51
|
Wang K, Jia C, Zhang B, Chen J, Zhao J. Outer membrane vesicles from commensal microbes contribute to the sponge Tedania sp. development by regulating the expression level of apoptosis-inducing factor (AIF). Commun Biol 2024; 7:952. [PMID: 39107427 PMCID: PMC11303789 DOI: 10.1038/s42003-024-06622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The transition from the swimming larval stage to the settlement stage represents a significant node in the marine sponge developmental process. Previous research has shown that the outer membrane vesicles (OMVs) from the bacterial species Tenacibaculum mesophilum associated with the sponge Tedania sp. influence larval settlement: low concentrations of OMVs increase the attachment rate, whereas high concentrations decrease the attachment rate. Here, by comparing the transcriptomes of sponge larvae in filtered seawater (FSW group) and in FSW supplemented with OMVs (FSW-OMV group), the results indicated that bacterial OMVs affected larval settlement by modulating the expression levels of apoptosis-inducing factor (AIF) in the host. Subsequently, quantitative real-time PCR revealed a decrease in aif expression near the time of settlement (SE) compared to that in the control group. RNA interference (RNAi) was used to target the aif gene, and the rate of larval settlement was significantly reduced, confirming the inhibitory effect of high concentrations of OMVs. Moreover, small RNA (sRNA) sequencing of OMVs revealed the existence of abundant AIF-sRNAs of 30 nt, further suggesting that one pathway for the involvement of sponge-associated bacteria in host development is the transport of OMVs and the direct function of cargo loading.
Collapse
Affiliation(s)
- Kai Wang
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Chenzheng Jia
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Beibei Zhang
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Jun Chen
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Jing Zhao
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, 361005, China.
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
52
|
Hashimoto S, Hasan MDN, Arif M, Nozaki N, Husna AA, Furusawa Y, Sogawa T, Takahashi K, Kuramoto T, Noguchi A, Takahashi M, Yamato O, Rahman MM, Miura N. Aberrantly Expressed tRNA-Val Fragments Can Distinguish Canine Hepatocellular Carcinoma from Canine Hepatocellular Adenoma. Genes (Basel) 2024; 15:1024. [PMID: 39202384 PMCID: PMC11353709 DOI: 10.3390/genes15081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Hepatocellular adenoma (HCA) and hepatocellular carcinoma (HCC) can be difficult to differentiate but must be diagnosed correctly as treatment and prognosis for these tumors differ markedly. Relevant diagnostic biomarkers are thus needed, and those identified in dogs may have utility in human medicine because of the similarities between human and canine HCA and HCC. A tRNA-derived fragment (tRF), tRNA-Val, is a promising potential biomarker for canine mammary gland tumors but has not previously been investigated in hepatic tumors. Accordingly, we aimed to elucidate the potential utility of tRNA-Val as a biomarker for canine HCA and HCC using clinical samples (tumor tissue and plasma extracellular vesicles [EVs]) and tumor cell lines with qRT-PCR assays. We also investigated relevant functions and signaling pathways with bioinformatic analyses (Gene Ontology and Kyoto Encyclopedia of Genes and Genomes). tRNA-Val was markedly downregulated in HCC tumor tissue versus HCA tumor tissue and normal liver tissue, and a similar trend was shown in plasma EVs and HCC cell lines versus healthy controls. Based on areas under the receiver operating characteristic curves (AUCs), tRNA-Val significantly distinguished HCC (AUC = 1.00, p = 0.001) from healthy controls in plasma EVs and HCC from HCA (AUC = 0.950, p = 0.01). Bioinformatics analysis revealed that tRNA-Val may be primarily involved in DNA repair, mRNA processing, and splicing and may be linked to the N-glycan and ubiquitin-mediated proteasome pathways. This is the first report on the expression of tRNA-Val in canine HCC and HCA and its possible functions and signaling pathways. We suggest that tRNA-Val could be a promising novel biomarker to distinguish canine HCC from HCA. This study provides evidence for a greater understanding of the role played by tRNA-Val in the development of canine HCC.
Collapse
MESH Headings
- Animals
- Dogs
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/veterinary
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/veterinary
- Liver Neoplasms/pathology
- Biomarkers, Tumor/genetics
- Dog Diseases/genetics
- Dog Diseases/diagnosis
- Adenoma, Liver Cell/genetics
- Adenoma, Liver Cell/veterinary
- Adenoma, Liver Cell/pathology
- Adenoma, Liver Cell/metabolism
- Adenoma, Liver Cell/diagnosis
- Gene Expression Regulation, Neoplastic
- Diagnosis, Differential
- Cell Line, Tumor
- Female
Collapse
Affiliation(s)
- Saki Hashimoto
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - MD Nazmul Hasan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Mohammad Arif
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Nobuhiro Nozaki
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Al Asmaul Husna
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yu Furusawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Takeshi Sogawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kaori Takahashi
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Tomohide Kuramoto
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Aki Noguchi
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Masashi Takahashi
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Osamu Yamato
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Md Mahfuzur Rahman
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Naoki Miura
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
53
|
Yuan W, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Dysregulation of tRNA methylation in cancer: Mechanisms and targeting therapeutic strategies. Cell Death Discov 2024; 10:327. [PMID: 39019857 PMCID: PMC11254935 DOI: 10.1038/s41420-024-02097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
tRNA is the RNA type that undergoes the most modifications among known RNA, and in recent years, tRNA methylation has emerged as a crucial process in regulating gene translation. Dysregulation of tRNA abundance occurs in cancer cells, along with increased expression and activity of tRNA methyltransferases to raise the level of tRNA modification and stability. This leads to hijacking of translation and synthesis of multiple proteins associated with tumor proliferation, metastasis, invasion, autophagy, chemotherapy resistance, and metabolic reprogramming. In this review, we provide an overview of current research on tRNA methylation in cancer to clarify its involvement in human malignancies and establish a theoretical framework for future therapeutic interventions targeting tRNA methylation processes.
Collapse
Affiliation(s)
- Wenbin Yuan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
54
|
Mao C, Yuan W, Fang R, Wu Y, Zhang Z, Cong H. Transfer RNA‑derived small RNAs: A class of potential biomarkers in multiple cancers (Review). Oncol Lett 2024; 28:293. [PMID: 38737976 PMCID: PMC11082847 DOI: 10.3892/ol.2024.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Transfer (t)RNA-derived small RNAs (tsRNAs) are a class of novel non-coding small RNAs that are created via precise cleavage of tRNAs or tRNA precursors by different enzymes. tsRNAs are specific biological molecules that serve essential roles in cell proliferation, apoptosis, transcriptional regulation, post-transcriptional modification and translational regulation. Additionally, tsRNAs participate in the pathogenesis of several diseases, particularly in the development of malignant tumors. At present, the process of discovering and understanding the functions of tsRNAs is still in its early stages. The present review introduces the known biological functions and mechanisms of tsRNAs, and discusses the tsRNAs progression in several types of cancers as well as the possibility of tsRNAs becoming novel tumor biomarkers. Furthermore, tsRNAs may promote and hinder tumor formation according to different mechanisms and act as oncogenic or oncostatic molecules. Therefore, tsRNAs may be future potential tumor biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Chunyan Mao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wentao Yuan
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ronghua Fang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhihan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Blood Transfusion, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
55
|
Zhang J, Li Y, Chen Y, Zhang J, Jia Z, He M, Liao X, He S, Bian JS, Nie XW. o 8G Site-Specifically Modified tRF-1-AspGTC: A Novel Therapeutic Target and Biomarker for Pulmonary Hypertension. Circ Res 2024; 135:76-92. [PMID: 38747146 DOI: 10.1161/circresaha.124.324421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/18/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Hypoxia and oxidative stress contribute to the development of pulmonary hypertension (PH). tRNA-derived fragments play important roles in RNA interference and cell proliferation, but their epitranscriptional roles in PH development have not been investigated. We aimed to gain insight into the mechanistic contribution of oxidative stress-induced 8-oxoguanine in pulmonary vascular remodeling. METHODS Through small RNA modification array analysis and quantitative polymerase chain reaction, a significant upregulation of the 8-oxoguanine -modified tRF-1-AspGTC was found in the lung tissues and the serum of patients with PH. RESULTS This modification occurs at the position 5 of the tRF-1-AspGTC (5o8G tRF). Inhibition of the 5o8G tRF reversed hypoxia-induced proliferation and apoptosis resistance in pulmonary artery smooth muscle cells. Further investigation unveiled that the 5o8G tRF retargeted mRNA of WNT5A (Wingless-type MMTV integration site family, member 5A) and CASP3 (Caspase3) and inhibited their expression. Ultimately, BMPR2 (Bone morphogenetic protein receptor 2) -reactive oxygen species/5o8G tRF/WNT5A signaling pathway exacerbated the progression of PH. CONCLUSIONS Our study highlights the role of site-specific 8-oxoguanine-modified tRF in promoting the development of PH. Our findings present a promising therapeutic avenue for managing PH and propose 5o8G tRF as a potential innovative marker for diagnosing this disease.
Collapse
Affiliation(s)
- Junting Zhang
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China (Junting Zhang, Y.L., S.H.)
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China (Junting Zhang, Z.J., M.H., J.-S.B.)
| | - Yiying Li
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China (Junting Zhang, Y.L., S.H.)
| | - Yuan Chen
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, China (Y.C.)
| | - Jianchao Zhang
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
| | - Zihui Jia
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China (Junting Zhang, Z.J., M.H., J.-S.B.)
| | - Muhua He
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China (Junting Zhang, Z.J., M.H., J.-S.B.)
| | - Xueyi Liao
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
| | - Siyu He
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China (Junting Zhang, Y.L., S.H.)
| | - Jin-Song Bian
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China (Junting Zhang, Z.J., M.H., J.-S.B.)
| | - Xiao-Wei Nie
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
| |
Collapse
|
56
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
57
|
Li X, Li Y, Yuan J, Zhang W, Xu T, Jing R, Ju S. Serum tRF-33-RZYQHQ9M739P0J as a novel biomarker for auxiliary diagnosis and disease course monitoring of hepatocellular carcinoma. Heliyon 2024; 10:e30084. [PMID: 38707447 PMCID: PMC11068615 DOI: 10.1016/j.heliyon.2024.e30084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Objective In most cases, patients with hepatocellular carcinoma (HCC) develop advanced disease when diagnosed. Finding new molecules to combine with traditional biomarkers is crucial for HCC early diagnosis. In cancer development, tRNA-derived small RNAs (tsRNA) play a crucial role. Here, we aimed to identify a novel biomarker among tsRNAs that can facilitate HCC diagnosis and monitor its prognosis. Methods We screened candidate tsRNAs in 3 pairs of HCC and adjacent tissues through high-throughput sequencing. tRF-33-RZYQQ9M739P0J was screened in tissues, sera, and cells through quantitative real-time polymerase chain reaction (qRT-PCR) for further analysis. tRF-33-RZYQHQ9M739P0J was characterized using agarose gel electrophoresis, Sanger sequencing, and nuclear and cytoplasmic RNA isolation. Experiments at room temperature and repeated freeze-thaw cycles were conducted to evaluate the detection performance of tRF-33-RZYQHQ9M739P0J. We measured the levels of differential expression of tRF-33-RZYQHQ9M739P0J in sera using qRT-PCR. We applied the chi-square test to evaluate the correlation between tRF-33-RZYQHQ9M739P0J expression levels and clinicopathological features, and assessed its prognostic value by plotting Kaplan-Meier curves. The diagnostic efficacy of tRF-33-RZYQHQ9M739P0J was evaluated using the receiver operating characteristic (ROC) curve. Finally, the downstream genes related to tRF-33-RZYQHQ9M739P0J were explored through bioinformatics prediction. Results tRF-33-RZYQHQ9M739P0J was highly expressed in HCC tissues and sera, and its expression was correlated with metastasis, TNM stage, BCLC stage, and vein invasion. Expression of tRF-33-RZYQHQ9M739P0J were decreased after surgery in patients with HCC. High serum tRF-33-RZYQHQ9M739P0J levels are associated with low survival rates, and they can predict survival times in patients with HCC according to the Kaplan-Meier analysis. Combining tRF-33-RZYQHQ9M739P0J with serum alpha-fetoprotein and prothrombin induced by vitamin K absence II can improve the diagnostic efficiency of HCC, suggesting its potential as a biomarker for HCC. Conclusion tRF-33-RZYQHQ9M739P0J may not only be a promising non-invasive marker for early diagnosis, but also a predictor of liver cancer progression.
Collapse
Affiliation(s)
- Xian Li
- Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Yang Li
- Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Jie Yuan
- Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Weiwei Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Tianxin Xu
- Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| |
Collapse
|
58
|
Manning AC, Bashir MM, Jimenez AR, Upton HE, Collins K, Lowe TM, Tucker JM. Gammaherpesvirus infection triggers the formation of tRNA fragments from premature tRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592122. [PMID: 38746336 PMCID: PMC11092647 DOI: 10.1101/2024.05.01.592122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Transfer RNAs (tRNAs) are fundamental for both cellular and viral gene expression during viral infection. In addition, mounting evidence supports biological function for tRNA cleavage products, including in the control of gene expression during conditions of stress and infection. We previously reported that infection with the model murine gammaherpesvirus, MHV68, leads to enhanced tRNA transcription. However, whether this has any influence on tRNA transcript processing, viral replication, or the host response is not known. Here, we combined two new approaches, sequencing library preparation by Ordered Two Template Relay (OTTR) and tRNA bioinformatic analysis by tRAX, to quantitatively profile full-length tRNAs and tRNA fragment (tRF) identities during MHV68 infection. We find that MHV68 infection triggers both pre-tRNA and mature tRNA cleavage, resulting in the accumulation of specific tRFs. OTTR-tRAX revealed not only host tRNAome changes, but also the expression patterns of virally-encoded tRNAs (virtRNAs) and virtRFs made from the MHV68 genome, including their base modification signatures. Because the transcript ends of several host tRFs matched tRNA splice junctions, we tested and confirmed the role of tRNA splicing factors TSEN2 and CLP1 in MHV68-induced tRF biogenesis. Further, we show that CLP1 kinase, and by extension tRNA splicing, is required for productive MHV68 infection. Our findings provide new insight into how gammaherpesvirus infection both impacts and relies on tRNA transcription and processing.
Collapse
Affiliation(s)
- Aidan C. Manning
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Mahmoud M. Bashir
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Ariana R. Jimenez
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Heather E. Upton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Todd M. Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jessica M. Tucker
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
59
|
Li Z, Barnaby R, Nymon A, Roche C, Koeppen K, Ashare A, Hogan DA, Gerber SA, Taatjes DJ, Hampton TH, Stanton BA. P. aeruginosa tRNA-fMet halves secreted in outer membrane vesicles suppress lung inflammation in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2024; 326:L574-L588. [PMID: 38440830 PMCID: PMC11380944 DOI: 10.1152/ajplung.00018.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/06/2024] Open
Abstract
Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa. The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lungs, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC (murine homolog of IL-8) secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection.NEW & NOTEWORTHY The experiments in this report identify a novel mechanism, whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet halves in OMVs secreted by P. aeruginosa, which reduced the OMV-LPS-induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF.
Collapse
Affiliation(s)
- Zhongyou Li
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Roxanna Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Amanda Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Carolyn Roche
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Katja Koeppen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
- Pulmonary and Critical Care Medicine, Dartmouth Health Medical Center, Lebanon, New Hampshire, United States
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Scott A Gerber
- Dartmouth Health Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Center for Biomedical Shared Resources, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| |
Collapse
|
60
|
Muthukumar S, Li CT, Liu RJ, Bellodi C. Roles and regulation of tRNA-derived small RNAs in animals. Nat Rev Mol Cell Biol 2024; 25:359-378. [PMID: 38182846 DOI: 10.1038/s41580-023-00690-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
A growing class of small RNAs, known as tRNA-derived RNAs (tdRs), tRNA-derived small RNAs or tRNA-derived fragments, have long been considered mere intermediates of tRNA degradation. These small RNAs have recently been implicated in an evolutionarily conserved repertoire of biological processes. In this Review, we discuss the biogenesis and molecular functions of tdRs in mammals, including tdR-mediated gene regulation in cell metabolism, immune responses, transgenerational inheritance, development and cancer. We also discuss the accumulation of tRNA-derived stress-induced RNAs as a distinct adaptive cellular response to pathophysiological conditions. Furthermore, we highlight new conceptual advances linking RNA modifications with tdR activities and discuss challenges in studying tdR biology in health and disease.
Collapse
Affiliation(s)
- Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
61
|
Ajmeriya S, Bharti DR, Kumar A, Rana S, Singh H, Karmakar S. In silico approach for the identification of tRNA-derived small non-coding RNAs in SARS-CoV infection. J Appl Genet 2024; 65:403-413. [PMID: 38514586 DOI: 10.1007/s13353-024-00853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
tsRNAs (tRNA-derived small non-coding RNAs), including tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been implicated in some viral infections, such as respiratory viral infections. However, their involvement in SARS-CoV infection is completely unknown. A comprehensive analysis was performed to determine tsRNA populations in a mouse model of SARS-CoV-infected samples containing the wild-type and attenuated viruses. Data from the Gene Expression Omnibus (GEO) dataset at NCBI (accession ID GSE90624 ) was used for this study. A count matrix was generated for the tRNAs. Differentially expressed tRNAs, followed by tsRNAs derived from each significant tRNAs at different conditions and time points between the two groups WT(SARS-CoV-MA15-WT) vs Mock and ΔE (SARS-CoV-MA15-ΔE) vs Mock were identified. Notably, significantly differentially expressed tRNAs at 2dpi but not at 4dpi. The tsRNAs originating from differentially expressed tRNAs across all the samples belonging to each condition (WT, ΔE, and Mock) were identified. Intriguingly, tRFs (tRNA-derived RNA fragments) exhibited higher levels compared to tiRNAs (tRNA-derived stress-induced RNAs) across all samples associated with WT SARS-CoV strain compared to ΔE and mock-infected samples. This discrepancy suggests a non-random formation of tsRNAs, hinting at a possible involvement of tsRNAs in SARS-CoV viral infection.
Collapse
Affiliation(s)
- Swati Ajmeriya
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Deepak Ramkumar Bharti
- Trinity Translation Medicine Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Amit Kumar
- ICMR-AIIMS Computational Genomics Center, Division of Biomedical Informatics, Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, India
| | - Shweta Rana
- ICMR-AIIMS Computational Genomics Center, Division of Biomedical Informatics, Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, India
| | - Harpreet Singh
- ICMR-AIIMS Computational Genomics Center, Division of Biomedical Informatics, Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| |
Collapse
|
62
|
Zhou M, He X, Zhang J, Mei C, Zhong B, Ou C. tRNA-derived small RNAs in human cancers: roles, mechanisms, and clinical application. Mol Cancer 2024; 23:76. [PMID: 38622694 PMCID: PMC11020452 DOI: 10.1186/s12943-024-01992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are a new type of non-coding RNAs (ncRNAs) produced by the specific cleavage of precursor or mature tRNAs. tsRNAs are involved in various basic biological processes such as epigenetic, transcriptional, post-transcriptional, and translation regulation, thereby affecting the occurrence and development of various human diseases, including cancers. Recent studies have shown that tsRNAs play an important role in tumorigenesis by regulating biological behaviors such as malignant proliferation, invasion and metastasis, angiogenesis, immune response, tumor resistance, and tumor metabolism reprogramming. These may be new potential targets for tumor treatment. Furthermore, tsRNAs can exist abundantly and stably in various bodily fluids (e.g., blood, serum, and urine) in the form of free or encapsulated extracellular vesicles, thereby affecting intercellular communication in the tumor microenvironment (TME). Meanwhile, their abnormal expression is closely related to the clinicopathological features of tumor patients, such as tumor staging, lymph node metastasis, and poor prognosis of tumor patients; thus, tsRNAs can be served as a novel type of liquid biopsy biomarker. This review summarizes the discovery, production, and expression of tsRNAs and analyzes their molecular mechanisms in tumor development and potential applications in tumor therapy, which may provide new strategies for early diagnosis and targeted therapy of tumors.
Collapse
Affiliation(s)
- Manli Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jing Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan, 410008, China.
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
63
|
Chen Q, Li D, Jiang L, Wu Y, Yuan H, Shi G, Liu F, Wu P, Jiang K. Biological functions and clinical significance of tRNA-derived small fragment (tsRNA) in tumors: Current state and future perspectives. Cancer Lett 2024; 587:216701. [PMID: 38369004 DOI: 10.1016/j.canlet.2024.216701] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
A new class of noncoding RNAs, tsRNAs are not only abundant in humans but also have high tissue specificity. Recently, an increasing number of studies have explored the correlations between tsRNAs and tumors, showing that tsRNAs can affect biological behaviors of tumor cells, such as proliferation, apoptosis and metastasis, by modulating protein translation, RNA transcription or posttranscriptional regulation. In addition, tsRNAs are widely distributed and stably expressed, which endows them with broad application prospects in diagnosing and predicting the prognosis of tumors, and they are expected to become new biomarkers. However, notably, the current research on tsRNAs still faces problems that need to be solved. In this review, we describe the characteristics of tsRNAs as well as their unique features and functions in tumors. Moreover, we also discuss the potential opportunities and challenges in clinical applications and research of tsRNAs.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Danrui Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luyang Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Yuan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guodong Shi
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengyuan Liu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
64
|
Čáp M, Palková Z. Non-Coding RNAs: Regulators of Stress, Ageing, and Developmental Decisions in Yeast? Cells 2024; 13:599. [PMID: 38607038 PMCID: PMC11012152 DOI: 10.3390/cells13070599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Cells must change their properties in order to adapt to a constantly changing environment. Most of the cellular sensing and regulatory mechanisms described so far are based on proteins that serve as sensors, signal transducers, and effectors of signalling pathways, resulting in altered cell physiology. In recent years, however, remarkable examples of the critical role of non-coding RNAs in some of these regulatory pathways have been described in various organisms. In this review, we focus on all classes of non-coding RNAs that play regulatory roles during stress response, starvation, and ageing in different yeast species as well as in structured yeast populations. Such regulation can occur, for example, by modulating the amount and functional state of tRNAs, rRNAs, or snRNAs that are directly involved in the processes of translation and splicing. In addition, long non-coding RNAs and microRNA-like molecules are bona fide regulators of the expression of their target genes. Non-coding RNAs thus represent an additional level of cellular regulation that is gradually being uncovered.
Collapse
Affiliation(s)
- Michal Čáp
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| |
Collapse
|
65
|
Hynes C, Kakumani PK. Regulatory role of RNA-binding proteins in microRNA biogenesis. Front Mol Biosci 2024; 11:1374843. [PMID: 38567098 PMCID: PMC10985210 DOI: 10.3389/fmolb.2024.1374843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that silence gene expression through their interaction with complementary sequences in the 3' untranslated regions (UTR) of target mRNAs. miRNAs undergo a series of steps during their processing and maturation, which are tightly regulated to fine-tune their abundance and ability to function in post-transcriptional gene silencing. miRNA biogenesis typically involves core catalytic proteins, namely, Drosha and Dicer, and several other RNA-binding proteins (RBPs) that recognize and interact with miRNA precursors and/or their intermediates, and mature miRNAs along with their interacting proteins. The series of RNA-protein and protein-protein interactions are critical to maintaining miRNA expression levels and their function, underlying a variety of cellular processes. Throughout this article, we review RBPs that play a role in miRNA biogenesis and focus on their association with components of the miRNA pathway with functional consequences in the processing and generation of mature miRNAs.
Collapse
Affiliation(s)
| | - Pavan Kumar Kakumani
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
66
|
Zhang Q, Zhao X, Sun M, Dong D. Novel insights into transfer RNA-derived small RNA (tsRNA) in cardio-metabolic diseases. Life Sci 2024; 341:122475. [PMID: 38309576 DOI: 10.1016/j.lfs.2024.122475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Cardio-metabolic diseases, including a cluster of metabolic disorders and their secondary affections on cardiovascular physiology, are gradually brought to the forefront by researchers due to their high prevalence and mortality, as well as an unidentified pathogenesis. tRNA-derived small RNAs (tsRNAs), cleaved by several specific enzymes and once considered as some "metabolic junks" in the past, have been proved to possess numerous functions in human bodies. More interestingly, such a potential also seems to influence the progression of cardio-metabolic diseases to some extent. In this review, the biogenesis, classification and mechanisms of tsRNAs will be discussed based on some latest studies, and their relations with several cardio-metabolic diseases will be highlighted in sequence. Lastly, some future prospects, such as their clinical applications as biomarkers and therapeutic targets will also be mentioned, in order to provide researchers with a comprehensive understanding of the research status of tsRNAs as well as its association with cardio-metabolic diseases, thus presenting as a beacon to indicate directions for the next stage of study.
Collapse
Affiliation(s)
- Qingya Zhang
- Innovation Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
67
|
Zhao Y, Wang K, Zhao C, Liu N, Wang Z, Yang W, Cheng Z, Zhou L, Wang K. The function of tRNA-derived small RNAs in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102114. [PMID: 38314096 PMCID: PMC10835008 DOI: 10.1016/j.omtn.2024.102114] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
tRNA-derived small RNAs (tsRNAs) constitute a subgroup of small noncoding RNAs (ncRNAs) originating from tRNA molecules. Their rich content, evolutionary conservatism, high stability, and widespread existence makes them significant in disease research. These characteristics have positioned tsRNAs as key players in various physiological and pathological processes. tsRNA actively participates in regulating many cellular processes, such as cell death, proliferation, and metabolism. tsRNAs could be promising diagnostic markers for cardiovascular diseases (CVDs). tsRNAs have been identified in serums, suggesting their utility as early indicators for the diagnosis of CVDs. Moreover, the regulatory roles of tsRNAs in CVDs make them promising targets for therapeutic intervention. This review provides a succinct overview of the characteristics, classification, and regulatory functions of tsRNAs in the context of CVDs. By shedding light on the intricate roles of tsRNAs, this knowledge could pave the way for the development of innovative diagnostic tools and therapeutic strategies for CVDs.
Collapse
Affiliation(s)
- Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Chun Zhao
- College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Ning Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Zhihong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Wenting Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Zewei Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Luyu Zhou
- College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| |
Collapse
|
68
|
Huang T, Zhao Y, Jiang G, Yang Z. tsRNA: A Promising Biomarker in Breast Cancer. J Cancer 2024; 15:2613-2626. [PMID: 38577588 PMCID: PMC10988313 DOI: 10.7150/jca.93531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are a novel class of non-coding small RNAs, generated from specific cleavage sites of tRNA or pre-tRNA. tsRNAs can directly participate in RNA silencing, transcription, translation, and other processes. Their dysregulation is closely related to the occurrence and development of various cancers. Breast cancer is one of the most common and fastest-growing malignant tumors in humans. tsRNAs have been found to be dysregulated in breast cancer, serving as a new target for exploring the pathogenesis of breast cancer. They are also considered new tumor markers, providing a basis for diagnosis and treatment. This article reviews the generation, classification, mechanism of action, function of tsRNAs, and their biological effects and related mechanisms in breast cancer, in the hope of providing a new direction for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Ting Huang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yuexin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Guoqin Jiang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhixue Yang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| |
Collapse
|
69
|
Salehi M, Kamali MJ, Rajabzadeh A, Minoo S, Mosharafi H, Saeedi F, Daraei A. tRNA-derived fragments: Key determinants of cancer metastasis with emerging therapeutic and diagnostic potentials. Arch Biochem Biophys 2024; 753:109930. [PMID: 38369227 DOI: 10.1016/j.abb.2024.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Metastasis is a significant clinical challenge responsible for cancer mortality and non-response to treatment. However, the molecular mechanisms driving metastasis remain unclear, limiting the development of efficient diagnostic and therapeutic approaches. Recent breakthroughs in cancer biology have discovered a group of small non-coding RNAs called tRNA-derived fragments (tRFs), which play a critical role in the metastatic behavior of various tumors. tRFs are produced from cleavage modifications of tRNAs and have different functional classes based on the pattern of these modifications. They perform post-transcriptional regulation through microRNA-like functions, displacing RNA-binding proteins, and play a role in translational regulation by inducing ribosome synthesis, translation initiation, and epigenetic regulation. Tumor cells manipulate tRFs to develop and survive the tumor mass, primarily by inducing metastasis. Multiple studies have demonstrated the potential of tRFs as therapeutic, diagnostic, and prognostic targets for tumor metastasis. This review discusses the production and function of tRFs in cells, their aberrant molecular contributions to the metastatic environment, and their potential as promising targets for anti-metastasis treatment strategies.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Aliakbar Rajabzadeh
- Department of Anatomical Sciences, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Shima Minoo
- Department of Dentistry, Khorasgan Branch, Islamic Azad University, Isfahan, Iran
| | | | - Fatemeh Saeedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
70
|
Xie Z, Wang X, Huang Y, Chen S, Liu M, Zhang F, Li M, Wang X, Gu Y, Yang Y, Shen X, Wang Y, Xu Y, Xu L. Pseudomonas aeruginosa outer membrane vesicle-packed sRNAs can enter host cells and regulate innate immune responses. Microb Pathog 2024; 188:106562. [PMID: 38307370 DOI: 10.1016/j.micpath.2024.106562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Bacterial outer membrane vesicles (OMVs) can package and deliver virulence factors into host cells, which is an important mechanism mediating host-pathogen interactions. It has been reported that small RNAs (sRNAs) can be packed into OMVs with varying relative abundance, which might affect the function and/or stability of host mRNAs. In this study, we used OptiPrep density gradient ultra-high-speed centrifugation to purify OMVs from Pseudomonas aeruginosa. Next, the sequences and abundance of sRNAs were detected by using Small RNA-Seq. In particular, sRNA4518698, sRNA2316613 and sRNA809738 were the three most abundant sRNAs in OMVs, which are all fragments of P. aeruginosa non-coding RNAs. sRNAs were shielded within the interior of OMVs and remained resistant to external RNase cleavage. The miRanda and RNAhybrid analysis demonstrated that those sRNAs could target a large number of host mRNAs, which were enriched in host immune responses by the functions of GO and KEGG enrichment. Experimentally, we demonstrated that the transfection of synthetic sRNA4518698, sRNA2316613, or sRNA809738 could reduce the expression of innate immune response genes in RAW264.7 cells. Together, we demonstrated that P. aeruginosa OMVs sRNAs can regulate innate immune responses. This study uncovered a mechanism in which the OMVs regulate host responses by transferring bacterial sRNAs.
Collapse
Affiliation(s)
- Zhen Xie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yangyang Huang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shukun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mohua Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fuhua Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengyuan Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yadong Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yang Xu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lei Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
71
|
Zhang Y, Gu X, Li Y, Huang Y, Ju S. Multiple regulatory roles of the transfer RNA-derived small RNAs in cancers. Genes Dis 2024; 11:597-613. [PMID: 37692525 PMCID: PMC10491922 DOI: 10.1016/j.gendis.2023.02.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 09/12/2023] Open
Abstract
With the development of sequencing technology, transfer RNA (tRNA)-derived small RNAs (tsRNAs) have received extensive attention as a new type of small noncoding RNAs. Based on the differences in the cleavage sites of nucleases on tRNAs, tsRNAs can be divided into two categories, tRNA halves (tiRNAs) and tRNA-derived fragments (tRFs), each with specific subcellular localizations. Additionally, the biogenesis of tsRNAs is tissue-specific and can be regulated by tRNA modifications. In this review, we first elaborated on the classification and biogenesis of tsRNAs. After summarizing the latest mechanisms of tsRNAs, including transcriptional gene silencing, post-transcriptional gene silencing, nascent RNA silencing, translation regulation, rRNA regulation, and reverse transcription regulation, we explored the representative biological functions of tsRNAs in tumors. Furthermore, this review summarized the clinical value of tsRNAs in cancers, thus providing theoretical support for their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yu Zhang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yang Li
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuejiao Huang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
72
|
La Ferlita A, Alaimo S, Nigita G, Distefano R, Beane JD, Tsichlis PN, Ferro A, Croce CM, Pulvirenti A. tRFUniverse: A comprehensive resource for the interactive analyses of tRNA-derived ncRNAs in human cancer. iScience 2024; 27:108810. [PMID: 38303722 PMCID: PMC10831894 DOI: 10.1016/j.isci.2024.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
tRNA-derived ncRNAs are a heterogeneous class of non-coding RNAs recently proposed to be active regulators of gene expression and be involved in many diseases, including cancer. Consequently, several online resources on tRNA-derived ncRNAs have been released. Although interesting, such resources present only basic features and do not adequately exploit the wealth of knowledge available about tRNA-derived ncRNAs. Therefore, we introduce tRFUniverse, a novel online resource for the analysis of tRNA-derived ncRNAs in human cancer. tRFUniverse presents an extensive collection of classes of tRNA-derived ncRNAs analyzed across all the TCGA and TARGET tumor cohorts, NCI-60 cell lines, and biological fluids. Moreover, public AGO CLASH/CLIP-Seq data were analyzed to identify the molecular interactions between tRNA-derived ncRNAs and other transcripts. Importantly, tRFUniverse combines in a single resource a comprehensive set of features that we believe may be helpful to investigate the involvement of tRNA-derived ncRNAs in cancer biology.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Salvatore Alaimo
- Department of Clinical and Experimental Medicine, Knowmics Lab, University of Catania, Catania, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rosario Distefano
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Joal D. Beane
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Philip N. Tsichlis
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alfredo Ferro
- Department of Clinical and Experimental Medicine, Knowmics Lab, University of Catania, Catania, Italy
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, Knowmics Lab, University of Catania, Catania, Italy
| |
Collapse
|
73
|
Li Z, Barnaby R, Nymon A, Roche C, Koeppen K, Ashare A, Hogan DA, Gerber SA, Taatjes DJ, Hampton TH, Stanton BA. P. aeruginosa tRNA-fMet halves secreted in outer membrane vesicles suppress lung inflammation in Cystic Fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578737. [PMID: 38352468 PMCID: PMC10862835 DOI: 10.1101/2024.02.03.578737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa . The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lung, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection. New and noteworthy The experiments in this report identify a novel mechanim whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet haves in OMVs secreted by P. aeruginiosa , which reduced the OMV-LPS induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF. Graphical abstract The anti-inflammatory effect of tobramycin mediated by 5' tRNA-fMet halves secreted in P. aeruginosa OMVs. (A) P. aeruginosa colonizes the CF lungs and secrets OMVs. OMVs diffuse through the mucus layer overlying bronchial epithelial cells and induce IL-8 secretion, which recruits neutrophils that causes lung damage. ( B ) Tobramycin increases 5' tRNA-fMet halves in OMVs secreted by P. aeruginosa . 5' tRNA-fMet halves are delivered into host cells after OMVs fuse with lipid rafts in CF-HBEC and down-regulate protein expression of MAPK10, IKBKG, and EP300, which suppresses IL-8 secretion and neutrophils in the lungs. A reduction in neutrophils in CF BALF is predicted to improve lung function and decrease lung damage.
Collapse
|
74
|
Li D, Xie X, Yin N, Wu X, Yi B, Zhang H, Zhang W. tRNA-Derived Small RNAs: A Novel Regulatory Small Noncoding RNA in Renal Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:1-11. [PMID: 38322624 PMCID: PMC10843216 DOI: 10.1159/000533811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/23/2023] [Indexed: 02/08/2024]
Abstract
Background tRNA-derived small RNAs (tsRNAs) are an emerging class of small noncoding RNAs derived from tRNA cleavage. Summary With the development of high-throughput sequencing, various biological roles of tsRNAs have been gradually revealed, including regulation of mRNA stability, transcription, translation, direct interaction with proteins and as epigenetic factors, etc. Recent studies have shown that tsRNAs are also closely related to renal disease. In clinical acute kidney injury (AKI) patients and preclinical AKI models, the production and differential expression of tsRNAs in renal tissue and plasma were observed. Decreased expression of tsRNAs was also found in urine exosomes from chronic kidney disease patients. Dysregulation of tsRNAs also appears in models of nephrotic syndrome and patients with lupus nephritis. And specific tsRNAs were found in high glucose model in vitro and in serum of diabetic nephropathy patients. In addition, tsRNAs were also differentially expressed in patients with kidney cancer and transplantation. Key Messages In the present review, we have summarized up-to-date works and reviewed the relationship and possible mechanisms between tsRNAs and kidney diseases.
Collapse
Affiliation(s)
- Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xian Xie
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Ni Yin
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xueqin Wu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| |
Collapse
|
75
|
Gutierrez-Diaz A, Hoffmann S, Gallego-Gómez JC, Bermudez-Santana CI. Systematic computational hunting for small RNAs derived from ncRNAs during dengue virus infection in endothelial HMEC-1 cells. FRONTIERS IN BIOINFORMATICS 2024; 4:1293412. [PMID: 38357577 PMCID: PMC10864640 DOI: 10.3389/fbinf.2024.1293412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
In recent years, a population of small RNA fragments derived from non-coding RNAs (sfd-RNAs) has gained significant interest due to its functional and structural resemblance to miRNAs, adding another level of complexity to our comprehension of small-RNA-mediated gene regulation. Despite this, scientists need more tools to test the differential expression of sfd-RNAs since the current methods to detect miRNAs may not be directly applied to them. The primary reasons are the lack of accurate small RNA and ncRNA annotation, the multi-mapping read (MMR) placement, and the multicopy nature of ncRNAs in the human genome. To solve these issues, a methodology that allows the detection of differentially expressed sfd-RNAs, including canonical miRNAs, by using an integrated copy-number-corrected ncRNA annotation was implemented. This approach was coupled with sixteen different computational strategies composed of combinations of four aligners and four normalization methods to provide a rank-order of prediction for each differentially expressed sfd-RNA. By systematically addressing the three main problems, we could detect differentially expressed miRNAs and sfd-RNAs in dengue virus-infected human dermal microvascular endothelial cells. Although more biological evaluations are required, two molecular targets of the hsa-mir-103a and hsa-mir-494 (CDK5 and PI3/AKT) appear relevant for dengue virus (DENV) infections. Here, we performed a comprehensive annotation and differential expression analysis, which can be applied in other studies addressing the role of small fragment RNA populations derived from ncRNAs in virus infection.
Collapse
Affiliation(s)
- Aimer Gutierrez-Diaz
- Grupo Rnomica Teórica y Computacional, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Steve Hoffmann
- Faculty of Biosciences, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Friedrich Schiller University Jena, Jena, Germany
| | - Juan Carlos Gallego-Gómez
- Molecular and Translational Medicine Group, Medicine Faculty Universidad de Antioquia, Medellin, Colombia
| | - Clara Isabel Bermudez-Santana
- Grupo Rnomica Teórica y Computacional, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
76
|
Yang N, Li R, Liu R, Yang S, Zhao Y, Xiong W, Qiu L. The Emerging Function and Promise of tRNA-Derived Small RNAs in Cancer. J Cancer 2024; 15:1642-1656. [PMID: 38370372 PMCID: PMC10869971 DOI: 10.7150/jca.89219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/01/2024] [Indexed: 02/20/2024] Open
Abstract
Fragments derived from tRNA, called tRNA-derived small RNAs (tsRNAs), have attracted widespread attention in the past decade. tsRNAs are widespread in prokaryotic and eukaryotic transcriptome, which contains two main types, tRNA-derived fragments (tRFs) and tRNA-derived stress-inducing RNA (tiRNAs), derived from the precursor tRNAs or mature tRNAs. According to differences in the cleavage position, tRFs can be divided into tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF, whereas tiRNAs can be divided into 5'-tiRNA and 3'-tiRNA. Studies have found that tRFs and tiRNAs are abnormally expressed in a variety of human malignant tumors, promote or inhibit the proliferation and apoptosis of cancer cells by regulating the expression of oncogene, and play an important role in the aggressive metastasis and progression of tumors. This article reviews the biological origins of various tsRNAs, introduces their functions and new concepts of related mechanisms, and focuses on the molecular mechanisms of tsRNAs in cancer, including breast cancer, prostate cancer, colorectal cancer, lung cancer, b-cell lymphoma, and chronic lymphoma cell leukemia. Lastly, this article puts forward some unresolved problems and future research prospects.
Collapse
Affiliation(s)
- Na Yang
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, China
- College of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Ruijun Li
- College of Foreign Languages, Chuxiong Normal University, Chuxiong 675000, China
| | - Ruai Liu
- College of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Shengjie Yang
- The People's Hospital of ChuXiong Yi Autonomous Prefecture, Chuxiong 675000, China
| | - Yi Zhao
- The People's Hospital of ChuXiong Yi Autonomous Prefecture, Chuxiong 675000, China
| | - Wei Xiong
- College of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Lu Qiu
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, China
| |
Collapse
|
77
|
Liang Y, Kong L, Zhang Y, Zhang Y, Shi M, Huang J, Kong H, Qi S, Yang Y, Hong J, Zhu M, Zhu X, Sun X, Zhang S, Wu L, Zhao C. Transfer RNA derived fragment, tRF-Glu-CTC, aggravates the development of neovascular age-related macular degeneration. Theranostics 2024; 14:1500-1516. [PMID: 38389841 PMCID: PMC10879880 DOI: 10.7150/thno.92943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Angiogenesis expedites tissue impairment in many diseases, including age-related macular degeneration (AMD), a leading cause of irreversible blindness in elderly. A substantial proportion of neovascular AMD patients, characterized by aberrant choroidal neovascularization (CNV), exhibit poor responses or adverse reactions to anti-VEGF therapy. Herein, we aimed to unveil the function of newly identified transfer RNA-derived small RNA, tRF-Glu-CTC, in the pathology of CNV and determine its potential in inhibiting angiogenesis. Methods: Small non-coding RNA sequencing and quantitative polymerase chain reaction were conducted to detect expression pattern of tRF-Glu-CTC in CNV development. Immunofluorescence staining, fundus fluorescein angiography and ex vivo choroidal sprouting assays were employed for the evaluation of tRF-Glu-CTC's function in CNV development. The role of tRF-Glu-CTC in endothelial cells were determined by in vitro endothelial cell proliferation, migration and tube formation assays. Transcriptome sequencing, dual-luciferase reporter assay and in vitro experiments were conducted to investigate downstream mechanism of tRF-Glu-CTC mediated pathology. Results: tRF-Glu-CTC exhibited substantial up-regulation in AMD patients, laser-induced CNV model, and endothelial cells under hypoxia condition, which is a hallmark of CNV. Inhibiting tRF-Glu-CTC reduced angiogenesis and hypoxia stress in the neovascular region without neuroretina toxicity in laser-induced CNV model, showing an anti-angiogenic effect comparable to bevacizumab, while overexpression of tRF-Glu-CTC significantly augmented CNV. Mechanically, under hypoxia condition, angiogenin was involved in the production of tRF-Glu-CTC, which in turn triggered endothelial cell tubulogenesis, migration and promoted the secretion of inflammatory factors via the suppression of vasohibin 1 (VASH1). When downregulating VASH1 expression, the inhibition of tRF-Glu-CTC showed minimal suppression on angiogenesis. Conclusions: This study demonstrated the important role of tRF-Glu-CTC in the progression of angiogenesis. Targeting of tRF-Glu-CTC may be an alternative to current anti-VEGF therapy for CNV in AMD and other conditions with angiogenesis.
Collapse
Affiliation(s)
- Yu Liang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Lingjie Kong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Yuelu Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Yihan Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Mingsu Shi
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Jiaqiu Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Hongyu Kong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Siyi Qi
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiaxu Hong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Meidong Zhu
- Save Sight Institute, Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, Camperdown, NSW 2000, Australia
- New South Weals Tissue Bank, New South Weals Organ and Tissue Donation Service, Sydney Eye Hospital, 8 Macquarie Street, Sydney 2000, Australia
| | - Xiangjia Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Shujie Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Lianqun Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| |
Collapse
|
78
|
Pliatsika V, Cherlin T, Loher P, Vlantis P, Nagarkar P, Nersisyan S, Rigoutsos I. MINRbase: a comprehensive database of nuclear- and mitochondrial-ribosomal-RNA-derived fragments (rRFs). Nucleic Acids Res 2024; 52:D229-D238. [PMID: 37843123 PMCID: PMC10767805 DOI: 10.1093/nar/gkad833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
We describe the Mitochondrial and Nuclear rRNA fragment database (MINRbase), a knowledge repository aimed at facilitating the study of ribosomal RNA-derived fragments (rRFs). MINRbase provides interactive access to the profiles of 130 238 expressed rRFs arising from the four human nuclear rRNAs (18S, 5.8S, 28S, 5S), two mitochondrial rRNAs (12S, 16S) or four spacers of 45S pre-rRNA. We compiled these profiles by analyzing 11 632 datasets, including the GEUVADIS and The Cancer Genome Atlas (TCGA) repositories. MINRbase offers a user-friendly interface that lets researchers issue complex queries based on one or more criteria, such as parental rRNA identity, nucleotide sequence, rRF minimum abundance and metadata keywords (e.g. tissue type, disease). A 'summary' page for each rRF provides a granular breakdown of its expression by tissue type, disease, sex, ancestry and other variables; it also allows users to create publication-ready plots at the click of a button. MINRbase has already allowed us to generate support for three novel observations: the internal spacers of 45S are prolific producers of abundant rRFs; many abundant rRFs straddle the known boundaries of rRNAs; rRF production is regimented and depends on 'personal attributes' (sex, ancestry) and 'context' (tissue type, tissue state, disease). MINRbase is available at https://cm.jefferson.edu/MINRbase/.
Collapse
Affiliation(s)
- Venetia Pliatsika
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Tess Cherlin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Panagiotis Vlantis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Parth Nagarkar
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Stepan Nersisyan
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
79
|
Li N, Yao S, Yu G, Lu L, Wang Z. tRFtarget 2.0: expanding the targetome landscape of transfer RNA-derived fragments. Nucleic Acids Res 2024; 52:D345-D350. [PMID: 37811890 PMCID: PMC10767876 DOI: 10.1093/nar/gkad815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
tRFtarget 1.0 (http://trftarget.net/) is a platform consolidating both computationally predicted and experimentally validated binding sites between transfer RNA-derived fragments (tRFs) and target genes (or transcripts) across multiple organisms. Here, we introduce a newly released version of tRFtarget 2.0, in which we integrated 6 additional tRF sources, resulting in a comprehensive collection of 2614 high-quality tRF sequences spanning across 9 species, including 1944 Homo sapiens tRFs and one newly incorporated species Rattus norvegicus. We also expanded target genes by including ribosomal RNAs, long non-coding RNAs, and coding genes >50 kb in length. The predicted binding sites have surged up to approximately 6 billion, a 20.5-fold increase than that in tRFtarget 1.0. The manually curated publications relevant to tRF targets have increased to 400 and the gene-level experimental evidence has risen to 232. tRFtarget 2.0 introduces several new features, including a web-based tool that identifies potential binding sites of tRFs in user's own datasets, integration of standardized tRF IDs, and inclusion of external links to contents within the database. Additionally, we enhanced website framework and user interface. With these improvements, tRFtarget 2.0 is more user-friendly, providing researchers a streamlined and comprehensive platform to accelerate their research progress.
Collapse
Affiliation(s)
- Ningshan Li
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Siqiong Yao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangjun Yu
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| |
Collapse
|
80
|
Panstruga R, Spanu P. Transfer RNA and ribosomal RNA fragments - emerging players in plant-microbe interactions. THE NEW PHYTOLOGIST 2024; 241:567-577. [PMID: 37985402 DOI: 10.1111/nph.19409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
According to current textbooks, the principal task of transfer and ribosomal RNAs (tRNAs and rRNAs, respectively) is synthesizing proteins. During the last decade, additional cellular roles for precisely processed tRNA and rRNAs fragments have become evident in all kingdoms of life. These RNA fragments were originally overlooked in transcriptome datasets or regarded as unspecific degradation products. Upon closer inspection, they were found to engage in a variety of cellular processes, in particular the modulation of translation and the regulation of gene expression by sequence complementarity- and Argonaute protein-dependent gene silencing. More recently, the presence of tRNA and rRNA fragments has also been recognized in the context of plant-microbe interactions, both on the plant and the microbial side. While most of these fragments are likely to affect endogenous processes, there is increasing evidence for their transfer across kingdoms in the course of such interactions; these processes may involve mutual exchange in association with extracellular vesicles. Here, we summarize the state-of-the-art understanding of tRNA and rRNA fragment's roles in the context of plant-microbe interactions, their potential biogenesis, presumed delivery routes, and presumptive modes of action.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Worringerweg 1, Aachen, 52056, Germany
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| |
Collapse
|
81
|
Singh A, Zahra S, Arora S, Hamid F, Kumar S. In Silico Identification of tRNA Fragments, Novel Candidates for Cancer Biomarkers, and Therapeutic Targets. Methods Mol Biol 2024; 2812:379-392. [PMID: 39068374 DOI: 10.1007/978-1-0716-3886-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The identification of a wide variety of RNA molecules using high-throughput sequencing techniques in the transcriptome pool of living organisms has revealed hidden regulatory insights in the cell. The class of non-coding RNA fragments produced from transfer RNA, or tRFs, is one such example. They are heterogeneously sized molecules with lengths ranging between 15 and 50 nt. They have a history of being dysregulated in human malignancies and other illnesses. The detection of these molecules has been made easier by a variety of bioinformatics techniques. The various types of tRFs and how they relate to cancer are covered in this chapter. It also provides a summary of the biological significance of tRFs reported in human cancer. Additionally, it emphasizes the utilities of databases and computational tools that have been created by different research teams for the investigation of tRFs. This will further aid the exploration and analysis of tRFs in cancer research and will support future advancement and a better comprehension of these molecules.
Collapse
Affiliation(s)
- Ankita Singh
- Department of Surgical Disciplines, All India Institute of Medical Science (AIIMS), New Delhi, India
| | - Shafaque Zahra
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Simran Arora
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Fiza Hamid
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Shailesh Kumar
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India.
| |
Collapse
|
82
|
Shi J, Xu J, Ma J, He F. tRNA-derived small RNAs are embedded in the gene regulatory network instructing Drosophila metamorphosis. Genome Res 2023; 33:2119-2132. [PMID: 37973194 PMCID: PMC10760521 DOI: 10.1101/gr.278128.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
A class of noncoding RNAs, referred to as tsRNAs, is emerging with a potential to exert a new layer in gene regulation. These RNAs are breakdown products of tRNAs, either through active processing or passive cleavage or both. Since tRNAs are part of the general machinery for translation, their expression levels and activities are tightly controlled, raising the possibility that their breakdown products, tsRNAs, may provide a link between the overall translational status of a cell to specific changes in gene regulatory network. We hypothesize that Drosophila pupation, being a special developmental stage during which there is a global limitation of nutrients, represents a system in which such a link may readily reveal itself. We show that specific tsRNAs indeed show a dynamic accumulation upon entering the pupal stage. We describe experiments to characterize the mode of tsRNA action and, through the use of such gained knowledge, conduct a genome-wide analysis to assess the functions of dynamically expressed tsRNAs. Our results show that the predicted target genes are highly enriched in biological processes specific to this stage of development including metamorphosis. We further show that tsRNA action is required for successful pupation, providing direct support to the hypothesis that tsRNAs accumulated during this stage are critical to the gene expression program at this stage of development.
Collapse
Affiliation(s)
- Junling Shi
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jiaqi Xu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jun Ma
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China;
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
| | - Feng He
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China;
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
83
|
Ow MC, Hall SE. Inheritance of Stress Responses via Small Non-Coding RNAs in Invertebrates and Mammals. EPIGENOMES 2023; 8:1. [PMID: 38534792 DOI: 10.3390/epigenomes8010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/28/2024] Open
Abstract
While reports on the generational inheritance of a parental response to stress have been widely reported in animals, the molecular mechanisms behind this phenomenon have only recently emerged. The booming interest in epigenetic inheritance has been facilitated in part by the discovery that small non-coding RNAs are one of its principal conduits. Discovered 30 years ago in the Caenorhabditis elegans nematode, these small molecules have since cemented their critical roles in regulating virtually all aspects of eukaryotic development. Here, we provide an overview on the current understanding of epigenetic inheritance in animals, including mice and C. elegans, as it pertains to stresses such as temperature, nutritional, and pathogenic encounters. We focus on C. elegans to address the mechanistic complexity of how small RNAs target their cohort mRNAs to effect gene expression and how they govern the propagation or termination of generational perdurance in epigenetic inheritance. Presently, while a great amount has been learned regarding the heritability of gene expression states, many more questions remain unanswered and warrant further investigation.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Sarah E Hall
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
84
|
Zeidler M, Tavares-Ferreira D, Brougher J, Price TJ, Kress M. NOCICEPTRA2.0 - A comprehensive ncRNA atlas of human native and iPSC-derived sensory neurons. iScience 2023; 26:108525. [PMID: 38162030 PMCID: PMC10755718 DOI: 10.1016/j.isci.2023.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are pivotal in gene regulation during development and disease. MicroRNAs have been extensively studied in neurogenesis. However, limited knowledge exists about the developmental signatures of other ncRNA species in sensory neuron differentiation, and human dorsal root ganglia (DRG) ncRNA expression remains undocumented. To address this gap, we generated a comprehensive atlas of small ncRNA species during iPSC-derived sensory neuron differentiation. Utilizing iPSC-derived sensory neurons and human DRG RNA sequencing, we unveiled signatures describing developmental processes. Our analysis identified ncRNAs associated with various sensory neuron stages. Striking similarities in ncRNA expression signatures between human DRG and iPSC-derived neurons support the latter as a model to bridge the translational gap between preclinical findings and human disorders. In summary, our research sheds light on the role of ncRNA species in human nociceptors, and NOCICEPTRA2.0 offers a comprehensive ncRNA database for sensory neurons that researchers can use to explore ncRNA regulators in nociceptors thoroughly.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Omiqa Bioinformatics, Berlin, Germany
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, TX, USA
| | | | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, TX, USA
| | - Michaela Kress
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
85
|
Wang Q, Song X, Zhao F, Chen Q, Xia W, Dong G, Xu L, Mao Q, Jiang F. Noninvasive diagnosis of pulmonary nodules using a circulating tsRNA-based nomogram. Cancer Sci 2023; 114:4607-4621. [PMID: 37770420 PMCID: PMC10728016 DOI: 10.1111/cas.15971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
Evaluating the accuracy of pulmonary nodule diagnosis avoids repeated low-dose computed tomography (LDCT)/CT scans or invasive examination, yet remains a main clinical challenge. Screening for new diagnostic tools is urgent. Herein, we established a nomogram based on the diagnostic signature of five circulating tsRNAs and CT information to predict malignant pulmonary nodules. In total, 249 blood samples of patients with pulmonary nodules were selected from three different lung cancer centers. Five tsRNAs were identified in the discovery and training cohorts and the diagnostic signature was established by the randomForest algorithm (tRF-Ser-TGA-003, tRF-Val-CAC-005, tRF-Ala-AGC-060, tRF-Val-CAC-024, and tiRNA-Gln-TTG-001). A nomogram was developed by combining tsRNA signature and CT information. The high level of accuracy was identified in an internal validation cohort (n = 83, area under the receiver operating characteristic curve [AUC] = 0.930, sensitivity 100.0%, specificity 73.8%) and external validation cohort (n = 66, AUC = 0.943, sensitivity 100.0%, specificity 86.8%). Furthermore, the diagnostic ability of our model discriminating invasive malignant ones from noninvasive lesions was assessed. A robust performance was achieved in the diagnosis of invasive malignant lesions in both training and validation cohorts (discovery cohort: AUC = 0.850, sensitivity 86.0%, specificity 81.4%; internal validation cohort: AUC = 0.784, sensitivity 78.8%, specificity 78.1%; and external validation cohort: AUC = 0.837, sensitivity 85.7%, specificity 84.0%). This novel circulating tsRNA-based diagnostic model has potential significance in predicting malignant pulmonary nodules. Application of the model could improve the accuracy of pulmonary nodule diagnosis and optimize surgical plans.
Collapse
Affiliation(s)
- Qinglin Wang
- Department of Thoracic Surgery, Jiangsu Cancer HospitalJiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Xuming Song
- Department of Thoracic Surgery, Jiangsu Cancer HospitalJiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Feng Zhao
- Department of Thoracic SurgeryTaixing People's HospitalTaizhouChina
| | - Qiang Chen
- Department of Thoracic SurgeryXuzhou Central HospitalXuzhouChina
| | - Wenjie Xia
- Department of Thoracic Surgery, Jiangsu Cancer HospitalJiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Gaochao Dong
- Department of Thoracic Surgery, Jiangsu Cancer HospitalJiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer HospitalJiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Qixing Mao
- Department of Thoracic Surgery, Jiangsu Cancer HospitalJiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer HospitalJiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| |
Collapse
|
86
|
Zhang C, Ye W, Zhao M, Xia D, Fan Z. tRNA-derived small RNA changes in bone marrow stem cells under hypoxia and osteogenic conduction. J Oral Rehabil 2023; 50:1487-1497. [PMID: 37574812 DOI: 10.1111/joor.13566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/04/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Tissue engineering using bone mesenchymal stem cells (BMSCs) transplantation is a promising therapeutic for bone regeneration. However, the effect of bone regeneration remains unsatisfactory due to the BMSCs' functional abnormality influenced by hypoxia. In this study, we attempt to explore the mechanism of osteogenic differentiation of BMSCs under hypoxic conditions from the perspective of non-coding RNA regulation. METHODS The study employed BMSCs obtained from healthy donors and simulated hypoxia using CoCl2 stimulation. High-throughput sequencing technique was used to identify differential expression profiles of tRNA-derived small RNA (tsRNA) in three experimental groups: BMSCs-0d, BMSCs-7d and BMSCs-0d-CoCl2 . TargetScan and miRanda algorithms were used to determine tsRNA target genes, while Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were employed for the prediction of biological functions. Real-time reverse transcriptase-polymerase chain reaction (Real-time RT-PCR) was carried out on four selected differentially expressed tsRNAs. RESULTS After the osteogenic induction and CoCl2 stimulated separately, there were 19 tsRNAs differentially expressed in BMSCs, including 14 upregulated and five downregulated. According to the analysis of biological information, these tsRNAs may regulate 311 potential target genes and mainly enrich the pathways such as metabolic pathways, Wnt signalling pathway, osteoclast differentiation, cellular senescence and mTOR signalling pathway. The results of Real-time RT-PCR for 3'tiRNA-41-GlnTTG-6, 3'tiRNA-42-LysTTT-8, 5'tiRNA-35-CysACA-1 and tRF3a-AsnGTT-9 were consistent with small RNA sequencing data. CONCLUSION We discovered the tsRNA that changes the process of osteogenesis and hypoxia, which provides new targets for promoting survival and regeneration functions after BMSCs transplantation.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Weilong Ye
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Mengyao Zhao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Dengsheng Xia
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
87
|
Fallet M, Wilson R, Sarkies P. Cisplatin exposure alters tRNA-derived small RNAs but does not affect epimutations in C. elegans. BMC Biol 2023; 21:276. [PMID: 38031056 PMCID: PMC10688063 DOI: 10.1186/s12915-023-01767-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The individual lifestyle and environment of an organism can influence its phenotype and potentially the phenotype of its offspring. The different genetic and non-genetic components of the inheritance system and their mutual interactions are key mechanisms to generate inherited phenotypic changes. Epigenetic changes can be transmitted between generations independently from changes in DNA sequence. In Caenorhabditis elegans, epigenetic differences, i.e. epimutations, mediated by small non-coding RNAs, particularly 22G-RNAs, as well as chromatin have been identified, and their average persistence is three to five generations. In addition, previous research showed that some epimutations had a longer duration and concerned genes that were enriched for multiple components of xenobiotic response pathways. These results raise the possibility that environmental stresses might change the rate at which epimutations occur, with potential significance for adaptation. RESULTS In this work, we explore this question by propagating C. elegans lines either in control conditions or in moderate or high doses of cisplatin, which introduces genotoxic stress by damaging DNA. Our results show that cisplatin has a limited effect on global small non-coding RNA epimutations and epimutations in gene expression levels. However, cisplatin exposure leads to increased fluctuations in the levels of small non-coding RNAs derived from tRNA cleavage. We show that changes in tRNA-derived small RNAs may be associated with gene expression changes. CONCLUSIONS Our work shows that epimutations are not substantially altered by cisplatin exposure but identifies transient changes in tRNA-derived small RNAs as a potential source of variation induced by genotoxic stress.
Collapse
Affiliation(s)
- Manon Fallet
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK.
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182, Örebro, Sweden.
| | - Rachel Wilson
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Peter Sarkies
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK.
| |
Collapse
|
88
|
Yu M, Yi J, Qiu Q, Yao D, Li J, Yang J, Mi C, Zhou L, Lu B, Lu W, Ying K, Chen W, Chen E, Zhang H, Lu Z, Lu Y, Liu P. Pan-cancer tRNA-derived fragment CAT1 coordinates RBPMS to stabilize NOTCH2 mRNA to promote tumorigenesis. Cell Rep 2023; 42:113408. [PMID: 37943661 DOI: 10.1016/j.celrep.2023.113408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Transfer RNA-derived fragments (tRFs) are a class of small non-coding regulatory RNAs that are involved in the pathophysiology of many diseases. However, the role of tRFs in cancer progression remains largely elusive. Here, we demonstrate that a pan-cancer 3'-tRF, CAT1 (cancer associated tRF 1), is ubiquitously upregulated in tumors and associated with poor prognosis of a variety of cancers, including lung cancer. The upregulated CAT1 in cancer cells binds to RNA-binding protein with multiple splicing (RBPMS) and displaces NOTCH2 association from RBPMS, thereby inhibiting the subsequent CCR4-NOT deadenylation-complex-mediated NOTCH2 mRNA decay. The CAT1-enhanced NOTCH2 expression promotes lung cancer cell proliferation and metastasis in vitro and in vivo. In addition, plasma CAT1 levels are substantially increased in patients with lung cancer compared to non-cancer control subjects. Our findings reveal an intrinsic connection between cancer-specific upregulation of CAT1 and cancer progression, show the regulation of NOTCH signaling in cancer by a 3'-tRF, and highlight its great clinical potential.
Collapse
Affiliation(s)
- Mengqian Yu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Jiani Yi
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Qiongzi Qiu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Dongxia Yao
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Jia Li
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Juze Yang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Chunyi Mi
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Liyuan Zhou
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Bingjian Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Weiguo Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Kejing Ying
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Wantao Chen
- Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, China
| | - Enguo Chen
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Honghe Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China.
| | - Yan Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China.
| | - Pengyuan Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China; Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
89
|
Karousi P, Samiotaki M, Makridakis M, Zoidakis J, Sideris DC, Scorilas A, Carell T, Kontos CK. 3'-tRF-Cys GCA overexpression in HEK-293 cells alters the global expression profile and modulates cellular processes and pathways. Funct Integr Genomics 2023; 23:341. [PMID: 37987851 PMCID: PMC10663186 DOI: 10.1007/s10142-023-01272-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
tRNA fragments (tRFs) are small non-coding RNAs generated through specific cleavage of tRNAs and involved in various biological processes. Among the different types of tRFs, the 3'-tRFs have attracted scientific interest due to their regulatory role in gene expression. In this study, we investigated the role of 3'-tRF-CysGCA, a tRF deriving from cleavage in the T-loop of tRNACysGCA, in the regulation of gene expression in HEK-293 cells. Previous studies have shown that 3'-tRF-CysGCA is incorporated into the RISC complex and interacts with Argonaute proteins, suggesting its involvement in the regulation of gene expression. However, the general role and effect of the deregulation of 3'-tRF-CysGCA levels in human cells have not been investigated so far. To fill this gap, we stably overexpressed 3'-tRF-CysGCA in HEK-293 cells and performed transcriptomic and proteomic analyses. Moreover, we validated the interaction of this tRF with putative targets, the levels of which were found to be affected by 3'-tRF-CysGCA overexpression. Lastly, we investigated the implication of 3'-tRF-CysGCA in various pathways using extensive bioinformatics analysis. Our results indicate that 3'-tRF-CysGCA overexpression led to changes in the global gene expression profile of HEK-293 cells and that multiple cellular pathways were affected by the deregulation of the levels of this tRF. Additionally, we demonstrated that 3'-tRF-CysGCA directly interacts with thymopoietin (TMPO) transcript variant 1 (also known as LAP2α), leading to modulation of its levels. In conclusion, our findings suggest that 3'-tRF-CysGCA plays a significant role in gene expression regulation and highlight the importance of this tRF in cellular processes.
Collapse
Affiliation(s)
- Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center, "Alexander Fleming", Vari, Greece
| | - Manousos Makridakis
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jerome Zoidakis
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Thomas Carell
- Department for Chemistry, Institute for Chemical Epigenetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece.
| |
Collapse
|
90
|
Kuhle B, Chen Q, Schimmel P. tRNA renovatio: Rebirth through fragmentation. Mol Cell 2023; 83:3953-3971. [PMID: 37802077 PMCID: PMC10841463 DOI: 10.1016/j.molcel.2023.09.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
tRNA function is based on unique structures that enable mRNA decoding using anticodon trinucleotides. These structures interact with specific aminoacyl-tRNA synthetases and ribosomes using 3D shape and sequence signatures. Beyond translation, tRNAs serve as versatile signaling molecules interacting with other RNAs and proteins. Through evolutionary processes, tRNA fragmentation emerges as not merely random degradation but an act of recreation, generating specific shorter molecules called tRNA-derived small RNAs (tsRNAs). These tsRNAs exploit their linear sequences and newly arranged 3D structures for unexpected biological functions, epitomizing the tRNA "renovatio" (from Latin, meaning renewal, renovation, and rebirth). Emerging methods to uncover full tRNA/tsRNA sequences and modifications, combined with techniques to study RNA structures and to integrate AI-powered predictions, will enable comprehensive investigations of tRNA fragmentation products and new interaction potentials in relation to their biological functions. We anticipate that these directions will herald a new era for understanding biological complexity and advancing pharmaceutical engineering.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
91
|
Zhang L, Liu J, Hou Y. Classification, function, and advances in tsRNA in non-neoplastic diseases. Cell Death Dis 2023; 14:748. [PMID: 37973899 PMCID: PMC10654580 DOI: 10.1038/s41419-023-06250-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
tRNA-derived small RNAs (tsRNAs) are non-coding small RNAs produced by specific endonucleases following the processing and splicing of precursor or mature tRNAs upon starvation, oxidative stress, hypoxia, and other adverse conditions. tRNAs are classified into two major categories, tRNA fragments (tRFs) and tRNA-derived stress-induced small RNAs (tiRNAs), based on differences in splice sites. With the development of high-throughput sequencing technologies in recent years, tsRNAs have been found to have important biological functions, including inhibition of apoptosis, epigenetic regulation, cell-cell communication, translation, and regulation of gene expression. Additionally, these molecules have been found to be aberrantly expressed in various diseases and to be involved in several pathological processes. In this article, the classification and nomenclature, biological functions, and potential use of tsRNAs as diagnostic biomarkers and therapeutic targets in non-neoplastic diseases are reviewed. Although tsRNA research is at its infancy, their potential in the treatment of non-tumor diseases warrants further investigation.
Collapse
Affiliation(s)
- Liou Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jie Liu
- Translational Research Experiment Department, Science Experiment Center, China Medical University, Shenyang, China.
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
92
|
Akins RB, Ostberg K, Cherlin T, Tsiouplis NJ, Loher P, Rigoutsos I. The Typical tRNA Co-Expresses Multiple 5' tRNA Halves Whose Sequences and Abundances Depend on Isodecoder and Isoacceptor and Change with Tissue Type, Cell Type, and Disease. Noncoding RNA 2023; 9:69. [PMID: 37987365 PMCID: PMC10660753 DOI: 10.3390/ncrna9060069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023] Open
Abstract
Transfer RNA-derived fragments (tRFs) are noncoding RNAs that arise from either mature transfer RNAs (tRNAs) or their precursors. One important category of tRFs comprises the tRNA halves, which are generated through cleavage at the anticodon. A given tRNA typically gives rise to several co-expressed 5'-tRNA halves (5'-tRHs) that differ in the location of their 3' ends. These 5'-tRHs, even though distinct, have traditionally been treated as indistinguishable from one another due to their near-identical sequences and lengths. We focused on co-expressed 5'-tRHs that arise from the same tRNA and systematically examined their exact sequences and abundances across 10 different human tissues. To this end, we manually curated and analyzed several hundred human RNA-seq datasets from NCBI's Sequence Run Archive (SRA). We grouped datasets from the same tissue into their own collection and examined each group separately. We found that a given tRNA produces different groups of co-expressed 5'-tRHs in different tissues, different cell lines, and different diseases. Importantly, the co-expressed 5'-tRHs differ in their sequences, absolute abundances, and relative abundances, even among tRNAs with near-identical sequences from the same isodecoder or isoacceptor group. The findings suggest that co-expressed 5'-tRHs that are produced from the same tRNA or closely related tRNAs have distinct, context-dependent roles. Moreover, our analyses show that cell lines modeling the same tissue type and disease may not be interchangeable when it comes to experimenting with tRFs.
Collapse
Affiliation(s)
| | | | | | | | | | - Isidore Rigoutsos
- Computational Medical Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
93
|
Pinzaru AM, Tavazoie SF. Transfer RNAs as dynamic and critical regulators of cancer progression. Nat Rev Cancer 2023; 23:746-761. [PMID: 37814109 DOI: 10.1038/s41568-023-00611-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 10/11/2023]
Abstract
Transfer RNAs (tRNAs) have been historically viewed as non-dynamic adaptors that decode the genetic code into proteins. Recent work has uncovered dynamic regulatory roles for these fascinating molecules. Advances in tRNA detection methods have revealed that specific tRNAs can become modulated upon DNA copy number and chromatin alterations and can also be perturbed by oncogenic signalling and transcriptional regulators in cancer cells or the tumour microenvironment. Such alterations in the levels of specific tRNAs have been shown to causally impact cancer progression, including metastasis. Moreover, sequencing methods have identified tRNA-derived small RNAs that influence various aspects of cancer progression, such as cell proliferation and invasion, and could serve as diagnostic and prognostic biomarkers or putative therapeutic targets in various cancers. Finally, there is accumulating evidence, including from genetic models, that specific tRNA synthetases - the enzymes responsible for charging tRNAs with amino acids - can either promote or suppress tumour formation. In this Review, we provide an overview of how deregulation of tRNAs influences cancer formation and progression.
Collapse
Affiliation(s)
- Alexandra M Pinzaru
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
94
|
Aquino-Jarquin G. tRNA Thr-miR-720 mimicry in glioma cells. Hum Cell 2023; 36:2276-2277. [PMID: 37578573 DOI: 10.1007/s13577-023-00968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Affiliation(s)
- Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section, Genomics, Genetics, and Bioinformatics Research Laboratory, 'Federico Gómez' Children's Hospital of Mexico, Dr. Márquez 162, Doctores, Cuauhtémoc, C.P. 06720, Ciudad de México, Mexico.
| |
Collapse
|
95
|
Rafieenia F, Ebrahimi SO, Emadi ES, Taheri F, Reiisi S. Bioengineered chimeric tRNA/pre-miRNAs as prodrugs in cancer therapy. Biotechnol Prog 2023; 39:e3387. [PMID: 37608520 DOI: 10.1002/btpr.3387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Today, biologic prodrugs have led to targeting specific tumor markers and have increased specificity and selectivity in cancer therapy. Various studies have shown the role of ncRNAs in cancer pathology and tumorigenesis and have suggested that ncRNAs, especially miRNAs, are valuable molecules in understanding cancer biology and therapeutic processes. Most miRNAs-based research and treatment are limited to chemically synthesized miRNAs. Synthetic alterations in these miRNA mimics may affect their folding, safety profile, and even biological activity. However, despite synthetic miRNA mimics produced by automated systems, various carriers could be used to achieve efficient production of bioengineered miRNAs through economical microbial fermentation. These bioengineered miRNAs as biological prodrugs could provide a new approach for safe therapeutic methods and drug production. In this regard, bioengineered chimeric miRNAs could be selectively processed to mature miRNAs in different types of cancer cells by targeting the desired gene and regulating cancer progression. In this article, we aim to review bioengineered miRNAs and their use in cancer therapy, as well as offering advances in this area, including the use of chimeric tRNA/pre-miRNAs.
Collapse
Affiliation(s)
- Fatemeh Rafieenia
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Ensieh Sadat Emadi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
96
|
Akiyama Y, Ivanov P. tRNA-derived RNAs: Biogenesis and roles in translational control. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1805. [PMID: 37406666 PMCID: PMC10766869 DOI: 10.1002/wrna.1805] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
Transfer RNA (tRNA)-derived RNAs (tDRs) are a class of small non-coding RNAs that play important roles in different aspects of gene expression. These ubiquitous and heterogenous RNAs, which vary across different species and cell types, are proposed to regulate various biological processes. In this review, we will discuss aspects of their biogenesis, and specifically, their contribution into translational control. We will summarize diverse roles of tDRs and the molecular mechanisms underlying their functions in the regulation of protein synthesis and their impact on related events such as stress-induced translational reprogramming. This article is categorized under: RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
97
|
Shi H, Xie J, Pei S, He D, Hou H, Xu S, Fu Z, Shi X. Digging out the biology properties of tRNA-derived small RNA from black hole. Front Genet 2023; 14:1232325. [PMID: 37953919 PMCID: PMC10637384 DOI: 10.3389/fgene.2023.1232325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
An unique subclass of functional non-coding RNAs generated by transfer RNA (tRNA) under stress circumstances is known as tRNA-derived small RNA (tsRNA). tsRNAs can be divided into tRNA halves and tRNA-derived fragments (tRFs) based on the different cleavage sites. Like microRNAs, tsRNAs can attach to Argonaute (AGO) proteins to target downstream mRNA in a base pairing manner, which plays a role in rRNA processing, gene silencing, protein expression and viral infection. Notably, tsRNAs can also directly bind to protein and exhibit functions in transcription, protein modification, gene expression, protein stabilization, and signaling pathways. tsRNAs can control the expression of tumor suppressor genes and participate in the initiation of cancer. It can also mediate the progression of diseases by regulating cell viability, migration ability, inflammatory factor content and autophagy ability. Precision medicine targeting tsRNAs and drug therapy of plant-derived tsRNAs are expected to be used in clinical practice. In addition, liquid biopsy technology based on tsRNAs indicates a new direction for the non-invasive diagnosis of diseases.
Collapse
Affiliation(s)
- Hengmei Shi
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danni He
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Huyang Hou
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shipeng Xu
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Shi
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
98
|
Wei D, Niu B, Zhai B, Liu XB, Yao YL, Liang CC, Wang P. Expression profiles and function prediction of tRNA-derived fragments in glioma. BMC Cancer 2023; 23:1015. [PMID: 37864150 PMCID: PMC10588164 DOI: 10.1186/s12885-023-11532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive malignant primary brain tumor. The transfer RNA-derived fragments (tRFs) are a new group of small noncoding RNAs, which are dysregulated in many cancers. Until now, the expression and function of tRFs in glioma remain unknown. METHODS The expression profiles of tRF subtypes were analyzed using the Cancer Genome Atlas (TCGA)-low-grade gliomas (LGG)/GBM dataset. The target genes of tRFs were subjected to Gene Ontology, Kyoto Encyclopedia and Gene set enrichment analysis of Genes and Genomes pathway enrichment analysis. The protein-protein interaction enrichment analysis was performed by STRING. QRT-PCR was performed to detect the expressions of tRFs in human glioma cell lines U87, U373, U251, and human astrocyte cell line SVG p12. Western blot assay was used to detect to the expression of S100A11. The interaction between tRF-19-R118LOJX and S100A11 mRNA 3'UTR was detected by dual-luciferase reporter assay. The effects of tRF-19-R118LOJX, tRF-19-6SM83OJX and S100A11 on the glioma cell proliferation, migration and in vitro vasculogenic mimicry formation ability were examined by CCK-8 proliferation assay, EdU assay, HoloMonitor cell migration assay and tube formation assay, respectively. RESULTS tRF-19-R118LOJX and tRF-19-6SM83OJX are the most differentially expressed tRFs between LGG and GBM groups. The functional enrichment analysis showed that the target genes of tRF-19-R118LOJX and tRF-19-6SM83OJX are enriched in regulating blood vessel development. The upregulated target genes are linked to adverse survival outcomes in glioma patients. tRF-19-R118LOJX and tRF-19-6SM83OJX were identified to suppress glioma cell proliferation, migration, and in vitro vasculogenic mimicry formation. The mechanism of tRF-19-R118LOJX might be related to its function as an RNA silencer by targeting the S100A11 mRNA 3'UTR. CONCLUSION tRFs would become novel diagnostic biomarkers and therapeutic targets of glioma, and the mechanism might be related to its post-transcriptionally regulation of gene expression by targeting mRNA 3'UTR.
Collapse
Affiliation(s)
- Deng Wei
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Ben Niu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Bei Zhai
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xiao-Bai Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yi-Long Yao
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chan-Chan Liang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.
| |
Collapse
|
99
|
Parperides E, El Mounadi K, Garcia‐Ruiz H. Induction and suppression of gene silencing in plants by nonviral microbes. MOLECULAR PLANT PATHOLOGY 2023; 24:1347-1356. [PMID: 37438989 PMCID: PMC10502822 DOI: 10.1111/mpp.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023]
Abstract
Gene silencing is a conserved mechanism in eukaryotes that dynamically regulates gene expression. In plants, gene silencing is critical for development and for maintenance of genome integrity. Additionally, it is a critical component of antiviral defence in plants, nematodes, insects, and fungi. To overcome gene silencing, viruses encode effectors that suppress gene silencing. A growing body of evidence shows that gene silencing and suppression of silencing are also used by plants during their interaction with nonviral pathogens such as fungi, oomycetes, and bacteria. Plant-pathogen interactions involve trans-kingdom movement of small RNAs into the pathogens to alter the function of genes required for their development and virulence. In turn, plant-associated pathogenic and nonpathogenic microbes also produce small RNAs that move trans-kingdom into host plants to disrupt pathogen defence through silencing of plant genes. The mechanisms by which these small RNAs move from the microbe to the plant remain poorly understood. In this review, we examine the roles of trans-kingdom small RNAs and silencing suppressors produced by nonviral microbes in inducing and suppressing gene silencing in plants. The emerging model is that gene silencing and suppression of silencing play critical roles in the interactions between plants and their associated nonviral microbes.
Collapse
Affiliation(s)
- Eric Parperides
- Department of Plant Pathology and Nebraska Center for VirologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Kaoutar El Mounadi
- Department of BiologyKutztown University of PennsylvaniaKutztownPennsylvaniaUSA
| | - Hernan Garcia‐Ruiz
- Department of Plant Pathology and Nebraska Center for VirologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
100
|
Li X, Zhang Y, Li Y, Gu X, Ju S. A comprehensive evaluation of serum tRF-29-R9J8909NF5JP as a novel diagnostic and prognostic biomarker for gastric cancer. Mol Carcinog 2023; 62:1504-1517. [PMID: 37314123 DOI: 10.1002/mc.23592] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Gastric cancer (GC) is a common malignant digestive system tumor. Since the early symptoms of GC are usually vague and the positive rate of common biomarkers of GC is low, it is of urgent need to find new biomarkers with good sensitivity and specificity to screen and diagnose GC patients. The tRNA-derived small RNAs (tsRNAs) are emerging small noncoding RNAs that play an essential role in cancer progression. In this study, we explored whether novel tsRNAs have the potential to serve as biomarkers for GC. Three tsRNAs significantly upregulated in GC were screened by the tsRFun database. The expression level of tRF-29-R9J8909NF5JP was detected by real-time fluorescence quantitative polymerase chain reaction. Agarose gel electrophoresis and Sanger sequencing were used to verify the characteristics of tRF-29-R9J8909NF5JP. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of tRF-29-R9J8909NF5JP. The χ2 test was used to analyze the correlation between tRF-29-R9J8909NF5JP expression level and clinicopathological parameters. Kaplan-Meier survival curves were used to analyze the correlation between tRF-29-R9J8909NF5JP expression levels and survival time of GC patients. In this study, the expression level of tRF-29-R9J8909NF5JP was significantly increased in GC tissues. The expression level of tRF-29-R9J8909NF5JP was considerably higher in the serum of GC patients than in the serum of gastritis patients and in the serum of healthy donors, and the expression level of tRF-29-R9J8909NF5JP was significantly decreased in the serum of GC patients after surgery. In addition, the χ2 test showed that the expression level of tRF-29-R9J8909NF5JP in GC serum was correlated with differentiation grade, T-stage, lymph node metastasis, tumor node metastasis stage, and neurological/vascular invasion. The results of the survival curve showed that the high expression of serum tRF-29-R9J8909NF5JP was associated with a low survival rate. ROC analysis showed that serum tRF-29-R9J8909NF5JP had higher diagnostic efficiency than common GC biomarkers, and the diagnostic efficiency was further improved by combining them. At the end of the study, we predicted the downstream of tRF-29-R9J8909NF5JP. The expression level of tRF-29-R9J8909NF5JP in the serum of GC patients can effectively identify GC patients and has higher efficacy than conventional biomarkers. In addition, serum tRF-29-R9J8909NF5JP can monitor the postoperative condition of GC patients, suggesting that it has the potential to become a biomarker for GC.
Collapse
Affiliation(s)
- Xun Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yu Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yang Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|