51
|
Salinas-Cornejo J, Madrid-Espinoza J, Verdugo I, Pérez-Díaz J, Martín-Davison AS, Norambuena L, Ruiz-Lara S. The Exocytosis Associated SNAP25-Type Protein, SlSNAP33, Increases Salt Stress Tolerance by Modulating Endocytosis in Tomato. PLANTS 2021; 10:plants10071322. [PMID: 34209492 PMCID: PMC8309203 DOI: 10.3390/plants10071322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/29/2022]
Abstract
In plants, vesicular trafficking is crucial for the response and survival to environmental challenges. The active trafficking of vesicles is essential to maintain cell homeostasis during salt stress. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are regulatory proteins of vesicular trafficking. They mediate membrane fusion and guarantee cargo delivery to the correct cellular compartments. SNAREs from the Qbc subfamily are the best-characterized plasma membrane SNAREs, where they control exocytosis during cell division and defense response. The Solanum lycopersicum gene SlSNAP33.2 encodes a Qbc-SNARE protein and is induced under salt stress conditions. SlSNAP33.2 localizes on the plasma membrane of root cells of Arabidopsis thaliana. In order to study its role in endocytosis and salt stress response, we overexpressed the SlSNAP33.2 cDNA in a tomato cultivar. Constitutive overexpression promoted endocytosis along with the accumulation of sodium (Na+) in the vacuoles. It also protected the plant from cell damage by decreasing the accumulation of hydrogen peroxide (H2O2) in the cytoplasm of stressed root cells. Subsequently, the higher level of SlSNAP33.2 conferred tolerance to salt stress in tomato plants. The analysis of physiological and biochemical parameters such as relative water content, the efficiency of the photosystem II, performance index, chlorophyll, and MDA contents showed that tomato plants overexpressing SlSNAP33.2 displayed a better performance under salt stress than wild type plants. These results reveal a role for SlSNAP33.2 in the endocytosis pathway involved in plant response to salt stress. This research shows that SlSNAP33.2 can be an effective tool for the genetic improvement of crop plants.
Collapse
Affiliation(s)
- Josselyn Salinas-Cornejo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - José Madrid-Espinoza
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Isabel Verdugo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Jorge Pérez-Díaz
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Alex San Martín-Davison
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Lorena Norambuena
- Facultad de Ciencias, Universidad de Chile, Santiago, Ñuñoa 7750000, Chile;
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
- Correspondence:
| |
Collapse
|
52
|
Kuo S, Hu C, Huang Y, Lee C, Luo M, Tu C, Lee S, Lin N, Hsu Y. Argonaute 5 family proteins play crucial roles in the defence against Cymbidium mosaic virus and Odontoglossum ringspot virus in Phalaenopsis aphrodite subsp. formosana. MOLECULAR PLANT PATHOLOGY 2021; 22:627-643. [PMID: 33749125 PMCID: PMC8126185 DOI: 10.1111/mpp.13049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 05/27/2023]
Abstract
The orchid industry faces severe threats from diseases caused by viruses. Argonaute proteins (AGOs) have been shown to be the major components in the antiviral defence systems through RNA silencing in many model plants. However, the roles of AGOs in orchids against viral infections have not been analysed comprehensively. In this study, Phalaenopsis aphrodite subsp. formosana was chosen as the representative to analyse the AGOs (PaAGOs) involved in the defence against two major viruses of orchids, Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV). A total of 11 PaAGOs were identified from the expression profile analyses of these PaAGOs in P. aphrodite subsp. formosana singly or doubly infected with CymMV and/or ORSV. PaAGO5b was found to be the only one highly induced. Results from overexpression of individual PaAGO5 family genes revealed that PaAGO5a and PaAGO5b play central roles in the antiviral defence mechanisms of P. aphrodite subsp. formosana. Furthermore, a virus-induced gene silencing vector based on Foxtail mosaic virus was developed to corroborate the function of PaAGO5s. The results confirmed their importance in the defences against CymMV and ORSV. Our findings may provide useful information for the breeding of traits for resistance or tolerance to CymMV or ORSV infections in Phalaenopsis orchids.
Collapse
Affiliation(s)
- Song‐Yi Kuo
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Chung‐Chi Hu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Ying‐Wen Huang
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Chin‐Wei Lee
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Meng‐Jhe Luo
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Chin‐Wei Tu
- Microbial GenomicNational Chung Hsing University and Academia SinicaTaichungTaiwan
| | - Shu‐Chuan Lee
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Na‐Sheng Lin
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Yau‐Heiu Hsu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
53
|
Tran MT, Doan DTH, Kim J, Song YJ, Sung YW, Das S, Kim EJ, Son GH, Kim SH, Van Vu T, Kim JY. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato. PLANT CELL REPORTS 2021; 40:999-1011. [PMID: 33074435 DOI: 10.1007/s00299-020-02622-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/03/2020] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE CRISPR/Cas9-based multiplexed editing of SlHyPRP1 resulted in precise deletions of its functional motif(s), thereby resulting in salt stress-tolerant events in cultivated tomato. Crop genetic improvement to address environmental stresses for sustainable food production has been in high demand, especially given the current situation of global climate changes and reduction of the global food production rate/population rate. Recently, the emerging clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-based targeted mutagenesis has provided a revolutionary approach to crop improvement. The major application of CRISPR/Cas in plant genome editing has been the generation of indel mutations via error-prone nonhomologous end joining (NHEJ) repair of DNA DSBs. In this study, we examined the power of the CRISPR/Cas9-based novel approach in the precise manipulation of protein domains of tomato hybrid proline-rich protein 1 (HyPRP1), which is a negative regulator of salt stress responses. We revealed that the precise elimination of SlHyPRP1 negative-response domain(s) led to high salinity tolerance at the germination and vegetative stages in our experimental conditions. CRISPR/Cas9-based domain editing may be an efficient tool to engineer multidomain proteins of important food crops to cope with global climate changes for sustainable agriculture and future food security.
Collapse
Affiliation(s)
- Mil Thi Tran
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
- Crop Science and Rural Development Division, College of Agriculture, Bac Lieu University, Bac Lieu, 97000, Vietnam
| | - Duong Thi Hai Doan
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Young Jong Song
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Eun-Jung Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Geon Hui Son
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Km 02, Pham Van Dong road, Co Nhue 1, Bac Tu Liem, Hanoi, 11917, Vietnam.
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
54
|
Nishizawa-Yokoi A, Saika H, Hara N, Lee LY, Toki S, Gelvin SB. Agrobacterium T-DNA integration in somatic cells does not require the activity of DNA polymerase θ. THE NEW PHYTOLOGIST 2021; 229:2859-2872. [PMID: 33105034 PMCID: PMC12009616 DOI: 10.1111/nph.17032] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Integration of Agrobacterium tumefaciens transferred DNA (T-DNA) into the plant genome is the last step required for stable plant genetic transformation. The mechanism of T-DNA integration remains controversial, although scientists have proposed the participation of various nonhomologous end-joining (NHEJ) pathways. Recent evidence suggests that in Arabidopsis, DNA polymerase θ (PolQ) may be a crucial enzyme involved in T-DNA integration. We conducted quantitative transformation assays of wild-type and polQ mutant Arabidopsis and rice, analyzed T-DNA/plant DNA junction sequences, and (for Arabidopsis) measured the amount of integrated T-DNA in mutant and wild-type tissue. Unexpectedly, we were able to generate stable transformants of all tested lines, although the transformation frequency of polQ mutants was c. 20% that of wild-type plants. T-DNA/plant DNA junctions from these transformed rice and Arabidopsis polQ mutants closely resembled those from wild-type plants, indicating that loss of PolQ activity does not alter the characteristics of T-DNA integration events. polQ mutant plants show growth and developmental defects, perhaps explaining previous unsuccessful attempts at their stable transformation. We suggest that either multiple redundant pathways function in T-DNA integration, and/or that integration requires some yet unknown pathway.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroaki Saika
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan
| | - Naho Hara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan
| | - Lan-Ying Lee
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12, Maioka-cho, Yokohama 244-0813, Japan
| | - Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| |
Collapse
|
55
|
Mishra D, Shekhar S, Chakraborty S, Chakraborty N. Wheat 2-Cys peroxiredoxin plays a dual role in chlorophyll biosynthesis and adaptation to high temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1374-1389. [PMID: 33283912 DOI: 10.1111/tpj.15119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 05/19/2023]
Abstract
The molecular mechanism of high-temperature stress (HTS) response, in plants, has so far been investigated using transcriptomics, while the dynamics of HTS-responsive proteome remain unexplored. We examined the adaptive responses of the resilient wheat cultivar 'Unnat Halna' and dissected the HTS-responsive proteome landscape. This led to the identification of 55 HTS-responsive proteins (HRPs), which are predominantly involved in metabolism and defense pathways. Interestingly, HRPs included a 2-cysteine peroxiredoxin (2CP), designated Ta2CP, presumably involved in stress perception and adaptation. Complementation of Ta2CP in yeast and heterologous expression in Arabidopsis demonstrated its role in thermotolerance. Both Ta2CP silencing and overexpression inferred the involvement of Ta2CP in plant growth and chlorophyll biosynthesis. We demonstrated that Ta2CP interacts with protochlorophyllide reductase b, TaPORB. Reduced TaPORB expression was found in Ta2cp-silenced plants, while upregulation was observed in Ta2CP-overexpressed plants. Furthermore, the downregulation of Ta2CP in Taporb-silenced plants and reduction of protochlorophyllide in Ta2cp-silenced plants suggested the key role of Ta2CP in chlorophyll metabolism. Additionally, the transcript levels of AGPase1 and starch were increased in Ta2cp-silenced plants. More significantly, HTS-treated Ta2cp-silenced plants showed adaptive responses despite increased reactive oxygen species and peroxide concentrations, which might help in rapid induction of high-temperature acclimation.
Collapse
Affiliation(s)
- Divya Mishra
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shubhendu Shekhar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
56
|
Nasti RA, Zinselmeier MH, Vollbrecht M, Maher MF, Voytas DF. Fast-TrACC: A Rapid Method for Delivering and Testing Gene Editing Reagents in Somatic Plant Cells. Front Genome Ed 2021; 2. [PMID: 34368798 PMCID: PMC8344638 DOI: 10.3389/fgeed.2020.621710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The production of transgenic or gene edited plants requires considerable time and effort. It is of value to know at the onset of a project whether the transgenes or gene editing reagents are functioning as predicted. To test molecular reagents transiently, we implemented an improved, Agrobacterium tumefaciens-based co-culture method called Fast-TrACC (Fast Treated Agrobacterium Co-Culture). Fast-TrACC delivers reagents to seedlings, allowing high throughput, and uses a luciferase reporter to monitor and calibrate the efficiency of reagent delivery. We demonstrate the use of Fast-TrACC in multiple solanaceous species and apply the method to test promoter activity and the effectiveness of gene editing reagents.
Collapse
Affiliation(s)
- Ryan A Nasti
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States.,Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | - Matthew H Zinselmeier
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States.,Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | - Macy Vollbrecht
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States.,Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | - Michael F Maher
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States.,Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States.,Plant and Microbial Biology Graduate Program, University of Minnesota, St. Paul, MN, United States
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States.,Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
57
|
Agrobacterium tumefaciens Deploys a Versatile Antibacterial Strategy To Increase Its Competitiveness. J Bacteriol 2021; 203:JB.00490-20. [PMID: 33168638 PMCID: PMC7811202 DOI: 10.1128/jb.00490-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
The type VI secretion system (T6SS) is a widespread antibacterial weapon capable of secreting multiple effectors for inhibition of competitor cells. Most of the effectors in the system share the same purpose of target intoxication, but the rationale for maintaining various types of effectors in a species is not well studied. In this study, we showed that a peptidoglycan amidase effector in Agrobacterium tumefaciens, Tae, cleaves d-Ala-meso-diaminopimelic acid (mDAP) and d-Glu bonds in peptidoglycan and is able to suppress the growth of Escherichia coli recipient cells. The growth suppression was effective only under the condition in which E. coli cells are actively growing. In contrast, the Tde DNase effectors in the strain possessed a dominant killing effect under carbon starvation. Microscopic analysis showed that Tde triggers cell elongation and DNA degradation, while Tae causes cell enlargement without DNA damage in E. coli recipient cells. In a rich medium, A. tumefaciens harboring only functional Tae was able to maintain competitiveness among E. coli and its own sibling cells. Growth suppression and the competitive advantage of A. tumefaciens were abrogated when recipient cells produced the Tae-specific immunity protein Tai. Given that Tae is highly conserved among A. tumefaciens strains, the combination of Tae and Tde effectors could allow A. tumefaciens to better compete with various competitors by increasing its survival during changing environmental conditions.IMPORTANCE The T6SS encodes multiple effectors with diverse functions, but little is known about the biological significance of harboring such a repertoire of effectors. We reported that the T6SS antibacterial activity of the plant pathogen Agrobacterium tumefaciens can be enhanced under carbon starvation or when recipient cell wall peptidoglycan is disturbed. This led to a newly discovered role for the T6SS peptidoglycan amidase Tae effector in providing a growth advantage dependent on the growth status of the target cell. This is in contrast to the Tde DNase effectors that are dominant during carbon starvation. Our study suggests that combining Tae and other effectors could allow A. tumefaciens to increase its competitiveness among changing environmental conditions.
Collapse
|
58
|
CRISPR/Cas9-Mediated Knockout of HOS1 Reveals Its Role in the Regulation of Secondary Metabolism in Arabidopsis thaliana. PLANTS 2021; 10:plants10010104. [PMID: 33419060 PMCID: PMC7825447 DOI: 10.3390/plants10010104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 11/17/2022]
Abstract
In Arabidopsis, the RING finger-containing E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) functions as a main regulator of the cold signaling. In this study, CRISPR/Cas9-mediated targeted mutagenesis of the HOS1 gene in the first exon was performed. DNA sequencing showed that frameshift indels introduced by genome editing of HOS1 resulted in the appearance of premature stop codons, disrupting the open reading frame. Obtained hos1Cas9 mutant plants were compared with the SALK T-DNA insertion mutant, line hos1-3, in terms of their tolerance to abiotic stresses, accumulation of secondary metabolites and expression levels of genes participating in these processes. Upon exposure to cold stress, enhanced tolerance and expression of cold-responsive genes were observed in both hos1-3 and hos1Cas9 plants. The hos1 mutation caused changes in the synthesis of phytoalexins in transformed cells. The content of glucosinolates (GSLs) was down-regulated by 1.5-times, while flavonol glycosides were up-regulated by 1.2 to 4.2 times in transgenic plants. The transcript abundance of the corresponding MYB and bHLH transcription factors, which are responsible for the regulation of secondary metabolism in Arabidopsis, were also altered. Our data suggest a relationship between HOS1-regulated downstream signaling and phytoalexin biosynthesis.
Collapse
|
59
|
Bernat-Silvestre C, De Sousa Vieira V, Sánchez-Simarro J, Aniento F, Marcote MJ. Transient Transformation of A. thaliana Seedlings by Vacuum Infiltration. Methods Mol Biol 2021; 2200:147-155. [PMID: 33175376 DOI: 10.1007/978-1-0716-0880-7_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Transient expression in Arabidopsis thaliana seedlings allows fast expression of fluorescent markers for different subcellular compartments. This protocol describes a transient transformation assay with five-day-old seedlings using Agrobacterium tumefaciens-mediated vacuum infiltration. Three days after infiltration of the Agrobacterium containing an expression vector for a fluorescent marker of interest, cotyledon cells expressing the fluorescent protein can be imaged in a confocal microscope. This assay allows high-throughput screening of new constructs and the study of the localization of a large number of subcellular markers in Arabidopsis seedlings including wild-type, stable over-expressing and mutant lines.
Collapse
Affiliation(s)
- César Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot (Valencia), Spain
| | - Vanessa De Sousa Vieira
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Judit Sánchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot (Valencia), Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot (Valencia), Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot (Valencia), Spain.
| |
Collapse
|
60
|
De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, Inzé D, Van Montagu M, Depuydt S. Agrobacterium strains and strain improvement: Present and outlook. Biotechnol Adv 2020; 53:107677. [PMID: 33290822 DOI: 10.1016/j.biotechadv.2020.107677] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/03/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
Almost 40 years ago the first transgenic plant was generated through Agrobacterium tumefaciens-mediated transformation, which, until now, remains the method of choice for gene delivery into plants. Ever since, optimized Agrobacterium strains have been developed with additional (genetic) modifications that were mostly aimed at enhancing the transformation efficiency, although an optimized strain also exists that reduces unwanted plasmid recombination. As a result, a collection of very useful strains has been created to transform a wide variety of plant species, but has also led to a confusing Agrobacterium strain nomenclature. The latter is often misleading for choosing the best-suited strain for one's transformation purposes. To overcome this issue, we provide a complete overview of the strain classification. We also indicate different strain modifications and their purposes, as well as the obtained results with regard to the transformation process sensu largo. Furthermore, we propose additional improvements of the Agrobacterium-mediated transformation process and consider several worthwhile modifications, for instance, by circumventing a defense response in planta. In this regard, we will discuss pattern-triggered immunity, pathogen-associated molecular pattern detection, hormone homeostasis and signaling, and reactive oxygen species in relationship to Agrobacterium transformation. We will also explore alterations that increase agrobacterial transformation efficiency, reduce plasmid recombination, and improve biocontainment. Finally, we recommend the use of a modular system to best utilize the available knowledge for successful plant transformation.
Collapse
Affiliation(s)
- Jonas De Saeger
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jihae Park
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Marine Sciences, Incheon National University, Incheon 406-840, South Korea
| | - Hoo Sun Chung
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
61
|
Deromachi Y, Uraguchi S, Kiyono M, Kuga K, Nishimura K, Sato MH, Hirano T. Stable expression of bacterial transporter ArsB attached to SNARE molecule enhances arsenic accumulation in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2020; 15:1802553. [PMID: 32752971 PMCID: PMC7592148 DOI: 10.1080/15592324.2020.1802553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 05/13/2023]
Abstract
Acute and chronic arsenic (As) toxicity is a global health issue affecting millions of people, which leads to inactivation of over 200 enzymes, particularly those involved in cellular energy pathways and DNA synthesis and repair. The fern Pteris vittata acts as a hyperaccumulator of As and may be useful for phytoremediation to reduce disposal risks by utilizing metal-enriched plant biomass in energy and metal recovery. However, these ferns grow in limited environments and its transplantation and transport can be challenging. Therefore, we generated a transgenic Arabidopsis plant as a seed plant model, capable of accumulating As in their vacuole lumen. This was achieved by transforming the As-resistant bacterial As transporter, ArsB, via fusion with a organelle-targeting signal to the vacuolar membrane, N-ethyl-maleimide-sensitive factor attachment protein receptors (SNAREs) protein, VAMP711. In this study, we developed the iVenus assay as a method for detecting whether the N- or C-terminus of a membrane protein is located on the cytoplasmic or exoplasmic side, and from the result of the iVenus assay, we generated the transgenic plant introduced N-terminal end of ArsB with VAMP711, localized to the central vacuolar membrane to accumulate As in the shoot and differentiation zone of root.
Collapse
Affiliation(s)
- Yusuke Deromachi
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, KyotoJapan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Kazuhiro Kuga
- Department of Life Science, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Kohji Nishimura
- Department of Life Science, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Masa H. Sato
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, KyotoJapan
| | - Tomoko Hirano
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, KyotoJapan
| |
Collapse
|
62
|
Arginine-Rich Small Proteins with a Domain of Unknown Function, DUF1127, Play a Role in Phosphate and Carbon Metabolism of Agrobacterium tumefaciens. J Bacteriol 2020; 202:JB.00309-20. [PMID: 33093235 DOI: 10.1128/jb.00309-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
In any given organism, approximately one-third of all proteins have a yet-unknown function. A widely distributed domain of unknown function is DUF1127. Approximately 17,000 proteins with such an arginine-rich domain are found in 4,000 bacteria. Most of them are single-domain proteins, and a large fraction qualifies as small proteins with fewer than 50 amino acids. We systematically identified and characterized the seven DUF1127 members of the plant pathogen Agrobacterium tumefaciens They all give rise to authentic proteins and are differentially expressed as shown at the RNA and protein levels. The seven proteins fall into two subclasses on the basis of their length, sequence, and reciprocal regulation by the LysR-type transcription factor LsrB. The absence of all three short DUF1127 proteins caused a striking phenotype in later growth phases and increased cell aggregation and biofilm formation. Protein profiling and transcriptome sequencing (RNA-seq) analysis of the wild type and triple mutant revealed a large number of differentially regulated genes in late exponential and stationary growth. The most affected genes are involved in phosphate uptake, glycine/serine homeostasis, and nitrate respiration. The results suggest a redundant function of the small DUF1127 paralogs in nutrient acquisition and central carbon metabolism of A. tumefaciens They may be required for diauxic switching between carbon sources when sugar from the medium is depleted. We end by discussing how DUF1127 might confer such a global impact on cell physiology and gene expression.IMPORTANCE Despite being prevalent in numerous ecologically and clinically relevant bacterial species, the biological role of proteins with a domain of unknown function, DUF1127, is unclear. Experimental models are needed to approach their elusive function. We used the phytopathogen Agrobacterium tumefaciens, a natural genetic engineer that causes crown gall disease, and focused on its three small DUF1127 proteins. They have redundant and pervasive roles in nutrient acquisition, cellular metabolism, and biofilm formation. The study shows that small proteins have important previously missed biological functions. How small basic proteins can have such a broad impact is a fascinating prospect of future research.
Collapse
|
63
|
Zhang Y, Chen M, Siemiatkowska B, Toleco MR, Jing Y, Strotmann V, Zhang J, Stahl Y, Fernie AR. A Highly Efficient Agrobacterium-Mediated Method for Transient Gene Expression and Functional Studies in Multiple Plant Species. PLANT COMMUNICATIONS 2020; 1:100028. [PMID: 33367253 PMCID: PMC7747990 DOI: 10.1016/j.xplc.2020.100028] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/08/2019] [Accepted: 02/03/2020] [Indexed: 05/08/2023]
Abstract
Although the use of stable transformation technology has led to great insight into gene function, its application in high-throughput studies remains arduous. Agro-infiltration have been widely used in species such as Nicotiana benthamiana for the rapid detection of gene expression and protein interaction analysis, but this technique does not work efficiently in other plant species, including Arabidopsis thaliana. As an efficient high-throughput transient expression system is currently lacking in the model plant species A. thaliana, we developed a method that is characterized by high efficiency, reproducibility, and suitability for transient expression of a variety of functional proteins in A. thaliana and 7 other plant species, including Brassica oleracea, Capsella rubella, Thellungiella salsuginea, Thellungiella halophila, Solanum tuberosum, Capsicum annuum, and N. benthamiana. Efficiency of this method was independently verified in three independent research facilities, pointing to the robustness of this technique. Furthermore, in addition to demonstrating the utility of this technique in a range of species, we also present a case study employing this method to assess protein-protein interactions in the sucrose biosynthesis pathway in Arabidopsis.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Moxian Chen
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Beata Siemiatkowska
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mitchell Rey Toleco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Yue Jing
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Vivien Strotmann
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | - Jianghua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
64
|
F-Box Gene D5RF Is Regulated by Agrobacterium Virulence Protein VirD5 and Essential for Agrobacterium-Mediated Plant Transformation. Int J Mol Sci 2020; 21:ijms21186731. [PMID: 32937889 PMCID: PMC7555846 DOI: 10.3390/ijms21186731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 11/16/2022] Open
Abstract
We previously reported that the Agrobacterium virulence protein VirD5 possesses transcriptional activation activity, binds to a specific DNA element D5RE, and is required for Agrobacterium-mediated stable transformation, but not for transient transformation. However, direct evidence for a role of VirD5 in plant transcriptional regulation has been lacking. In this study, we found that the Arabidopsis gene D5RF (coding for VirD5 response F-box protein, At3G49480) is regulated by VirD5. D5RF has two alternative transcripts of 930 bp and 1594 bp that encode F-box proteins of 309 and 449 amino acids, designated as D5RF.1 and D5RF.2, respectively. D5RF.2 has a N-terminal extension of 140 amino acids compared to D5RF.1, and both of them are located in the plant cell nucleus. The promoter of the D5RF.1 contains two D5RE elements and can be activated by VirD5. The expression of D5RF is downregulated when the host plant is infected with virD5 deleted Agrobacterium. Similar to VirD5, D5RF also affects the stable but not transient transformation efficiency of Agrobacterium. Some pathogen-responsive genes are downregulated in the d5rf mutant. In conclusion, this study further confirmed Agrobacterium VirD5 as the plant transcription activator and identified Arabidopsis thalianaD5RF.1 as the first target gene of VirD5 in regulation.
Collapse
|
65
|
Sedaghati B, Haddad R, Bandehpour M. Transient expression of human serum albumin (HSA) in tobacco leaves. Mol Biol Rep 2020; 47:7169-7177. [PMID: 32642917 DOI: 10.1007/s11033-020-05640-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
Today, recombinant human proteins make up a considerable part of FDA-approved biotechnological drugs. The selection of proper expression platform for manufacturing recombinant protein is a vital factor in achieving the optimal yield and quality of a biopharmaceutical in a timely fashion. This experiment was aimed to compare the transient expression level of human serum albumin gene in different tobacco genotype. For this, the Agrobacterium tumefaciens strains LB4404 and GV3101 harboring pBI121-HSA binary vector were infiltered in leaves of three tobacco genotypes, including Nicotiana benthamiana and N. tabacum cv Xanthi and Samsun. The qRT-PCR, SDS-PAGE, western blotting and ELISA analysis were performed to evaluate the expression of HSA gene in transgenic plantlets. Our results illustrated that the expression level of rHSA in tobacco leaves was highly dependent on Agrobacterium strains, plant genotypes and harvesting time. The highest production of recombinant HSA protein was obtained in Samsun leaves infected with A. tumefaciens strain GV3101 after 3 days of infiltration.
Collapse
Affiliation(s)
- Behnam Sedaghati
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raheem Haddad
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
66
|
Heidari-Japelaghi R, Valizadeh M, Haddad R, Dorani-Uliaie E, Jalali-Javaran M. Production of bioactive human IFN-γ protein by agroinfiltration in tobacco. Protein Expr Purif 2020; 173:105616. [PMID: 32179088 DOI: 10.1016/j.pep.2020.105616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/25/2022]
Abstract
In animals, interferon-γ (IFN-γ) is known as a cytokine involved in antiviral and anticancer activities with a higher biochemical activity in contrast to other IFNs. To produce recombinant human IFN-γ (hIFN-γ) protein in tobacco, factors influencing gene delivery were first evaluated for higher efficiency of transient expression by fluorometric measurement of GUS activity. Higher levels of transient expression were observed in leaves of Nicotiana tabacum cv. Samsun infiltrated with GV3101 strain (optical density equal to 1.0 at 600 nm) under treatment of 200 μM AS at 4 days post agroinfiltration (dpa). The Samsun cv. proved to be amenable with 1.4- and 1.5-fold higher levels of transient expression than Xanthi and N. benthamiana, respectively. In addition, the GV3101 remained the best strain for use in transient assays without any necrotic response in tobacco. The levels of transient hIFN-γ expression were also estimated in the Samsun cv. infiltrated with different Agrobacterium tumefaciens strains carrying various expression constructs. Higher levels of accumulation were obtained with targeting the hIFN-γ protein to endoplasmic reticulum (ER) or apoplastic space than those expressed into cytoplasm. Moreover, antiviral bioassay revealed that recombinant hIFN-γ protein produced in tobacco is biologically active and protects the Vero cells from infection generated by vesicular stomatitis virus (VSV).
Collapse
Affiliation(s)
- Reza Heidari-Japelaghi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Mostafa Valizadeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Raheem Haddad
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Ebrahim Dorani-Uliaie
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mokhtar Jalali-Javaran
- Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
67
|
Yang DM, Fu TF, Lin CS, Chiu TY, Huang CC, Huang HY, Chung MW, Lin YS, Manurung RV, Nguyen PNN, Chang YF. High-performance FRET biosensors for single-cell and in vivo lead detection. Biosens Bioelectron 2020; 168:112571. [PMID: 32892119 DOI: 10.1016/j.bios.2020.112571] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
Forms of lead (Pb) have been insidiously invading human life for thousands of years without obvious signs of their considerable danger to human health. Blood lead level (BLL) is the routine measure used for diagnosing the degree of lead intoxication, although it is unclear whether there is any safe range of BLL. To develop a practical detection tool for living organisms, we engineered a genetically encoded fluorescence resonance energy transfer (FRET)-based Pb2+ biosensor, 'Met-lead 1.44 M1', with excellent performance. Met-lead 1.44 M1 has an apparent dissociation constant (Kd) of 25.97 nM, a detection limit (LOD) of 10 nM (2.0 ppb/0.2 μg/dL), and an enhancement dynamic ratio of nearly ~ 5-fold upon Pb2+ binding. The 10 nM sensitivity of Met-lead 1.44 M1 is five times below the World Health Organization-permitted level of lead in tap water (10 ppb; WHO, 2017), and fifteen times lower than the maximum BLL for children (3 μg/dL). We deployed Met-lead 1.44 M1 to measure Pb2+ concentrations in different living models, including two general human cell lines and one specific line, induced pluripotent stem cell (iPSC)-derived cardiomyocytes, as well as in widely used model species in plant (Arabidopsis thaliana) and animal (Drosophila melanogaster) research. Our results suggest that this new biosensor is suitable for lead toxicological research in vitro and in vivo, and will pave the way toward potential applications for both low BLL measures and rapid detection of environmental lead in its divalent form.
Collapse
Affiliation(s)
- De-Ming Yang
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Institute of Biophotonics, National Yang-Ming University, 155 Sec-2, Li Nong Street, Taipei, 11221, Taiwan; Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, 11221, Taiwan.
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi-Nan University, Nantou, 54561, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center (ABRC), Academia Sinica, Taipei, 115, Taiwan
| | - Tai-Yu Chiu
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Chien-Chang Huang
- Core Facilities for Translational Medicines, BioTReC, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Yi Huang
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; LumiSTAR Biotechnology, Inc., National Biotechnology Research Park, Taipei, 115, Taiwan
| | - Min-Wen Chung
- LumiSTAR Biotechnology, Inc., National Biotechnology Research Park, Taipei, 115, Taiwan
| | - Yu-Syuan Lin
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Robeth Viktoria Manurung
- Research Center for Electronics and Telecommunication, Indonesian Institute of Sciences (LIPI), Indonesia
| | | | - Yu-Fen Chang
- LumiSTAR Biotechnology, Inc., National Biotechnology Research Park, Taipei, 115, Taiwan.
| |
Collapse
|
68
|
Wang FZ, Zhang N, Guo YJ, Gong BQ, Li JF. Split Nano luciferase complementation for probing protein-protein interactions in plant cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1065-1079. [PMID: 31755168 DOI: 10.1111/jipb.12891] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/15/2019] [Indexed: 05/21/2023]
Abstract
Deciphering protein-protein interactions (PPIs) is fundamental for understanding signal transduction pathways in plants. The split firefly luciferase (Fluc) complementation (SLC) assay has been widely used for analyzing PPIs. However, concern has risen about the bulky halves of Fluc interfering with the functions of their fusion partners. Nano luciferase (Nluc) is the smallest substitute for Fluc with improved stability and luminescence. Here, we developed a dual-use system enabling the detection of PPIs through the Nluc-based SLC and co-immunoprecipitation assays. This was realized by coexpression of two proteins under investigation in fusion with the HA- or FLAG-tagged Nluc halves, respectively. We validated the robustness of this system by reproducing multiple previously documented PPIs in protoplasts or Agrobacterium-transformed plants. We next applied this system to evaluate the homodimerization of Arabidopsis CERK1, a coreceptor of fungal elicitor chitin, and its heterodimerization with other homologs in the absence or presence of chitin. Moreover, split fragments of Nluc were fused to two cytosolic ends of Arabidopsis calcium channels CNGC2 and CNGC4 to help sense the allosteric change induced by the bacterial elicitor flg22. Collectively, these results demonstrate the usefulness of the Nluc-based SLC assay for probing constitutive or inducible PPIs and protein allostery in plant cells.
Collapse
Affiliation(s)
- Feng-Zhu Wang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Nannan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Sugarcane Improvement and Biorefinery, Guangdong Bioengineering Institute, Guangzhou, 510316, China
| | - Yan-Jun Guo
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ben-Qiang Gong
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian-Feng Li
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
69
|
Mooney BC, Graciet E. A simple and efficient Agrobacterium-mediated transient expression system to dissect molecular processes in Brassica rapa and Brassica napus. PLANT DIRECT 2020; 4:e00237. [PMID: 32775949 PMCID: PMC7403836 DOI: 10.1002/pld3.237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The family Brassicaceae is a source of important crop species, including Brassica napus (oilseed rape), Brassica oleracea, and B. rapa, that is used globally for oil production or as a food source (e.g., pak choi or turnip). However, despite advances in recent years, including genome sequencing, a lack of established tools tailored to the study of Brassica crop species has impeded efforts to understand their molecular processes in greater detail. Here, we describe the use of a simple Agrobacterium-mediated transient expression system adapted to B. rapa and B. napus that could facilitate study of molecular and biochemical events in these species. We also demonstrate the use of this method to characterize the N-degron pathway of protein degradation in B. rapa. The N-degron pathway is a subset of the ubiquitin-proteasome system and represents a mechanism through which proteins may be targeted for degradation based on the identity of their N-terminal amino acid residue. Interestingly, N-degron-mediated processes in plants have been implicated in the regulation of traits with potential agronomic importance, including the responses to pathogens and to abiotic stresses such as flooding tolerance. The stability of transiently expressed N-degron reporter proteins in B. rapa indicates that its N-degron pathway is highly conserved with that of Arabidopsis thaliana. These findings highlight the utility of Agrobacterium-mediated transient expression in B. rapa and B. napus and establish a framework to investigate the N-degron pathway and its roles in regulating agronomical traits in these species. SIGNIFICANCE STATEMENT We describe an Agrobacterium-mediated transient expression system applicable to Brassica crops and demonstrate its utility by identifying the destabilizing residues of the N-degron pathway in B. rapa. As the N-degron pathway functions as an integrator of environmental signals, this study could facilitate efforts to improve the robustness of Brassica crops.
Collapse
Affiliation(s)
| | - Emmanuelle Graciet
- Department of BiologyMaynooth UniversityMaynoothIreland
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynoothIreland
| |
Collapse
|
70
|
Knoke LR, Abad Herrera S, Götz K, Justesen BH, Günther Pomorski T, Fritz C, Schäkermann S, Bandow JE, Aktas M. Agrobacterium tumefaciens Small Lipoprotein Atu8019 Is Involved in Selective Outer Membrane Vesicle (OMV) Docking to Bacterial Cells. Front Microbiol 2020; 11:1228. [PMID: 32582124 PMCID: PMC7296081 DOI: 10.3389/fmicb.2020.01228] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/14/2020] [Indexed: 12/02/2022] Open
Abstract
Outer membrane vesicles (OMVs), released from Gram-negative bacteria, have been attributed to intra- and interspecies communication and pathogenicity in diverse bacteria. OMVs carry various components including genetic material, toxins, signaling molecules, or proteins. Although the molecular mechanism(s) of cargo delivery is not fully understood, recent studies showed that transfer of the OMV content to surrounding cells is mediated by selective interactions. Here, we show that the phytopathogen Agrobacterium tumefaciens, the causative agent of crown gall disease, releases OMVs, which attach to the cell surface of various Gram-negative bacteria. The OMVs contain the conserved small lipoprotein Atu8019. An atu8019-deletion mutant produced wildtype-like amounts of OMVs with a subtle but reproducible reduction in cell-attachment. Otherwise, loss of atu8019 did not alter growth, susceptibility against cations or antibiotics, attachment to plant cells, virulence, motility, or biofilm formation. In contrast, overproduction of Atu8019 in A. tumefaciens triggered cell aggregation and biofilm formation. Localization studies revealed that Atu8019 is surface exposed in Agrobacterium cells and in OMVs supporting a role in cell adhesion. Purified Atu8019 protein reconstituted into liposomes interacted with model membranes and with the surface of several Gram-negative bacteria. Collectively, our data suggest that the small lipoprotein Atu8019 is involved in OMV docking to specific bacteria.
Collapse
Affiliation(s)
- Lisa Roxanne Knoke
- Faculty of Biology and Biotechnology, Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Sara Abad Herrera
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Katrin Götz
- Faculty of Biology and Biotechnology, Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Bo Højen Justesen
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Christiane Fritz
- Faculty of Biology and Biotechnology, Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Sina Schäkermann
- Faculty of Biology and Biotechnology, Department of Applied Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Julia Elisabeth Bandow
- Faculty of Biology and Biotechnology, Department of Applied Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Meriyem Aktas
- Faculty of Biology and Biotechnology, Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
71
|
Zhao X, Min Z, Wei X, Ju Y, Fang Y. Using the Chou's 5-steps rule, transient overexpression technique, subcellular location, and bioinformatic analysis to verify the function of Vitis vinifera O-methyltranferase 3 (VvOMT3) protein. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:621-629. [PMID: 32335385 DOI: 10.1016/j.plaphy.2020.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
3-Isobutyl-2-methoxypyrazine (IBMP) is an important odor compound that revives unripe grapes or poor-quality wine. The biosynthesis of IBMP in grape berries is under the catalysis of Vitis vinifera O-methyltranferase 3 (VvOMT3). The homologous verification in this paper was carried out with the transient overexpression technique. The results showed that both the expression levels of the VvOMT3 gene and the IBMP concentration in 'Red globe' grapes increased significantly, which suggested that VvOMT3 could function in the biosynthesis of IBMP. Based on β-glucuronidase (GUS) staining results, blue color was only observed in grape pulp, not in grape skin, which indicated that VvOMT3 was expressed in grape pulp. The outcomes of the subcellular location examination performed on the protoplasts of Arabidopsis thaliana showed that the VvOMT3 protein was located on the inner surface of the cytoplasmic membrane. In summary, the VvOMT3 enzyme may function at the inner surface of the cytoplasmic membrane of pulp cells during grape development. These results will provide a background for future research on the catalytic mechanisms of VvOMT3.
Collapse
Affiliation(s)
- Xianfang Zhao
- College of Enology, Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China; Life School of Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
| | - Zhuo Min
- College of Enology, Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xiaofeng Wei
- College of Enology, Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yanlun Ju
- College of Enology, Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| | - Yulin Fang
- College of Enology, Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
72
|
Thompson MG, Moore WM, Hummel NFC, Pearson AN, Barnum CR, Scheller HV, Shih PM. Agrobacterium tumefaciens: A Bacterium Primed for Synthetic Biology. BIODESIGN RESEARCH 2020; 2020:8189219. [PMID: 37849895 PMCID: PMC10530663 DOI: 10.34133/2020/8189219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/26/2020] [Indexed: 10/19/2023] Open
Abstract
Agrobacterium tumefaciens is an important tool in plant biotechnology due to its natural ability to transfer DNA into the genomes of host plants. Genetic manipulations of A. tumefaciens have yielded considerable advances in increasing transformational efficiency in a number of plant species and cultivars. Moreover, there is overwhelming evidence that modulating the expression of various mediators of A. tumefaciens virulence can lead to more successful plant transformation; thus, the application of synthetic biology to enable targeted engineering of the bacterium may enable new opportunities for advancing plant biotechnology. In this review, we highlight engineering targets in both A. tumefaciens and plant hosts that could be exploited more effectively through precision genetic control to generate high-quality transformation events in a wider range of host plants. We then further discuss the current state of A. tumefaciens and plant engineering with regard to plant transformation and describe how future work may incorporate a rigorous synthetic biology approach to tailor strains of A. tumefaciens used in plant transformation.
Collapse
Affiliation(s)
- Mitchell G. Thompson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - William M. Moore
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Niklas F. C. Hummel
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Allison N. Pearson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Collin R. Barnum
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Patrick M. Shih
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
- Genome Center, University of California-Davis, Davis, CA, USA
| |
Collapse
|
73
|
Khakhar A, Starker CG, Chamness JC, Lee N, Stokke S, Wang C, Swanson R, Rizvi F, Imaizumi T, Voytas DF. Building customizable auto-luminescent luciferase-based reporters in plants. eLife 2020; 9:52786. [PMID: 32209230 PMCID: PMC7164954 DOI: 10.7554/elife.52786] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
Bioluminescence is a powerful biological signal that scientists have repurposed as a reporter for gene expression in plants and animals. However, there are downsides associated with the need to provide a substrate to these reporters, including its high cost and non-uniform tissue penetration. In this work we reconstitute a fungal bioluminescence pathway (FBP) in planta using a composable toolbox of parts. We demonstrate that the FBP can create luminescence across various tissues in a broad range of plants without external substrate addition. We also show how our toolbox can be used to deploy the FBP in planta to build auto-luminescent reporters for the study of gene-expression and hormone fluxes. A low-cost imaging platform for gene expression profiling is also described. These experiments lay the groundwork for future construction of programmable auto-luminescent plant traits, such as light driven plant-pollinator interactions or light emitting plant-based sensors.
Collapse
Affiliation(s)
- Arjun Khakhar
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Colby G Starker
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - James C Chamness
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, United States
| | - Sydney Stokke
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Cecily Wang
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Ryan Swanson
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Furva Rizvi
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, United States
| | - Daniel F Voytas
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| |
Collapse
|
74
|
Huang FC, Hwang HH. Arabidopsis RETICULON-LIKE4 (RTNLB4) Protein Participates in Agrobacterium Infection and VirB2 Peptide-Induced Plant Defense Response. Int J Mol Sci 2020; 21:ijms21051722. [PMID: 32138311 PMCID: PMC7084338 DOI: 10.3390/ijms21051722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/27/2022] Open
Abstract
Agrobacterium tumefaciens uses the type IV secretion system, which consists of VirB1-B11 and VirD4 proteins, to deliver effectors into plant cells. The effectors manipulate plant proteins to assist in T-DNA transfer, integration, and expression in plant cells. The Arabidopsis reticulon-like (RTNLB) proteins are located in the endoplasmic reticulum and are involved in endomembrane trafficking in plant cells. The rtnlb4 mutants were recalcitrant to A. tumefaciens infection, but overexpression of RTNLB4 in transgenic plants resulted in hypersusceptibility to A. tumefaciens transformation, which suggests the involvement of RTNLB4 in A. tumefaciens infection. The expression of defense-related genes, including FRK1, PR1, WRKY22, and WRKY29, were less induced in RTNLB4 overexpression (O/E) transgenic plants after A. tumefaciens elf18 peptide treatment. Pretreatment with elf18 peptide decreased Agrobacterium-mediated transient expression efficiency more in wild-type seedlings than RTNLB4 O/E transgenic plants, which suggests that the induced defense responses in RTNLB4 O/E transgenic plants might be affected after bacterial elicitor treatments. Similarly, A. tumefaciens VirB2 peptide pretreatment reduced transient T-DNA expression in wild-type seedlings to a greater extent than in RTNLB4 O/E transgenic seedlings. Furthermore, the VirB2 peptides induced FRK1, WRKY22, and WRKY29 gene expression in wild-type seedlings but not efr-1 and bak1 mutants. The induced defense-related gene expression was lower in RTNLB4 O/E transgenic plants than wild-type seedlings after VirB2 peptide treatment. These data suggest that RTNLB4 may participate in elf18 and VirB2 peptide-induced defense responses and may therefore affect the A. tumefaciens infection process.
Collapse
Affiliation(s)
- Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan
| | - Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-2284-0416-412
| |
Collapse
|
75
|
Cheng G, Yang Z, Zhang H, Zhang J, Xu J. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. THE NEW PHYTOLOGIST 2020; 225:2122-2139. [PMID: 31657467 DOI: 10.1111/nph.16285] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Group 1 Remorins (REMs) are extensively involved in virus trafficking through plasmodesmata (PD). However, their roles in Potyvirus cell-to-cell movement are not known. The plasma membrane (PM)-associated Ca2+ binding protein 1 (PCaP1) interacts with the P3N-PIPO of Turnip mosaic virus (TuMV) and is required for TuMV cell-to-cell movement, but the underlying mechanism remains elusive. The mutant plants with overexpression or knockout of REM1.2 were used to investigate its role in TuMV cell-to-cell movement. Arabidopsis thaliana complementary mutants of pcap1 were used to investigate the role of PCaP1 in TuMV cell-to-cell movement. Yeast-two-hybrid, bimolecular fluorescence complementation, co-immunoprecipitation and RT-qPCR assays were employed to investigate the underlying molecular mechanism. The results show that TuMV-P3N-PIPO recruits PCaP1 to PD and the actin filament-severing activity of PCaP1 is required for TuMV intercellular movement. REM1.2 negatively regulates the cell-to-cell movement of TuMV via competition with PCaP1 for binding actin filaments. As a counteractive response, TuMV mediates REM1.2 degradation via both 26S ubiquitin-proteasome and autophagy pathways through the interaction of VPg with REM1.2 to establish systemic infection in Arabidopsis. This work unveils the actin cytoskeleton and PM nanodomain-associated molecular events underlying the cell-to-cell movement of potyviruses.
Collapse
Affiliation(s)
- Guangyuan Cheng
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Zongtao Yang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Hai Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jisen Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jingsheng Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| |
Collapse
|
76
|
Liu S, Ma J, Liu H, Guo Y, Li W, Niu S. An efficient system for Agrobacterium-mediated transient transformation in Pinus tabuliformis. PLANT METHODS 2020; 16:52. [PMID: 32308730 PMCID: PMC7149934 DOI: 10.1186/s13007-020-00594-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/03/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Functional genomic studies using genetics approaches of conifers are hampered by the complex and enormous genome, long vegetative growth period, and exertion in genetic transformation. Thus, the research carried out on gene function in Pinus tabuliformis is typically performed by heterologous expression based on the model plant Arabidopsis. However, due to the evolutionary and vast diversification from non-flowering (gymnosperms) to flowering (angiosperms) plants, several key differences may alter the underlying genetic concerns and the analysis of variants. Therefore, it is essential to develop an efficient genetic transformation and gene function identification protocol for P. tabuliformis. RESULTS In the present study we established a highly efficient transgene Agrobacterium-mediated transient expression system for P. tabuliformis. Using a β-glucuronidase gene (GUS) as a reporter gene expression, the highest transformation efficiency (70.1%) was obtained by co-cultivation with Agrobacterium strain GV3101 at an optical density at 600 nm of 0.8, with 150 μM acetosyringone for 30 min followed by 3 days in the dark at 23 ± 1 °C. This protocol would be applied to other conifers; GUS staining was observed 24 h post-infection. CONCLUSIONS We report a simple, fast, and resilient system for transient Agrobacterium-mediated transformation high-level expression of target genes in P. tabuliformis, which will also improve transformation efficiency in other conifer species.
Collapse
Affiliation(s)
- Shuangwei Liu
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Jingjing Ma
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Hongmei Liu
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Yingtian Guo
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Shihui Niu
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| |
Collapse
|
77
|
Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, Voytas DF. Plant gene editing through de novo induction of meristems. Nat Biotechnol 2020; 38:84-89. [PMID: 31844292 PMCID: PMC6954279 DOI: 10.1038/s41587-019-0337-2] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/30/2019] [Indexed: 11/12/2022]
Abstract
Plant gene editing is typically performed by delivering reagents such as Cas9 and single guide RNAs to explants in culture. Edited cells are then induced to differentiate into whole plants by exposure to various hormones. The creation of edited plants through tissue culture is often inefficient, time-consuming, works for only limited species and genotypes, and causes unintended changes to the genome and epigenome. Here we report two methods to generate gene-edited dicotyledonous plants through de novo meristem induction. Developmental regulators and gene-editing reagents are delivered to somatic cells of whole plants. This induces meristems that produce shoots with targeted DNA modifications, and gene edits are transmitted to the next generation. The de novo induction of gene-edited meristems sidesteps the need for tissue culture and promises to overcome a bottleneck in plant gene editing.
Collapse
Affiliation(s)
- Michael F Maher
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, USA
| | - Ryan A Nasti
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, USA
| | - Macy Vollbrecht
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, USA
| | - Colby G Starker
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, USA
| | - Matthew D Clark
- Department of Horticultural Sciences, University of Minnesota, St. Paul, MN, USA
| | - Daniel F Voytas
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA.
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, USA.
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, USA.
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
78
|
Shokouhifar F, Bahrabadi M, Bagheri A, Mamarabadi M. Transient expression analysis of synthetic promoters containing F and D cis-acting elements in response to Ascochyta rabiei and two plant defense hormones. AMB Express 2019; 9:195. [PMID: 31802269 PMCID: PMC6892989 DOI: 10.1186/s13568-019-0919-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 11/22/2019] [Indexed: 11/30/2022] Open
Abstract
Introduction of a foreign gene coding for a pathogen resistant protein into the target plant and constitutive expression of Resistance (R) proteins may confer high level of resistance. However, genetic engineering could lead to reprogramming of molecular mechanisms that manage physiological behavior, which in turn could lead to undesired results. Therefore, using a pathogen-inducible synthetic promoter approach, response to pathogens could be more specific. Ascochyta rabiei is a destructive fungal pathogen in chickpea production. In this study, we analyzed the expression pattern of three synthetic promoters in response to pathogen and two defense hormones. We have tested three synthetic pathogen-inducible promoters designated as (1) synthetic promoter-D box-D box (SP-DD), (2) synthetic promoter-F element-F element (SP-FF) and (3) synthetic promoter-F element-F element-D box-D box (SP-FFDD) via Agrobacterium transient expression assay. The cis-acting element designated as 'D' is a 31 base pair sequence from the promoter of parsley pathogenesis-related gene 2 (PR2 gene) and the cis-acting element designated as 'F' is a 39 base pairs sequence from the promoter of Arabidopsis AtCMPG1 gene. We used mycelial extracts from two pathotypes of A. rabiei as elicitor to define the responsiveness of the promoters against pathogen. Plant phytohormones including salicylic acid and methyl jasmonate were also used to study the promoter sensitivity in plant signaling pathways. Our results showed that the SP-FF promoter was highly inducible to A. rabiei and methyl jasmonate as well, while the SP-DD promoter was more sensitive to salicylic acid. The SP-FFDD promoter was equally responsive to both pathotypes of A. rabiei which is probably due to the complex nature of box D cis-acting element.
Collapse
Affiliation(s)
- Farhad Shokouhifar
- Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marjan Bahrabadi
- Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashahad, Iran
| | - Mojtaba Mamarabadi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashahad, Iran
| |
Collapse
|
79
|
Locascio A, Marqués MC, García-Martínez G, Corratgé-Faillie C, Andrés-Colás N, Rubio L, Fernández JA, Véry AA, Mulet JM, Yenush L. BCL2-ASSOCIATED ATHANOGENE4 Regulates the KAT1 Potassium Channel and Controls Stomatal Movement. PLANT PHYSIOLOGY 2019; 181:1277-1294. [PMID: 31451552 PMCID: PMC6836829 DOI: 10.1104/pp.19.00224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/05/2019] [Indexed: 05/18/2023]
Abstract
Potassium (K+) is a key monovalent cation necessary for multiple aspects of cell growth and survival. In plants, this cation also plays a key role in the control of stomatal movement. KAT1 and its homolog KAT2 are the main inward rectifying channels present in guard cells, mediating K+ influx into these cells, resulting in stomatal opening. To gain further insight into the regulation of these channels, we performed a split-ubiquitin protein-protein interaction screen searching for KAT1 interactors in Arabidopsis (Arabidopsis thaliana). We characterized one of these candidates, BCL2-ASSOCIATED ATHANOGENE4 (BAG4), in detail using biochemical and genetic approaches to confirm this interaction and its effect on KAT1 activity. We show that BAG4 improves KAT1-mediated K+ transport in two heterologous systems and provide evidence that in plants, BAG4 interacts with KAT1 and favors the arrival of KAT1 at the plasma membrane. Importantly, lines lacking or overexpressing the BAG4 gene show altered KAT1 plasma membrane accumulation and alterations in stomatal movement. Our data allowed us to identify a KAT1 regulator and define a potential target for the plant BAG family. The identification of physiologically relevant regulators of K+ channels will aid in the design of approaches that may impact drought tolerance and pathogen susceptibility.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Maria Carmen Marqués
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Guillermo García-Martínez
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Claire Corratgé-Faillie
- Biochimie et Physiologie Moléculaire des Plantes, Université Montpellier, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique (INRA), SupAgro Montpellier, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Lourdes Rubio
- Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos S/N, 29010 Málaga, Spain
| | - José Antonio Fernández
- Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos S/N, 29010 Málaga, Spain
| | - Anne-Aliénor Véry
- Biochimie et Physiologie Moléculaire des Plantes, Université Montpellier, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique (INRA), SupAgro Montpellier, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|
80
|
Sun G, Feng C, Guo J, Zhang A, Xu Y, Wang Y, Day B, Ma Q. The tomato Arp2/3 complex is required for resistance to the powdery mildew fungus Oidium neolycopersici. PLANT, CELL & ENVIRONMENT 2019; 42:2664-2680. [PMID: 31038756 PMCID: PMC7747227 DOI: 10.1111/pce.13569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 05/04/2023]
Abstract
The actin-related protein 2/3 complex (Arp2/3 complex), a key regulator of actin cytoskeletal dynamics, has been linked to multiple cellular processes, including those associated with response to stress. Herein, the Solanum habrochaites ARPC3 gene, encoding a subunit protein of the Arp2/3 complex, was identified and characterized. ShARPC3 encodes a 174-amino acid protein possessing a conserved P21-Arc domain. Silencing of ShARPC3 resulted in enhanced susceptibility to the powdery mildew pathogen Oidium neolycopersici (On-Lz), demonstrating a role for ShARPC3 in defence signalling. Interestingly, a loss of ShARPC3 coincided with enhanced susceptibility to On-Lz, a process that we hypothesize is the result of a block in the activity of SA-mediated defence signalling. Conversely, overexpression of ShARPC3 in Arabidopsis thaliana, followed by inoculation with On-Lz, showed enhanced resistance, including the rapid induction of hypersensitive cell death and the generation of reactive oxygen. Heterologous expression of ShARPC3 in the arc18 mutant of Saccharomyces cerevisiae (i.e., ∆arc18) resulted in complementation of stress-induced phenotypes, including high-temperature tolerance. Taken together, these data support a role for ShARPC3 in tomato through positive regulation of plant immunity in response to O. neolycopersici pathogenesis.
Collapse
Affiliation(s)
- Guangzheng Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chanjing Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ancheng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuanliu Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan
| | - Qing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
81
|
Tzean Y, Lee MC, Jan HH, Chiu YS, Tu TC, Hou BH, Chen HM, Chou CN, Yeh HH. Cucumber mosaic virus-induced gene silencing in banana. Sci Rep 2019; 9:11553. [PMID: 31399618 PMCID: PMC6689018 DOI: 10.1038/s41598-019-47962-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/25/2019] [Indexed: 11/17/2022] Open
Abstract
Banana (Musa spp.) is one of the world's most important staple and cash crops. Despite accumulating genetic and transcriptomic data, low transformation efficiency in agronomically important Musa spp. render translational researches in banana difficult by using conventional knockout approaches. To develop tools for translational research in bananas, we developed a virus induced-gene silencing (VIGS) system based on a banana-infecting cucumber mosaic virus (CMV) isolate, CMV 20. CMV 20 genomic RNA 1, 2, and 3, were separately cloned in Agrobacterium pJL89 binary vectors, and a cloning site was introduced on RNA 2 immediately after the 2a open reading frame to insert the gene targeted for silencing. An efficient Agrobacterium inoculation method was developed for banana, which enabled the CMV 20 VIGS vector infection rate to reach 95% in our experiments. CMV 20-based silencing of Musa acuminata cv. Cavendish (AAA group) glutamate 1-semialdehyde aminotransferase (MaGSA) produced a typical chlorotic phenotype and silencing of M. acuminata phytoene desaturase (MaPDS) produced a photobleachnig phenotype. We show this approach efficiently reduced GSA and PDS transcripts to 10% and 18% of the control, respectively. The high infection rate and extended silencing of this VIGS system will provide an invaluable tool to accelerate functional genomic studies in banana.
Collapse
Affiliation(s)
- Yuh Tzean
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Ming-Chi Lee
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Hsiao-Hsuan Jan
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei, 10617, Taiwan
| | - Yi-Shu Chiu
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Tsui-Chin Tu
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Bo-Han Hou
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Ho-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Chun-Nan Chou
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei, 10617, Taiwan
| | - Hsin-Hung Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan.
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei, 10617, Taiwan.
| |
Collapse
|
82
|
McCarthy RR, Yu M, Eilers K, Wang Y, Lai E, Filloux A. Cyclic di-GMP inactivates T6SS and T4SS activity in Agrobacterium tumefaciens. Mol Microbiol 2019; 112:632-648. [PMID: 31102484 PMCID: PMC6771610 DOI: 10.1111/mmi.14279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 01/17/2023]
Abstract
The Type VI secretion system (T6SS) is a bacterial nanomachine that delivers effector proteins into prokaryotic and eukaryotic preys. This secretion system has emerged as a key player in regulating the microbial diversity in a population. In the plant pathogen Agrobacterium tumefaciens, the signalling cascades regulating the activity of this secretion system are poorly understood. Here, we outline how the universal eubacterial second messenger cyclic di-GMP impacts the production of T6SS toxins and T6SS structural components. We demonstrate that this has a significant impact on the ability of the phytopathogen to compete with other bacterial species in vitro and in planta. Our results suggest that, as opposed to other bacteria, c-di-GMP turns down the T6SS in A. tumefaciens thus impacting its ability to compete with other bacterial species within the rhizosphere. We also demonstrate that elevated levels of c-di-GMP within the cell decrease the activity of the Type IV secretion system (T4SS) and subsequently the capacity of A. tumefaciens to transform plant cells. We propose that such peculiar control reflects on c-di-GMP being a key second messenger that silences energy-costing systems during early colonization phase and biofilm formation, while low c-di-GMP levels unleash T6SS and T4SS to advance plant colonization.
Collapse
Affiliation(s)
- Ronan R. McCarthy
- MRC Centre for Molecular Bacteriology and Infection, Department of Life SciencesImperial College LondonLondonSW7 2AZUK
- Division of Biosciences, Department of Life SciencesCollege of Health and Life Sciences, Brunel University LondonUxbridgeUB8 3PHUK
| | - Manda Yu
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Kira Eilers
- MRC Centre for Molecular Bacteriology and Infection, Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | - Yi‐Chieh Wang
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Erh‐Min Lai
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
83
|
Haryono M, Cho ST, Fang MJ, Chen AP, Chou SJ, Lai EM, Kuo CH. Differentiations in Gene Content and Expression Response to Virulence Induction Between Two Agrobacterium Strains. Front Microbiol 2019; 10:1554. [PMID: 31354658 PMCID: PMC6629968 DOI: 10.3389/fmicb.2019.01554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/21/2019] [Indexed: 01/15/2023] Open
Abstract
Agrobacterium tumefaciens is important in biotechnology due to its ability to transform eukaryotic cells. Although the molecular mechanisms have been studied extensively, previous studies were focused on the model strain C58. Consequently, nearly all of the commonly used strains for biotechnology application were derived from C58 and share similar host ranges. To overcome this limitation, better understanding of the natural genetic variation could provide valuable insights. In this study, we conducted comparative analysis between C58 and 1D1609. These two strains belong to different genomospecies within the species complex and have distinct infectivity profiles. Genome comparisons revealed that each strain has >1,000 unique genes in addition to the 4,115 shared genes. Furthermore, the divergence in gene content and sequences vary among replicons. The circular chromosome is much more conserved compared to the linear chromosome. To identify the genes that may contribute to their differentiation in virulence, we compared the transcriptomes to screen for genes differentially expressed in response to the inducer acetosyringone. Based on the RNA-Seq results with three biological replicates, ∼100 differentially expressed genes were identified in each strain. Intriguingly, homologous genes with the same expression pattern account for <50% of these differentially expressed genes. This finding indicated that phenotypic variation may be partially explained by divergence in expression regulation. In summary, this study characterized the genomic and transcriptomic differences between two representative Agrobacterium strains. Moreover, the short list of differentially expressed genes are promising candidates for future characterization, which could improve our understanding of the genetic mechanisms for phenotypic divergence.
Collapse
Affiliation(s)
- Mindia Haryono
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Jane Fang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ai-Ping Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
84
|
Urquiza-García U, Millar AJ. Expanding the bioluminescent reporter toolkit for plant science with NanoLUC. PLANT METHODS 2019; 15:68. [PMID: 31316580 PMCID: PMC6613265 DOI: 10.1186/s13007-019-0454-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/28/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Protein data over circadian time scale is scarce for clock transcription factors. Further work in this direction is required for refining quantitative clock models. However, gathering highly resolved dynamics of low-abundance transcription factors has been a major challenge in the field. In this work we provide a new tool that could help this major issue. Bioluminescence is an important tool for gathering data on circadian gene expression. It allows data collection over extended time periods for low signal levels, thanks to a large signal-to-noise ratio. However, the main reporter so far used, firefly luciferase (FLUC), presents some disadvantages for reporting total protein levels. For example, the rapid, post-translational inactivation of this luciferase will result in underestimation of protein numbers. A more stable reporter protein could in principle tackle this issue. We noticed that NanoLUC might fill this gap, given its reported brightness and the stability of both enzyme and substrate. However, no data in plant systems on the circadian time scale had been reported. RESULTS We tested NanoLUC activity under different scenarios that will be important for generating highly quantitative data. These include enzyme purification for calibration curves, expression in transient plant systems, stable transgenic plants and in planta time series over circadian time scales. Furthermore, we show that the difference in substrate use between firefly luciferase and NanoLUC allows tracking of two different reporters from the same samples. We show this by exploring the impact of a BOAp:BOA-NanoLUC construct transformed into a Col-0 CCA1p:FLUC background. CONCLUSIONS We concluded that NanoLUC reporters are compatible with established instrumentation and protocols for firefly luciferase. Overall, our results provide guidelines for researchers gathering dynamic protein data over different time scales and experimental setups.
Collapse
Affiliation(s)
- Uriel Urquiza-García
- SynthSys and School of Biological Sciences, University of Edinburgh, C. H. Waddington Building, King’s Buildings, Max Born Crescent, Edinburgh, EH9 3BF Scotland, UK
- Institute for Molecular Plant Sciences, University of Edinburgh, D. Rutherford Building, King’s Buildings, Edinburgh, EH9 3BF UK
| | - Andrew J. Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, C. H. Waddington Building, King’s Buildings, Max Born Crescent, Edinburgh, EH9 3BF Scotland, UK
| |
Collapse
|
85
|
Mortensen S, Bernal-Franco D, Cole LF, Sathitloetsakun S, Cram EJ, Lee-Parsons CWT. EASI Transformation: An Efficient Transient Expression Method for Analyzing Gene Function in Catharanthus roseus Seedlings. FRONTIERS IN PLANT SCIENCE 2019; 10:755. [PMID: 31263474 PMCID: PMC6585625 DOI: 10.3389/fpls.2019.00755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/24/2019] [Indexed: 05/07/2023]
Abstract
The Catharanthus roseus plant is the exclusive source of the valuable anticancer terpenoid indole alkaloids, vinblastine (VB) and vincristine (VC). The recent availability of transcriptome and genome resources for C. roseus necessitates a fast and reliable method for studying gene function. In this study, we developed an Agrobacterium-mediated transient expression method to enable the functional study of genes rapidly in planta, conserving the compartmentalization observed in the VB and VC pathway. We focused on (1) improving the transformation method (syringe versus vacuum agroinfiltration) and cultivation conditions (seedling age, Agrobacterium density, and time point of maximum transgene expression), (2) improving transformation efficiency through the constitutive expression of the virulence genes and suppressing RNA silencing mechanisms, and (3) improving the vector design by incorporating introns, quantitative and qualitative reporter genes (luciferase and GUS genes), and accounting for transformation heterogeneity across the tissue using an internal control. Of all the parameters tested, vacuum infiltration of young seedlings (10-day-old, harvested 3 days post-infection) resulted in the strongest increase in transgene expression, at 18 - 57 fold higher than either vacuum or syringe infiltration of other seedling ages. Endowing the A. tumefaciens strain with the mutated VirGN54D or silencing suppressors within the same plasmid as the reporter gene further increased expression by 2 - 10 fold. For accurate measurement of promoter transactivation or activity, we included an internal control to normalize the differences in plant mass and transformation efficiency. Including the normalization gene (Renilla luciferase) on the same plasmid as the reporter gene (firefly luciferase) consistently yielded a high signal and a high correlation between RLUC and FLUC. As proof of principle, we applied this approach to investigate the regulation of the CroSTR1 promoter with the well-known activator ORCA3 and repressor ZCT1. Our method demonstrated the quantitative assessment of both the activation and repression of promoter activity in C. roseus. Our efficient Agrobacterium-mediated seedling infiltration (EASI) protocol allows highly efficient, reproducible, and homogenous transformation of C. roseus cotyledons and provides a timely tool for the community to rapidly assess the function of genes in planta, particularly for investigating how transcription factors regulate terpenoid indole alkaloid biosynthesis.
Collapse
Affiliation(s)
- Samuel Mortensen
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Diana Bernal-Franco
- Department of Biology, Northeastern University, Boston, MA, United States
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Lauren F. Cole
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Suphinya Sathitloetsakun
- Department of Biology, Northeastern University, Boston, MA, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
| | - Erin J. Cram
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Carolyn W. T. Lee-Parsons
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
| |
Collapse
|
86
|
Roca Paixão JF, Gillet FX, Ribeiro TP, Bournaud C, Lourenço-Tessutti IT, Noriega DD, Melo BPD, de Almeida-Engler J, Grossi-de-Sa MF. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Sci Rep 2019; 9:8080. [PMID: 31147630 PMCID: PMC6542788 DOI: 10.1038/s41598-019-44571-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/09/2019] [Indexed: 12/16/2022] Open
Abstract
Drought episodes decrease plant growth and productivity, which in turn cause high economic losses. Plants naturally sense and respond to water stress by activating specific signalling pathways leading to physiological and developmental adaptations. Genetically engineering genes that belong to these pathways might improve the drought tolerance of plants. The abscisic acid (ABA)-responsive element binding protein 1/ABRE binding factor (AREB1/ABF2) is a key positive regulator of the drought stress response. We investigated whether the CRISPR activation (CRISPRa) system that targets AREB1 might contribute to improve drought stress tolerance in Arabidopsis. Arabidopsis histone acetyltransferase 1 (AtHAT1) promotes gene expression activation by switching chromatin to a relaxed state. Stable transgenic plants expressing chimeric dCas9HAT were first generated. Then, we showed that the CRISPRa dCas9HAT mechanism increased the promoter activity controlling the β-glucuronidase (GUS) reporter gene. To activate the endogenous promoter of AREB1, the CRISPRa dCas9HAT system was set up, and resultant plants showed a dwarf phenotype. Our qRT-PCR experiments indicated that both AREB1 and RD29A, a gene positively regulated by AREB1, exhibited higher gene expression than the control plants. The plants generated here showed higher chlorophyll content and faster stomatal aperture under water deficit, in addition to a better survival rate after drought stress. Altogether, we report that CRISPRa dCas9HAT is a valuable biotechnological tool to improve drought stress tolerance through the positive regulation of AREB1.
Collapse
Affiliation(s)
- Joaquin Felipe Roca Paixão
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil. .,INRA, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, France.
| | | | | | | | | | - Daniel D Noriega
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | | | | | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil. .,Catholic University of Brasilia - Post-Graduation Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil.
| |
Collapse
|
87
|
Effects of Abscisic Acid and Salicylic Acid on Gene Expression in the Antiviral RNA Silencing Pathway in Arabidopsis. Int J Mol Sci 2019; 20:ijms20102538. [PMID: 31126102 PMCID: PMC6566719 DOI: 10.3390/ijms20102538] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
The RNA silencing pathways modulate responses to certain stresses, and can be partially tuned by several hormones such as salicylic acid (SA) and abscisic acid (ABA). Although SA and ABA are often antagonistic and often modulate different stress responses, they have similar effects on virus resistance, which are partially achieved through the antiviral RNA silencing pathway. Whether they play similar roles in regulating the RNA silencing pathway is unclear. By employing coexpression and promoter analyses, we found that some ABA- and SA-related transcription factors (TFs) are coexpressed with several AGO, DCL, and RDR genes, and have multiple binding sites for the identified TFs in the queried promoters. ABA and SA are antagonistic with respect to the expression of AGO1 and RDRs because ABA was able to induce these genes only in the SA mutant. Nevertheless, both hormones showed similarities in the regulation of other genes, for example, the induction of AGO2 by ABA was SA-dependent, indicating that ABA acts upstream of SA in this regulation. We inferred that the similar effects of ABA and SA on some genes resulted in the redundancy of their roles in resistance to bamboo mosaic virus, but that the two hormones are antagonistic with respect to other genes unrelated to their biosynthesis pathways.
Collapse
|
88
|
The RNase YbeY Is Vital for Ribosome Maturation, Stress Resistance, and Virulence of the Natural Genetic Engineer Agrobacterium tumefaciens. J Bacteriol 2019; 201:JB.00730-18. [PMID: 30885931 DOI: 10.1128/jb.00730-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
Riboregulation involving regulatory RNAs, RNA chaperones, and ribonucleases is fundamental for the rapid adaptation of gene expression to changing environmental conditions. The gene coding for the RNase YbeY belongs to the minimal prokaryotic genome set and has a profound impact on physiology in a wide range of bacteria. Here, we show that the Agrobacterium tumefaciens ybeY gene is not essential. Deletion of the gene in the plant pathogen reduced growth, motility, and stress tolerance. Most interestingly, YbeY is crucial for A. tumefaciens-mediated T-DNA transfer and tumor formation. Comparative proteomics by using isobaric tags for relative and absolute quantitation (iTRAQ) revealed dysregulation of 59 proteins, many of which have previously been found to be dependent on the RNA chaperone Hfq. YbeY and Hfq have opposing effects on production of these proteins. Accumulation of a 16S rRNA precursor in the ybeY mutant suggests that A. tumefaciens YbeY is involved in rRNA processing. RNA coimmunoprecipitation-sequencing (RIP-Seq) showed binding of YbeY to the region immediately upstream of the 16S rRNA. Purified YbeY is an oligomer with RNase activity. It does not physically interact with Hfq and thus plays a partially overlapping but distinct role in the riboregulatory network of the plant pathogen.IMPORTANCE Although ybeY gene belongs to the universal bacterial core genome, its biological function is incompletely understood. Here, we show that YbeY is critical for fitness and host-microbe interaction in the plant pathogen Agrobacterium tumefaciens Consistent with the reported endoribonuclease activity of YbeY, A. tumefaciens YbeY acts as a RNase involved in maturation of 16S rRNA. This report adds a worldwide plant pathogen and natural genetic engineer of plants to the growing list of bacteria that require the conserved YbeY protein for host-microbe interaction.
Collapse
|
89
|
Kerpen L, Niccolini L, Licausi F, van Dongen JT, Weits DA. Hypoxic Conditions in Crown Galls Induce Plant Anaerobic Responses That Support Tumor Proliferation. FRONTIERS IN PLANT SCIENCE 2019; 10:56. [PMID: 30804956 PMCID: PMC6371838 DOI: 10.3389/fpls.2019.00056] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/16/2019] [Indexed: 05/21/2023]
Abstract
Agrobacterium tumefaciens infection of wounded plant tissues causes the formation of crown gall tumors. Upon infection, genes encoded on the A. tumefaciens tumor inducing plasmid are integrated in the plant genome to induce the biosynthesis of auxin and cytokinin, leading to uncontrolled cell division. Additional sequences present on the bacterial T-DNA encode for opine biosynthesis genes, which induce the production of opines that act as a unique carbon and nitrogen source for Agrobacterium. Crown galls therefore become a very strong sink for photosynthate. Here we found that the increased metabolic demand in crown galls causes an increase in oxygen consumption rate, which leads to a steep drop in the internal oxygen concentration. Consistent with this, plant hypoxia-responsive genes were found to be significantly upregulated in crown galls compared to uninfected stem tissue. Following this observation, we aimed at understanding whether the low-oxygen response pathway, mediated by group VII ethylene response factor (ERF-VII) transcription factors, plays a role in the development of crown galls. We found that quintuple knock-out mutants of all ERF-VII members, which are incapable of inducing the hypoxic response, show reduced crown gall symptoms. Conversely, mutant genotypes characterized by constitutively high levels of hypoxia-associated transcripts, displayed more severe crown gall symptoms. Based on these results, we concluded that uncontrolled cell proliferation of crown galls established hypoxic conditions, thereby requiring adequate anaerobic responses of the plant tissue to support tumor growth.
Collapse
Affiliation(s)
- Lucy Kerpen
- Institute of Biology I, RWTH Aachen University, Aachen, Germany
| | | | - Francesco Licausi
- Department of Biology, University of Pisa, Pisa, Italy
- Scuola Superiore Sant’Anna, Institute of Life Sciences, Pisa, Italy
| | | | - Daan A. Weits
- Institute of Biology I, RWTH Aachen University, Aachen, Germany
- Scuola Superiore Sant’Anna, Institute of Life Sciences, Pisa, Italy
| |
Collapse
|
90
|
Veillet F, Perrot L, Chauvin L, Kermarrec MP, Guyon-Debast A, Chauvin JE, Nogué F, Mazier M. Transgene-Free Genome Editing in Tomato and Potato Plants Using Agrobacterium-Mediated Delivery of a CRISPR/Cas9 Cytidine Base Editor. Int J Mol Sci 2019. [PMID: 30669298 DOI: 10.2290/ijms20020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Genome editing tools have rapidly been adopted by plant scientists for gene function discovery and crop improvement. The current technical challenge is to efficiently induce precise and predictable targeted point mutations valuable for crop breeding purposes. Cytidine base editors (CBEs) are CRISPR/Cas9 derived tools recently developed to direct a C-to-T base conversion. Stable genomic integration of CRISPR/Cas9 components through Agrobacterium-mediated transformation is the most widely used approach in dicotyledonous plants. However, elimination of foreign DNA may be difficult to achieve, especially in vegetatively propagated plants. In this study, we targeted the acetolactate synthase (ALS) gene in tomato and potato by a CBE using Agrobacterium-mediated transformation. We successfully and efficiently edited the targeted cytidine bases, leading to chlorsulfuron-resistant plants with precise base edition efficiency up to 71% in tomato. More importantly, we produced 12.9% and 10% edited but transgene-free plants in the first generation in tomato and potato, respectively. Such an approach is expected to decrease deleterious effects due to the random integration of transgene(s) into the host genome. Our successful approach opens up new perspectives for genome engineering by the co-edition of the ALS with other gene(s), leading to transgene-free plants harboring new traits of interest.
Collapse
Affiliation(s)
- Florian Veillet
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Laura Perrot
- INRA PACA, UR 1052, GAFL unit (Génétique et Amélioration des Fruits et Légumes), 84143 Montfavet, France.
| | - Laura Chauvin
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Marie-Paule Kermarrec
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Jean-Eric Chauvin
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Marianne Mazier
- INRA PACA, UR 1052, GAFL unit (Génétique et Amélioration des Fruits et Légumes), 84143 Montfavet, France.
| |
Collapse
|
91
|
Veillet F, Perrot L, Chauvin L, Kermarrec MP, Guyon-Debast A, Chauvin JE, Nogué F, Mazier M. Transgene-Free Genome Editing in Tomato and Potato Plants Using Agrobacterium-Mediated Delivery of a CRISPR/Cas9 Cytidine Base Editor. Int J Mol Sci 2019; 20:E402. [PMID: 30669298 PMCID: PMC6358797 DOI: 10.3390/ijms20020402] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/13/2023] Open
Abstract
Genome editing tools have rapidly been adopted by plant scientists for gene function discovery and crop improvement. The current technical challenge is to efficiently induce precise and predictable targeted point mutations valuable for crop breeding purposes. Cytidine base editors (CBEs) are CRISPR/Cas9 derived tools recently developed to direct a C-to-T base conversion. Stable genomic integration of CRISPR/Cas9 components through Agrobacterium-mediated transformation is the most widely used approach in dicotyledonous plants. However, elimination of foreign DNA may be difficult to achieve, especially in vegetatively propagated plants. In this study, we targeted the acetolactate synthase (ALS) gene in tomato and potato by a CBE using Agrobacterium-mediated transformation. We successfully and efficiently edited the targeted cytidine bases, leading to chlorsulfuron-resistant plants with precise base edition efficiency up to 71% in tomato. More importantly, we produced 12.9% and 10% edited but transgene-free plants in the first generation in tomato and potato, respectively. Such an approach is expected to decrease deleterious effects due to the random integration of transgene(s) into the host genome. Our successful approach opens up new perspectives for genome engineering by the co-edition of the ALS with other gene(s), leading to transgene-free plants harboring new traits of interest.
Collapse
Affiliation(s)
- Florian Veillet
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Laura Perrot
- INRA PACA, UR 1052, GAFL unit (Génétique et Amélioration des Fruits et Légumes), 84143 Montfavet, France.
| | - Laura Chauvin
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Marie-Paule Kermarrec
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Jean-Eric Chauvin
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Marianne Mazier
- INRA PACA, UR 1052, GAFL unit (Génétique et Amélioration des Fruits et Légumes), 84143 Montfavet, France.
| |
Collapse
|
92
|
Joseph JT, Poolakkalody NJ, Shah JM. Screening internal controls for expression analyses involving numerous treatments by combining statistical methods with reference gene selection tools. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:289-301. [PMID: 30804650 PMCID: PMC6352529 DOI: 10.1007/s12298-018-0608-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/06/2018] [Accepted: 09/24/2018] [Indexed: 06/09/2023]
Abstract
Real-time PCR is always the method of choice for expression analyses involving comparison of a large number of treatments. It is also the favored method for final confirmation of transcript levels followed by high throughput methods such as RNA sequencing and microarray. Our analysis comprised 16 different permutation and combinations of treatments involving four different Agrobacterium strains and three time intervals in the model plant Arabidopsis thaliana. The routinely used reference genes for biotic stress analyses in plants showed variations in expression across some of our treatments. In this report, we describe how we narrowed down to the best reference gene out of 17 candidate genes. Though we initiated our reference gene selection process using common tools such as geNorm, Normfinder and BestKeeper, we faced situations where these software-selected candidate genes did not completely satisfy all the criteria of a stable reference gene. With our novel approach of combining simple statistical methods such as t test, ANOVA and post hoc analyses, along with the routine software-based analyses, we could perform precise evaluation and we identified two genes, UBQ10 and PPR as the best reference genes for normalizing mRNA levels in the context of 16 different conditions of Agrobacterium infection. Our study emphasizes the usefulness of applying statistical analyses along with the reference gene selection software for reference gene identification in experiments involving the comparison of a large number of treatments.
Collapse
Affiliation(s)
- Joyous T. Joseph
- Department of Plant Science, Central University of Kerala, Periye, Kasaragod, 671316 India
| | | | - Jasmine M. Shah
- Department of Plant Science, Central University of Kerala, Periye, Kasaragod, 671316 India
| |
Collapse
|
93
|
Pike S, Gassmann W, Su J. Generating Transgenic Arabidopsis Plants for Functional Analysis of Pathogen Effectors and Corresponding R Proteins. Methods Mol Biol 2019; 1991:199-206. [PMID: 31041774 DOI: 10.1007/978-1-4939-9458-8_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inducible expression of a pathogen effector has been proven to be a powerful strategy for dissecting its virulence and avirulence functions. However, leaky expression of some effector proteins can cause drastic physiological changes, such as growth retardation, accelerated senescence, and sterility. Unfortunately, leaky expression from current inducible vectors is unavoidable. To overcome these problems, a highly efficient Arabidopsis transformation protocol is described here, which allows the generation of hundreds to over a thousand T1 plants for selecting appropriate lines. In addition, since transgenic silencing is frequently observed, a principle for screening stable transgenic plants is also introduced.
Collapse
Affiliation(s)
- Sharon Pike
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Walter Gassmann
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Jianbin Su
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
94
|
Agrobacterium-mediated horizontal gene transfer: Mechanism, biotechnological application, potential risk and forestalling strategy. Biotechnol Adv 2018; 37:259-270. [PMID: 30579929 DOI: 10.1016/j.biotechadv.2018.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/20/2022]
Abstract
The extraordinary capacity of Agrobacterium to transfer its genetic material to host cell makes it evolve from phytopathogen to a powerful transgenic vector. Agrobacterium-mediated stable transformation is widely used as the preferred method to create transgenic plants for molecular plant biology research and crop breeding. Recent years, both mechanism and application of Agrobacterium-mediated horizontal gene transfer have made significant progresses, especially Agrobacterium-mediated transient transformation was developed for plant biotechnology industry to produce recombinant proteins. Agrobacterium strains are almost used and saved not only by each of microbiology and molecular plant labs, but also by many of plant biotechnology manufacturers. Agrobacterium is able to transfer its genetic material to a broad range of hosts, including plant and non-plant hosts. As a consequence, the concern of environmental risk associated with the accidental release of genetically modified Agrobacterium arises. In this article, we outline the recent progress in the molecular mechanism of Agrobacterium-meditated gene transfer, focus on the application of Agrobacterium-mediated horizontal gene transfer, and review the potential risk associated with Agrobacterium-meditated gene transfer. Based on the comparison between the infecting process of Agrobacterium as a pathogen and the transgenic process of Agrobacterium as a transgenic vector, we realize that chemotaxis is the distinct difference between these two biological processes and thus discuss the possible role of chemotaxis in forestalling the potential risk of Agrobacterium-meditated horizontal gene transfer to non-target plant species.
Collapse
|
95
|
Haryono M, Tsai YM, Lin CT, Huang FC, Ye YC, Deng WL, Hwang HH, Kuo CH. Presence of an Agrobacterium-Type Tumor-Inducing Plasmid in Neorhizobium sp. NCHU2750 and the Link to Phytopathogenicity. Genome Biol Evol 2018; 10:3188-3195. [PMID: 30398651 PMCID: PMC6286910 DOI: 10.1093/gbe/evy249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 12/02/2022] Open
Abstract
The genus Agrobacterium contains a group of plant-pathogenic bacteria that have been developed into an important tool for genetic transformation of eukaryotes. To further improve this biotechnology application, a better understanding of the natural genetic variation is critical. During the process of isolation and characterization of wild-type strains, we found a novel strain (i.e., NCHU2750) that resembles Agrobacterium phenotypically but exhibits high sequence divergence in several marker genes. For more comprehensive characterization of this strain, we determined its complete genome sequence for comparative analysis and performed pathogenicity assays on plants. The results demonstrated that this strain is closely related to Neorhizobium in chromosomal organization, gene content, and molecular phylogeny. However, unlike the characterized species within Neorhizobium, which all form root nodules with legume hosts and are potentially nitrogen-fixing mutualists, NCHU2750 is a gall-forming pathogen capable of infecting plant hosts across multiple families. Intriguingly, this pathogenicity phenotype could be attributed to the presence of an Agrobacterium-type tumor-inducing plasmid in the genome of NCHU2750. These findings suggest that these different lineages within the family Rhizobiaceae are capable of transitioning between ecological niches by having novel combinations of replicons. In summary, this work expanded the genomic resources available within Rhizobiaceae and provided a strong foundation for future studies of this novel lineage. With an infectivity profile that is different from several representative Agrobacterium strains, this strain may be useful for comparative analysis to better investigate the genetic determinants of host range among these bacteria.
Collapse
Affiliation(s)
- Mindia Haryono
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ming Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chien-Ting Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Yan-Chen Ye
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Ling Deng
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
96
|
Wang YC, Yu M, Shih PY, Wu HY, Lai EM. Stable pH Suppresses Defense Signaling and is the Key to Enhance Agrobacterium-Mediated Transient Expression in Arabidopsis Seedlings. Sci Rep 2018; 8:17071. [PMID: 30459348 PMCID: PMC6244089 DOI: 10.1038/s41598-018-34949-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/29/2018] [Indexed: 01/01/2023] Open
Abstract
Agrobacterium-mediated transient expression is a powerful analysis platform for diverse plant gene functional studies, but the mechanisms regulating the expression or transformation levels are poorly studied. Previously, we developed a highly efficient and robust Agrobacterium-mediated transient expression system, named AGROBEST, for Arabidopsis seedlings. In this study, we found that AGROBEST could promote the growth of agrobacteria as well as inhibit the host immunity response. When the factor of agrobacterial growth is minimized, maintaining pH at 5.5 with MES buffer was the key to achieving optimal transient expression efficiency. The expression of plant immunity marker genes, FRK1 and NHL10, was suppressed in the pH-buffered medium as compared with non-buffered conditions in Col-0 and an efr-1 mutant lacking the immunity receptor EFR recognizing EF-Tu, a potent pathogen- or microbe-associated molecular pattern (PAMP or MAMP) of A. tumefaciens. Notably, such immune suppression could also occur in Arabidopsis seedlings without Agrobacterium infection. Furthermore, the PAMP-triggered influx of calcium ions was compromised in the pH-buffered medium. We propose that the enhanced transient expression efficiency by stable pH was due to inhibiting calcium ion uptake and subsequently led to suppressing immunity against Agrobacterium.
Collapse
Affiliation(s)
- Yi-Chieh Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Po-Yuan Shih
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Hung-Yi Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan.
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
97
|
Groenewold MK, Hebecker S, Fritz C, Czolkoss S, Wiesselmann M, Heinz DW, Jahn D, Narberhaus F, Aktas M, Moser J. Virulence of Agrobacterium tumefaciens requires lipid homeostasis mediated by the lysyl-phosphatidylglycerol hydrolase AcvB. Mol Microbiol 2018; 111:269-286. [PMID: 30353924 DOI: 10.1111/mmi.14154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2018] [Indexed: 12/24/2022]
Abstract
Agrobacterium tumefaciens transfers oncogenic T-DNA via the type IV secretion system (T4SS) into plants causing tumor formation. The acvB gene encodes a virulence factor of unknown function required for plant transformation. Here we specify AcvB as a periplasmic lysyl-phosphatidylglycerol (L-PG) hydrolase, which modulates L-PG homeostasis. Through functional characterization of recombinant AcvB variants, we showed that the C-terminal domain of AcvB (residues 232-456) is sufficient for full enzymatic activity and defined key residues for catalysis. Absence of the hydrolase resulted in ~10-fold increase in L-PG in Agrobacterium membranes and abolished T-DNA transfer and tumor formation. Overproduction of the L-PG synthase gene (lpiA) in wild-type A. tumefaciens resulted in a similar increase in the L-PG content (~7-fold) and a virulence defect even in the presence of intact AcvB. These results suggest that elevated L-PG amounts (either by overproduction of the synthase or absence of the hydrolase) are responsible for the virulence phenotype. Gradually increasing the L-PG content by complementation with different acvB variants revealed that cellular L-PG levels above 3% of total phospholipids interfere with T-DNA transfer. Cumulatively, this study identified AcvB as a novel virulence factor required for membrane lipid homeostasis and T-DNA transfer.
Collapse
Affiliation(s)
- Maike K Groenewold
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Stefanie Hebecker
- Institute for Microbiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Christiane Fritz
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Simon Czolkoss
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Milan Wiesselmann
- Institute for Microbiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Dirk W Heinz
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Dieter Jahn
- Institute for Microbiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Franz Narberhaus
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Meriyem Aktas
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Jürgen Moser
- Institute for Microbiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
98
|
Besnard J, Zhao C, Avice JC, Vitha S, Hyodo A, Pilot G, Okumoto S. Arabidopsis UMAMIT24 and 25 are amino acid exporters involved in seed loading. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5221-5232. [PMID: 30312461 PMCID: PMC6184519 DOI: 10.1093/jxb/ery302] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/14/2018] [Indexed: 05/17/2023]
Abstract
Phloem-derived amino acids are the major source of nitrogen supplied to developing seeds. Amino acid transfer from the maternal to the filial tissue requires at least one cellular export step from the maternal tissue prior to the import into the symplasmically isolated embryo. Some members of UMAMIT (usually multiple acids move in an out transporter) family (UMAMIT11, 14, 18, 28, and 29) have previously been implicated in this process. Here we show that additional members of the UMAMIT family, UMAMIT24 and UMAMIT25, also function in amino acid transfer in developing seeds. Using a recently published yeast-based assay allowing detection of amino acid secretion, we showed that UMAMIT24 and UMAMIT25 promote export of a broad range of amino acids in yeast. In plants, UMAMIT24 and UMAMIT25 are expressed in distinct tissues within developing seeds; UMAMIT24 is mainly expressed in the chalazal seed coat and localized on the tonoplast, whereas the plasma membrane-localized UMAMIT25 is expressed in endosperm cells. Seed amino acid contents of umamit24 and umamit25 knockout lines were both decreased during embryogenesis compared with the wild type, but recovered in the mature seeds without any deleterious effect on yield. The results suggest that UMAMIT24 and 25 play different roles in amino acid translocation from the maternal to filial tissue; UMAMIT24 could have a role in temporary storage of amino acids in the chalaza, while UMAMIT25 would mediate amino acid export from the endosperm, the last step before amino acids are taken up by the developing embryo.
Collapse
Affiliation(s)
- Julien Besnard
- Department of Soil and Crop, Texas A&M, College Station, TX, USA
| | - Chengsong Zhao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Jean-Christophe Avice
- UMR INRA - UCBN 950 EVA, UFR des Sciences, Département de Biologie, Université de Caen Normandie, Esplanade de la Paix, Caen cedex, France
| | - Stanislav Vitha
- Microscopy and Imaging Center, Texas A&M, College Station, TX, USA
| | - Ayumi Hyodo
- Stable Isotopes for Biosphere Science Laboratory, Texas A&M, College Station, TX, USA
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sakiko Okumoto
- Department of Soil and Crop, Texas A&M, College Station, TX, USA
- Correspondence: or
| |
Collapse
|
99
|
Sudhan D, Puttamuk T, Vuttipongchaikij S, Chuawong P. Cloning, overexpression, and purification of a gene of unknown function of prophage loci from ‘ Candidatus Liberibacter asiaticus,’ the destructive bacterial pathogen of huanglongbing disease in citrus plants. Protein Expr Purif 2018; 150:72-80. [DOI: 10.1016/j.pep.2018.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/19/2018] [Accepted: 05/19/2018] [Indexed: 10/16/2022]
|
100
|
Chang L, Chang HH, Chang JC, Lu HC, Wang TT, Hsu DW, Tzean Y, Cheng AP, Chiu YS, Yeh HH. Plant A20/AN1 protein serves as the important hub to mediate antiviral immunity. PLoS Pathog 2018; 14:e1007288. [PMID: 30212572 PMCID: PMC6155556 DOI: 10.1371/journal.ppat.1007288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/25/2018] [Accepted: 08/21/2018] [Indexed: 12/30/2022] Open
Abstract
Salicylic acid (SA) is a key phytohormone that mediates a broad spectrum of resistance against a diverse range of viruses; however, the downstream pathway of SA governed antiviral immune response remains largely to be explored. Here, we identified an orchid protein containing A20 and AN1 zinc finger domains, designated Pha13. Pha13 is up-regulated upon virus infection, and the transgenic monocot orchid and dicot Arabidopsis overexpressing orchid Pha13 conferred greater resistance to different viruses. In addition, our data showed that Arabidopsis homolog of Pha13, AtSAP5, is also involved in virus resistance. Pha13 and AtSAP5 are early induced by exogenous SA treatment, and participate in the expression of SA-mediated immune responsive genes, including the master regulator gene of plant immunity, NPR1, as well as NPR1-independent virus defense genes. SA also induced the proteasome degradation of Pha13. Functional domain analysis revealed that AN1 domain of Pha13 is involved in expression of orchid NPR1 through its AN1 domain, whereas dual A20/AN1 domains orchestrated the overall virus resistance. Subcellular localization analysis suggested that Pha13 can be found localized in the nucleus. Self-ubiquitination assay revealed that Pha13 confer E3 ligase activity, and the main E3 ligase activity was mapped to the A20 domain. Identification of Pha13 interacting proteins and substrate by yeast two-hybrid screening revealed mainly ubiquitin proteins. Further detailed biochemical analysis revealed that A20 domain of Pha13 binds to various polyubiquitin chains, suggesting that Pha13 may interact with multiple ubiquitinated proteins. Our findings revealed that Pha13 serves as an important regulatory hub in plant antiviral immunity, and uncover a delicate mode of immune regulation through the coordination of A20 and/or AN1 domains, as well as through the modulation of E3 ligase and ubiquitin chain binding activity of Pha13.
Collapse
Affiliation(s)
- Li Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ho-Hsiung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jui-Che Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Chia Lu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Tan-Tung Wang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Yuh Tzean
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - An-Po Cheng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Shu Chiu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsin-Hung Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|