51
|
Filip-Stachnik A, Krzysztofik M, Del Coso J, Pałka T, Sadowska-Krępa E. The Effect of Acute Caffeine Intake on Resistance Training Volume, Prooxidant-Antioxidant Balance and Muscle Damage Markers Following a Session of Full-Body Resistance Exercise in Resistance-Trained Men Habituated to Caffeine. J Sports Sci Med 2023; 22:436-446. [PMID: 37711718 PMCID: PMC10499132 DOI: 10.52082/jssm.2023.436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
No previous study has analyzed the impact of caffeine intake on prooxidant-antioxidant balance and muscle damage following resistance exercise. The aim of this study was to determine the effect of 3 mg/kg of caffeine on the number of repetitions and the prooxidant-antioxidant balance and muscle damage after a session of full-body resistance exercise. Ten resistance-trained men habituated to caffeine participated in a randomized, crossover and double-blind experiment. Each participant performed two identical resistance training sessions after the intake of 3 mg/kg of caffeine or a placebo. Blood was collected before and 60 min after substance intake, just after exercise, 60 minutes after exercise, and 24 hours after testing to evaluate the activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase), non-enzymatic antioxidants (reduced glutathione, uric acid) levels of oxidative stress markers (plasma malondialdehyde) and muscle damage markers (creatine kinase, lactate dehydrogenase). There were no significant differences between placebo and caffeine conditions in the total number of repetitions (180 ± 15 vs 185 ± 14 repetitions, respectively; p = 0.276; Effect size [ES] = 0.34), the total time under tension (757 ± 71 vs 766 ± 56 s, respectively; p = 0.709; ES = 0.14) or the rating of perceived exertion (13.8 ± 2.7 vs 14.7 ± 2.7 a.u., respectively; p = 0.212; ES = 0.32). Reduced glutathione concentration obtained 1 hour after exercise was higher with caffeine than with placebo (p = 0.047), without significant difference between conditions for any other prooxidant-oxidant or muscle damage marker at any time point (p > 0.050 for all). The oral intake of 3 mg/kg of caffeine by resistance-trained men habituated to caffeine did not enhance the number of repetitions during a medium load full-body resistance training session to failure and had a minimal impact on the prooxidant-antioxidant balance and muscle damage. The study was registered prospectively at ClinicalTrials.gov with the following ID: NCT05230303.
Collapse
Affiliation(s)
| | - Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Poland
| | - Juan Del Coso
- Centre for Sport Studies, Universidad Rey Juan Carlos, Spain, Madrid
| | - Tomasz Pałka
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Krakow, Krakow, Poland
| | - Ewa Sadowska-Krępa
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Poland
| |
Collapse
|
52
|
Yasuda J, Myoenzono K, Takai E, Toguchi M, Tsunezumi S, Kondo C, Kaizaki A, Ode S, Ohno H, Namma-Motonaga K, Kamei A. Importance of "meal first" strategy and effective situations of supplement use in elite athletes: Japan high performance sport center position stand. Front Sports Act Living 2023; 5:1188224. [PMID: 37383062 PMCID: PMC10293618 DOI: 10.3389/fspor.2023.1188224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
The "meal first" strategy is traditionally recommended for athletes' conditioning. However, the importance of the "meal first" principle has not been detailly well documented in athletes' lives. Supplement use has recently become a common part of athletes' diets, but unmonitored supplement use can cause negative consequences, such as anti-doping violations and health issues. Therefore, this review summarizes how the "meal first" strategy and planned supplement use are important for enhancing athletes' health and performance. We believe that the "meal first" strategy is beneficial in terms of the following aspects: (1) consumption of multi-nutrients and other functional components simultaneously; (2) positive effects on psychological well-being; (3) contribution to athletes' health by way of mastication; and (4) less risk for anti-doping violations. Before supplement use, we recommend that athletes first verify their basic factors (e.g., diet, training, and sleep), given that the benefits of supplements are examined and demonstrated with the control of those factors. Otherwise, athletes cannot obtain maximal benefits from the supplements. In contrast, there are situations in which supplements in athletes' lives can be advantageous, such as (1) nutrient deficiency due to ongoing dietary characteristics; (2) interruption of meals due to disease; (3) inaccessibility of quality food during athletic travel; (4) difficulty preparing food due to societal restrictions associated with disasters or infection outbreaks; (5) having a meal before, during, or after exercise is difficult; and (6) achieving targeted intake of performance-enhancing ingredients is not practical. In summary, we emphasize that the "meal first" strategy is recommended for athletes' conditioning, but there are several contexts when supplement use can be more useful in athletes' lives.
Collapse
Affiliation(s)
- Jun Yasuda
- Correspondence: Jun Yasuda Keiko Namma-Motonaga Akiko Kamei
| | | | | | | | | | | | | | | | | | | | - Akiko Kamei
- Correspondence: Jun Yasuda Keiko Namma-Motonaga Akiko Kamei
| |
Collapse
|
53
|
Douligeris A, Methenitis S, Lazou A, Panayiotou G, Feidantsis K, Voulgaridou G, Manios Y, Jamurtas AZ, Giaginis C, Papadopoulou SK. The Effect of Acute Pre-Workout Supplement Ingestion on Basketball-Specific Performance of Well-Trained Athletes. Nutrients 2023; 15:nu15102304. [PMID: 37242187 DOI: 10.3390/nu15102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
A pre-workout supplement's (PWS; 200 mg caffeine, 3.3 g creatine monohydrate, 3.2 g β-alanine, 6 g citrulline malate and 5 g branched chained amino acid (BCAA) per dose) acute effects on the alactic (jumping, sprinting, agility), lactic (Running-Based Anaerobic Sprint Test, RAST) and aerobic performance (Yo-Yo Intermittent Recovery Test Level 1, Yo-Yo IRL1 VO2max) of well-trained basketball players was investigated in this double-blind placebo-controlled study. Thirty players (age 18-31 years, height 166-195 cm, weight 70.2-116.7 kg, body fat 10.6-26.4%) were allocated to pre-workout (PWS, n = 15) or placebo (PL, n = 15) groups. Half of the participants in each group performed the evaluations without PWS or PL, while the rest consumed PWS or PL 30 min before the assessments (1st trial) and vice versa (2nd trial). Significant improvements in counter-movement jump (CMJ) (PWS: 4.3 ± 2.1%; PL: 1.2 ± 1.0%), agility (PWS: -2.9 ± 1.8%; PL: 1.8 ± 1.7%), RAST average (PWS: 18.3 ± 9.1%; PL: -2.2 ± 2.0%), minimum power (PWS: 13.7 ± 8.9%; PL: -7.5 ± 5.9%), and fatigue index (PWS: -25.0 ± 0.9%; PL: -4.6 ± 0.6%) were observed in the PWS group vs. the PL group (p < 0.05). No differences were found regarding sprinting, aerobic performance, and blood lactate concentrations. Thus, although players' alactic and lactic anaerobic performance could be improved, peak power, sprinting and aerobic performance are not.
Collapse
Affiliation(s)
- Athanasios Douligeris
- Department of Nutrition Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Spyridon Methenitis
- Department of Nutrition Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 15772 Athens, Greece
- Theseus, Physical Medicine and Rehabilitation Center, 17671 Athens, Greece
| | - Antonia Lazou
- Nutrition and Dietetics, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL109AB, UK
| | - George Panayiotou
- Laboratory of Exercise, Health and Human Performance, Applied Sport Science Postgraduate Program, Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Konstantinos Feidantsis
- Department of Nutrition Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Gavriela Voulgaridou
- Department of Nutrition Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Yannis Manios
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17671 Athens, Greece
- Institute of Agri-food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | - Athanasios Z Jamurtas
- Department of Physical Education & Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Myrina, Greece
| | - Sousana K Papadopoulou
- Department of Nutrition Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| |
Collapse
|
54
|
Qin J, Cheng Q, Cai Z, Zhang L, Xing T, Xu X, Gao F. Gas chromatography-mass spectrometry-based untargeted metabolomics analysis reveals circulating biomarkers related to wooden breast myopathy in broilers: a preliminary study. Poult Sci 2023; 102:102718. [PMID: 37141813 DOI: 10.1016/j.psj.2023.102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023] Open
Abstract
Approaches for the diagnosis of wooden breast (WB) myopathy in live birds are urgently required before applying intervention strategies to reduce occurrence and severity for the poultry industry. The objective of this study was to characterize the serum metabolic profiles in male broilers affected by WB and to identify biomarkers related to this myopathy. Broilers were categorized into normal (CON) and WB groups based on gross scoring and histological evaluation. Gas chromatography-mass spectrometry-based metabolomics, multivariate analysis, and orthogonal partial least squares discriminant analysis revealed a clear separation between CON and WB. A total of 73 significantly different (P < 0.05) metabolites with 17 upregulated and 56 downregulated were identified, which were mainly involved in pathways of alanine, aspartate, and glutamate metabolism, carbohydrate metabolism, and taurine and hypotaurine metabolism. By using the nested cross-validation function of random forest analysis, 9 significantly altered (P < 0.05) metabolites (cerotinic acid, arabitol, phosphoenolpyruvate, terephthalic acid, cis-gondoic acid, N-acetyl-d-glucosamine, 4-hydroxymandelic acid, caffeine, and xanthurenic acid) were identified as biomarkers with an excellent discriminant performance for WB myopathy. Collectively, this study provides new insights for a deeper understanding of the pathogenesis and provides metabolites as biomarkers for diagnostic utilization of WB myopathy.
Collapse
Affiliation(s)
- Jieyi Qin
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingqing Cheng
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyu Cai
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhang
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Xing
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xinglian Xu
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
55
|
Nabuco LL, Mendes GF, Barreto G, Saunders B, Reis CEG. Spit It Out: Is Caffeine Mouth Rinse an Effective Ergogenic Aid? A Systematic Review and Meta-Analysis. Strength Cond J 2023. [DOI: 10.1519/ssc.0000000000000777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
56
|
Saunders B, da Costa LR, de Souza RAS, Barreto G, Marticorena FM. Caffeine and sport. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:95-127. [PMID: 37722778 DOI: 10.1016/bs.afnr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Caffeine is a trimethylxanthine found in coffee and several other foods and beverages. Its stimulatory effects make it an interesting strategy to boost performance for athletic populations. Scientific evidence supports its efficacy to improve high-intensity endurance exercise, explosive and high-intensity efforts, resistance exercise, team sports and combat sports, though individual variation in the ergogenic response to caffeine exists. Supplementation can be taken in many forms including dissolved in water, via capsules, coffee, energy drinks and caffeinated gum; ingestion via capsules, dissolved in water or in caffeinated gum appear to be most effective. Variability in the exercise response following caffeine supplementation may be explained by genetic factors or habitual caffeine consumption. Caffeine is an excellent supplement for athletes looking to improve their exercise performance, though some consideration of side-effects and impact on sleep are warranted.
Collapse
Affiliation(s)
- Bryan Saunders
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil; Institute of Orthopedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil.
| | - Larissa Registro da Costa
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo Augusto Silva de Souza
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriel Barreto
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe Miguel Marticorena
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
57
|
Robles-González L, Ramírez Maldonado M, Alcalá-Escamilla JC, Jurado-Fasoli L, Miras-Moreno S, Soriano MA, García-Ramos A, Ruiz JR, Amaro-Gahete FJ. Caffeine ingestion attenuates diurnal variation of lower-body ballistic performance in resistance-trained women. Eur J Sport Sci 2023; 23:381-392. [PMID: 35109780 DOI: 10.1080/17461391.2022.2038274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
ABSTRACTThe present study investigates the effect of an acute intake of caffeine on the diurnal variation of neuromuscular performance in resistance-trained women. A total of 15 resistance-trained women participated in the current triple-blind, placebo-controlled, crossover experimental study. We assessed neuromuscular performance (i.e. ballistic (countermovement jump [CMJ] height and bench press throw [BPT] peak velocity), maximal strength (squat and bench press [BP] one-repetition maximum [1RM]), and strength-endurance [average velocity of the set during squat and number of repetitions-to-failure in BP]) four times at within 7 days. The participants ingested an acute dose of caffeine (3 mg/kg) or a placebo at 9-11 am and/or 17-19 pm. CMJ height (P = .016) and BP peak velocity (P = .012) were higher in the afternoon than in the morning. Compared to placebo, caffeine intake increased CMJ height by 3.1% in the morning and 1.6% in the afternoon (P = .035), but it had no effect on BPT peak velocity (P = .381). Maximal strength and strength-endurance performances were not affected by the time-of-day or caffeine intake (all P > .3). No significant interaction (time-of-day x substance) was observed in any of the above-mentioned outcomes (all P > .1). In conclusion, an acute dose of caffeine in the morning was effective to restore CMJ performance to levels found in the afternoon, while this effect was not observed neither in BPTpeak velocity nor in lower- and upper-body maximal strength and strength-endurance performance. Moreover, lower- and upper-body ballistic performance were greater in the afternoon than in the morning in resistance-trained women, while the acute intake of caffeine was only effective to increase CMJ height.HighlightsBallistic performance is probably higher in the afternoon than in the morning in resistance-trained women.An acute intake of caffeine is effective to increase countermovement jump performance.The ingestion of an acute dose of caffeine in the morning restored countermovement jump performance to levels found in the afternoon.
Collapse
Affiliation(s)
- Lidia Robles-González
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain.,PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Mauricio Ramírez Maldonado
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Juan Carlos Alcalá-Escamilla
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Lucas Jurado-Fasoli
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain.,PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Sergio Miras-Moreno
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Marcos A Soriano
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain.,Strength Training & Neuromuscular, Performance Research Group, Camilo José Cela University, Madrid, Spain
| | - Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain.,PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| |
Collapse
|
58
|
Dos Santos MPP, Spineli H, Dos Santos BP, Lima-Silva AE, Gitaí DLG, Bishop DJ, de Araujo GG. The effect of caffeine on exercise performance is not influenced by ADORA2A genotypes, alone or pooled with CYP1A2 genotypes, in adolescent athletes. Eur J Nutr 2023; 62:1041-1050. [PMID: 36385314 DOI: 10.1007/s00394-022-03045-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE This study investigated the influence of the different genotypes of ADORA2A (1976 C > T, rs 5751876), alone or pooled with CYP1A2 (163 C > A rs 762551) genotypes, on the ergogenic effects of caffeine (CAF) on various aspects of physical performance in male adolescent athletes. METHODS Ninety male adolescent athletes (age = 15.5 ± 2 years) were classified according to their genotypes for 1976 C > T ADORA2A (TT homozygous or CADORA2A allele carriers) and 163 C > A CYP1A2 (AA homozygous or CCYP1A2 allele carriers). Participants were further divided in four groups (1-TTADORA2A + AACYP1A2; 2-TTADORA2A + AC/CCCYP1A2; 3-AACYP1A2 + CT/CCADORA2A;4-AC/CCCYP1A2 + CT/CCADORA2A). Using a randomized, crossover, counterbalanced, and double-blind design, participants ingested CAF (6 mg kg-1) or a placebo (PLA, 300 mg of cellulose) one hour before performing a sequence of physical tests: handgrip strength, agility test, countermovement jump (CMJ), Spike Jump (SJ), sit-ups, push-ups, and the Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1). RESULTS CAF enhanced handgrip strength (CAF: 35.0 ± 9.2 kg force; PLA: 33.5 ± 8.9 kg force; p = 0.050), CMJ height (CAF: 49.6 ± 12.3 cm; PLA: 48.3 ± 13.6 cm; p = 0.013), SJ height (CAF: 54.7 ± 13.3 cm; PLA: 53.1 ± 14.8 cm; p = 0.013), number of sit-ups (CAF: 37 ± 8; PLA: 35 ± 8; p = 0.001), and distance covered on the Yoyo IR1 test (CAF: 991.6 ± 371.0 m; PLA: 896.0 ± 311.0 m; p = 0.001), This CAF-induced improvement on exercise performance was, however, independent of genotypes groups (all p > 0.05). CAF had no effect on agility (CAF: 15.8 ± 1.2 s; PLA: 15.9 ± 1.3 s; p = 0.070) and push-up (CAF: 26.6 ± 12.0; PLA: 25.0 ± 11.0; p = 0.280) tests. CONCLUSION The acute caffeine intake of 6.0 mg.kg-1 improves several aspects of physical performance, which seems to be independent of ADORA2A genotypes, alone or in combination with CYP1A2 genotypes.
Collapse
Affiliation(s)
- Maryssa P Pinto Dos Santos
- Postgraduate Program in Nutrition-PPGNUT, Federal University of Alagoas, Maceió, AL, Brazil.,Postgraduate Program in Health Sciences-PPGCS, Federal University of Alagoas, Maceió, AL, Brazil.,Laboratory of Applied Sports Science (LACAE), Research Group Applied to Sport Science-GPCAE, Institute of Physical Education and Sport-IEFE, Federal University of Alagoas, Maceió, AL, Brazil
| | - Higor Spineli
- Postgraduate Program in Nutrition-PPGNUT, Federal University of Alagoas, Maceió, AL, Brazil.,Postgraduate Program in Health Sciences-PPGCS, Federal University of Alagoas, Maceió, AL, Brazil.,Laboratory of Applied Sports Science (LACAE), Research Group Applied to Sport Science-GPCAE, Institute of Physical Education and Sport-IEFE, Federal University of Alagoas, Maceió, AL, Brazil.,Department of Physical Education, Estácio-FAL, Maceió, AL, Brazil
| | - Bruna P Dos Santos
- Postgraduate Program in Health Sciences-PPGCS, Federal University of Alagoas, Maceió, AL, Brazil.,Cellular and Molecular Biology Laboratory-LBCM, Federal University of Alagoas, Maceió, AL, Brazil
| | - Adriano E Lima-Silva
- Human Performance Research Group, Federal University of Technology Parana, Curitiba, PR, Brazil
| | - Daniel L G Gitaí
- Postgraduate Program in Health Sciences-PPGCS, Federal University of Alagoas, Maceió, AL, Brazil.,Cellular and Molecular Biology Laboratory-LBCM, Federal University of Alagoas, Maceió, AL, Brazil
| | - David J Bishop
- Institute of Sport, Exercise and Active Living. School of Sport and Exercise Science, Victoria University, Melbourne, VU, Australia
| | - Gustavo Gomes de Araujo
- Postgraduate Program in Nutrition-PPGNUT, Federal University of Alagoas, Maceió, AL, Brazil. .,Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Avenue Lourival Melo Mota, s/n, Maceió, AL, CEP: 57072-900, Brazil.
| |
Collapse
|
59
|
Matsumura T, Tomoo K, Sugimoto T, Tsukamoto H, Shinohara Y, Otsuka M, Hashimoto T. Acute Effect of Caffeine Supplementation on 100-m Sprint Running Performance: A Field Test. Med Sci Sports Exerc 2023; 55:525-533. [PMID: 36251383 PMCID: PMC9924959 DOI: 10.1249/mss.0000000000003057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
PURPOSE No study has assessed the acute effect of caffeine supplementation on 100-m sprint running in athletics and caffeine's net ergogenicity on 100-m sprint running remains unclear. We investigated the acute effects of caffeine supplementation on 100-m sprint running performance in a field test. METHODS Thirteen male collegiate sprinters were subjected to 100-m sprint running time trials (TT) after the ingestion of 6 mg·kg -1 body weight caffeine or placebo supplementation in a double-blind, counterbalanced, randomized, and crossover design. Sprint velocity was measured with a laser system, and sprint time was calculated from the data in which the effects of environmental factors that would act as confounding factors on sprint time during TT were eliminated. RESULTS The corrected 100-m sprint time was significantly shortened by 0.14 s with caffeine supplementation compared with placebo (placebo: 11.40 ± 0.39 s, caffeine: 11.26 ± 0.33 s; P = 0.007, g = -0.33). The corrected sprint time up to 60 m during TT was also significantly shorter with caffeine supplementation than with placebo ( P = 0.002). Furthermore, the mean sprint velocity for splits of 0-10 and 10-20 m was significantly increased by caffeine supplementation (all P < 0.05). CONCLUSIONS Acute caffeine supplementation enhanced the corrected 100-m sprint time by improving the sprint performance in the first 60 m after more explosive acceleration in the early stage of the acceleration phase. Thus, for the first time, we directly demonstrated caffeine's ergogenicity on 100-m sprint performance in athletics.
Collapse
Affiliation(s)
- Teppei Matsumura
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Keigo Tomoo
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Takeshi Sugimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Hayato Tsukamoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Yasushi Shinohara
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Mitsuo Otsuka
- Faculty of Sport Science, Nippon Sport Science University, Yokohama, Kanagawa, JAPAN
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| |
Collapse
|
60
|
Lattari E, Vieira LAF, Santos LER, Jesus Abreu MA, Rodrigues GM, de Oliveira BRR, Machado S, Maranhão Neto GA, Santos TM. Transcranial Direct Current Stimulation Combined With or Without Caffeine: Effects on Training Volume and Pain Perception. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:45-54. [PMID: 35025723 DOI: 10.1080/02701367.2021.1939251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/30/2021] [Indexed: 06/14/2023]
Abstract
Purpose: This study aimed to investigate the acute effects of tDCS combined with caffeine intake on training volume and pain perception in the bench press in resistance-trained males. The correlation between training volume and pain perception was also assessed in all interventions. Methods: Sixteen healthy males (age = 25.2 ± 4.7 years, body mass = 82.8 ± 9.1 kg, and height = 178.3 ± 5.7 cm), advanced in RT, were randomized and counterbalanced for the following experimental conditions: Sham tDCS with placebo intake (Sham+Pla), Sham tDCS with caffeine intake (Sham+Caff), anodal tDCS with placebo intake (a-tDCS+Pla), and anodal tDCS with caffeine intake (a-tDCS+Caff). The caffeine or placebo ingestion (both with 5 mg.kg-1) occurred 40 minutes before the tDCS sessions. The tDCS was applied over the left DLPFC for 20 minutes, with a 2 mA current intensity. After the tDCS sessions, participants performed the bench press with an 80% of 1RM load, where training volume and pain perception were measured. Results: Training volume was higher in the 1st and 2nd sets in both a-tDCS+Caff and Sham+Caff conditions, compared to the Sham+Pla condition (P < .05). Both a-tDCS+Caff and a-tDCS+Pla showed an increased pain perception during the third set compared to the first set. Also, no correlation was found between the number of repetitions and pain perception in any condition (P > .05). Conclusion: This research revealed that caffeine intake alone could be used as an ergogenic aid during resistance training programs in resistance-trained males.
Collapse
|
61
|
The Long Way to Establish the Ergogenic Effect of Caffeine on Strength Performance: An Overview Review. Nutrients 2023; 15:nu15051178. [PMID: 36904177 PMCID: PMC10005568 DOI: 10.3390/nu15051178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
This overview review aimed to describe the evolution of the characteristics of the research on caffeine effects on strength. A total of 189 experimental studies with 3459 participants were included. The median sample size was 15 participants, with an over-representation of men vs. women (79.4 vs. 20.6%). Studies on young participants and elders were scarce (4.2%). Most studies tested a single dose of caffeine (87.3%), while 72.0% used doses adjusted to body mass. Single-dose studies ranged from 1.7 to 7 mg/kg (4.8 ± 1.4 mg/kg), while dose-response studies ranged from 1 to 12 mg/kg. Caffeine was mixed with other substances in 27.0% of studies, although only 10.1% of studies analyzed the caffeine interaction with these substances. Capsules (51.9%) and beverages (41.3%) were the most common forms of caffeine administration. Similar proportions of studies focused on upper (24.9%) or lower body strength 37.6% (37.6% both). Participants' daily intake of caffeine was reported in 68.3% of studies. Overall, the pattern in the study of caffeine's effects on strength performance has been carried out with experiments including 11-15 adults, using a single and moderate dose of caffeine adjusted to participants' body mass in the form of a capsule.
Collapse
|
62
|
Ruiz-Fernández I, Valadés D, Dominguez R, Ferragut C, Pérez-López A. Load and muscle group size influence the ergogenic effect of acute caffeine intake in muscular strength, power and endurance. Eur J Nutr 2023; 62:1783-1794. [PMID: 36840816 DOI: 10.1007/s00394-023-03109-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
INTRODUCTION Although acute caffeine intake seems to improve muscular strength-power-endurance performance, there is scarce evidence evaluating upper vs lower-body exercises at different loads. Thus, this study aimed to examine the effects of acute caffeine intake on upper and lower-body muscular strength, power and endurance performance at different loads. METHODS Twenty resistance-trained athletes (male/female: 10/10; age: 23 ± 4 years; body mass: 70.6 ± 15.1) participated in a double-blind, placebo-controlled, cross-over and randomized study. Participants were provided with either 3 mg/kg of body mass of caffeine or maltodextrin (placebo). Sixty minutes after ingestion, they performed muscular strength and power assessment for bench press and back squat exercise at 25%, 50%, 75% and 90% 1-repetition-maximum (1RM), performing 3, 2, 1 and 1 repetitions respectively, followed by muscular endurance assessment for both exercises at 65% and 85% 1RM performing until task failure. Isometric handgrip, isometric mid-thigh pull and vertical jump tests were also performed. RESULTS In muscular strength and power, compared to placebo, caffeine improved mean velocity (P = 0.045; pη2 = 0.101), mean power (P = 0.049; pη2 = 0.189) and rate of force development (RFD, P = 0.032; pη2 = 0.216), particularly in back squat exercise at 75% and 90% 1RM where mean velocity increased by 5-7% (P = 0.48-0.038; g = 0.348-1.413), mean power by 6-8% (P = 0.050-0.032; g = 0.547-0.818) and RFD by 17-97% (P = 0.042-0.046; g = 1.436-1.196). No differences were found in bench press exercise. In muscular endurance, caffeine improved the number of repetitions in all exercises and loads (P = 0.003; pη2 = 0.206), but only in back squat exercise at 85% 1RM, caffeine increased mean and peak velocity (8-9%, P = 0.006-0.004; g = 2.029-2.075), mean and peak power (10-13%, P = 0.006-0.003; g = 0.888-1.151) and force peak (3%, P = 0.009; g = 0.247). CONCLUSIONS Acute caffeine intake (3 mg/kg) improved muscular strength, power and endurance performance, revealing a more pronounced effect at high-loads (≥ 75% 1RM) and in lower-body (back squat) than in upper-body exercise (bench press) according to muscle group size.
Collapse
Affiliation(s)
- Iván Ruiz-Fernández
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Ctra. Madrid-Barcelona km 33,600, 28871, Alcalá de Henares, Spain
| | - David Valadés
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Ctra. Madrid-Barcelona km 33,600, 28871, Alcalá de Henares, Spain
| | - Raúl Dominguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, Seville, Spain
| | - Carmen Ferragut
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Ctra. Madrid-Barcelona km 33,600, 28871, Alcalá de Henares, Spain.
| | - Alberto Pérez-López
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Ctra. Madrid-Barcelona km 33,600, 28871, Alcalá de Henares, Spain
| |
Collapse
|
63
|
Rasaei N, Ghaffarian-Ensaf R, Gholami F, Shiraseb F, Khadem A, Fatemi SF, Mirzaei K. The association between healthy beverage index and sarcopenic obesity among women with overweight and obesity: a cross-sectional study. BMC Endocr Disord 2023; 23:25. [PMID: 36717830 PMCID: PMC9887919 DOI: 10.1186/s12902-023-01274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Sarcopenic obesity is related to changes in body composition, loss of muscle mass, and raised adipose tissue. Beverage patterns are effective with changes in health status. Therefore, the aim of this study was to investigate the association between sarcopenic obesity (SO) and the healthy beverage index (HBI) in women with overweight and obesity. METHODS This cross-sectional study conducted on 210 overweight and obese (BMI ≥25 kg/m2) women aged 18-56 years. The measurement of skeletal muscle mass (SMM) and fat mass (FM) done by bioelectric impedance analyzer (BIA) (Inbody Co., Seoul, Korea) based on guidelines. The two lowest quintiles SMM and the two highest quintiles FM and body mass index (BMI) ≥30 are considered sarcopenic obesity in women. A validated and reliable semi-quantitative food-frequency questionnaire (FFQ) was used to evaluate the beverage dietary data. and RFS and NRFS was calculated. Biochemical assessments were quantified by standard approaches, and physical activity were evaluated by international physical activity questionnaire (IPAQ). RESULT In this cross-sectional study, 210 overweight and obese females took part (18-56) years old). The studies were carried out using binary logistic regression. After controlling for a wide variety of confounding variables such as age, energy intake, physical activity, education, and economic status, we found a negative association between HBI and risk of SO (OR = 0.29, 95% CI = 0.35 to 1.01, P = 0.05). CONCLUSION We observed that the odds of SO was reduced by 69% in participants with higher HBI score. More well-designed studies need to confirm our findings.
Collapse
Affiliation(s)
- Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | | | - Fatemeh Gholami
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | - Alireza Khadem
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyedeh Fatemeh Fatemi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
64
|
Liu C, Zhao H, Yan Y, Yang W, Chen S, Song G, Li X, Gu Y, Yun H, Li Y. Synergistic Effect of Rhodiola rosea and Caffeine Supplementation on the Improvement of Muscle Strength and Muscular Endurance: A Pilot Study for Rats, Resistance Exercise-Untrained and -Trained Volunteers. Nutrients 2023; 15:582. [PMID: 36771289 PMCID: PMC9919529 DOI: 10.3390/nu15030582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Multi-level studies have shown that Rhodiola rosea (RHO) and Caffeine (CAF) have the potential to be nutritional supplements to enhance physical performance in resistance exercise-untrained and -trained subjects. This study examined the synergistic effects of RHO (262.7 mg/kg for rats and 2.4 g for volunteers) and CAF (19.7 mg/kg for rats and 3 mg/kg for volunteers) supplementation on improving physical performance in rats, resistance exercise-untrained volunteers and resistance exercise-trained volunteers. Rats and volunteers were randomly grouped into placebo, CAF, RHO and CAF+RHO and administered accordingly with the nutrients during the training procedure, and pre- and post-measures were collected. We found that RHO+CAF was effective in improving forelimb grip strength (13.75%), erythropoietin (23.85%), dopamine (12.65%) and oxygen consumption rate (9.29%) in the rat model. Furthermore, the current results also indicated that the combination of RHO+CAF significantly increased the bench press one-repetition maximum (1RM) (16.59%), deep squat 1RM (15.75%), maximum voluntary isometric contraction (MVIC) (14.72%) and maximum repetitions of 60% 1RM bench press (22.15%) in resistance exercise-untrained volunteers. Additionally, despite the excellent base level of the resistance exercise-trained volunteers, their deep squat 1RM and MVIC increased substantially through the synergistic effect of RHO and CAF. In conclusion, combined supplementation of RHO+CAF is more beneficial in improving the resistance exercise performance for both resistance exercise-untrained and -trained volunteers. The present results provide practical evidence that the synergies of RHO and CAF could serve as potential supplementary for individuals, especially resistance exercise-trained subjects, to ameliorate their physical performances effectively and safely.
Collapse
Affiliation(s)
- Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Haotian Zhao
- School of Sport Science, Beijing Sport University, Beijing 100084, China
- Department of Physical Education, Jiangnan University, Wuxi 214122, China
| | - Yi Yan
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Weijun Yang
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Songyue Chen
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ge Song
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Xuehan Li
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Yujia Gu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Hezhang Yun
- School of Sport Science, Beijing Sport University, Beijing 100084, China
- The Public Sports Department of the School, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang 321000, China
| | - Yi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
65
|
Caetano M, Souza M, Loureiro L, Capistrano Junior V. The effects of acute caffeine supplementation on performance in trained CrossFit® athletes: A randomized, double-blind, placebo-controlled, and crossover trial. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
66
|
Guntoro Aji Y, Melita S, Dijaya R, Subali D, Kartawidjajaputra F, Suwanto A. Evaluation of Caffeine Ingested Timing on Endurance Performance based on CYP1A2 rs762551 Profiling in Healthy Sedentary Young Adults. Rep Biochem Mol Biol 2023; 11:663-671. [PMID: 37131905 PMCID: PMC10149118 DOI: 10.52547/rbmb.11.4.663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 05/04/2023]
Abstract
Background Caffeine is generally suggested to increase VO2max in endurance performance. Nevertheless, the response to caffeine ingestion does not seem to be uniform across individuals. Therefore, caffeine ingested timing on endurance performance based on the type of CYP1A2 single nucleotide polymorphism rs762551, that were classified as fast and slow metabolizers, need to be evaluated. Methods Thirty participants participated in this study. DNA was obtained from saliva samples and genotyped using polymerase chain reaction-restriction fragment length polymorphism. Each respondent completed beep tests under three treatments blindly: placebo, 4 mg/kg body mass of caffeine one hour, and two hours before test. Results Caffeine increased estimated VO2max in fast metabolizers (caffeine=29.39±4.79, placebo=27.33±4.02, p<0.05) and slow metabolizers (caffeine=31.25±6.19, placebo=29.17±5.32, p<0.05) in one hour before test. Caffeine also increased estimated VO2max in fast metabolizers (caffeine=28.91±4.65, placebo=27.33±4.02, p<0.05) and slow metabolizers (caffeine=32.53±6.68, placebo=29.17±5.32, p<0.05) in two hour before test. However, for slow metabolizers, the increasing was greater when caffeine was administered two hours before test (slow=3.37±2.07, fast=1.57±1.62, p<0.05). Conclusion Genetic variance may affect the optimal caffeine ingestion timing, sedentary individuals who want to enhance their endurance performance may ingest caffeine 1 hour before exercise for fast metabolizers and 2 hours before exercise for slow metabolizers.
Collapse
Affiliation(s)
- Yones Guntoro Aji
- Department of Food Technology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia.
| | - Stella Melita
- Department of Food Technology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia.
| | - Rendy Dijaya
- Nutrifood Research Center, PT. Nutrifood Indonesia, Jakarta 13920, Indonesia.
| | - Dionysius Subali
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University, of Indonesia, Jakarta 12930, Indonesia.
| | | | - Antonius Suwanto
- Departement of Biology, Faculty of Mathematics and Natural Sciences, IPB University.
| |
Collapse
|
67
|
Wang Z, Qiu B, Gao J, Del Coso J. Effects of Caffeine Intake on Endurance Running Performance and Time to Exhaustion: A Systematic Review and Meta-Analysis. Nutrients 2022; 15:148. [PMID: 36615805 PMCID: PMC9824573 DOI: 10.3390/nu15010148] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Caffeine (1,3,7-trimethylxanthine) is one of the most widely consumed performance-enhancing substances in sport due to its well-established ergogenic effects. The use of caffeine is more common in aerobic-based sports due to the ample evidence endorsing the benefits of caffeine supplementation on endurance exercise. However, most of this evidence was established with cycling trials in the laboratory, while the effects of the acute intake of caffeine on endurance running performance have not been properly reviewed and meta-analyzed. The purpose of this study was to perform a systematic review and meta-analysis of the existing literature on the effects of caffeine intake on endurance running performance. A systematic review of published studies was performed in four different scientific databases (Medline, Scopus, Web of Science, and SportDiscus) up until 5 October 2022 (with no year restriction applied to the search strategy). The selected studies were crossover experimental trials in which the ingestion of caffeine was compared to a placebo situation in a single- or double-blind randomized manner. The effect of caffeine on endurance running was measured by time to exhaustion or time trials. We assessed the methodological quality of each study using Cochrane’s risk-of-bias (RoB 2) tool. A subsequent meta-analysis was performed using the random effects model to calculate the standardized mean difference (SMD) estimated by Hedges’ g and 95% confidence intervals (CI). Results: A total of 21 randomized controlled trials were included in the analysis, with caffeine doses ranging between 3 and 9 mg/kg. A total of 21 studies were included in the systematic review, with a total sample of 254 participants (220 men, 19 women and 15 participants with no information about gender; 167 were categorized as recreational and 87 were categorized as trained runners.). The overall methodological quality of studies was rated as unclear-to-low risk of bias. The meta-analysis revealed that the time to exhaustion in running tests was improved with caffeine (g = 0.392; 95% CI = 0.214 to 0.571; p < 0.001, magnitude = medium). Subgroup analysis revealed that caffeine was ergogenic for time to exhaustion trials in both recreational runners (g = 0.469; 95% CI = 0.185 to 0.754; p = 0.001, magnitude = medium) and trained runners (g = 0.344; 95% CI = 0.122 to 0.566; p = 0.002, magnitude = medium). The meta-analysis also showed that the time to complete endurance running time trials was reduced with caffeine in comparison to placebo (g = −0.101; 95% CI = −0.190 to −0.012, p = 0.026, magnitude = small). In summary, caffeine intake showed a meaningful ergogenic effect in increasing the time to exhaustion in running trials and improving performance in running time trials. Hence, caffeine may have utility as an ergogenic aid for endurance running events. More evidence is needed to establish the ergogenic effect of caffeine on endurance running in women or the best dose to maximize the ergogenic benefits of caffeine supplementation.
Collapse
Affiliation(s)
- Ziyu Wang
- Graduate School, Beijing Sport University, Beijing 100084, China
- College of Swimming, Beijing Sport University, Beijing 100084, China
| | - Bopeng Qiu
- College of Swimming, Beijing Sport University, Beijing 100084, China
| | - Jie Gao
- Graduate School, Beijing Sport University, Beijing 100084, China
- College of Swimming, Beijing Sport University, Beijing 100084, China
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28943 Fuenlabrada, Spain
| |
Collapse
|
68
|
Liu X, Wang G, Cao Y. Physical exercise interventions for perinatal depression symptoms in women: A systematic review and meta-analysis. Front Psychol 2022; 13:1022402. [PMID: 36582320 PMCID: PMC9792692 DOI: 10.3389/fpsyg.2022.1022402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background The previous meta-analysis indicated that physical exercise could play a crucially therapeutic role in reducing perinatal depression symptoms in women. However, the efficacy varies across different exercise types, forms, intensities, and duration. Aim The purpose of this study was to review and evaluate the effects of different types, forms, intensities, and duration of exercise for improving perinatal depressive symptoms. Design A systematic review and meta-analysis. Methods Randomized controlled trials until December 2021 were searched from seven databases, including PubMed, EMBASE, Medline, CINAHL, Web of Science, Cochrane Library, and PsycINFO. The risk of bias in eligible trials was evaluated using the Cochrane Risk of Bias tool. When high heterogeneity was tested, we used random-effects models. A funnel plot was used to assess the publication bias. This review was performed under the PRISMA guidelines, Consensus on Exercise Reporting (CERT) checklist and Cochrane Handbook. The certainty of the body of evidence was assessed using the GRADE method. Results Of 1,573 records, 20 trials were identified in this study. The results of this review revealed that women with perinatal depression symptoms gained benefits from physical exercise [OR = 0.62, 95% CI (0.45, 0.86), P = 0.004; MD = -0.57, 95% CI (-0.83, -0.30), P < 0.0001]. Type of walking [SMD = -1.06, 95% CI (-1.92, -0.19), P < 0.00001], form of "Individual + group-based"exercise [SMD = -0.91, 95% CI (-0.80, -0.03), P = 0.04], intensity of ≥150 min per week [SMD = -0.84, 95% CI (-1.53, -0.15), P = 0.02], and ≥12 weeks duration [SMD = -0.53, 95% CI (-0.75, -0.31), P < 0.00001] seemed to generate more prominent improvement on perinatal depression symptoms. Conclusion Physical exercise showed a significant effect on reducing perinatal depressive symptoms. This meta-analysis provides an important update on exercise's efficacy in treating perinatal depression. Further higher quality and large-scale trials are needed to substantiate our findings. Systematic review registration [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022296230].
Collapse
Affiliation(s)
- Xueyan Liu
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, China
| | - Guangpeng Wang
- Xiangya School of Nursing, Central South University, Changsha, Hunan, China
| | - Yingjuan Cao
- Qilu Hospital, Shandong University, Jinan, Shandong, China,*Correspondence: Yingjuan Cao,
| |
Collapse
|
69
|
The therapeutic potential of matcha tea: A critical review on human and animal studies. Curr Res Food Sci 2022; 6:100396. [PMID: 36582446 PMCID: PMC9792400 DOI: 10.1016/j.crfs.2022.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Matcha is a powdered form of Japanese green tea that has been gaining global popularity recently. Matcha tea has various health benefits, including an enhancing effect on cognitive function, cardio-metabolic health, and anti-tumorogenesis. To date, randomized clinical trials (RCT) showed that matcha decreases stress, slightly enhances attention and memory, and has no effect on mood. Results regarding the effect of matcha on cognitive function are contradictory and more RCTs are warranted. The cardio-metabolic effects of matcha have only been studied in animals, but findings were more homogenous. Consuming matcha with a high-fat diet resulted in decreased weight gain velocity, food intake, improved serum glucose and lipid profile, reduced inflammatory cytokines and ameliorated oxidative stress. Evidence regarding the anti-tumor function of matcha is very limited. Findings showed that matcha can affect proliferation, viability, antioxidant response, and cell cycle regulation of breast cancer cells. Nonetheless, more studies are needed to examine this effect on different types of cancer cells, and there is also a need to verify it using animal models. Overall, the evidence regarding the effect of matcha tea on cognitive function, cardio-metabolic function, and anti-tumor role is still limited, and conclusions cannot be drawn.
Collapse
|
70
|
Berjisian E, Naderi A, Mojtahedi S, Grgic J, Ghahramani MH, Karayigit R, Forbes JL, Amaro-Gahete FJ, Forbes SC. Are Caffeine's Effects on Resistance Exercise and Jumping Performance Moderated by Training Status? Nutrients 2022; 14:nu14224840. [PMID: 36432526 PMCID: PMC9692585 DOI: 10.3390/nu14224840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to explore if the effects of caffeine intake on resistance exercise and jumping performance are moderated by training status. We included ten resistance-trained and ten recreationally active males in a randomized, double-blind, crossover study. Participants were categorized into groups according to their resistance to training experience and muscular strength levels. Exercise performance outcomes included weight lifted and mean velocity during a one-repetition maximum (1RM) bench press and squat; repetitions were performed to muscular failure in the same exercises with 70% of 1RM and countermovement jump (CMJ) height. Exercise performance was evaluated on three occasions, following no substance ingestion (control), caffeine (6 mg/kg), and placebo. There was a main effect on the condition for all the performance outcomes (all p ≤ 0.02), except for the 1RM squat mean velocity (p = 0.157) and 1RM bench press mean velocity (p = 0.719). For weight lifted in the 1RM bench press, there was a significant difference when comparing the caffeine vs. control, caffeine vs. placebo, and placebo vs. control. For weight lifted in the 1RM squat, a significant difference was found when comparing the caffeine vs. control. For muscular endurance outcomes and jump height, a significant difference was found when caffeine was compared to the control or placebo. Effect sizes were trivial for muscular strength (Hedges' g: 0.04-0.12), small for the jump height (Hedges' g: 0.43-0.46), and large for muscular endurance (Hedges' g: 0.89-1.41). Despite these ergogenic effects, there was no significant training status × caffeine interaction in any of the analyzed outcomes. In summary, caffeine ingestion is ergogenic for muscular strength, endurance, and jump height. These effects are likely to be of a similar magnitude in resistance-trained and recreationally active men.
Collapse
Affiliation(s)
- Erfan Berjisian
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Tehran University, Tehran 1417935840, Iran
| | - Alireza Naderi
- Department of Exercise Physiology, Borujerd Branch, Islamic Azad University, Borujerd 6915136111, Iran
| | - Shima Mojtahedi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Tehran University, Tehran 1417935840, Iran
- Correspondence: (S.M.); (S.C.F.)
| | - Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
| | - Mohammad Hossein Ghahramani
- Physical Education and Sport Sciences Department, Faculty of Humanities, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Raci Karayigit
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey
| | - Jennifer L. Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB R7A 6A9, Canada
| | - Francisco J. Amaro-Gahete
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, 18011 Granada, Spain
- Department of Physiology, Faculty of Medicine, EFFECTS-262 Research Group, University of Granada, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Scott C. Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB R7A 6A9, Canada
- Correspondence: (S.M.); (S.C.F.)
| |
Collapse
|
71
|
Tallis J, Guimaraes-Ferreira L, Clarke ND. Not Another Caffeine Effect on Sports Performance Study-Nothing New or More to Do? Nutrients 2022; 14:4696. [PMID: 36364958 PMCID: PMC9658326 DOI: 10.3390/nu14214696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2023] Open
Abstract
The performance-enhancing potential of acute caffeine consumption is firmly established with benefits for many aspects of physical performance and cognitive function summarised in a number of meta-analyses. Despite this, there remains near exponential growth in research articles examining the ergogenic effects of caffeine. Many such studies are confirmatory of well-established ideas, and with a wealth of convincing evidence available, the value of further investigation may be questioned. However, several important knowledge gaps remain. As such, the purpose of this review is to summarise key knowledge gaps regarding the current understanding of the performance-enhancing effect of caffeine and justify their value for future investigation. The review will provide a particular focus on ten research priorities that will aid in the translation of caffeine's ergogenic potential to real-world sporting scenarios. The discussion presented here is therefore essential in guiding the design of future work that will aid in progressing the current understanding of the effects of caffeine as a performance enhancer.
Collapse
Affiliation(s)
- Jason Tallis
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | | | | |
Collapse
|
72
|
Cabre HE, Gordon AN, Patterson ND, Smith-Ryan AE. Evaluation of pre-workout and recovery formulations on body composition and performance after a 6-week high-intensity training program. Front Nutr 2022; 9:1016310. [DOI: 10.3389/fnut.2022.1016310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
IntroductionActivities such as high-intensity resistance training (HIRT) and high-intensity interval training (HIIT) may be more time-efficient modes to stimulate rapid changes in performance and body composition. There is little research evaluating the combined effects of HIRT and HIIT on body composition and strength, particularly when paired with nutritional supplementation.PurposeTo evaluate the chronic effects of pre- and post-workout supplementation on body composition and strength, and to understand sex-specific responses.Materials and methods64 untrained males (n = 23) and females (n = 41) (mean ± standard deviation; age: 33.2 ± 10.0 years; %fat: 31.6 ± 7.4%) were randomized to either (1) pre-post supplementation [SUP (n = 25); pre = multi-ingredient caffeine/HMB/vit D; post = whey protein/carbohydrates/glucosamine/vitamins], (2) placebo [PL (n = 24); non-caloric], or (3) control [CON (n = 15)]. All participants completed one repetition max (1RM) strength testing for leg press and bench press at baseline and week 6. Estimates of fat mass (FM) and lean mass (LM) were measured via dual energy x-ray absorptiometry. Participants in the SUP or PL group completed a 6-week supervised exercise intervention consisting of a full-body HIRT workout (3 × 6–8 reps) followed by a HIIT treadmill run (6 × 1 min run: 1 min rest) twice per week. Outcomes were evaluated by separate repeated measure ANOVAs (2 × 3).ResultsThere were no differences in FM between groups or sex (p = 0.133–0.851). LM increased from baseline to post-testing for all groups [Mean difference [MD(Post-Pre) ± Standard Error (SE) = 0.78 ± 0.12 kg; p < 0.001]. While not significant (p = 0.081), SUP gained more LM compared to PL [MD(SUP-PL) ± SE = 3.5 ± 3.3 kg] and CON [MD(SUP-CON) ± SE = 5.2 ± 3.8 kg]. LM increased over time for both males (0.84 ± 0.24 kg; p = 0.003) and females (0.73 ± 0.14 kg; p < 0.001). The SUP group resulted in a significant increase in 1RM leg press compared to the CON group (89.9 ± 30.8 kg; p = 0.015), with no significant differences compared to PL (p = 0.409). The SUP group had greater increases in 1RM bench press compared to the CON group (9.8 ± 1.8 kg; p < 0.001), with no significant differences compared to PL (p = 0.99). Both sexes increased upper- (5.5 ± 0.7 kg; p < 0.001) and lower-body strength (69.8 ± 4.5 kg p < 0.001) with training.ConclusionNutrient supplementation timing appears to augment body composition changes and strength compared to control. Pre-/post-nutrient timing may support greater increases in LM and lower- and upper-body strength in both men and women.Clinical trial registration[https://clinicaltrials.gov/ct2/show/NCT04230824?cond=NCT04230824&draw=2&rank=1], identifier [NCT04230824].
Collapse
|
73
|
King A, Helms E, Zinn C, Jukic I. The Ergogenic Effects of Acute Carbohydrate Feeding on Resistance Exercise Performance: A Systematic Review and Meta-analysis. Sports Med 2022; 52:2691-2712. [PMID: 35809162 PMCID: PMC9584980 DOI: 10.1007/s40279-022-01716-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Carbohydrate (CHO) ingestion has an ergogenic effect on endurance training performance. Less is known about the effect of acute CHO ingestion on resistance training (RT) performance and equivocal results are reported in the literature. OBJECTIVE The current systematic review and meta-analysis sought to determine if and to what degree CHO ingestion influences RT performance. METHODS PubMed, MEDLINE, SportDiscus, Scopus, and CINAHL databases were searched for peer-reviewed articles written in English that used a cross-over design to assess the acute effect of CHO ingestion on RT performance outcomes (e.g., muscle strength, power, and endurance) in healthy human participants compared to a placebo or water-only conditions. The Cochrane Collaboration's risk of bias tool and GRADE approaches were used to assess risk of bias and certainty of evidence, respectively. Random effects meta-analyses were performed for total training session volume and post-exercise blood lactate and glucose. Sub-group meta-analysis and meta-regression were performed for categorical (session and fast durations) and continuous (total number of maximal effort sets, load used, and CHO dose) covariates, respectively. RESULTS Twenty-one studies met the inclusion criteria (n = 226 participants). Pooled results revealed a significant benefit of CHO ingestion in comparison to a placebo or control for total session training volume (standardised mean difference [SMD] = 0.61). Sub-group analysis revealed a significant benefit of CHO ingestion during sessions longer than 45 min (SMD = 1.02) and after a fast duration of 8 h or longer (SMD = 0.39). Pooled results revealed elevated post-exercise blood lactate (SMD = 0.58) and blood glucose (SMD = 2.36) with CHO ingestion. Meta-regression indicated that the number of maximal effort sets, but not CHO dose or load used, moderates the effect of CHO ingestion on RT performance (beta co-efficient [b] = 0.11). Carbohydrate dose does not moderate post-exercise lactate accumulation nor do maximal effort sets completed, load used, and CHO dose moderate the effect of CHO ingestion on post-exercise blood glucose. CONCLUSIONS Carbohydrate ingestion has an ergogenic effect on RT performance by enhancing volume performance, which is more likely to occur when sessions exceed 45 min and where the fast duration is ≥ 8 h. Further, the effect is moderated by the number of maximal effort sets completed, but not the load used or CHO dose. Post-exercise blood lactate is elevated following CHO ingestion but may come at the expense of an extended time-course of recovery due to the additional training volume performed. Post-exercise blood glucose is elevated when CHO is ingested during RT, but it is presently unclear if it has an impact on RT performance. PROTOCOL REGISTRATION The original protocol was prospectively registered on the Open Science Framework (Project identifier: https://doi.org/10.17605/OSF.IO/HJFBW ).
Collapse
Affiliation(s)
- Andrew King
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Mairangi Bay, Auckland, 0632, New Zealand.
| | - Eric Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Mairangi Bay, Auckland, 0632, New Zealand
| | - Caryn Zinn
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Mairangi Bay, Auckland, 0632, New Zealand
| | - Ivan Jukic
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Mairangi Bay, Auckland, 0632, New Zealand
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
74
|
Tamilio RA, Clarke ND, Duncan MJ, Morris RO, Tallis J. How Repeatable Is the Ergogenic Effect of Caffeine? Limited Reproducibility of Acute Caffeine (3 mg.kg -1) Ingestion on Muscular Strength, Power, and Muscular Endurance. Nutrients 2022; 14:nu14204416. [PMID: 36297102 PMCID: PMC9611362 DOI: 10.3390/nu14204416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to determine the effect of 3 mg.kg−1 acute caffeine ingestion on muscular strength, power and strength endurance and the repeatability of potential ergogenic effects across multiple trials. Twenty-two university standard male rugby union players (20 ± 2 years) completed the study. Using a double-blind, randomized, and counterbalanced within-subject experimental design. Participants completed six experimental trials (three caffeine and three placebo) where force time characteristic of the Isometric Mid-Thigh Pull (IMTP), Countermovement Jump (CMJ) and Drop Jumps (DJ) were assessed followed by assessments of Chest Press (CP), Shoulder Press (SP), Squats (SQ), and Deadlifts (DL) Repetitions Until Failure (RTF at 70% 1 RM). ANOVA indicated that caffeine improved both the CMJ and DJ (p < 0.044) and increased RTF in all RTF assessments (p < 0.002). When individual caffeine trials were compared to corresponding placebo trials, effect sizes ranged from trivial-large favoring caffeine irrespective of a main effect of treatment being identified in the ANOVA. These results demonstrate for the first time that the performance enhancing effects of caffeine may not be repeatable between days, where our data uniquely indicates that this is in part attributable to between sessions variation in caffeine’s ergogenic potential.
Collapse
|
75
|
Grgic J, Varovic D. Ergogenic Effects of Caffeine on Ballistic (Throwing) Performance: A Meta-Analytical Review. Nutrients 2022; 14:nu14194155. [PMID: 36235804 PMCID: PMC9572449 DOI: 10.3390/nu14194155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 12/04/2022] Open
Abstract
Ballistic exercise is characterized by high velocity, force, and muscle activation. Typical examples of ballistic exercise are jumping and throwing activities. While several studies explored caffeine’s effects on throwing performance, the between study findings varied. Therefore, we performed a meta-analysis exploring caffeine’s effects on throwing performance (e.g., shot put, medicine ball throw, bench press throw). Seven databases were searched for eligible research. Ten studies (n = 151) were included. In the main meta-analysis, there was a significant ergogenic effect of caffeine on throwing performance (standardized mean difference [SMD]: 0.19; 95% confidence interval [CI]: 0.05, 0.33; p = 0.007). There was a significant ergogenic effect of caffeine in the subgroup analysis for studies that evaluated throwing velocity (SMD: 0.24; 95% CI: 0.10, 0.37; p = 0.0006) and used caffeine doses ≤3 mg/kg (SMD: 0.18; 95% CI: 0.05, 0.31; p = 0.006). There was no significant difference between caffeine and placebo in the subgroup analysis for studies that evaluated throwing distance (SMD: 0.15; 95% CI: −0.09, 0.40; p = 0.22) and used caffeine doses >3 mg/kg, (SMD: 0.17; 95% CI: −0.08, 0.41; p = 0.19). However, after one outlier study was excluded as part of a sensitivity analysis, an ergogenic effect was also observed for throwing distance and caffeine doses >3 mg/kg. Based on the results of this review, we conclude that individuals interested in the acute enhancement of throwing performance may consider caffeine supplementation.
Collapse
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Correspondence:
| | - Dorian Varovic
- Faculty of Kinesiology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
76
|
Psychosocial aspects of sports medicine in pediatric athletes: Current concepts in the 21 st century. Dis Mon 2022:101482. [PMID: 36100481 DOI: 10.1016/j.disamonth.2022.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Behavioral aspects of organized sports activity for pediatric athletes are considered in a world consumed with winning at all costs. In the first part of this treatise, we deal with a number of themes faced by our children in their sports play. These concepts include the lure of sports, sports attrition, the mental health of pediatric athletes (i.e., effects of stress, anxiety, depression, suicide in athletes, ADHD and stimulants, coping with injuries, drug use, and eating disorders), violence in sports (i.e., concepts of the abused athlete including sexual abuse), dealing with supervisors (i.e., coaches, parents), peers, the talented athlete, early sports specialization and sports clubs. In the second part of this discussion, we cover ergolytic agents consumed by young athletes in attempts to win at all costs. Sports doping agents covered include anabolic steroids (anabolic-androgenic steroids or AAS), androstenedione, dehydroepiandrostenedione (DHEA), human growth hormone (hGH; also its human recombinant homologue: rhGH), clenbuterol, creatine, gamma hydroxybutyrate (GHB), amphetamines, caffeine and ephedrine. Also considered are blood doping that includes erythropoietin (EPO) and concepts of gene doping. In the last section of this discussion, we look at disabled pediatric athletes that include such concepts as athletes with spinal cord injuries (SCIs), myelomeningocele, cerebral palsy, wheelchair athletes, and amputee athletes; also covered are pediatric athletes with visual impairment, deafness, and those with intellectual disability including Down syndrome. In addition, concepts of autonomic dysreflexia, boosting and atlantoaxial instability are emphasized. We conclude that clinicians and society should protect our precious pediatric athletes who face many challenges in their involvement with organized sports in a world obsessed with winning. There is much we can do to help our young athletes find benefit from sports play while avoiding or blunting negative consequences of organized sport activities.
Collapse
|
77
|
Santos-Mariano AC, Cristina-Souza G, Santos PS, Domingos PR, De-Oliveira P, Bertuzzi R, Rodacki C, Lima-Silva AE. Caffeine intake increases countermovement jump performance in well-trained high jumpers. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
78
|
Delleli S, Ouergui I, Messaoudi H, Trabelsi K, Ammar A, Glenn JM, Chtourou H. Acute Effects of Caffeine Supplementation on Physical Performance, Physiological Responses, Perceived Exertion, and Technical-Tactical Skills in Combat Sports: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:2996. [PMID: 35889953 PMCID: PMC9315598 DOI: 10.3390/nu14142996] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Although the effects of caffeine supplementation on combat sports performance have been extensively investigated, there is currently no consensus regarding its ergogenic benefits.This systematic review with meta-analysis aimed to summarize the studies investigating the effects of caffeine supplementation on different aspects of performance in combat sports and to quantitatively analyze the results of these studies to better understand the ergogenic effect of caffeine on combat sports outcomes. A systematic search for randomized placebo-controlled studies investigating the effects of caffeine supplementation on combat sports' performance was performed through Scopus, Pubmed, Web of Science and Cochrane Library databases up to 18 April 2022. Random-effects meta-analyses of standardized mean differences (Hedge's g) were performed to analyze the data. Twenty-six studies of good and excellent methodological quality (based on the Pedro scale) fulfilled the inclusion criteria. The meta-analysis results revealed caffeine has a small but evident effect size (ES) on handgrip strength (ES = 0.28; 95% CI: 0.04 to 0.52; p = 0.02), and total number of throws during the special judo fitness test (SJFT) (ES = 0.42; 95% CI: 0.06 to 0.78; p = 0.02). Regarding the physiological responses, caffeine increased blood lactate concentration ([La]) in anaerobic exercise (ES = 1.23; 95% CI: 0.29 to 2.18; p = 0.01) and simulated combat (ES = 0.91; 95% CI: 0.34 to 1.47; p = 0.002). For Heart Rate (HR), caffeine increased HR final (ES = 0.31; 95% CI: 0.11 to 0.52; p = 0.003), and HR 1min (ES = 0.20; 95% CI 0.004 to 0.40; p = 0.045). However, caffeine had no impact on the countermovement jump height, the SJFT index, the judogi strength-endurance test, the number and duration of offensive actions, HR at the end of the fight, and the rating of perceived exertion. Caffeine supplementation may be ergogenic for a range of combat sports aspects involving isometric strength, anaerobic power, reaction time, and anaerobic metabolism. However, supplementation effects might be ineffective under certain circumstances, indicating supplementation needs to take into account the performance metric in question prior to creating a dosing protocol.
Collapse
Affiliation(s)
- Slaheddine Delleli
- Research Unit, Physical Activity, Sport and Health, UR18JS01, National Observatory of Sport, Tunis 1003, Tunisia; (S.D.); (H.M.); (H.C.)
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia;
| | - Ibrahim Ouergui
- High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef 7100, Tunisia;
| | - Hamdi Messaoudi
- Research Unit, Physical Activity, Sport and Health, UR18JS01, National Observatory of Sport, Tunis 1003, Tunisia; (S.D.); (H.M.); (H.C.)
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia;
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia;
- Research Laboratory: Education, Motricity, Sport and Health, EM2S, LR19JS01, University of Sfax, Sfax 3000, Tunisia
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax 3000, Tunisia
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), UPL, Paris Nanterre University, UFR STAPS, F-92000 Nanterre, France
| | - Jordan M. Glenn
- Department of Health, Exercise Science Research Center Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA;
- Neurotrack Technologies, 399 Bradford St., Redwood City, CA 94063, USA
| | - Hamdi Chtourou
- Research Unit, Physical Activity, Sport and Health, UR18JS01, National Observatory of Sport, Tunis 1003, Tunisia; (S.D.); (H.M.); (H.C.)
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia;
| |
Collapse
|
79
|
Apostolidis A, Mougios V, Smilios I, Hadjicharalambous M. Higher and lower caffeine consumers: exercise performance and biological responses during a simulated soccer-game protocol following caffeine ingestion. Eur J Nutr 2022; 61:4135-4143. [PMID: 35857131 DOI: 10.1007/s00394-022-02955-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Research on whether caffeine habituation reduces its ergogenicity is scarce and conflicting. The purpose of the present study was to examine the influence of habitual caffeine consumption on exercise performance and biological responses during a simulated soccer-game protocol following acute caffeine ingestion. METHODS Twenty professional male soccer players were categorized as higher (n = 9) or lower caffeine consumers (n = 11) after answering a validated questionnaire. Participants performed a simulated treadmill soccer-game protocol on treadmill following either caffeine (6 mg kg-1) or placebo ingestion, during which several variables were evaluated. RESULTS Time to exhaustion, countermovement jump height, mean arterial pressure, heart rate, plasma glucose, and lactate were higher (P ≤ 0.001), while rating of perceived exertion (RPE) was lower (P = 0.002), following caffeine compared to placebo ingestion, with no differences between groups (P > 0.05). Plasma non-esterified fatty acids exhibited a higher response to caffeine in the higher vs lower caffeine consumers. Reaction time, plasma glycerol and epinephrine, carbohydrate and fat oxidation, and energy expenditure were not affected by caffeine (P > 0.05). CONCLUSION Caffeine ingestion largely improved cardiovascular and neuromuscular performance, while reducing RPE, in both higher and lower caffeine consuming athletes during prolonged intermitted exercise to exhaustion.
Collapse
Affiliation(s)
- Andreas Apostolidis
- Human Performance Laboratory, Department of Life & Health Sciences, University of Nicosia, 46 Makedonitissas Ave., P.O. Box 2417, Nicosia, Cyprus
| | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education & Sport Science at Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ilias Smilios
- School of Physical Education & Sports Science, Democritus University of Thrace, Komotini, Greece
| | - Marios Hadjicharalambous
- Human Performance Laboratory, Department of Life & Health Sciences, University of Nicosia, 46 Makedonitissas Ave., P.O. Box 2417, Nicosia, Cyprus.
| |
Collapse
|
80
|
Giráldez-Costas V, Aguilar-Navarro M, González-García J, Del Coso J, Salinero JJ. Acute caffeine supplementation enhances several aspects of shot put performance in trained athletes. J Int Soc Sports Nutr 2022; 19:366-380. [PMID: 35813843 PMCID: PMC9261737 DOI: 10.1080/15502783.2022.2096415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aim of this investigation was to determine the effect of a moderate dose of caffeine (3 mg/kg/b.m.) on muscular power and strength and shot put performance in trained athletes. Methods. Thirteen shot putters (eight men and five women) participated in a double-blind, placebo-controlled, randomized experiment. In two different trials, participants ingested either 3 mg/kg/b.m. of caffeine or a placebo. Forty-five min after substance ingestion, athletes performed a handgrip dynamometry test, a countermovement jump (CMJ), a squat jump (SJ), and a maximum-velocity push-up. The athletes also performed three types of throws: a backwards throw, a standing shot put and a complete shot put. Results. In comparison with the placebo, caffeine ingestion increased CMJ height (32.25 ± 7.26 vs. 33.83 ± 7.72 cm, respectively; effect size (ES) = 0.82, p = 0.012; +5.0%;) and SJ height (29.93 ± 7.88 vs. 31.40 ± 7.16 cm; ES = 0.63, p = 0.042; +6.4%) and distance in the standing shot put (10.27 ± 1.77 m vs. 10.55 ± 1.94 m; ES = 0.87, p = 0.009; +2.6%). However, caffeine ingestion did not increase strength in the handgrip test, power in the ballistic push-up, or distance in the backwards throw (all p > 0.05). Shot put performance changed from 11.24 ± 2.54 to 11.35 ± . 2.57 m (ES = 0.33, p = 0.26; +1.0%), although the difference did not reach statistically significant differences. Caffeine ingestion did not increase the prevalence of side effects (nervousness, gastrointestinal problems, activeness, irritability, muscular pain, headache, and diuresis) in comparison with the placebo (p > 0.05). Conclusion. In summary, caffeine ingestion with a dose equivalent to 3 mg/kg/b.m. elicited moderate improvements in several aspects of physical performance in trained shot putters but with a small effect on distance in a complete shot put.
Collapse
Affiliation(s)
| | | | | | - Juan Del Coso
- Camilo José Cela University, Exercise Physiology Laboratory, Madrid, Spain.,Rey Juan Carlos University, Centre for Sport Studies, Fuenlabrada, Spain
| | - Juan José Salinero
- Castilla-La Mancha University, Faculty of Sport Sciences. Sport Training Laboratory (GIRD), Toledo, Spain
| |
Collapse
|
81
|
Santana O, Vieira-Cavalcante V, Caetano Paulo A, Rodacki C, Bertuzzi R, Lima-Silva AE, Cristina-Souza G. Caffeine reverts loss of muscular performance during the early-follicular phase in resistance-trained naturally menstruating women. J Sports Sci 2022; 40:1592-1601. [PMID: 35819352 DOI: 10.1080/02640414.2022.2094560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The aim of this study was to compare the effects of caffeine ingestion on muscular performance during the early-follicular and mid-luteal phases of the menstrual cycle. Fourteen resistance-trained naturally menstruating women performed countermovement jump (CMJ), maximal voluntary isometric contraction (MVIC), one-repetition maximum (1-RM), and repetitions-to-failure (RF) at 80% of 1-RM in the half-squat exercise, in early-follicular and mid-luteal phases, after placebo or caffeine ingestion. The early-follicular and mid-luteal phases were identified via calendar-based counting method. The MVIC was lower in the early-follicular than mid-luteal phase (-6.2 ± 15.2 N, p < 0.05) and higher with caffeine than placebo ingestion regardless of the menstrual cycle phase (+16.8 ± 26.7 N, p < 0.05). The magnitude of gains (supplement x phase interaction, p < 0.026) in 1-RM, CMJ, and RF with caffeine ingestion was higher in the early-follicular (+16.6 ± 7.1 kg, +2.5 ± 1.6 cm, and +4.5 ± 2.6 repetitions, respectively) than in the mid-luteal phase (+7.7 ± 4.8 kg, +1.5 ± 2.0 cm, and +2.4 ± 3.1 repetitions, respectively). In conclusion, the greater ergogenic effect of caffeine during the early-follicular phase supports its use to mitigate the decline in muscular performance in this phase of the menstrual cycle.
Collapse
Affiliation(s)
- Ottavio Santana
- Human Performance Research Group, Federal University of Technology Parana, Curitiba, Brazil
| | | | - Anderson Caetano Paulo
- Physical and Sports Training, Health and Performance Research Group (TFESP), Federal University of Technology Parana, Curitiba, Brazil
| | - Cintia Rodacki
- Human Performance Research Group, Federal University of Technology Parana, Curitiba, Brazil.,Physical and Sports Training, Health and Performance Research Group (TFESP), Federal University of Technology Parana, Curitiba, Brazil
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), University of Sao Paulo, Sao Paulo, Brazil
| | | | - Gislaine Cristina-Souza
- Human Performance Research Group, Federal University of Technology Parana, Curitiba, Brazil.,Nutrition and Exercise Research Group, State University of Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
82
|
Evening Caffeine Did Not Improve 100-m Swimming Time Trials Performed 60 Min Post-Ingestion or the Next Morning After Sleep. Int J Sport Nutr Exerc Metab 2022; 32:453-461. [PMID: 35894958 DOI: 10.1123/ijsnem.2022-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/23/2022] [Accepted: 05/21/2022] [Indexed: 11/18/2022]
Abstract
The potential ergogenic benefits of caffeine (CAF) are well known within the athletic community, often leading to its use in adolescent swimming cohorts to enhance their performance. However, it has previously been reported that CAF has sleep-disturbing effects, which could be detrimental to performance over consecutive days in multiday competitions. Moreover, the effects that evening CAF ingestion has on sleep, side effects, and next-day performances are yet to be researched in trained adolescents. In a double-blind, randomized, crossover design, eight national-level swimmers (age: 18 ± 1 years, height: 1.76 ± 0.06 cm, body mass [BM]: 69.4 ± 6.4 kg) ingested a capsule containing 3 mg/kg BM CAF or a placebo 60 min before an evening 100-m swimming time trial. The next morning, sleep was analyzed (Core Consensus Sleep Diary) and 100-m time trials were repeated. Side effects were analyzed via visual analog scales throughout the study. No differences were found for swimming performance (p = .911) in the evening (CAF: 59.5 ± 7.8 s, placebo: 59.9 ± 7.9 s, g = 0.06) or morning (CAF: 59.7 ± 7.7 s, placebo: 60.2 ± 7.9 s, g = 0.07). In addition, no group differences were found for any subjective side effects (e.g., anxiety: p = .468, tachycardia: p = .859, alertness: p = .959) or sleep parameters (e.g., sleep latency: p = .395, total sleep time: p = .574). These results question the use of a standardized 3 mg/kg BM CAF ingestion strategy for 100-m swimming time trials in trained adolescents, although objective measures may be needed to confirm that CAF does not affect sleep within this cohort.
Collapse
|
83
|
Xiang J, Du M, Wang H. Dietary Plant Extracts in Improving Skeletal Muscle Development and Metabolic Function. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2087669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jinzhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Hanning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
84
|
Lazić A, Kocić M, Trajković N, Popa C, Peyré-Tartaruga LA, Padulo J. Acute Effects of Caffeine on Overall Performance in Basketball Players—A Systematic Review. Nutrients 2022; 14:nu14091930. [PMID: 35565897 PMCID: PMC9099691 DOI: 10.3390/nu14091930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
Caffeine supplementation has become increasingly popular among athletes. The benefits of caffeine include delaying the negative effects of fatigue, maintaining a high level of physical and mental performance, and improving certain abilities necessary for sport success. Given the complex nature of basketball, caffeine could be a legal, ergogenic stimulant substance, which will positively affect overall basketball performance. The purpose of this systematic review was to summarize evidence for the effect of acute caffeine ingestion on variables related to the basketball performance. Web of Science, PubMed, Scopus and ProQuest, MEDLINE, and ERIC databases were searched up to February 2021. Studies that measured the acute effect of caffeine on basketball performance were included and analyzed. Eight studies published between 2000 and 2021 were included in the analysis. Pre-exercise caffeine intake increased vertical jump height, running time at 10 and 20 m without the ball, overall basketball performance (number of body impacts, number of free throws, rebounds, and assists) during simulated games, and reduced the time required to perform a basketball-specific agility test. Equivocal results between caffeine and placebo groups were found for aerobic capacity, free throw and three-point accuracy, and dribbling speed. Pre-exercise caffeine ingestion did not affect RPE, but insomnia and urinary excretion were increased. The pre-exercise ingestion of 3 and 6 mg/kg caffeine was found to be effective in increasing several physical performance variables in basketball players during sport-specific testing and simulated matches. However, considering the intermittent nature and complexity of basketball, and individual differences between players, future studies are needed.
Collapse
Affiliation(s)
- Anja Lazić
- Faculty of Sport and Physical Education, University of Niš, 18000 Niš, Serbia; (A.L.); (M.K.); (N.T.)
| | - Miodrag Kocić
- Faculty of Sport and Physical Education, University of Niš, 18000 Niš, Serbia; (A.L.); (M.K.); (N.T.)
| | - Nebojša Trajković
- Faculty of Sport and Physical Education, University of Niš, 18000 Niš, Serbia; (A.L.); (M.K.); (N.T.)
| | - Cristian Popa
- Faculty of Physical Education and Sport, Ovidius University of Constanta, 900470 Constanta, Romania;
| | | | - Johnny Padulo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
85
|
Porto AA, Benjamim CJR, Gonzaga LA, Luciano de Almeida M, Bueno Júnior CR, Garner DM, Valenti VE. Caffeine intake and its influences on heart rate variability recovery in healthy active adults after exercise: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2022; 32:1071-1082. [PMID: 35272883 DOI: 10.1016/j.numecd.2022.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/19/2022]
Abstract
AIMS Results regarding the effects of caffeine (CAF) intake on the autonomic control of heart rate recovery exercise remain inconclusive. Thus far, no study has used effect measures to pool the results of different experiments. We aim to assess the acute effect of CAF intake before exercise on the recovery of heart rate variability (HRV) after exercise through a systematic review and meta-analysis. DATA SYNTHESIS Randomized controlled clinical trials were included; sample composed of physically active or trained adults; CAF should be offered/ingested before exercise, with dosage between 100 and 400 mg or between 2 and 6 mg/kg and administration/ingestion route analogous in the protocols; studies required to present results of HRV indices before and after exercise. Bias risk analysis and meta-analysis were performed. Twelve studies were included in the qualitative synthesis and five studies were encompassed in the quantitative synthesis (meta-analysis). For the Root-mean-square standard deviation (RMSSD) index we revealed p = 0.67, Total 95% confidence interval (95% CI) ranged from -0.45 to 0.29, and 66.7% for heterogeneity between groups were reported. Concerning the High Frequency (HF) index, we observed p = 0.22, Total 95% CI that ranged from -0.34 to 0.30, and 44% for heterogeneity between groups. CONCLUSIONS CAF intake did not affect heart rate variability recovery after exercise.
Collapse
Affiliation(s)
- Andrey Alves Porto
- Department of Physical Therapy, Faculty of Sciences and Technologies, UNESP, Presidente Prudente, Brazil; Autonomic Nervous System Center, UNESP, Marilia, SP, Brazil
| | - Cicero Jonas R Benjamim
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Luana Almeida Gonzaga
- Department of Physical Therapy, Faculty of Sciences and Technologies, UNESP, Presidente Prudente, Brazil; Autonomic Nervous System Center, UNESP, Marilia, SP, Brazil
| | | | - Carlos Roberto Bueno Júnior
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil; School of Physical Education of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - David M Garner
- Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford, OX3 0BP, United Kingdom; Autonomic Nervous System Center, UNESP, Marilia, SP, Brazil
| | | |
Collapse
|
86
|
Effect of Caffeine Ingestion on Indirect Markers of Exercise-Induced Muscle Damage: A Systematic Review of Human Trials. Nutrients 2022; 14:nu14091769. [PMID: 35565741 PMCID: PMC9099525 DOI: 10.3390/nu14091769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/01/2023] Open
Abstract
The effect of caffeine on mitigating exercise-induced muscle damage (EIMD) is still poorly understood, but it was hypothesized that caffeine could contribute to decreasing delayed onset muscle soreness, attenuating temporary loss of strength, and reducing circulating levels of blood markers of muscle damage. However, evidence is not conclusive and beneficial effects of caffeine ingestion on EIMD are not always observed. Factors, such as the type of exercise that induces muscle damage, supplementation protocol, and type of marker analyzed contribute to the differences between the studies. To expand knowledge on the role of caffeine supplementation in EIMD, this systematic review aimed to investigate the effect of caffeine supplementation on different markers of muscle damage. Fourteen studies were included, evaluating the effect of caffeine on indirect muscle damage markers, including blood markers (nine studies), pain perception (six studies), and MVC maximal voluntary contraction force (four studies). It was observed in four studies that repeated administration of caffeine between 24 and 72 h after muscle damage can attenuate the perception of pain in magnitudes ranging from 3.9% to 26%. The use of a single dose of caffeine pre-exercise (five studies) or post-exercise (one study) did not alter the circulating blood levels of creatine kinase (CK). Caffeine supplementation appears to attenuate pain perception, but this does not appear to be related to an attenuation of EIMD, per se. Furthermore, the effect of caffeine supplementation after muscle damage on strength recovery remains inconclusive due to the low number of studies found (four studies) and controversial results for both dynamic and isometric strength tests.
Collapse
|
87
|
Effects of Multi-Ingredient Pre-Workout Supplement and Caffeine on Bench Press Performance: A Single-Blind Cross-Over Study. Nutrients 2022; 14:nu14091750. [PMID: 35565718 PMCID: PMC9105861 DOI: 10.3390/nu14091750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
The problem addressed in this study is the appropriateness of using different pre-training supplementation strategies and their ability to improve training performance and psychological measures. The aim of the study is the evaluation of the effectiveness of a multi-ingredient pre-workout supplement (MIPS) containing beta-alanine, L-citrulline malate, arginine alpha-ketoglutarate, L-taurine, L-tyrosine and caffeine compared to an exact dosage of anhydrous caffeine in bench press strength endurance, feeling scale (FS), felt arousal scale (FAS) and session rating of perceived exertion (sRPE). A group of fifteen resistance-trained males, weighing 83.92 ± 8.95 kg and having an average of 5.6 ± 3.38 years of training experience, tested their bench press 10 repetition maximum (79.01 ± 12.13). In a cross-over manner, they participated in two sessions where they were blinded to the order of supplementation they were given: either a MIPS including caffeine or caffeine alone. They completed the bench press strength endurance test with pre- and post-training psychological assessments containing FS, FAS and sRPE. Bench press repetition volume was greater after anhydrous caffeine than MIPS supplementation with no difference in psychological measures. These results indicate that MIPS supplementation is less ergogenic and cost effective than caffeine alone.
Collapse
|
88
|
Monjotin N, Amiot MJ, Fleurentin J, Morel JM, Raynal S. Clinical Evidence of the Benefits of Phytonutrients in Human Healthcare. Nutrients 2022; 14:nu14091712. [PMID: 35565680 PMCID: PMC9102588 DOI: 10.3390/nu14091712] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Phytonutrients comprise many different chemicals, including carotenoids, indoles, glucosinolates, organosulfur compounds, phytosterols, polyphenols, and saponins. This review focuses on the human healthcare benefits of seven phytochemical families and highlights the significant potential contribution of phytonutrients in the prevention and management of pathologies and symptoms in the field of family health. The structure and function of these phytochemical families and their dietary sources are presented, along with an overview of their potential activities across different health and therapeutic targets. This evaluation has enabled complementary effects of the different families of phytonutrients in the same area of health to be recognized.
Collapse
Affiliation(s)
- Nicolas Monjotin
- Institut de Recherche Pierre Fabre, Pierre Fabre Medical Care, 81100 Castres, France;
| | - Marie Josèphe Amiot
- Montpellier Interdisciplinary Center on Sustainable Agri-Food Systems, INRAE, Agro Institute, Université de Montpellier, CIHEAM-IAMM, CIRAD, IRD, 34000 Montpellier, France;
| | | | | | - Sylvie Raynal
- Direction Médicale Patients et Consommateurs, Pierre Fabre Medical Care, 81100 Castres, France
- Correspondence:
| |
Collapse
|
89
|
Acute Effect of Caffeine-Based Multi-Ingredient Supplement on Reactive Agility and Jump Height in Recreational Handball Players. Nutrients 2022; 14:nu14081569. [PMID: 35458131 PMCID: PMC9025764 DOI: 10.3390/nu14081569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Pre-exercise caffeine and guarana-based multi-ingredient supplement (MS) consumption may be more effective for physical performance improvement than caffeine and guarana alone due to the synergistic effect of biologically active ingredients in multi-ingredient supplements. This study aimed to examine the acute effect of MS on the reactive agility and jump performance in recreational handball male players. A randomized, double-blind, crossover study involved twenty-four male handball players (body mass 74.6 ± 8.8 kg; body height 179 ± 7 cm; age 23.8 ± 1.4 years). Participants were tested under three conditions: placebo, caffeine + guarana (CAF + GUA), or MS ingestion 45 min before exercise tests. Participants performed a reactive agility test (Y-shaped test) and countermovement jump (CMJ). None of the supplements improved countermovement jump height (p = 0.06). The time needed to complete the agility test was significantly (p = 0.02) shorter in the MS condition than in the placebo. The differences in agility between PL vs. CAF + GUA and MS vs. CAF + GUA conditions were not statistically significant (p = 0.88 and p = 0.07, respectively). The results of this study indicate that the caffeine-based multi-ingredient performance was effective in improvement in reactive agility but not in jump height in recreational handball male players. A similar effect was not observed with CAF + GUA ingestion alone.
Collapse
|
90
|
Sun R, Sun J, Li J, Li S. Effects of caffeine ingestion on physiological indexes of human neuromuscular fatigue: A systematic review and meta-analysis. Brain Behav 2022; 12:e2529. [PMID: 35318818 PMCID: PMC9014999 DOI: 10.1002/brb3.2529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/24/2021] [Accepted: 01/29/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Caffeine is often used as a stimulant during fatigue, but the standard of characteristic physiological indicators of the effect of caffeine on neuromuscular fatigue has not been unified. The purpose of this systematic review and meta-analysis is to summarize current experimental findings on the effects of caffeine on physiological indexes before and after neuromuscular fatigue, identify some characteristic neuromuscular physiological indexes to assess the potential effects of caffeine. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-analyses are followed. We systematically searched PubMed, Google academic, and Web of Science for randomized controlled trials. We searched for studies on caffeine's (i) effects on neuromuscular fatigue and (ii) the influence of physiological indexes changes. Meta-analysis was performed for standardized mean differences (SMD) between caffeine and placebo trials in individual studies. RESULTS The meta-analysis indicated that caffeine significantly improves voluntary activation (VA) (SMD = 1.46;95%CI:0.13, 2.79; p < .00001), PTw (SMD = 1.11, 95%CI: -1.61, 3.84; p < .00001), and M-wave (SMD = 1.10, 95%CI: -0.21, 2.41; p < .00001), and a significant difference (p = .003) on measures of Peak Power (PP), and insignificant difference on measures of heart rate (HR) (I2 = 0.0, p = .84) and Maximal oxygen uptake (VO2 ) (I2 = 0.0, p = .76). CONCLUSION The analysis showed that caffeine intake had a relatively large effect on VA, potentiated twitch (PTw), M-wave, which can be used as characteristic indexes of caffeine's impact on neuromuscular fatigue. This conclusion tends to indicate the effects of caffeine on neuromuscular fatigue during endurance running or jumping or muscle bending and stretching. The caffeine intake had a big effect on the electromyogram (EMG) and peak power (PP), and its effect role needs to be further verified, this conclusion tends to indicate the effect of caffeine on neuromuscular fatigue during jumping or elbow bending moment movements. HR, VO2 , maximal voluntary contraction (MVC) cannot be used as the characteristic indexes of caffeine on neuromuscular fatigue. This conclusion tends to indicate the effect of caffeine on neuromuscular fatigue during endurance exercise. However, the results of meta-analysis are based on limited evidence and research scale, as well as individual differences of participants and different physical tasks, so it is necessary to interpret the results of meta-analysis cautiously. Therefore, future research needs to explore other physiological indicators and their indicative effects in order to determine effective and accurate characteristic indicators of caffeine on neuromuscular fatigue.
Collapse
Affiliation(s)
- Ruishan Sun
- College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Junya Sun
- College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Jingqiang Li
- College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Shuwen Li
- College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, China
| |
Collapse
|
91
|
Arguedas-Soley A, Townsend I, Hengist A, Betts J. Acute caffeine supplementation and live match-play performance in team-sports: A systematic review (2000-2021). J Sports Sci 2022; 40:717-732. [PMID: 35297302 DOI: 10.1080/02640414.2021.2003559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Caffeine is a psycho-active stimulant that can improve physical and cognitive performance. We systematically reviewed the evidence on the effects of acute caffeine ingestion on physiological parameters, physical and technical-skill performance during high-performance team-sport match-play. Following PRISMA guidelines, studies were identified using scientific databases (PubMed, Web-of-Science, Scopus, and SPORTDiscus) in February 2021. Of 281 results, 13 studies met inclusion, totalling 213 participants. Included studies adopted the randomised double-blinded cross-over design, involving caffeine and control conditions. In studies reporting physiological variables, responses to caffeine included higher peak (n=6/ 8 [n/ total studies measuring the variable]) and mean (n=7/ 9) heart rates, increased blood glucose (n=2/ 2) and lactate (n=2/ 2) concentrations. Improvements in physical performance were widely documented with caffeine, including greater distance coverage (n=7/ 7), high-speed distance coverage (n=5/ 7) and impact frequencies (n=6/ 8). From three studies that assessed technical-skills, it appears caffeine may benefit gross-skill performance, but have no effect, or negatively confound finer technical-skill outcomes. There is compelling evidence that ingesting moderate caffeine doses (~3 to 6 mg·kg-1) ~60 minutes before exercise may improve physical performance in team-sports, whereas evidence is presently too scarce to draw confident conclusions regarding sport-specific skill performance.
Collapse
Affiliation(s)
| | | | | | - James Betts
- Department for Health, University of Bath, Bath, UK
| |
Collapse
|
92
|
Barreto G, Loureiro LMR, Reis CEG, Saunders B. Effects of caffeine chewing gum supplementation on exercise performance: a systematic review and meta-analysis. Eur J Sport Sci 2022; 23:714-725. [PMID: 35239468 DOI: 10.1080/17461391.2022.2049885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim of this systematic review with meta-analysis was to determine the effect of caffeine gum (Caff-gum) on exercise performance-related outcomes. Medline, EmBase, and SPORTSDiscus, and the register ClinicalTrials.gov were searched in March 2021, for studies assessing the effect of Caff-gum in placebo-controlled protocols involving healthy adults (i.e., with no chronic diseases or health conditions). Risk of bias was assessed using the RoB 2 tool. Random-effects meta-analyses using standardized mean differences (SMD) were performed to determine the effect of Caff-gum on exercise outcomes with several sub-analyses (training status, exercise type, timing and dose) for potential modifying factors. 14 studies were included, totaling 200 participants. There was a significant overall effect of Caff-gum compared to placebo (SMD = 0.21, 95%CI: 0.10-0.32; p = 0.001). Subgroup analysis showed improved performance for trained (SMD = 0.23, 95%CI: 0.08-0.37; p = 0.004), but not for untrained (SMD = 0.14, 95%CI: -0.02-0.29; p = 0.07) individuals. Caff-gum improved both endurance (SMD = 0.27, 95%CI: 0.12-0.42; p = 0.002) and strength/power (SMD = 0.20, 95%CI: 0.03-0.37; p = 0.03) performance outcomes. Caff-gum was ergogenic when consumed within 15 min prior to initiating exercise (SMD = 0.27, 95%CI: 0.07-0.4; p = 0.01), but not when provided >15 min prior (SMD=-0.48, 95%CI= -1.7-0.82; p = 0.25). There was no significant effect of Caff-gum with doses <3 mg/kg body mass (BM) (SMD = 0.20, 95%CI: -0.03-0.43; p = 0.07), but there was a significant effect when the dose was ≥3 mg/kg BM (SMD = 0.22, 95%CI: 0.07-0.37; p = 0.01). Caff-gum supplementation may be an effective ergogenic strategy for trained athletes involved in both endurance and strength/power exercise, using a recommended dose of ≥3 mg/kg BM consumed within 15 minutes before the exercise.
Collapse
Affiliation(s)
- G Barreto
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, BR, University of São Paulo, SP, Brazil
| | - L M R Loureiro
- Faculty of Nutrition FANUT, Department of Food and Nutrition, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - C E G Reis
- Department of Nutrition, Universidade de Brasília, Brasília, DF, Brazil
| | - B Saunders
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, Brazil
| |
Collapse
|
93
|
Panayi S, Galbraith A. Acute Ingestion of a Commercially Available Pre-workout Supplement Improves Anaerobic Power Output and Reduces Muscular Fatigue. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2022; 15:455-472. [PMID: 35519437 PMCID: PMC9022706 DOI: 10.70252/nvmj5392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The effect of a pre-workout supplement on anaerobic power output and muscular fatigue was examined. 18 participants took part in this double-blinded crossover study, reporting for testing on 3 occasions. Participants completed a 6×6 second repeated sprint test, with 20s recovery between sprints. Anaerobic power output was recorded as the highest power achieved during sprint test. Muscular fatigue was reported as a fatigue index across the six sprints ((maximum power - minimum power) ÷ total sprint time). During a baseline visit, participants consumed 250ml of water 30 minutes prior to testing, whilst in subsequent visits a taste-matched placebo (250ml water mixed with sugar-free juice) or a pre-workout supplement (250ml water mixed with one serving of 'THE PRE' myprotein.com). Anaerobic power output increased following pre-workout ingestion (pre-workout supplement, 885.8 ± 216.9W; Placebo, 853.6 ± 206.5W; Baseline, 839.3 ± 192.6W). Baseline vs pre-workout supplement (p = 0.01, g = 0.30); Placebo vs pre-workout supplement (p = 0.01, g = 0.20); Baseline vs Placebo (p = 0.59 g = 0.09). Muscular fatigue was reduced following pre-workout ingestion (Baseline, 4.92 ± 1.83W.s; Placebo, 4.39 ± 1.93W.s; pre-workout supplement, 3.31 ± 1.34W.s). Baseline vs pre-workout supplement (p = < 0.01 g = 0.98); Placebo vs pre-workout supplement (p = 0.01, g = 0.63); Baseline vs Placebo (p = 0.20, g = 0.28). Acute ingestion of a pre-workout supplement significantly improves anaerobic power output and attenuates muscular fatigue during repeated sprint cycling.
Collapse
Affiliation(s)
- Sotiris Panayi
- University of East London, Applied Sport Sciences Research Group, School of Health, Sport and Bioscience, Water Lane, Stratford, London, GREAT BRITTIAN
| | - Andy Galbraith
- University of East London, Applied Sport Sciences Research Group, School of Health, Sport and Bioscience, Water Lane, Stratford, London, GREAT BRITTIAN
| |
Collapse
|
94
|
Krawczyk R, Krzysztofik M, Kostrzewa M, Komarek Z, Wilk M, Del Coso J, Filip-Stachnik A. Preliminary Research towards Acute Effects of Different Doses of Caffeine on Strength-Power Performance in Highly Trained Judo Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2868. [PMID: 35270556 PMCID: PMC8910536 DOI: 10.3390/ijerph19052868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/11/2022]
Abstract
Although several previous studies examined the effect of pre-exercise caffeine ingestion on judo-specific performance, the optimal dose of caffeine to maximise the ergogenic effects for judoka is not clear. The main purpose of this study was to analyse the effects of oral administration of 3 and 6 mg/kg of caffeine on a battery of physical tests associated with judo performance. Ten highly trained national-level judoka (6 men and 4 women, age: 24.1 ± 4.7 years, body mass: 73.4 ± 12.9 kg, 15.1 ± 5.2 years of judo training experience, 2.6 mg/kg/day of habitual caffeine intake) participated in a randomized, crossover, placebo-controlled and double-blind experiment. Each judoka performed three identical experimental sessions after: (a) ingestion of 3 mg/kg of caffeine (CAF-3); (b) ingestion of 6 mg/kg of caffeine (CAF-6); (c) ingestion of a placebo (PLAC). After 60 min for substance absorption, participants performed the following tests: (a) bench press exercise with 50% of the load representing one-repetition maximum (1RM), including three sets of three repetitions; (b) bench pull exercise with 50% of 1RM including three sets of three repetitions; (c) countermovement jump; (d) maximal isometric handgrip strength test; (e) dynamic and isometric versions of the Judogi Grip Strength Test. In comparison with PLAC, the ingestion of CAF-3 and CAF-6 increased peak bar velocity in the bench press exercise (1.27 ± 0.11 vs. 1.34 ± 0.13 and 1.34 ± 0.15 m/s, respectively; p < 0.01) and mean bar velocity in the bench pull exercise (1.03 ± 0.15 vs. 1.13 ± 0.13 and 1.17 ± 0.15 m/s; p < 0.05). Only CAF-6 increased mean bar velocity in the bench press exercise when compared with PLAC (0.96 ± 0.09 vs. 1.02 ± 0.11 m/s; p < 0.05). Both CAF-3 and CAF-6 significantly increased the number of repetitions in the Judogi Grip Strength Test (17 ± 10 vs. 20 ± 10 and 20 ± 10 repetitions; p < 0.05). There were no differences between PLAC and caffeine doses in the remaining tests. The pre-exercise ingestion of 3 and 6 mg/kg of caffeine effectively obtained meaningful improvements in several aspects associated with judo performance. From a practical viewpoint, the selection between 3 or 6 mg/kg of caffeine may depend on previously tested individual responses during simulated competition.
Collapse
Affiliation(s)
- Robert Krawczyk
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (R.K.); (M.K.); (M.K.); (M.W.)
| | - Michal Krzysztofik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (R.K.); (M.K.); (M.K.); (M.W.)
| | - Maciej Kostrzewa
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (R.K.); (M.K.); (M.K.); (M.W.)
| | - Zuzanna Komarek
- Nutrition and Sports Performance Research Group, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland;
| | - Michal Wilk
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (R.K.); (M.K.); (M.K.); (M.W.)
| | - Juan Del Coso
- Centre for Sports Studies, Rey Juan Carlos University, 28942 Fuenlabrada, Spain
| | - Aleksandra Filip-Stachnik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (R.K.); (M.K.); (M.K.); (M.W.)
| |
Collapse
|
95
|
Jäger R, Purpura M, Wells SD, Liao K, Godavarthi A. Paraxanthine Supplementation Increases Muscle Mass, Strength, and Endurance in Mice. Nutrients 2022; 14:893. [PMID: 35215543 PMCID: PMC8875973 DOI: 10.3390/nu14040893] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 11/26/2022] Open
Abstract
Paraxanthine is a natural dietary ingredient and the main metabolite of caffeine in humans. Compared to caffeine, paraxanthine exhibits lower toxicity, lesser anxiogenic properties, stronger locomotor activating effects, greater wake promoting properties, and stronger dopaminergic effects. The purpose of this study was to evaluate the potential beneficial effects of paraxanthine supplementation on muscle mass, strength, and endurance performance in comparison to the control and other ingredients commonly used by athletes: L-theanine, alpha-GPC, and taurine. Male Swiss Albino mice from five groups (n = 8 per group) were orally administered paraxanthine (20.5 mg/kg/day, human equivalence dose (HED) 100 mg), L-theanine (10.28 mg/kg/day, HED 50 mg), alpha-GPC (41.09 mg/kg/day, HED 200 mg), taurine (102.75 mg/kg/day, HED 500 mg), or control (carboxy methyl cellulose) for 4 weeks. Exercise performance was evaluated using forelimb grip strength and treadmill endurance exercise. All animals were subject to treadmill training for 60 min 5 days per week. Blood draws were utilized to analyze lipid profile, liver health, renal function, and nitric oxide levels. Paraxanthine significantly increased forelimb grip strength by 17% (p < 0.001), treadmill exercise performance by 39% (p < 0.001), gastrocnemius and soleus muscle mass by 14% and 41% respectively (both p < 0.001), and nitric oxide levels by 100% compared to control (p < 0.001), while reducing triglyceride (p < 0.001), total cholesterol (p < 0.001), LDL (p < 0.05), and increasing HDL (p < 0.001) compared to control, and compared to L-theanine, alpha-GPC, and taurine. Results from this initial investigation indicate that, when compared to the control, L-theanine, alpha-GPC, and taurine, paraxanthine is an effective ingredient for various aspects of sports performance and may enhance cardiovascular health.
Collapse
Affiliation(s)
- Ralf Jäger
- Ingenious Ingredients L.P., Lewisville, TX 75056, USA; (M.P.); (S.D.W.); (K.L.)
- Increnovo LLC, Milwaukee, WI 53202, USA
| | - Martin Purpura
- Ingenious Ingredients L.P., Lewisville, TX 75056, USA; (M.P.); (S.D.W.); (K.L.)
- Increnovo LLC, Milwaukee, WI 53202, USA
| | - Shawn D. Wells
- Ingenious Ingredients L.P., Lewisville, TX 75056, USA; (M.P.); (S.D.W.); (K.L.)
| | - Kylin Liao
- Ingenious Ingredients L.P., Lewisville, TX 75056, USA; (M.P.); (S.D.W.); (K.L.)
| | | |
Collapse
|
96
|
Halperin I, Malleron T, Har-Nir I, Androulakis-Korakakis P, Wolf M, Fisher J, Steele J. Accuracy in Predicting Repetitions to Task Failure in Resistance Exercise: A Scoping Review and Exploratory Meta-analysis. Sports Med 2022; 52:377-390. [PMID: 34542869 DOI: 10.1007/s40279-021-01559-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Prescribing repetitions relative to task failure is an emerging approach to resistance training. Under this approach, participants terminate the set based on their prediction of the remaining repetitions left to task failure. While this approach holds promise, an important step in its development is to determine how accurate participants are in their predictions. That is, what is the difference between the predicted and actual number of repetitions remaining to task failure, which ideally should be as small as possible. OBJECTIVE The aim of this study was to examine the accuracy in predicting repetitions to task failure in resistance exercises. DESIGN Scoping review and exploratory meta-analysis. SEARCH AND INCLUSION A systematic literature search was conducted in January 2021 using the PubMed, SPORTDiscus, and Google Scholar databases. Inclusion criteria included studies with healthy participants who predicted the number of repetitions they can complete to task failure in various resistance exercises, before or during an ongoing set, which was performed to task failure. Sixteen publications were eligible for inclusion, of which 13 publications covering 12 studies, with a total of 414 participants, were included in our meta-analysis. RESULTS The main multilevel meta-analysis model including all effects sizes (262 across 12 clusters) revealed that participants tended to underpredict the number of repetitions to task failure by 0.95 repetitions (95% confidence interval [CI] 0.17-1.73), but with considerable heterogeneity (Q(261) = 3060, p < 0.0001, I2 = 97.9%). Meta-regressions showed that prediction accuracy slightly improved when the predictions were made closer to set failure (β = - 0.025, 95% CI - 0.05 to 0.0014) and when the number of repetitions performed to task failure was lower (≤ 12 repetitions: β = 0.06, 95% CI 0.04-0.09; > 12 repetitions: β = 0.47, 95% CI 0.44-0.49). Set number trivially influenced prediction accuracy with slightly increased accuracy in later sets (β = - 0.07 repetitions, 95% CI - 0.14 to - 0.005). In contrast, participants' training status did not seem to influence prediction accuracy (β = - 0.006 repetitions, 95% CI - 0.02 to 0.007) and neither did the implementation of upper or lower body exercises (upper body - lower body = - 0.58 repetitions; 95% CI - 2.32 to 1.16). Furthermore, there was minimal between-participant variation in predictive accuracy (standard deviation 1.45 repetitions, 95% CI 0.99-2.12). CONCLUSIONS Participants were imperfect in their ability to predict proximity to task failure independent of their training background. It remains to be determined whether the observed degree of inaccuracy should be considered acceptable. Despite this, prediction accuracies can be improved if they are provided closer to task failure, when using heavier loads, or in later sets. To reduce the heterogeneity between studies, future studies should include a clear and detailed account of how task failure was explained to participants and how it was confirmed.
Collapse
Affiliation(s)
- Israel Halperin
- School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
- Sylvan Adams Sports Institute, Tel Aviv University, Tel-Aviv, Israel.
| | - Tomer Malleron
- School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel-Aviv, Israel
| | - Itai Har-Nir
- School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel-Aviv, Israel
| | | | - Milo Wolf
- Faculty of Sport, Health, and Social Sciences, Solent University, Southampton, UK
| | - James Fisher
- Faculty of Sport, Health, and Social Sciences, Solent University, Southampton, UK
| | - James Steele
- Faculty of Sport, Health, and Social Sciences, Solent University, Southampton, UK
| |
Collapse
|
97
|
Effects of caffeine on isometric handgrip strength: A meta-analysis. Clin Nutr ESPEN 2022; 47:89-95. [DOI: 10.1016/j.clnesp.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023]
|
98
|
Ouergui I, Mahdi N, Delleli S, Messaoudi H, Chtourou H, Sahnoun Z, Bouassida A, Bouhlel E, Nobari H, Ardigò LP, Franchini E. Acute Effects of Low Dose of Caffeine Ingestion Combined with Conditioning Activity on Psychological and Physical Performances of Male and Female Taekwondo Athletes. Nutrients 2022; 14:nu14030571. [PMID: 35276932 PMCID: PMC8838840 DOI: 10.3390/nu14030571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
This study investigated low-dose caffeine ingestion, conditioning activity (CA) effects on psycho-physical performances in young taekwondo athletes. In a randomized, double-blind, counterbalanced, crossover design, 20 athletes (10 males; 17.5 ± 0.7 yrs) performed taekwondo-specific agility test (TSAT), 10 s/multiple frequency speed of kick test (FSKT-10s/FSKT-mult) after ingesting 3 mg·kg−1 caffeine (CAF) or placebo (PL) 60 min before performing standard warm-up without (NoCA) or with CA (3 × 10 vertical jumps above 40 cm), resulting in four experimental (PL + NoCA, CAF + NoCA, PL + CA, and CAF + CA) and one control (warm-up session without CAF or CA) conditions. Mood/physical symptoms (MPSS), subjective vitality (SVS), and feeling (FS) scales were analyzed post-to-pre for all conditions. Ratings of perceived-exertion and perceived-recovery status were determined after tests. For TSAT, CAF + CA induced better performance compared with all conditions (p < 0.001). For FSKT-10s and FSKT-mult, CAF + CA induced better performance compared with all conditions (p < 0.001). For MPSS, FS, CAF + NoCA induced higher scores than PL + NoCA and PL + CA (p = 0.002, 0.009 for MPSS; p = 0.014, 0.03 for FS). For SVS, PL + CA elicited lower scores than PL + NoCA and CAF + NoCA (p = 0.01, 0.004). Sex comparisons resulted in better performances for males for TSAT (p = 0.008), FSKT-10s (p < 0.001), FSKT-mult (p < 0.01), MPSS (p = 0.02), SVS (p = 0.028), and FS (p = 0.020) scores. Caffeine and conditioning activity are two efficient performance-enhancing strategies, which could synergistically result in greater psycho-physical performances.
Collapse
Affiliation(s)
- Ibrahim Ouergui
- High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef 7100, Tunisia; (I.O.); (N.M.); (A.B.)
| | - Nourhene Mahdi
- High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef 7100, Tunisia; (I.O.); (N.M.); (A.B.)
| | - Slaheddine Delleli
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia; (S.D.); (H.M.); (H.C.)
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis 1003, Tunisia
| | - Hamdi Messaoudi
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia; (S.D.); (H.M.); (H.C.)
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis 1003, Tunisia
| | - Hamdi Chtourou
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia; (S.D.); (H.M.); (H.C.)
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis 1003, Tunisia
| | - Zouheir Sahnoun
- Pharmacology Department, Faculty of Medicine, University of Sfax, Sfax 3000, Tunisia;
| | - Anissa Bouassida
- High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef 7100, Tunisia; (I.O.); (N.M.); (A.B.)
| | - Ezdine Bouhlel
- Laboratory of Cardio-Circulatory, Respiratory, Metabolic and Hormonal Adaptations to Muscular Exercise, Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse 4000, Tunisia;
| | - Hadi Nobari
- HEME Research Group, Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain
- Department of Physical Education and Sports, University of Granada, 18010 Granada, Spain
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
- Sports Scientist, Sepahan Football Club, Isfahan 81887-78473, Iran
- Correspondence: (H.N.); (L.P.A.)
| | - Luca Paolo Ardigò
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Exercise and Sport Science, University of Verona, Via Felice Casorati 43, 37131 Verona, Italy
- Correspondence: (H.N.); (L.P.A.)
| | - Emerson Franchini
- Martial Arts and Combat Sports Research Group, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil;
| |
Collapse
|
99
|
Effects of Aerobic Exercise Concurrent with Caffeine Supplementation on Weight and Body Fat Among Overweight Women. Asian J Sports Med 2022. [DOI: 10.5812/asjsm.116015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Obesity and overweight are among serious global epidemics that significantly threaten human health, especially among women. Objectives: This study aimed to assess the concurrent effects of 6-week caffeine supplementation with moderate-intensity aerobic exercise on weight and body fat among overweight women. Methods: Thirty overweight females (age: 36.47 ± 6.48 years; BMI: 27.61 ± 1.54 kg/m2; mean ± SD) with a sedentary lifestyle were recruited to the study. The participants were randomly allocated to the experimental group, EC (exercise + caffeine) group, who took 100 milligrams of caffeine of the “API” brand supplement 30 minutes before exercise training (n = 15) or control group, EP (exercise + placebo) (n = 15). All participants performed moderate-intensity aerobic exercise with an intensity of 40 to 60% of heart rate reserve based on the individual's exercise test for 30 minutes, three days a week for six weeks. Measurements, including the percentage of body fat, waist circumference, and skinfold (suprailiac, abdominal), were done two times, at baseline and after six weeks of exercising. Results: There were no significant differences between control and experimental groups related to weight (P = 0.22), percentage body fat (P = 0.88), and other measurements after six weeks. Conclusions: 6 weeks of caffeine supplementation combined with moderate-intensity aerobic exercise without dietary interventions couldn’t make a significant reduction in weight and central or total body fat among overweight women.
Collapse
|
100
|
Yu J, Lim JH, Seo SW, Lee D, Hong J, Kim J, Kim S, Nekar DM, Kang H. Effects of Caffeine Intake on Cardiopulmonary Variables and QT Interval after a Moderate-Intensity Aerobic Exercise in Healthy Adults: A Randomized Controlled Trial. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3170947. [PMID: 35036429 PMCID: PMC8754617 DOI: 10.1155/2022/3170947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/11/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022]
Abstract
Caffeine is considered a widely consumed natural and legal psychoactive stimulant with several effects on the body. The present study attempted to investigate the effects of caffeine consumed before and after a physical exercise on cardiovascular and cardiorespiratory functions in healthy adults. 36 healthy adult males were recruited and randomly allocated to one of the three (3) groups: group I (exercise without caffeine consumption), group II (caffeine beverage intake before exercise), and group III (caffeine beverage intake immediately after exercise). The heart rate (HR), QTc interval, blood pressure (BP), respiratory rate (RR), oxygen consumption (VO₂), and carbon dioxide emission (VCO₂) were measured at 0, 5, 10, and 15 min after the exercise. We observed a significant difference in all measured outcomes during the different recovery times in all the groups (p < 0.05). HR, RR, SBP, VO2, and VCO2 gradually decreased with time, DBP contrarily increased with time, and the QTc showed an irregular pattern. We can affirm that ingestion of caffeine before and after moderate aerobic exercise slows down the parasympathetic stimulation, heart rate recovery, and the recovery of HR and QTc with no major effects on BP, RR, VO₂, and VCO₂ in healthy adult men.
Collapse
Affiliation(s)
- JaeHo Yu
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - Jeong-Hun Lim
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - Sang-Woo Seo
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - DongYeop Lee
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - JiHeon Hong
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - JinSeop Kim
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - SeongGil Kim
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - Daekook M. Nekar
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| | - HyeYun Kang
- Department of Physical Therapy, Sun Moon University, Asan 31460, Republic of Korea
| |
Collapse
|