the neuroprotective effect of post-TBI hypothermia and negative modulation of apoptosis may be 1 possible mechanism.
Collapse
Affiliation(s)
- Yichao Jin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Jin Lei
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Yingying Lin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Guo-Yi Gao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Ji-Yao Jiang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
57
|
Yao J, Zheng K, Zhang X. Rosiglitazone exerts neuroprotective effects via the suppression of neuronal autophagy and apoptosis in the cortex following traumatic brain injury. Mol Med Rep 2015; 12:6591-7. [PMID: 26351751 PMCID: PMC4626137 DOI: 10.3892/mmr.2015.4292] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/17/2015] [Indexed: 11/26/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of mortality and morbidity in adults and children worldwide. Recent studies have demonstrated that both apoptosis and autophagy participate in TBI-induced neuronal cell death and functional loss. The peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist rosiglitazone (RSG) is a well-known anti-inflammatory, which carries out its effects via the activation of PPAR-γ. Previous studies have suggested that RSG may exert neuroprotective effects in animal models of both chronic and acute brain injury; however, whether RSG is involved in autophagic neuronal death following TBI remains to be elucidated. The present study aimed to determine whether RSG carries out its neuroprotective properties via the attenuation of neuronal apoptosis and autophagy, following TBI in a rat model. Furthermore, the role of RSG was investigated with regards to the modulation of inflammation and glutamate excitotoxicity, and the impact of RSG on functional recovery following TBI was determined. The rats were subjected to controlled cortical impact injury, prior to being randomly divided into three groups: A sham-operated group, a TBI group, and an RSG treatment group. The RSG treatment group was intraperitoneally treated with 2 mg/kg RSG immediately after TBI. The results of the present study demonstrated that RSG treatment following TBI significantly reduced neuronal apoptosis and autophagy, and increased functional recovery. These effects were correlated with a decrease in the protein expression levels of tumor necrosis factor α and interleukin-6. However, no significant changes were observed in the protein expression levels of glutamate transporter-1 in the brain cortex. The results of the present study provide in vivo evidence that RSG may exert neuroprotective effects via the inhibition of neuronal apoptosis and autophagy following experimental TBI in rats, and the mechanism underlying these effects may be associated with the anti-inflammatory action of RSG. The present study offers a novel insight into the potential use of RSG as a neuroprotective agent for the treatment of cerebral injuries.
Collapse
Affiliation(s)
- Junchao Yao
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061000, P.R. China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Xiang Zhang
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
58
|
Tibial fracture exacerbates traumatic brain injury outcomes and neuroinflammation in a novel mouse model of multitrauma. J Cereb Blood Flow Metab 2015; 35:1339-47. [PMID: 25853909 PMCID: PMC4528010 DOI: 10.1038/jcbfm.2015.56] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/26/2015] [Accepted: 03/05/2015] [Indexed: 11/08/2022]
Abstract
Multitrauma is a common medical problem worldwide, and often involves concurrent traumatic brain injury (TBI) and bone fracture. Despite the high incidence of combined TBI and fracture, preclinical TBI research commonly employs independent injury models that fail to incorporate the pathophysiologic interactions occurring in multitrauma. Here, we developed a novel mouse model of multitrauma, and investigated whether bone fracture worsened TBI outcomes. Male mice were assigned into four groups: sham-TBI+sham-fracture (SHAM); sham-TBI+fracture (FX); TBI+sham-fracture (TBI); and TBI+fracture (MULTI). The injury methods included a closed-skull weight-drop TBI model and a closed tibial fracture. After a 35-day recovery, mice underwent behavioral testing and magnetic resonance imaging (MRI). MULTI mice displayed abnormal behaviors in the open-field compared with all other groups. On MRI, MULTI mice had enlarged ventricles and diffusion abnormalities compared with all other groups. These changes occurred in the presence of heightened neuroinflammation in MULTI mice at 24 hours and 35 days after injury, and elevated edema and blood-brain barrier disruption at 24 hours after injury. Together, these findings indicate that tibial fracture worsens TBI outcomes, and that exacerbated neuroinflammation may be an important factor that contributes to these effects, which warrants further investigation.
Collapse
|
59
|
Khan M, Dhammu TS, Matsuda F, Singh AK, Singh I. Blocking a vicious cycle nNOS/peroxynitrite/AMPK by S-nitrosoglutathione: implication for stroke therapy. BMC Neurosci 2015; 16:42. [PMID: 26174015 PMCID: PMC4502912 DOI: 10.1186/s12868-015-0179-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/06/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stroke immediately sets into motion sustained excitotoxicity and calcium dysregulation, causing aberrant activity in neuronal nitric oxide synthase (nNOS) and an imbalance in the levels of nitric oxide (NO). Drugs targeting nNOS-originated toxicity may therefore reduce stroke-induced damage. Recently, we observed that a redox-modulating agent of the NO metabolome, S-nitrosoglutathione (GSNO), confers neurovascular protection by reducing the levels of peroxynitrite, a product of aberrant NOS activity. We therefore investigated whether GSNO-mediated neuroprotection and improved neurological functions depend on blocking nNOS/peroxynitrite-associated injurious mechanisms using a rat model of cerebral ischemia reperfusion (IR). RESULTS IR increased the activity of nNOS, the levels of neuronal peroxynitrite and phosphorylation at Ser(1412) of nNOS. GSNO treatment of IR animals decreased IR-activated nNOS activity and neuronal peroxynitrite levels by reducing nNOS phosphorylation at Ser(1412). The Ser(1412) phosphorylation is associated with increased nNOS activity. Supporting the notion that nNOS activity and peroxynitrite are deleterious following IR, inhibition of nNOS by its inhibitor 7-nitroindazole or reducing peroxynitrite by its scavenger FeTPPS decreased IR injury. GSNO also decreased the activation of AMP Kinase (AMPK) and its upstream kinase LKB1, both of which were activated in IR brain. AMPK has been implicated in nNOS activation via Ser(1412) phosphorylation. To determine whether AMPK activation is deleterious in the acute phase of IR, we treated animals after IR with AICAR (an AMPK activator) and compound c (an AMPK inhibitor). While AICAR potentiated, compound c reduced the IR injury. CONCLUSIONS Taken together, these results indicate an injurious nNOS/peroxynitrite/AMPK cycle following stroke, and GSNO treatment of IR inhibits this vicious cycle, resulting in neuroprotection and improved neurological function. GSNO is a natural component of the human body, and its exogenous administration to humans is not associated with any known side effects. Currently, the FDA-approved thrombolytic therapy suffers from a lack of neuronal protective activity. Because GSNO provides neuroprotection by ameliorating stroke's initial and causative injuries, it is a candidate of translational value for stroke therapy.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Fumiyo Matsuda
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA. .,School of Health Science, Kagoshima University, Kagoshima, Japan.
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA. .,Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
60
|
Gao W, Zhao Z, Yu G, Zhou Z, Zhou Y, Hu T, Jiang R, Zhang J. VEGI attenuates the inflammatory injury and disruption of blood-brain barrier partly by suppressing the TLR4/NF-κB signaling pathway in experimental traumatic brain injury. Brain Res 2015; 1622:230-9. [PMID: 26080076 DOI: 10.1016/j.brainres.2015.04.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 04/14/2015] [Accepted: 04/17/2015] [Indexed: 11/26/2022]
Abstract
Acute traumatic brain injury (TBI) tends to cause the over-activation of inflammatory response and disruption of blood brain barrier (BBB), associating with long-term cognitive and behavioral dysfunction. Vascular endothelial growth inhibitor (VEGI), as a suppressor in the angiogenesis specifically by inducing apoptosis in proliferating endothelial cells, has been applied to different diseases, especially the tumors. But rare study had been done in the field of brain injury. So in this study, we investigated the effects and mechanisms associated with VEGI-induced neuroprotection following CNS injury in mice TBI models. We demonstrated that the VEGI treatment reduced the contusion brain tissue loss, the permeation of inflammatory cells (MPO(+)) and the activation of microglia (Iba-1(+)). The treatment up-regulated the tight junction proteins (CLN5, ZO-1 and OCLN), which are vital importance for the integrity of the blood brain barrier (BBB), the B-cell lymphoma 2 (Bcl-2) cell survival factors, while down-regulated the expression of TLR4, NF-κB and inflammatory cytokines (IL-1β, TNF-α, iNOS). The treatment also decreased the expression of reactive astrocytes (GFAP(+)), as well as the VEGF, and lowered the permeability of Evens Blue (EB). These findings suggested that the VEGI-treatment could alleviate the post-traumatic excessive inflammatory response, and maintain the stability of blood vessels, remitting the secondary brain damage.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, PR China; Tianjin Neurological Institute, 154 Anshan Road, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 154 Anshan Road, Tianjin 300052, PR China.
| | - Zilong Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, PR China; Tianjin Neurological Institute, 154 Anshan Road, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 154 Anshan Road, Tianjin 300052, PR China.
| | - Gongjie Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, PR China; Tianjin Neurological Institute, 154 Anshan Road, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 154 Anshan Road, Tianjin 300052, PR China.
| | - Ziwei Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, PR China; Tianjin Neurological Institute, 154 Anshan Road, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 154 Anshan Road, Tianjin 300052, PR China.
| | - Yuan Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, PR China; Tianjin Neurological Institute, 154 Anshan Road, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 154 Anshan Road, Tianjin 300052, PR China.
| | - Tingting Hu
- Department of Nursing, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, PR China.
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, PR China; Tianjin Neurological Institute, 154 Anshan Road, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 154 Anshan Road, Tianjin 300052, PR China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, PR China; Tianjin Neurological Institute, 154 Anshan Road, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 154 Anshan Road, Tianjin 300052, PR China.
| |
Collapse
|
61
|
Khan M, Shunmugavel A, Dhammu TS, Matsuda F, Singh AK, Singh I. Oral administration of cytosolic PLA2 inhibitor arachidonyl trifluoromethyl ketone ameliorates cauda equina compression injury in rats. J Neuroinflammation 2015; 12:94. [PMID: 25971887 PMCID: PMC4436116 DOI: 10.1186/s12974-015-0311-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Phospholipase A2 (PLA2)-derived proinflammatory lipid mediators such as prostaglandin E2 (PGE2), leukotrienes B4 (LTB4), lysophosphatidylcholine (LPC), and free fatty acids (FFA) are implicated in spinal cord injury (SCI) pathologies. Reducing the levels of these injurious bioactive lipid mediators is reported to ameliorate SCI. However, the specific role of the group IVA isoform of PLA2 cytosolic PLA2 (cPLA2) in lumbar spinal canal stenosis (LSS) due to cauda equina compression (CEC) injury is not clear. In this study, we investigated the role of cPLA2 in a rat model of CEC using a non-toxic cPLA2-preferential inhibitor, arachidonyl trifluoromethyl ketone (ATK). METHODS LSS was induced in adult female rats by CEC procedure using silicone blocks within the epidural spaces of L4 to L6 vertebrae. cPLA2 inhibitor ATK (7.5 mg/kg) was administered by oral gavage at 2 h following the CEC. cPLA2-derived injurious lipid mediators and the expression/activity of cPLA2, 5-lipoxygenase (5-LOX), and cyclooxygenase-2 (COX-2) were assessed. ATK-treated (CEC + ATK) were compared with vehicle-treated (CEC + VEH) animals in terms of myelin levels, pain threshold, and motor function. RESULTS ATK treatment of CEC animals reduced the phosphorylation of cPLA2 (pcPLA2) determined by Western blot, improved locomotor function evaluated by rotarod task, and reduced pain threshold evaluated by mechanical hyperalgesia method. Levels of FFA and LPC, along with PGE2 and LTB4, were reduced in CEC + ATK compared with CEC + VEH group. However, ATK treatment reduced neither the activity/expression of 5-LOX nor the expression of COX-2 in CEC + VEH animals. Increased cPLA2 activity in the spinal cord from CEC + VEH animals correlated well with decreased spinal cord as well as cauda equina fiber myelin levels, which were restored after ATK treatment. CONCLUSION The data indicate that cPLA2 activity plays a significant role in tissue injury and pain after LSS. Reducing the levels of proinflammatory and tissue damaging eicosanoids and the deleterious lipid mediator LPC shows therapeutic potential. ATK inhibits cPLA2 activity, thereby decreasing the levels of injurious lipid mediators, reducing pain, improving functional deficits, and conferring protection against LSS injury. Thus, it shows potential for preclinical evaluation in LSS.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | | | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Fumiyo Matsuda
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA. .,School of Health Science, Kagoshima University, Kagoshima, Japan.
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA. .,Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
62
|
Schwarzmaier SM, Terpolilli NA, Dienel A, Gallozzi M, Schinzel R, Tegtmeier F, Plesnila N. Endothelial nitric oxide synthase mediates arteriolar vasodilatation after traumatic brain injury in mice. J Neurotrauma 2015; 32:731-8. [PMID: 25363688 DOI: 10.1089/neu.2014.3650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Brain edema and increased cerebral blood volume (CBV) contribute to intracranial hypertension and hence to unfavorable outcome after traumatic brain injury (TBI). The increased post-traumatic CBV may be caused in part by arterial vasodilatation. The aim of the current study was to uncover the largely unknown mechanisms of post-traumatic arteriolar vasodilatation. The diameter of pial arterioles and venules was monitored by intravital fluorescence microscopy before (baseline) and for 30 min after controlled cortical impact in C57BL/6 and endothelial nitric oxide synthase (eNOS)-/- mice (n=5-6/group) and in C57BL/6 mice (n=6/group) receiving vehicle (phosphate-buffered saline [PBS]) or 4-amino-tetrahydro-L-biopterine (VAS203), a NOS inhibitor previously shown to reduce post-traumatic intracranial hypertension. Temperature, end-tidal partial pressure of carbon dioxide (pCO₂), and mean arterial blood pressure were kept within the physiological range throughout the experiments. Arteriolar diameters were stable during baseline monitoring but increased significantly in C57BL/6 mice after controlled cortical impact (136±7% of baseline; p<0.001 vs. baseline). This response was reduced by 78% in eNOS-/- mice (108±3% of baseline; p<0.005 vs. wild-type). Application of VAS203, a NOS inhibitor, or PBS did not affect vessels diameter before TBI. After trauma, however, administration of VAS203 reduced arteriolar diameter to 92±2% of baseline (p<0.05). The diameter of pial veins was not affected. Our results suggest that arteriolar vasodilatation after TBI is largely mediated by excess production of endothelial nitric oxide. Accordingly, our data may explain the beneficial effects of the NOS inhibitor VAS203 in the early phase after TBI and suggest that inhibition of excess endothelial nitric oxide production may represent a novel therapeutic strategy following TBI.
Collapse
Affiliation(s)
- Susanne M Schwarzmaier
- 1 Laboratory of Experimental Neurosurgery, University of Munich Medical Center , Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
63
|
Khan M, Dhammu TS, Matsuda F, Baarine M, Dhindsa TS, Singh I, Singh AK. Promoting endothelial function by S-nitrosoglutathione through the HIF-1α/VEGF pathway stimulates neurorepair and functional recovery following experimental stroke in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2233-47. [PMID: 25945035 PMCID: PMC4408969 DOI: 10.2147/dddt.s77115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background For stroke patients, stimulating neurorepair mechanisms is necessary to reduce morbidity and disability. Our previous studies on brain and spinal cord trauma show that exogenous treatment with the S-nitrosylating agent S-nitrosoglutathione (GSNO) – a nitric oxide and glutathione metabolite of the human body – stimulates neurorepair and aids functional recovery. Using a rat model of cerebral ischemia and reperfusion (IR) in this study, we tested the hypothesis that GSNO invokes the neurorepair process and improves neurobehavioral functions through the angiogenic HIF-1α/VEGF pathway. Methods Stroke was induced by middle cerebral artery occlusion for 60 minutes followed by reperfusion in adult male rats. The injured animals were treated with saline (IR group, n=7), GSNO (0.25 mg/kg, GSNO group, n=7), and GSNO plus the HIF-1α inhibitor 2-methoxyestra-diol (2-ME) (0.25 mg/kg GSNO + 5.0 mg/kg 2-ME, GSNO + 2-ME group, n=7). The groups were studied for either 7 or 14 days to determine neurorepair mediators and functional recovery. Brain capillary endothelial cells were used to show that GSNO promotes angiogenesis and that GSNO-mediated induction of VEGF and the stimulation of angiogenesis are dependent on HIF-1α activity. Results IR injury increased the expression of neurorepair mediators HIF-1α, VEGF, and PECAM-1 and vessel markers to a limited degree that correlate well with significantly compromised neurobehavioral functions compared with sham animals. GSNO treatment of IR not only remarkably enhanced further the expression of HIF-1α, VEGF, and PECAM-1 but also improved functioning compared with IR. The GSNO group also had a higher degree of vessel density than the IR group. Increased expression of VEGF and the degree of tube formation (angiogenesis) by GSNO were reduced after the inhibition of HIF-1α by 2-ME in an endothelial cell culture model. 2-ME treatment of the GSNO group also blocked not only GSNO’s effect of reduced infarct volume, decreased neuronal loss, and enhanced expression of PECAM-1 (P<0.001), but also its improvement of motor and neurological functions (P<0.001). Conclusion GSNO stimulates the process of neurorepair, promotes angiogenesis, and aids functional recovery through the HIF-1α-dependent pathway, showing therapeutic and translational promise for stroke.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Fumiyo Matsuda
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA ; School of Health Sciences, Kagoshima University, Kagoshima, Japan
| | - Mauhammad Baarine
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Tejbir Singh Dhindsa
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA ; Ralph H Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
64
|
Ghosh S, Canugovi C, Yoon JS, Wilson DM, Croteau DL, Mattson MP, Bohr VA. Partial loss of the DNA repair scaffolding protein, Xrcc1, results in increased brain damage and reduced recovery from ischemic stroke in mice. Neurobiol Aging 2015; 36:2319-2330. [PMID: 25971543 DOI: 10.1016/j.neurobiolaging.2015.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/31/2015] [Accepted: 04/08/2015] [Indexed: 11/25/2022]
Abstract
Oxidative DNA damage is mainly repaired by base excision repair (BER). Previously, our laboratory showed that mice lacking the BER glycosylases 8-oxoguanine glycosylase 1 (Ogg1) or nei endonuclease VIII-like 1 (Neil1) recover more poorly from focal ischemic stroke than wild-type mice. Here, a mouse model was used to investigate whether loss of 1 of the 2 alleles of X-ray repair cross-complementing protein 1 (Xrcc1), which encodes a nonenzymatic scaffold protein required for BER, alters recovery from stroke. Ischemia and reperfusion caused higher brain damage and lower functional recovery in Xrcc1(+/-) mice than in wild-type mice. Additionally, a greater percentage of Xrcc1(+/-) mice died as a result of the stroke. Brain samples from human individuals who died of stroke and individuals who died of non-neurological causes were assayed for various steps of BER. Significant losses of thymine glycol incision, abasic endonuclease incision, and single nucleotide incorporation activities were identified, as well as lower expression of XRCC1 and NEIL1 proteins in stroke brains compared with controls. Together, these results suggest that impaired BER is a risk factor in ischemic brain injury and contributes to its recovery.
Collapse
Affiliation(s)
- Somnath Ghosh
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program (NIA IRP), Biomedical Research Center, Baltimore, MD, USA
| | - Chandrika Canugovi
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program (NIA IRP), Biomedical Research Center, Baltimore, MD, USA
| | - Jeong Seon Yoon
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program (NIA IRP), Biomedical Research Center, Baltimore, MD, USA
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program (NIA IRP), Biomedical Research Center, Baltimore, MD, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program (NIA IRP), Biomedical Research Center, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program (NIA IRP), Biomedical Research Center, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program (NIA IRP), Biomedical Research Center, Baltimore, MD, USA.
| |
Collapse
|
65
|
Shah SU, Martinho N, Socha M, Pinto Reis C, Gibaud S. Synthesis and characterization ofS-nitrosoglutathione-oligosaccharide-chitosan as a nitric oxide donor. Expert Opin Drug Deliv 2015; 12:1209-23. [DOI: 10.1517/17425247.2015.1028916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
66
|
Khan M, Dhammu TS, Dhaindsa TS, Khan H, Singh AK, Singh I. An NO/GSNO-based Neuroregeneration Strategy for Stroke Therapy. JOURNAL OF NEUROLOGY AND NEUROSCIENCE 2015; 6:58. [PMID: 27668143 PMCID: PMC5034763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stroke is associated with significant morbidity and mortality due to the limited neuroregeneration capacity of the injured brain. Other than thrombolysis in the acute phase of the disease by tissue plasminogen activator (tPA), which offers only a short window of treatment (~3 hours), an ideal stroke therapy is not available mainly because of limited understanding of the mechanisms of neuroregeneration and functional recovery in the chronic phase. Yet many drug therapies, including S-nitrosoglutathione (GSNO), have been shown to provide neuroprotection against acute disease in animal models of transient cerebral ischemia reperfusion (IR) and permanent ischemia. GSNO was also effective in stimulating neuroregeneration-related factors in the chronic phase of the disease. In this short review, we assess the evidence supporting exogenous administration of GSNO after experimental stroke as a means to stimulate neuroregeneration and aid in functional recovery via stabilization of the HIF-1α/VEGF pathway.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | | | | | - Hamza Khan
- Faculty of Medicine, University of South Carolina, Columbia, SC, USA
| | - Avtar K Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
67
|
Stein DG, Geddes RI, Sribnick EA. Recent developments in clinical trials for the treatment of traumatic brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:433-51. [PMID: 25702233 DOI: 10.1016/b978-0-444-52892-6.00028-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The clinical understanding of traumatic brain injury (TBI) and its manifestations is beginning to change. Both clinicians and research scientists are recognizing that TBI and related disorders such as stroke are complex, systemic inflammatory and degenerative diseases that require an approach to treatment more sophisticated than targeting a single gene, receptor, or signaling pathway. It is becoming increasingly clear that TBI is a form of degenerative disorder affecting the brain and other organs, and that its manifestations can unfold days, weeks, and years after the initial damage. Until recently, and despite numerous industry- and government-sponsored clinical trials, attempts to find a safe and effective neuroprotective agent have all failed - probably because the research and development strategies have been based on an outdated early 20th century paradigm seeking a magic bullet that will affect a narrowly circumscribed target. We propose that more attention be given to the development of drugs, given alone or in combination, that are pleiotropic in their actions and that have systemic as well as central nervous system effects. We review current Phase II and Phase III trials for acute pharmacologic treatments for TBI and report on their aims, methods, status, and important associated research issues.
Collapse
Affiliation(s)
- Donald G Stein
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Rastafa I Geddes
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric A Sribnick
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
68
|
Amenta PS, Jallo JI, Tuma RF, Hooper DC, Elliott MB. Cannabinoid receptor type-2 stimulation, blockade, and deletion alter the vascular inflammatory responses to traumatic brain injury. J Neuroinflammation 2014; 11:191. [PMID: 25416141 PMCID: PMC4248435 DOI: 10.1186/s12974-014-0191-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunomodulatory therapies have been identified as interventions for secondary injury after traumatic brain injury (TBI). The cannabinoid receptor type-2 (CB2R) is proposed to play an important, endogenous role in regulating inflammation. The effects of CB2R stimulation, blockade, and deletion on the neurovascular inflammatory responses to TBI were assessed. METHODS Wild-type C57BL/6 or CB2R knockout mice were randomly assigned to controlled cortical impact (CCI) injury or to craniotomy control groups. The effects of treatment with synthetic, selective CB2R agonists (0-1966 and JWH-133), a selective CB2R antagonist, or vehicle solution administered to CCI groups were assessed at 1-day after injury. Changes in TNF-α, intracellular adhesion molecule (ICAM-1), inducible nitric oxide synthase (iNOS), macrophage/microglial ionized calcium-binding adaptor molecule, and blood-brain-barrier (BBB) permeability were assessed using ELISA, quantitative RT-PCR, immunohistochemistry, and fluorometric analysis of sodium fluorescein uptake. CB2R knockouts and wild-type mice with CCI injury were treated with a CB2R agonist or vehicle treatment. RESULTS TNF-α mRNA increased at 6 hours and 1 to 3 days after CCI; a CB2R antagonist and genetic knockout of the CB2R exacerbated TNF-α mRNA expression. Treatment with a CB2R agonist attenuated TNF-α protein levels indicating post-transcriptional mechanisms. Intracellular adhesion molecule (ICAM-1) mRNA was increased at 6 hours, and at 1 to 2 days after CCI, reduced in mice treated with a CB2R agonist, and increased in CB2R knockout mice with CCI. Sodium fluorescein uptake was increased in CB2R knockouts after CCI, with and without a CB2R agonist. iNOS mRNA expression peaked early (6 hours) and remained increased from 1 to 3 days after injury. Treatment with a CB2R agonist attenuated increases in iNOS mRNA expression, while genetic deletion of the CB2R resulted in substantial increases in iNOS expression. Double label immunohistochemistry confirmed that iNOS was expressed by macrophage/microglia in the injured cortex. CONCLUSION Findings demonstrate that the endogenous cannabinoid system and CB2R play an important role in regulating inflammation and neurovascular responses in the traumatically injured brain. CB2R stimulation with two agonists (0-1966 and JWH-133) dampened post-traumatic inflammation, while blockade or deletion of the CB2R worsened inflammation. Findings support previous evidence that modulating the CB2R alters infiltrating macrophages and activated resident microglia. Further investigation into the role of the CB2R on specific immune cell populations in the injured brain is warranted.
Collapse
Affiliation(s)
- Peter S Amenta
- Department of Neurological Surgery, Thomas Jefferson University Hospital, 1020 Locust Street, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Jack I Jallo
- Department of Neurological Surgery, Thomas Jefferson University Hospital, 1020 Locust Street, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Ronald F Tuma
- Department of Physiology, Temple University School of Medicine, 3500 N Broad St, Philadelphia, PA, 19140, USA.
| | - D Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University Hospital, 1020 Locust Street, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Melanie B Elliott
- Department of Neurological Surgery, Thomas Jefferson University Hospital, 1020 Locust Street, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
69
|
Aggarwal A, Khera A, Singh I, Sandhir R. S-nitrosoglutathione prevents blood-brain barrier disruption associated with increased matrix metalloproteinase-9 activity in experimental diabetes. J Neurochem 2014; 132:595-608. [PMID: 25187090 DOI: 10.1111/jnc.12939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/10/2014] [Accepted: 08/20/2014] [Indexed: 12/14/2022]
Abstract
Hyperglycemia is known to induce microvascular complications, thereby altering blood-brain barrier (BBB) permeability. This study investigated the role of matrix metalloproteinases (MMPs) and their endogenous inhibitors in increased BBB permeability and evaluated the protective effect of S-nitrosoglutathione (GSNO) in diabetes. Diabetes was induced in mice by intraperitoneal injection of streptozotocin (40 mg/kg body weight) for 5 days and GSNO was administered orally (100 μg/kg body weight) daily for 8 weeks after the induction of diabetes. A significant decline in cognitive functions was observed in diabetic mice assessed by Morris water maze test. Increased permeability to different molecular size tracers accompanied by edema and ion imbalance was observed in cortex and hippocampus of diabetic mice. Furthermore, activity of both pro and active MMP-9 was found to be significantly elevated in diabetic animals. Increased in situ gelatinase activity was observed in tissue sections and isolated microvessels from diabetic mice brain. The increase in activity of MMP-9 was attributed to increased mRNA and protein expression in diabetic mice. In addition, a significant decrease in mRNA and protein expression of tissue inhibitor of matrix metalloproteinase-1 was also observed in diabetic animals. However, GSNO supplementation to diabetic animals was able to abridge MMP-9 activation as well as tissue inhibitor of matrix metalloproteinase-1 levels, restoring BBB integrity and also improving learning and memory. Our findings clearly suggest that GSNO could prevent hyperglycemia-induced disruption of BBB by suppressing MMP-9 activity.
Collapse
Affiliation(s)
- Aanchal Aggarwal
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India
| | - Alka Khera
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India
| |
Collapse
|
70
|
Sodja C, Ribecco-Lutkiewicz M, Haukenfrers J, Merchant F, Costain WJ, Bani-Yaghoub M. Comparison of S-nitrosoglutathione- and staurosporine-induced apoptosis in human neural cells. Can J Physiol Pharmacol 2014; 92:1001-11. [PMID: 25388371 DOI: 10.1139/cjpp-2014-0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
S-nitrosoglutathione (GSNO) is an endogenously produced S-nitrosylating compound that controls the function of various proteins. While a number of rodent cell lines have been used to study GSNO-induced apoptosis, the mechanisms of action remain to be evaluated in human cells and in parallel with other common apoptosis-inducing agents. In this study, we compared the pro-apoptotic effects of GSNO and staurosporine (STS) on human neural progenitors (NT2, hNP1) and neuroblasts (SH-SY5Y). We show that these cells exhibit comparable levels of susceptibility to GSNO- and STS-induced apoptotic cell death, as demonstrated by condensed nuclei and CASP3 activation. Mechanistic differences in apoptotic responses were observed as differential patterns of DNA fragmentation and levels of BAX, BCL-XL, CASP8, and p-ERK in response to GSNO and STS treatment. Mitochondrial membrane potential analysis revealed that NT2 and hNP1 cells, but not SH-SY5Y cells, undergo mitochondrial hyperpolarization in response to short-term exposure to STS prior to undergoing subsequent depolarization. This is the first study to report differences in apoptotic responses to GSNO and STS in 3 complementary human neural cell lines. Furthermore, these cells represent useful tools in cell pharmacological paradigms in which susceptibility to apoptosis-inducing agents needs to be assessed at different stages of neural cell fate commitment and differentiation.
Collapse
Affiliation(s)
- Caroline Sodja
- a Human Health Therapeutics, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | | | | | | | | | | |
Collapse
|
71
|
Wiggins-Dohlvik K, Merriman M, Shaji CA, Alluri H, Grimsley M, Davis ML, Smith RW, Tharakan B. Tumor necrosis factor-α disruption of brain endothelial cell barrier is mediated through matrix metalloproteinase-9. Am J Surg 2014; 208:954-60; discussion 960. [PMID: 25312844 DOI: 10.1016/j.amjsurg.2014.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 11/28/2022]
Abstract
Traumatic brain injuries cause vascular hyperpermeability. Tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), and caspase-3 may be important in these processes but the relationship between them has not been investigated. We hypothesized that TNF-α regulates caspase-3-mediated hyperpermeability and blood brain barrier damage and hyperpermeability directly or indirectly via activation of MMP-9. To test this, rat brain microvascular endothelial cells were treated with TNF-α with or without inhibition of MMP-9. Monolayer permeability was measured, zonula occludens-1 and F-actin configuration were examined, and MMP-9 and caspase-3 activities were quantified. TNF-α increased monolayer permeability, damaged zonula occludens-1, induced filamentous-actin stress fiber formation, and increased both MMP-9 and caspase-3 activities. Inhibition of MMP-9 attenuated these changes. These data highlight a novel link between TNF-α and MMP-9 and show that TNF-α regulated caspase-3-mediated hyperpermeability and vascular damage may be linked to MMP-9 in vitro. These findings augment the understanding of traumatic brain injury and pave the way for improved treatment.
Collapse
Affiliation(s)
- Katie Wiggins-Dohlvik
- Department of Surgery, Baylor Scott and White Health, Temple, TX, USA; Department of Surgery, Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Morgan Merriman
- Department of Surgery, Baylor Scott and White Health, Temple, TX, USA; Department of Surgery, Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Chinchusha A Shaji
- Department of Surgery, Baylor Scott and White Health, Temple, TX, USA; Department of Surgery, Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Himakarnika Alluri
- Department of Surgery, Baylor Scott and White Health, Temple, TX, USA; Department of Surgery, Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Marcene Grimsley
- Department of Surgery, Baylor Scott and White Health, Temple, TX, USA; Department of Surgery, Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Matthew L Davis
- Department of Surgery, Baylor Scott and White Health, Temple, TX, USA; Department of Surgery, Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Randall W Smith
- Department of Surgery, Baylor Scott and White Health, Temple, TX, USA; Department of Surgery, Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Binu Tharakan
- Department of Surgery, Baylor Scott and White Health, Temple, TX, USA; Department of Surgery, Texas A&M University Health Science Center College of Medicine, Temple, TX, USA.
| |
Collapse
|
72
|
Meng Y, Chopp M, Zhang Y, Liu Z, An A, Mahmood A, Xiong Y. Subacute intranasal administration of tissue plasminogen activator promotes neuroplasticity and improves functional recovery following traumatic brain injury in rats. PLoS One 2014; 9:e106238. [PMID: 25184365 PMCID: PMC4153585 DOI: 10.1371/journal.pone.0106238] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 08/03/2014] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and long-term disability worldwide. To date, there are no effective pharmacological treatments for TBI. Recombinant human tissue plasminogen activator (tPA) is the effective drug for the treatment of acute ischemic stroke. In addition to its thrombolytic effect, tPA is also involved in neuroplasticity in the central nervous system. However, tPA has potential adverse side effects when administered intravenously including brain edema and hemorrhage. Here we report that tPA, administered by intranasal delivery during the subacute phase after TBI, provides therapeutic benefit. Animals with TBI were treated intranasally with saline or tPA initiated 7 days after TBI. Compared with saline treatment, subacute intranasal tPA treatment significantly 1) improved cognitive (Morris water maze test) and sensorimotor (footfault and modified neurological severity score) functional recovery in rats after TBI, 2) reduced the cortical stimulation threshold evoking ipsilateral forelimb movement, 3) enhanced neurogenesis in the dentate gyrus and axonal sprouting of the corticospinal tract originating from the contralesional cortex into the denervated side of the cervical gray matter, and 4) increased the level of mature brain-derived neurotrophic factor. Our data suggest that subacute intranasal tPA treatment improves functional recovery and promotes brain neurogenesis and spinal cord axonal sprouting after TBI, which may be mediated, at least in part, by tPA/plasmin-dependent maturation of brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Yuling Meng
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
- Department of Physics, Oakland University, Rochester, Michigan, United States of America
| | - Yanlu Zhang
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Aaron An
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
73
|
Mechanisms and targets of the modulatory action of S-nitrosoglutathione (GSNO) on inflammatory cytokines expression. Arch Biochem Biophys 2014; 562:80-91. [PMID: 25135357 DOI: 10.1016/j.abb.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 02/07/2023]
Abstract
A number of experimental studies has documented that S-nitrosoglutathione (GSNO), the main endogenous low-molecular-weight S-nitrosothiol, can exert modulatory effects on inflammatory processes, thus supporting its potential employment in medicine for the treatment of important disease conditions. At molecular level, GSNO effects have been shown to modulate the activity of a series of transcription factors (notably NF-κB, AP-1, CREB and others) as well as other components of signal transduction chains (e.g. IKK-β, caspase 1, calpain and others), resulting in the modulation of several cytokines and chemokines expression (TNFα, IL-1β, IFN-γ, IL-4, IL-8, RANTES, MCP-1 and others). Results reported to date are however not univocal, and a single main mechanism of action for the observed anti-inflammatory effects of GSNO has not been identified. Conflicting observations can be explained by differences among the various cell types studies as to the relative abundance of enzymes in charge of GSNO metabolism (GSNO reductase, γ-glutamyltransferase, protein disulfide isomerase and others), as well as by variables associated with the individual experimental models employed. Altogether, anti-inflammatory properties of GSNO seem however to prevail, and exploration of the therapeutic potential of GSNO and analogues appears therefore warranted.
Collapse
|
74
|
Steuer E, Schaefer ML, Belluscio L. Using the olfactory system as an in vivo model to study traumatic brain injury and repair. J Neurotrauma 2014; 31:1277-91. [PMID: 24694002 DOI: 10.1089/neu.2013.3296] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Loss of olfactory function is an early indicator of traumatic brain injury (TBI). The regenerative capacity and well-defined neural maps of the mammalian olfactory system enable investigations into the degeneration and recovery of neural circuits after injury. Here, we introduce a unique olfactory-based model of TBI that reproduces many hallmarks associated with human brain trauma. We performed a unilateral penetrating impact to the mouse olfactory bulb and observed a significant loss of olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) ipsilateral to the injury, but not contralateral. By comparison, we detected the injury markers p75(NTR), β-APP, and activated caspase-3 in both the ipsi- and contralateral OE. In the olfactory bulb (OB), we observed a graded cell loss, with ipsilateral showing a greater reduction than contralateral and both significantly less than sham. Similar to OE, injury markers in the OB were primarily detected on the ipsilateral side, but also observed contralaterally. Behavioral experiments measured 4 days after impact also demonstrated loss of olfactory function, yet following a 30-day recovery period, we observed a significant improvement in olfactory function and partial recovery of olfactory circuitry, despite the persistence of TBI markers. Interestingly, by using the M71-IRES-tauLacZ reporter line to track OSN organization, we further determined that inducing neural activity during the recovery period with intense odor conditioning did not enhance the recovery process. Together, these data establish the mouse olfactory system as a new model to study TBI, serving as a platform to understand neural disruption and the potential for circuit restoration.
Collapse
Affiliation(s)
- Elizabeth Steuer
- 1 Developmental Neural Plasticity Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, Maryland
| | | | | |
Collapse
|
75
|
Tchantchou F, Tucker LB, Fu AH, Bluett RJ, McCabe JT, Patel S, Zhang Y. The fatty acid amide hydrolase inhibitor PF-3845 promotes neuronal survival, attenuates inflammation and improves functional recovery in mice with traumatic brain injury. Neuropharmacology 2014; 85:427-39. [PMID: 24937045 DOI: 10.1016/j.neuropharm.2014.06.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 01/23/2023]
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young adults in the United States, but there is still no effective agent for treatment. N-arachidonoylethanolamine (anandamide, AEA) is a major endocannabinoid in the brain. Its increase after brain injury is believed to be protective. However, the compensatory role of AEA is transient due to its rapid hydrolysis by the fatty acid amide hydrolase (FAAH). Thus, inhibition of FAAH can boost the endogenous levels of AEA and prolong its protective effect. Using a TBI mouse model, we found that post-injury chronic treatment with PF3845, a selective and potent FAAH inhibitor, reversed TBI-induced impairments in fine motor movement, hippocampus dependent working memory and anxiety-like behavior. Treatment with PF3845 inactivated FAAH activity and enhanced the AEA levels in the brain. It reduced neurodegeneration in the dentate gyrus, and up-regulated the expression of Bcl-2 and Hsp70/72 in both cortex and hippocampus. PF3845 also suppressed the increased production of amyloid precursor protein, prevented dendritic loss and restored the levels of synaptophysin in the ipsilateral dentate gyrus. Furthermore, PF3845 suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 and enhanced the expression of arginase-1 post-TBI, suggesting a shift of microglia/macrophages from M1 to M2 phenotype. The effects of PF3845 on TBI-induced behavioral deficits and neurodegeneration were mediated by activation of cannabinoid type 1 and 2 receptors and might be attributable to the phosphorylation of ERK1/2 and AKT. These results suggest that selective inhibition of FAAH is likely to be beneficial for TBI treatment.
Collapse
Affiliation(s)
- Flaubert Tchantchou
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Laura B Tucker
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Amanda H Fu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Rebecca J Bluett
- Departments of Psychiatry and Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph T McCabe
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sachin Patel
- Departments of Psychiatry and Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
76
|
Shunmugavel A, Khan M, Hughes FM, Purves JT, Singh A, Singh I. S-Nitrosoglutathione protects the spinal bladder: novel therapeutic approach to post-spinal cord injury bladder remodeling. Neurourol Urodyn 2014; 34:519-26. [PMID: 24853799 DOI: 10.1002/nau.22619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 03/27/2014] [Indexed: 01/16/2023]
Abstract
AIMS Bladder and renal dysfunction are secondary events of the inflammatory processes induced by spinal cord injury (SCI). S-Nitrosoglutathione (GSNO), an endogenous nitrosylating agent is pleiotropic and has anti-inflammatory property. Hence, GSNO ameliorates inflammatory sequelae observed in bladder and renal tissues after SCI. Thus, we postulate that GSNO will improve the recovery of micturition dysfunction by quenching the bladder tissue inflammation associated with SCI. METHODS Contusion-based mild SCI was induced in female Sprague-Dawley rats. Sham operated rats served as the controls. SCI rats were gavaged daily with GSNO (50 µg/kg) or vehicle. Bladder function was assessed by urodynamics at 2 and 14 days following SCI. Urine protein concentration and osmolality were measured. Bladder and kidney tissues were analyzed by histology and immunofluorescence for a variety of endpoints related to inflammation. RESULTS Two days after SCI, urodynamics demonstrated a hyperreflexive bladder with overflow and no clear micturition events. By Day 14, vehicle animals regained a semblance of a voiding cycle but with no definite intercontraction intervals. GSNO-treated SCI-rats showed nearly normal cystometrograms. Vehicle-treated SCI rats had increased bladder wet weight, proteinuria, and urine osmolality at Day 14, which was reversed by GSNO treatment. In addition, the SCI-induced increase in immune cell infiltration, collagen deposition, iNOS, and ICAM-1 expression and apoptosis were attenuated by GSNO. CONCLUSIONS These results indicate that oral administration of GSNO hastens the recovery of bladder function after mild contusion-induced SCI through dampening the inflammation sequelae. These findings also suggest that GSNO-mediated redox modulation may be a novel therapeutic target for the treatment of mild SCI-induced renal and bladder dysfunction.
Collapse
Affiliation(s)
- Anandakumar Shunmugavel
- Department of Pediatrics, Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Mushfiquddin Khan
- Department of Pediatrics, Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Francis M Hughes
- Department of Urology, Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - J Todd Purves
- Department of Urology, Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina.,Department of Regenerative Medicine and Cell Biology, Pathology and Laboratory Medicine Service, Medical University of South Carolina, Charleston, South Carolina
| | - Avtar Singh
- Ralph H. Johnson Veterans Administration Medical Center, Pathology and Laboratory Medicine Service, Medical University of South Carolina, Charleston, South Carolina
| | - Inderjit Singh
- Department of Pediatrics, Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
77
|
Liao GP, Olson SD, Kota DJ, Hetz RA, Smith P, Bedi S, Cox CS. Far-red tracer analysis of traumatic cerebrovascular permeability. J Surg Res 2014; 190:628-33. [PMID: 24906578 DOI: 10.1016/j.jss.2014.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 04/25/2014] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Blood brain barrier (BBB) compromise is a key pathophysiological component of secondary traumatic brain injury characterized by edema and neuroinflammation in a previously immune-privileged environment. Current assays for BBB permeability are limited by working size, harsh extraction processes, suboptimal detection via absorbance, and wide excitation fluorescence spectra. In this study, we evaluate the feasibility of Alexa Fluor 680, a far-red dye bioconjugated to dextran, as an alternative assay to improve resolution and sensitivity. METHODS Alexa Fluor was introduced intravenously on the day of sacrifice to three groups: sham, controlled cortical impact (CCI), and CCI treated with a cell based therapy known to reduce BBB permeability. The brains were sectioned coronally and imaged using an infrared laser scanner to generate intensity plot profiles as well as signal threshold images to distinguish regions with varying degrees of permeability. RESULTS Linear plot profile analysis demonstrated greater signal intensity from CCI than treated rats at corresponding injury depths. Threshold analysis identified rims of signal at low + narrow threshold ranges. The integrated signals from a treatment group known to preserve the BBB were significantly less than the groups with CCI injury alone. There was no significant difference at high + wide signal intensity threshold ranges. CONCLUSIONS Alexa Fluor 680 infrared photodetection and image analysis can aid in detecting differential degrees of BBB permeability after traumatic brain injury and maybe particularly useful in demonstrating BBB preservation of at-risk regions in response to therapeutic agents.
Collapse
Affiliation(s)
- George P Liao
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Scott D Olson
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Daniel J Kota
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Robert A Hetz
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Philippa Smith
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Supinder Bedi
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
78
|
Zhang C, Zhu J, Zhang J, Li H, Zhao Z, Liao Y, Wang X, Su J, Sang S, Yuan X, Liu Q. Neuroprotective and anti-apoptotic effects of valproic acid on adult rat cerebral cortex through ERK and Akt signaling pathway at acute phase of traumatic brain injury. Brain Res 2014; 1555:1-9. [PMID: 24508577 DOI: 10.1016/j.brainres.2014.01.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 01/06/2023]
Abstract
Mood stabilizer valproic acid (VPA), a widely used antiepileptic drug that has been demonstrated neuroprotective effect against various insults through multiple signaling pathways. The role of VPA in traumatic brain injury (TBI) remains unclear. In the present study, we investigated the neuroprotective potency of VPA for protection against TBI in adult rats, focusing on studying signaling mediators of two well characterized pro-survival molecules, extracellular signal-regulated protein kinase (ERK) and Akt. We found that treatment of VPA after TBI significantly attenuated brain edema, reduced contusion volume and the rate of neuronal apoptosis. The treatment also partly blocked an increase in capase-3 activity. VPA markedly up-regulated the activity of ERK and Akt expression. Moreover, treatment with either PD98059, an ERK inhibitor and/or LY294002, an Akt inhibitor, attenuated the neuroprotection of VPA against TBI to varying degrees. Taken together, these results demonstrated that treatment with VPA after TBI could be neuroprotective via activation of ERK and Akt signaling pathways.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China
| | - Jie Zhu
- Department of Neurosurgery, 101th Hospital of PLA, Rescue Center of Craniocerebral Injuries of PLA, Wuxi, Jiangsu 214044, PR China
| | - Jing Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, PR China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China
| | - Xiangyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China
| | - Jun Su
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China
| | - Shushan Sang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China.
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China.
| |
Collapse
|
79
|
Ruan Q, Hu X, Ao H, Ma H, Gao Z, Liu F, Kong D, Bao Z, Yu Z. The Neurovascular Protective Effects of Huperzine A on D-Galactose-Induced Inflammatory Damage in the Rat Hippocampus. Gerontology 2014; 60:424-39. [DOI: 10.1159/000358235] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/27/2013] [Indexed: 11/19/2022] Open
|
80
|
Won JS, Kim J, Annamalai B, Shunmugavel A, Singh I, Singh AK. Protective role of S-nitrosoglutathione (GSNO) against cognitive impairment in rat model of chronic cerebral hypoperfusion. J Alzheimers Dis 2013; 34:621-35. [PMID: 23254638 DOI: 10.3233/jad-121786] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chronic cerebral hypoperfusion (CCH), featuring in most of the Alzheimer's disease spectrum, plays a detrimental role in brain amyloid-β (Aβ) homeostasis, cerebrovascular morbidity, and cognitive decline; therefore, early management of cerebrovascular pathology is considered to be important for intervention in the impending cognitive decline. S-nitrosoglutathione (GSNO) is an endogenous nitric oxide carrier modulating endothelial function, inflammation, and neurotransmission. Therefore, the effect of GSNO treatment on CCH-associated neurocognitive pathologies was determined in vivo by using rats with permanent bilateral common carotid artery occlusion (BCCAO), a rat model of chronic cerebral hypoperfusion. We observed that rats subjected to permanent BCCAO showed a significant decrease in learning/memory performance and increases in brain levels of Aβ and vascular inflammatory markers. GSNO treatment (50 μg/kg/day for 2 months) significantly improved learning and memory performance of BCCAO rats and reduced the Aβ levels and ICAM-1/VCAM-1 expression in the brain. Further, in in vitro cell culture studies, GSNO treatment also decreased the cytokine-induced proinflammatory responses, such as activations of NFκB and STAT3 and expression of ICAM-1 and VCAM-1 in endothelial cells. In addition, GSNO treatment increased the endothelial and microglial Aβ uptake. Additionally, GSNO treatment inhibited the β-secretase activity in primary rat neuron cell culture, thus reducing secretion of Aβ, suggesting GSNO mediated mechanisms in anti-inflammatory and anti-amyloidogenic activities. Taken together, these data document that systemic GSNO treatment is beneficial for improvement of cognitive decline under the conditions of chronic cerebral hypoperfusion and suggests a potential therapeutic use of GSNO for cerebral hypoperfusion associated mild cognitive impairment in Alzheimer's disease.
Collapse
Affiliation(s)
- Je-Seong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29245, USA
| | | | | | | | | | | |
Collapse
|
81
|
Huang XT, Zhang YQ, Li SJ, Li SH, Tang Q, Wang ZT, Dong JF, Zhang JN. Intracerebroventricular transplantation of ex vivo expanded endothelial colony-forming cells restores blood-brain barrier integrity and promotes angiogenesis of mice with traumatic brain injury. J Neurotrauma 2013; 30:2080-8. [PMID: 23957220 DOI: 10.1089/neu.2013.2996] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Endothelial progenitor cells (EPCs) play a key role in tissue repair and regeneration. Previous studies have shown a positive correlation between the number of circulating EPCs and clinical outcomes of patients with traumatic brain injury (TBI). A recent study has further shown that intravenous infusion of human umbilical cord blood-derived endothelial colony-forming cells (ECFCs) improves outcomes of mice subjected to experimental TBI. This follow-up study was designed to determine whether intracerebroventricular (i.c.v.) infusion of ECFCs, which may reduce systemic effects of these cells, could repair the blood-brain barrier (BBB) and promote angiogenesis of mice with TBI. Adult nude mice were exposed to fluid percussion injury and transplanted i.c.v. with ECFCs on day 1 post-TBI. These ECFCs were detected at the TBI zone 3 days after transplantation by SP-DiIC18(3) and fluorescence in situ hybridization. Mice with ECFCs transplant had reduced Evans blue extravasation and brain water content, increased expression of ZO-1 and claudin-5, and showed a higher expression of angiopoietin 1. Consistent with the previous report, mice with ECFCs transplant had also increased microvascular density. Modified neurological severity score and Morris water maze test indicated significant improvements in motor ability, spatial acquisition and reference memory in mice receiving ECFCs, compared to those receiving saline. These data demonstrate the beneficial effects of ECFC transplant on BBB integrity and angiogenesis in mice with TBI.
Collapse
Affiliation(s)
- Xin-Tao Huang
- 1 Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital , Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Chen R, Wang J, Jiang B, Wan X, Liu H, Liu H, Yang X, Wu X, Zou Q, Yang W. Study of cell apoptosis in the hippocampus and thalamencephalon in a ventricular fluid impact model. Exp Ther Med 2013; 6:1463-1468. [PMID: 24255676 PMCID: PMC3829732 DOI: 10.3892/etm.2013.1342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 09/24/2013] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate the apoptosis of nerve cells in the hippocampal and thalamencephalon regions using a rabbit model of ventricular fluid impact. The results for the study demonstrated a variety of pathophysiological changes in the rabbit model, while changes in the hippocampal and thalamencephalon regions were observed under a light microscope following hematoxylin and eosin (H&E)/terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Among the mild, moderate and severe injury groups, there were significant differences in the mortality rate and in the changes in vital signs and consciousness recovery time following trauma. Furthermore, H&E staining showed that pathological changes, such as hemorrhage and necrosis, occurred in the hippocampal and thalamencephalon regions at an early stage subsequent to trauma, while TUNEL staining showed that neuronal apoptosis occurred in the various injury groups. In traumatic brain injuries, the impact caused by cerebrospinal fluid moving with a certain energy results in marked damage to the contralateral periventricular structures and may generate a series of pathophysiological changes.
Collapse
Affiliation(s)
- Rui Chen
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Kim JY, Kim N, Zheng Z, Lee JE, Yenari MA. The 70 kDa heat shock protein protects against experimental traumatic brain injury. Neurobiol Dis 2013; 58:289-95. [PMID: 23816752 DOI: 10.1016/j.nbd.2013.06.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/29/2013] [Accepted: 06/15/2013] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) causes disruption of the blood brain barrier (BBB) leading to hemorrhage which can complicate an already catastrophic illness. Matrix metalloproteinases (MMPs) involved in the breakdown of the extracellular matrix may lead to brain hemorrhage. We explore the contribution of the 70 kDa heat shock protein (Hsp70) to outcome and brain hemorrhage in a model of TBI. Male, wildtype (Wt), Hsp70 knockout (Ko) and transgenic (Tg) mice were subjected to TBI using controlled cortical impact (CCI). Motor function, brain hemorrhage and lesion size were assessed at 3, 7 and 14 days. Brains were evaluated for the effects of Hsp70 on MMPs. In Hsp70 Tg mice, CCI led to smaller brain lesions, decreased hemorrhage and reduced expression and activation of MMPs compared to Wt. CCI also significantly decreased right-biased swings and corner turns in the Hsp70 Tg mice. Conversely, Hsp70 Ko mice had significantly increased lesion size, worsened brain hemorrhage and increased expression and activation of MMPs with worsened behavioral outcomes compared to Wt. Hsp70 is protective in experimental TBI. To our knowledge, this is the direct demonstration of brain protection by Hsp70 in a TBI model. Our data demonstrate a new mechanism linking TBI-induced hemorrhage and neuronal injury to the suppression of MMPs by Hsp70, and support the development of Hsp70 enhancing strategies for the treatment of TBI.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
84
|
Campolo M, Ahmad A, Crupi R, Impellizzeri D, Morabito R, Esposito E, Cuzzocrea S. Combination therapy with melatonin and dexamethasone in a mouse model of traumatic brain injury. J Endocrinol 2013; 217:291-301. [PMID: 23532863 DOI: 10.1530/joe-13-0022] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of preventable death and morbidity in young adults. This complex condition is characterized by a significant blood-brain barrier leakage that stems from cerebral ischemia, inflammation, and redox imbalances in the traumatic penumbra of the injured brain. Recovery of function after TBI is partly through neuronal plasticity. In order to test whether combination therapy with melatonin and dexamethasone (DEX) might improve functional recovery, a controlled cortical impact (CCI) was performed in adult mice, acting as a model of TBI. Once trauma has occurred, combating these exacerbations is the keystone of an effective TBI therapy. The therapy with melatonin (10 mg/kg) and DEX (0.025 mg/kg) is able to reduce edema and brain infractions as evidenced by decreased 2,3,5-triphenyltetrazolium chloride staining across the brain sections. Melatonin- and DEX-mediated improvements in tissue histology shown by the reduction in lesion size and an improvement in apoptosis level further support the efficacy of combination therapy. The combination therapy also blocked the infiltration of astrocytes and reduced CCI-mediated oxidative stress. In addition, we have also clearly demonstrated that the combination therapy significantly ameliorated neurological scores. Taken together, our results clearly indicate that combination therapy with melatonin and DEX presents beneficial synergistic effects, and we consider it an avenue for further development of novel combination therapeutic agents in the treatment of TBI that are more effective than a single effector molecule.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Biological and Environmental Sciences, University of Messina, Torre Biologica, Policlinico Universitario Via C Valeria, Gazzi, 98100 Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
85
|
Gene expression patterns following unilateral traumatic brain injury reveals a local pro-inflammatory and remote anti-inflammatory response. BMC Genomics 2013; 14:282. [PMID: 23617241 PMCID: PMC3669032 DOI: 10.1186/1471-2164-14-282] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 04/15/2013] [Indexed: 01/13/2023] Open
Abstract
Background Traumatic brain injury (TBI) results in irreversible damage at the site of impact and initiates cellular and molecular processes that lead to secondary neural injury in the surrounding tissue. We used microarray analysis to determine which genes, pathways and networks were significantly altered using a rat model of TBI. Adult rats received a unilateral controlled cortical impact (CCI) and were sacrificed 24 h post-injury. The ipsilateral hemi-brain tissue at the site of the injury, the corresponding contralateral hemi-brain tissue, and naïve (control) brain tissue were used for microarray analysis. Ingenuity Pathway Analysis (IPA) software was used to identify molecular pathways and networks that were associated with the altered gene expression in brain tissues following TBI. Results Inspection of the top fifteen biological functions in IPA associated with TBI in the ipsilateral tissues revealed that all had an inflammatory component. IPA analysis also indicated that inflammatory genes were altered on the contralateral side, but many of the genes were inversely expressed compared to the ipsilateral side. The contralateral gene expression pattern suggests a remote anti-inflammatory molecular response. We created a network of the inversely expressed common (i.e., same gene changed on both sides of the brain) inflammatory response (IR) genes and those IR genes included in pathways and networks identified by IPA that changed on only one side. We ranked the genes by the number of direct connections each had in the network, creating a gene interaction hierarchy (GIH). Two well characterized signaling pathways, toll-like receptor/NF-kappaB signaling and JAK/STAT signaling, were prominent in our GIH. Conclusions Bioinformatic analysis of microarray data following TBI identified key molecular pathways and networks associated with neural injury following TBI. The GIH created here provides a starting point for investigating therapeutic targets in a ranked order that is somewhat different than what has been presented previously. In addition to being a vehicle for identifying potential targets for post-TBI therapeutic strategies, our findings can also provide a context for evaluating the potential of therapeutic agents currently in development.
Collapse
|
86
|
Tchantchou F, Zhang Y. Selective inhibition of alpha/beta-hydrolase domain 6 attenuates neurodegeneration, alleviates blood brain barrier breakdown, and improves functional recovery in a mouse model of traumatic brain injury. J Neurotrauma 2013; 30:565-79. [PMID: 23151067 DOI: 10.1089/neu.2012.2647] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
2-arachidonylglycerol (2-AG) is the most abundant endocannabinoid in the central nervous system and is elevated after brain injury. Because of its rapid hydrolysis, however, the compensatory and neuroprotective effect of 2-AG is short-lived. Although inhibition of monoacylglycerol lipase, a principal enzyme for 2-AG degradation, causes a robust increase of brain levels of 2-AG, it also leads to cannabinoid receptor desensitization and behavioral tolerance. Alpha/beta hydrolase domain 6 (ABHD6) is a novel 2-AG hydrolytic enzyme that accounts for a small portion of 2-AG hydrolysis, but its inhibition is believed to elevate the levels of 2-AG within the therapeutic window without causing side effect. Using a mouse model of traumatic brain injury (TBI), we found that post-insult chronic treatment with a selective ABHD6 inhibitor WWL70 improved motor coordination and working memory performance. WWL70 treatment reduced lesion volume in the cortex and neurodegeneration in the dendate gyrus. It also suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 and enhanced the expression of arginase-1 in the ipsilateral cortex at 3 and 7 days post-TBI, suggesting microglia/macrophages shifted from M1 to M2 phenotypes after treatment. The blood-brain barrier dysfunction at 3 and 7 days post-TBI was dramatically reduced. Furthermore, the beneficial effects of WWL70 involved up-regulation and activation of cannabinoid type 1 and type 2 receptors and were attributable to the phosphorylation of the extracellular signal regulated kinase and the serine/threonine protein kinase AKT. This study indicates that the fine-tuning of 2-AG signaling by modulating ABHD6 activity can exert anti-inflammatory and neuroprotective effects in TBI.
Collapse
Affiliation(s)
- Flaubert Tchantchou
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20892, USA
| | | |
Collapse
|
87
|
Nitric oxide donors as neuroprotective agents after an ischemic stroke-related inflammatory reaction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:297357. [PMID: 23691263 PMCID: PMC3649699 DOI: 10.1155/2013/297357] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflammation, which exacerbates primary brain damage. Therefore, reducing oxidative stress (OS) and downregulating the inflammatory response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke, and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative stress is an important promoter of damage. In the present paper, we focus on the role of NOD as possible neuroprotective therapeutic agents for ischemia/reperfusion treatment.
Collapse
|
88
|
Hernandez-Ontiveros DG, Tajiri N, Acosta S, Giunta B, Tan J, Borlongan CV. Microglia activation as a biomarker for traumatic brain injury. Front Neurol 2013; 4:30. [PMID: 23531681 PMCID: PMC3607801 DOI: 10.3389/fneur.2013.00030] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/10/2013] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation, and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation, and accurate handling of all data (Landis et al., 2012). A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.
Collapse
Affiliation(s)
- Diana G Hernandez-Ontiveros
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | | | | | | | | | | |
Collapse
|
89
|
Shunmugavel A, Martin MM, Khan M, Copay AG, Subach BR, Schuler TC, Singh I. Simvastatin ameliorates cauda equina compression injury in a rat model of lumbar spinal stenosis. J Neuroimmune Pharmacol 2013; 8:274-86. [PMID: 23188522 PMCID: PMC3587651 DOI: 10.1007/s11481-012-9419-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 11/05/2012] [Indexed: 12/29/2022]
Abstract
Lumbar spinal stenosis (LSS) is the leading cause of morbidity and mortality worldwide. LSS pathology is associated with secondary injury caused by inflammation, oxidative damage and cell death. Apart from laminectomy, pharmacological therapy targeting secondary injury is limited. Statins are FDA-approved cholesterol-lowering drug. They also show pleiotropic anti-inflammatory, antioxidant and neuroprotective effects. To investigate the therapeutic efficacy of simvastatin in restoring normal locomotor function after cauda equina compression (CEC) in a rat model of LSS, CEC injury was induced in rats by implanting silicone gels into the epidural spaces of L4 and L6. Experimental group was treated with simvastatin (5 mg/kg body weight), while the injured (vehicle) and sham operated (sham) groups received vehicle solution. Locomotor function in terms of latency on rotarod was measured for 49 days and the threshold of pain was determined for 14 days. Rats were sacrificed on day 3 and 14 and the spinal cord and cauda equina fibers were extracted and studied by histology, immunofluorescence, electron microscopy (EM) and TUNEL assay. Simvastatin aided locomotor functional recovery and enhanced the threshold of pain after the CEC. Cellular Infiltration and demyelination decreased in the spinal cord from the simvastatin group. EM revealed enhanced myelination of cauda equina in the simvastatin group. TUNEL assay showed significantly decreased number of apoptotic neurons in spinal cord from the simvastatin group compared to the vehicle group. Simvastatin hastens the locomotor functional recovery and reduces pain after CEC. These outcomes are mediated through the neuroprotective and anti-inflammatory properties of simvastatin. The data indicate that simvastatin may be a promising drug candidate for LSS treatment in humans.
Collapse
Affiliation(s)
- Anandakumar Shunmugavel
- Department of Pediatrics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Sakakima H, Khan M, Dhammu TS, Shunmugavel A, Yoshida Y, Singh I, Singh AK. Stimulation of functional recovery via the mechanisms of neurorepair by S-nitrosoglutathione and motor exercise in a rat model of transient cerebral ischemia and reperfusion. Restor Neurol Neurosci 2013; 30:383-96. [PMID: 22717646 DOI: 10.3233/rnn-2012-110209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Stroke disability stems from insufficient neurorepair mechanisms. Improvement of functions has been achieved through rehabilitation or therapeutic agents. Therefore, we combined exercise with a neurovascular protective agent, S-nitrosoglutathione (GSNO), to accelerate functional recovery. METHODS Stroke was induced by middle cerebral artery occlusion for 60 min followed by reperfusion in adult male rats. Animals were treated with vehicle (IR group), GSNO (0.25 mg/kg, GSNO group), rotarod exercise (EX group) and GSNO plus exercise (GSNO+EX group). The groups were studied for 14 days to determine neurorepair mechanisms and functional recovery. RESULTS Treated groups showed reduced infarction, decreased neuronal cell death, enhanced neurotrophic factors, and improved neurobehavioral functions. However, the GSNO+EX showed greater functional recovery (p < 0.05) than the GSNO or the EX group. A GSNO sub group, treated 24 hours after IR, still showed motor function recovery (p < 0.001). The protective effect of GSNO or exercise was blocked by the inhibition of Akt activity. CONCLUSIONS GSNO and exercise aid functional recovery by stimulating neurorepair mechanisms. The improvements by GSNO and exercise depend mechanistically on the Akt pathway. A combination of exercise and GSNO shows greater functional recovery. Improved recovery with GSNO, even administered 24 hours post-IR, demonstrates its clinical relevance.
Collapse
Affiliation(s)
- Harutoshi Sakakima
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Maron BA, Tang SS, Loscalzo J. S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system. Antioxid Redox Signal 2013; 18:270-87. [PMID: 22770551 PMCID: PMC3518544 DOI: 10.1089/ars.2012.4744] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 06/26/2012] [Accepted: 07/08/2012] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Since their discovery in the early 1990's, S-nitrosylated proteins have been increasingly recognized as important determinants of many biochemical processes. Specifically, S-nitrosothiols in the cardiovascular system exert many actions, including promoting vasodilation, inhibiting platelet aggregation, and regulating Ca(2+) channel function that influences myocyte contractility and electrophysiologic stability. RECENT ADVANCES Contemporary developments in liquid chromatography-mass spectrometry methods, the development of biotin- and His-tag switch assays, and the availability of cyanide dye-labeling for S-nitrosothiol detection in vitro have increased significantly the identification of a number of cardiovascular protein targets of S-nitrosylation in vivo. CRITICAL ISSUES Recent analyses using modern S-nitrosothiol detection techniques have revealed the mechanistic significance of S-nitrosylation to the pathophysiology of numerous cardiovascular diseases, including essential hypertension, pulmonary hypertension, ischemic heart disease, stroke, and congestive heart failure, among others. FUTURE DIRECTIONS Despite enhanced insight into S-nitrosothiol biochemistry, translating these advances into beneficial pharmacotherapies for patients with cardiovascular diseases remains a primary as-yet unmet goal for investigators within the field.
Collapse
Affiliation(s)
- Bradley A Maron
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
92
|
Paintlia MK, Paintlia AS, Singh AK, Singh I. S-nitrosoglutathione induces ciliary neurotrophic factor expression in astrocytes, which has implications to protect the central nervous system under pathological conditions. J Biol Chem 2012; 288:3831-43. [PMID: 23264628 DOI: 10.1074/jbc.m112.405654] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that reactive astrogliosis has beneficial and detrimental outcomes in various CNS disorders, but the mechanism behind this dichotomy is unclear. Recent advances in this direction suggested that NO signaling is critical to regulate the outcomes of reactive astrogliosis in vivo. Using biochemical and genetic approaches, we here investigated the effect of S-nitrosoglutathione (GSNO; a physiological NO donor) in astrocytes in vitro settings. GSNO enhanced the expressions of glial fibrillary acidic protein and neurotrophic factors including ciliary neurotrophic factor (CNTF) in astrocytes in a dose-dependent manner. The enhanced CNTF expression in GSNO-treated astrocytes was ascribed to NO-mediated sGC/cGMP/PKG signaling. It was associated with p38 MAPK-dependent increased peroxisome proliferator-activated receptor-γ transactivation. In addition, the chromatin accessibility of peroxisome proliferator-activated receptor-γ accompanied with ATF2 and CREB (cAMP-response element-binding protein) was enhanced across the CNTF gene promoter in GSNO treated astrocytes. Interestingly, secreted CNTF was responsible for increased expression of glial fibrillary acidic protein in GSNO-treated astrocytes in an autocrine manner via a JAK2- and STAT3-dependent mechanism. In addition, CNTF secreted by GSNO-treated astrocytes enhanced the differentiation of immature oligodendrocytes in vitro. These effects of GSNO were consistent with an endogenously produced NO in astrocytes stimulated with proinflammatory cytokines in vitro. We conclude that NO signaling induces CNTF expression in astrocytes that favors the beneficial outcomes of reactive astrogliosis in vivo. Our data suggest that the endogenously produced NO or its exogenous source has potential to modulate the outcomes of reactive astrogliosis to protect CNS under pathological conditions.
Collapse
Affiliation(s)
- Manjeet K Paintlia
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
93
|
Huang XJ, Mao Q, Lin Y, Feng JF, Jiang JY. Expression of voltage-gated sodium channel Nav1.3 is associated with severity of traumatic brain injury in adult rats. J Neurotrauma 2012; 30:39-46. [PMID: 22928478 DOI: 10.1089/neu.2012.2508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During the secondary injury period after traumatic brain injury (TBI), depolarization of neurons mediated by voltage-gated sodium channels (VGSCs) leads to cellular abnormalities and neurological dysfunction. Alterations in expression of different α subunits of VGSCs can affect early brain pathology following TBI. This study detected the expression of Nav1.3 mRNA and protein in the rat cortex post-TBI. Adult male Sprague-Dawley rats were randomly assigned to sham-TBI, mild-TBI (mTBI), or severe-TBI (sTBI) groups. TBI was induced using a fluid percussion device at magnitudes of 1.5-1.6 atm (mTBI) and 2.9-3.0 atm (sTBI). Nav1.3 mRNA and protein levels in the ipsilateral-injured cortex were examined at 2 h, 12 h, 24 h, and 72 h post-TBI by real-time reverse transcriptase quantitative polymerase chain reaction and Western blot. Brains were collected at 24 h, 72 h, and 7 days post-TBI for TUNEL staining and cell count analysis. Immunofluorescence was performed to localize expression of Nav1.3 protein in the ipsilateral-injured cortex. Expression of Nav1.3 mRNA and protein were significantly upregulated in mTBI and sTBI groups when compared with the sham-TBI group at 2 h and 12 h post-TBI. Nav1.3 mRNA and protein levels in the sTBI group were much higher than in the mTBI group at 12 h post-TBI. TUNEL-positive cell numbers were significantly higher in the sTBI group than in the mTBI at 24 h, 72 h, and 7 days post-TBI. Expression of Nav1.3 was observed predominantly in neurons of the cortex. These findings indicated significant upregulation in the expression of Nav1.3 mRNA and protein in the rat ipsilateral-injured cortex at the very early stage post-TBI, and were also correlated with TBI severity.
Collapse
Affiliation(s)
- Xian-jian Huang
- Department of Neurosurgery, Shanghai Renji Hospital, Shanghai Jiaotong University , School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
94
|
Thal SC, Luh C, Schaible EV, Timaru-Kast R, Hedrich J, Luhmann HJ, Engelhard K, Zehendner CM. Volatile anesthetics influence blood-brain barrier integrity by modulation of tight junction protein expression in traumatic brain injury. PLoS One 2012; 7:e50752. [PMID: 23251381 PMCID: PMC3519465 DOI: 10.1371/journal.pone.0050752] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/25/2012] [Indexed: 01/02/2023] Open
Abstract
Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortality after traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be important to elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonula occludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anesthetics sevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER) in murine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression of ZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled cortical impact (CCI). In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours after exposure. In BBB co-cultures mimicking the neurovascular unit (NVU) volatile anesthetics had no impact on TEER. In healthy mice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water content increased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expression was significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analyses revealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The study demonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed to modulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence the barrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Future research is required to investigate adverse or beneficial effects of volatile anesthetics on patients at risk for cerebral edema.
Collapse
Affiliation(s)
- Serge C. Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Clara Luh
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Eva-Verena Schaible
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Ralph Timaru-Kast
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jana Hedrich
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Heiko J. Luhmann
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Kristin Engelhard
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Christoph M. Zehendner
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
95
|
Rocamonde B, Paradells S, Barcia J, Barcia C, García Verdugo J, Miranda M, Romero Gómez F, Soria J. Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury. Neuroscience 2012; 224:102-15. [DOI: 10.1016/j.neuroscience.2012.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 12/30/2022]
|
96
|
Khan M, Dhammu TS, Sakakima H, Shunmugavel A, Gilg AG, Singh AK, Singh I. The inhibitory effect of S-nitrosoglutathione on blood-brain barrier disruption and peroxynitrite formation in a rat model of experimental stroke. J Neurochem 2012; 123 Suppl 2:86-97. [PMID: 23050646 PMCID: PMC3481195 DOI: 10.1111/j.1471-4159.2012.07947.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hallmark of stroke injury is endothelial dysfunction leading to blood-brain barrier (BBB) leakage and edema. Among the causative factors of BBB disruption are accelerating peroxynitrite formation and the resultant decreased bioavailability of nitric oxide (NO). S-nitrosoglutathione (GSNO), an S-nitrosylating agent, was found not only to reduce the levels of peroxynitrite but also to protect the integrity of BBB in a rat model of cerebral ischemia and reperfusion (IR). A treatment with GSNO (3 μmol/kg) after IR reduced 3-nitrotyrosine levels in and around vessels and maintained NO levels in brain. This mechanism protected endothelial function by reducing BBB leakage, increasing the expression of Zonula occludens-1 (ZO-1), decreasing edema, and reducing the expression of matrix metalloproteinase-9 and E-selectin in the neurovascular unit. An administration of the peroxynitrite-forming agent 3-morpholino sydnonimine (3 μmol/kg) at reperfusion increased BBB leakage and decreased the expression of ZO-1, supporting the involvement of peroxynitrite in BBB disruption and edema. Mechanistically, the endothelium-protecting action of GSNO was invoked by reducing the activity of nuclear factor kappa B and increasing the expression of S-nitrosylated proteins. Taken together, the results support the ability of GSNO to improve endothelial function by reducing nitroxidative stress in stroke.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Harutoshi Sakakima
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | | | - Anne G Gilg
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Avtar K. Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
97
|
Jérusalem A, Dao M. Continuum modeling of a neuronal cell under blast loading. Acta Biomater 2012; 8:3360-71. [PMID: 22562014 DOI: 10.1016/j.actbio.2012.04.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/02/2012] [Accepted: 04/25/2012] [Indexed: 01/07/2023]
Abstract
Traumatic brain injuries have recently been put under the spotlight as one of the most important causes of accidental brain dysfunctions. Significant experimental and modeling efforts are thus underway to study the associated biological, mechanical and physical mechanisms. In the field of cell mechanics, progress is also being made at the experimental and modeling levels to better characterize many of the cell functions, including differentiation, growth, migration and death. The work presented here aims to bridge both efforts by proposing a continuum model of a neuronal cell submitted to blast loading. In this approach, the cytoplasm, nucleus and membrane (plus cortex) are differentiated in a representative cell geometry, and different suitable material constitutive models are chosen for each one. The material parameters are calibrated against published experimental work on cell nanoindentation at multiple rates. The final cell model is ultimately subjected to blast loading within a complete computational framework of fluid-structure interaction. The results are compared to the nanoindentation simulation, and the specific effects of the blast wave on the pressure and shear levels at the interfaces are identified. As a conclusion, the presented model successfully captures some of the intrinsic intracellular phenomena occurring during the cellular deformation under blast loading that potentially lead to cell damage. It suggests, more particularly, that the localization of damage at the nucleus membrane is similar to what has already been observed at the overall cell membrane. This degree of damage is additionally predicted to be worsened by a longer blast positive phase duration. In conclusion, the proposed model ultimately provides a new three-dimensional computational tool to evaluate intracellular damage during blast loading.
Collapse
|
98
|
Argandoña EG, Bengoetxea H, Bulnes S, Rico-Barrio I, Ortuzar N, Lafuente JV. Effect of intracortical vascular endothelial growth factor infusion and blockade during the critical period in the rat visual cortex. Brain Res 2012; 1473:141-54. [DOI: 10.1016/j.brainres.2012.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 06/18/2012] [Accepted: 07/06/2012] [Indexed: 12/11/2022]
|
99
|
Endonuclease VIII-like 1 (NEIL1) promotes short-term spatial memory retention and protects from ischemic stroke-induced brain dysfunction and death in mice. Proc Natl Acad Sci U S A 2012; 109:14948-53. [PMID: 22927410 DOI: 10.1073/pnas.1204156109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent findings suggest that neurons can efficiently repair oxidatively damaged DNA, and that both DNA damage and repair are enhanced by activation of excitatory glutamate receptors. However, in pathological conditions such as ischemic stroke, excessive DNA damage can trigger the death of neurons. Oxidative DNA damage is mainly repaired by base excision repair (BER), a process initiated by DNA glycosylases that recognize and remove damaged DNA bases. Endonuclease VIII-like 1 (NEIL1) is a DNA glycosylase that recognizes a broad range of oxidative lesions. Here, we show that mice lacking NEIL1 exhibit impaired memory retention in a water maze test, but no abnormalities in tests of motor performance, anxiety, or fear conditioning. NEIL1 deficiency results in increased brain damage and a defective functional outcome in a focal ischemia/reperfusion model of stroke. The incision capacity on a 5-hydroxyuracil-containing bubble substrate was lower in the ipsilateral side of ischemic brains and in the mitochondrial lysates of unstressed old NEIL1-deficient mice. These results indicate that NEIL1 plays an important role in learning and memory and in protection of neurons against ischemic injury.
Collapse
|
100
|
Okuma Y, Liu K, Wake H, Zhang J, Maruo T, Date I, Yoshino T, Ohtsuka A, Otani N, Tomura S, Shima K, Yamamoto Y, Yamamoto H, Takahashi HK, Mori S, Nishibori M. Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol 2012; 72:373-84. [PMID: 22915134 DOI: 10.1002/ana.23602] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 03/11/2012] [Accepted: 03/28/2012] [Indexed: 01/09/2023]
Abstract
OBJECTIVE High mobility group box-1 (HMGB1) plays an important role in triggering inflammatory responses in many types of diseases. In this study, we examined the involvement of HMGB1 in traumatic brain injury (TBI) and evaluated the ability of intravenously administered neutralizing anti-HMGB1 monoclonal antibody (mAb) to attenuate brain injury. METHODS Traumatic brain injury was induced in rats or mice by fluid percussion. Anti-HMGB1 mAb or control mAb was administered intravenously after TBI. RESULTS Anti-HMGB1 mAb remarkably inhibited fluid percussion-induced brain edema in rats, as detected by T2-weighted magnetic resonance imaging; this was associated with inhibition of HMGB1 translocation, protection of blood-brain barrier (BBB) integrity, suppression of inflammatory molecule expression, and improvement of motor function. In contrast, intravenous injection of recombinant HMGB1 dose-dependently produced the opposite effects. Experiments using receptor for advanced glycation end product (RAGE)(-/-) , toll-like receptor-4 (TLR4)(-/-) , and TLR2(-/-) mice suggested the involvement of RAGE as the predominant receptor for HMGB1. INTERPRETATION Anti-HMGB1 mAb may provide a novel and effective therapy for TBI by protecting against BBB disruption and reducing the inflammatory responses induced by HMGB1.
Collapse
Affiliation(s)
- Yu Okuma
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|