51
|
Poizeau F, Kerbrat S, Balusson F, Tattevin P, Revest M, Cattoir V, Luque-Paz D, Lesimple T, Pracht M, Dinulescu M, Russo D, Oger E, Dupuy A. The Association Between Antibiotic Use and Outcome Among Metastatic Melanoma Patients Receiving Immunotherapy. J Natl Cancer Inst 2022; 114:686-694. [PMID: 35253890 PMCID: PMC9086805 DOI: 10.1093/jnci/djac019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/23/2021] [Accepted: 01/18/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Several observational studies have reported a decreased response to immune checkpoint inhibitors (ICI) following antibiotic use. ICI activity has been hypothesized to be impaired by antibiotic-induced gut dysbiosis. METHODS Patients with advanced melanoma receiving an anti-PD-1 antibody as a first-line therapy between 2015 and 2017 in France were selected using the French Health Insurance database. We compared overall survival and time-to-treatment discontinuation according to antibiotic exposure in the 3 months prior to the initiation of anti-PD-1 antibody. To disentangle a causal effect of antibiotics from a confounding bias, we balanced characteristics of patients exposed and nonexposed to antibiotics using an overlap weighting method based on a propensity score. We also evaluated a control cohort of patients with advanced melanoma receiving first-line targeted therapy, as there is no rationale for decreased efficacy of targeted therapy following antibiotic treatment. RESULTS The anti-PD-1 antibody cohort comprised 2605 individuals. Antibiotic exposure in the 3 months prior to anti-PD-1 antibody initiation was not associated with shorter overall survival (weighted hazard ratio = 1.01, 95% confidence interval = 0.88 to 1.17) or time-to-treatment discontinuation (weighted hazard ratio = 1.00, 95% confidence interval = 0.89 to 1.11). Consistent results were observed when the time frame of antibiotics was narrowed to 1 month prior to anti-PD-1 initiation or when exposure was restricted to antibiotics leading to more profound gut dysbiosis. Similar results were observed in the targeted therapy cohort. CONCLUSIONS In a large cohort of advanced melanoma patients, we showed that antibiotic use preceding anti-PD-1 antibody was not associated with worse outcome. Physicians should not delay immunotherapy for patients who have recently received antibiotics.
Collapse
Affiliation(s)
- Florence Poizeau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Institut de recherche en santé, environnement et travail (Irset) - UMR_S 1085, Rennes, France.,Department of Dermatology, Univ Rennes, CHU Rennes, Rennes, France
| | - Sandrine Kerbrat
- Univ Rennes, CHU Rennes, Pharmacoepidemiology and Health Services Research (REPERES), Rennes, France
| | - Frédéric Balusson
- Univ Rennes, CHU Rennes, Inserm, EHESP, Institut de recherche en santé, environnement et travail (Irset) - UMR_S 1085, Rennes, France
| | - Pierre Tattevin
- Univ Rennes, CHU Rennes, Infectious Diseases and Intensive Care Unit, Rennes, France
| | - Matthieu Revest
- Univ Rennes, CHU Rennes, Infectious Diseases and Intensive Care Unit, Rennes, France.,Univ Rennes, Inserm, Bacterial Regulatory RNAs and Medicine (BRM) - UMR_S 1230, Rennes, France
| | - Vincent Cattoir
- Department of Bacteriology, Univ Rennes, CHU Rennes, Rennes, France
| | - David Luque-Paz
- Univ Rennes, CHU Rennes, Infectious Diseases and Intensive Care Unit, Rennes, France
| | - Thierry Lesimple
- Department of Medical Oncology, Centre Eugène Marquis, Rennes, France
| | - Marc Pracht
- Department of Medical Oncology, Centre Eugène Marquis, Rennes, France
| | | | - David Russo
- Department of Dermatology, CHU Rennes, Rennes, France
| | - Emmanuel Oger
- Univ Rennes, CHU Rennes, Pharmacoepidemiology and Health Services Research (REPERES), Rennes, France
| | - Alain Dupuy
- Univ Rennes, CHU Rennes, Inserm, EHESP, Institut de recherche en santé, environnement et travail (Irset) - UMR_S 1085, Rennes, France.,Department of Dermatology, Univ Rennes, CHU Rennes, Rennes, France
| |
Collapse
|
52
|
Lin HY, Yen SC, Kang CH, Chung CY, Hsu MC, Wang CY, Lin JHY, Huang CC, Lin HJ. How to evaluate the potential toxicity of therapeutic carbon nanomaterials? A comprehensive study of carbonized nanogels with multiple animal toxicity test models. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128337. [PMID: 35121295 DOI: 10.1016/j.jhazmat.2022.128337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Carbon-based nanomaterials have great potential in medical applications, especially in the treatment of infectious diseases and even tumors. However, to safely execute the application of carbon nanomaterials in human treatments, conducting safety assessments and establishing suitable evaluation criteria are necessary. In this study, lysine-carbonized nanogels (Lys-CNGs) that display antibacterial and antiviral abilities were employed in a comprehensive evaluation of their toxicity profiles through assessments in different animal models and growth stages. It was observed that zebrafish at the embryo and eleutheroembryo stages experienced significant toxic effects at a concentration of 15-fold the recommended dosage (0.5 ppm), whereas adult zebrafish following long-term consumption of fodder containing Lys-CNGs presented no adverse effects. Further microbiota analysis indicated that Lys-CNGs did not cause significant changes in the composition of the intestinal bacteria. In contrast, in the toxicity assessments with mammalian animal models, the Lys-CNGs showed no adverse effects, such as weight loss, dermal irritation, and skin sensitization responses in rabbits and guinea pigs, even at a high dose of 2000 mg/kg body weight. Our study revealed that Lys-CNGs have different toxic effects on different growth stages of zebrafish. Researchers in this field should carefully consider the implications of these toxicity profiles during the development of therapeutic carbon-based nanomaterials and for comparison of studies.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Shao-Chieh Yen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chia-Hui Kang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chih-Yu Chung
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Man-Chun Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chen-Yow Wang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - John Han-You Lin
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
53
|
Wang T, Xu J, Xu Y, Xiao J, Bi N, Gu X, Wang HL. Gut microbiota shapes social dominance through modulating HDAC2 in the medial prefrontal cortex. Cell Rep 2022; 38:110478. [PMID: 35263606 DOI: 10.1016/j.celrep.2022.110478] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
Social dominance is a ubiquitous phenomenon among social animals, including humans. To date, individual attributes leading to dominance (after a contest) remain largely elusive. Here, we report that socially dominant rats can be distinguished from subordinates based on their intestinal microbiota. When dysbiosis is induced, rats are predisposed to a subordinate state, while dysbiotic rats reclaim social dominance following microbiota transplantation. Winning hosts are characterized by core microbes, a majority of which are associated with butyrate production, and the sole colonization of Clostridium butyricum is sufficient to restore dominance. Regarding molecular aspects, a histone deacetylase, HDAC2, is responsive to microbial status and mediates competition outcome; however, this occurs only in a restricted population of cells in the medial prefrontal cortex (mPFC). Furthermore, HDAC2 acts by modulating synaptic activity in mPFC. Together, these findings uncover a link between commensals and host dominance, providing insight into the gut-brain mechanisms underlying dominance determination.
Collapse
Affiliation(s)
- Tian Wang
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Jinchun Xu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Xu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China.
| | - Jie Xiao
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Nanxi Bi
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaozhen Gu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Hui-Li Wang
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China.
| |
Collapse
|
54
|
Lebeaux RM, Karalis DB, Lee J, Whitehouse HC, Madan JC, Karagas MR, Hoen AG. The association between early life antibiotic exposure and the gut resistome of young children: a systematic review. Gut Microbes 2022; 14:2120743. [PMID: 36289062 PMCID: PMC9621065 DOI: 10.1080/19490976.2022.2120743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial resistance is a growing public health burden, but little is known about the effects of antibiotic exposure on the gut resistome. As childhood (0-5 years) represents a sensitive window of microbiome development and a time of relatively high antibiotic use, the aims of this systematic review were to evaluate the effects of antibiotic exposure on the gut resistome of young children and identify knowledge gaps. We searched PubMed, Scopus, Web of Science, and the Cochrane Central Register of Controlled Trials. A PICO framework was developed to determine eligibility criteria. Our main outcomes were the mean or median difference in overall resistance gene load and resistome alpha diversity by antibiotic exposure groups. Bias assessment was completed using RoB 2 and ROBINS-I with quality of evidence assessed via the GRADE criteria. From 4885 records identified, 14 studies (3 randomized controlled trials and 11 observational studies) were included in the qualitative review. Eight studies that included information on antibiotic exposure and overall resistance gene load reported no or positive associations. Inconsistent associations were identified for the nine studies that assessed resistome alpha diversity. We identified three main groups of studies based on study design, location, participants, antibiotic exposures, and indication for antibiotics. Overall, the quality of evidence for our main outcomes was rated low or very low, mainly due to potential bias from the selective of reporting results and confounding. We found evidence that antibiotic exposure is associated with changes to the overall gut resistance gene load of children and may influence the diversity of antimicrobial resistance genes. Given the overall quality of the studies, more research is needed to assess how antibiotics impact the resistome of other populations. Nonetheless, this evidence indicates that the gut resistome is worthwhile to consider for antibiotic prescribing practices.
Collapse
Affiliation(s)
- Rebecca M. Lebeaux
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Despina B. Karalis
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jihyun Lee
- Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Hanna C. Whitehouse
- Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Juliette C. Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Pediatrics, Children’s Hospital at Dartmouth, Lebanon, NH, USA
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
55
|
Kopra E, Lahdentausta L, Pietiäinen M, Buhlin K, Mäntylä P, Hörkkö S, Persson R, Paju S, Sinisalo J, Salminen A, Pussinen PJ. Systemic Antibiotics Influence Periodontal Parameters and Oral Microbiota, But Not Serological Markers. Front Cell Infect Microbiol 2021; 11:774665. [PMID: 35004349 PMCID: PMC8738095 DOI: 10.3389/fcimb.2021.774665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
The use of systemic antibiotics may influence the oral microbiota composition. Our aim was to investigate in this retrospective study whether the use of prescribed antibiotics associate with periodontal status, oral microbiota, and antibodies against the periodontal pathogens. The Social Insurance Institution of Finland Data provided the data on the use of systemic antibiotics by record linkage to purchased medications and entitled reimbursements up to 1 year before the oral examination and sampling. Six different classes of antibiotics were considered. The Parogene cohort included 505 subjects undergoing coronary angiography with the mean (SD) age of 63.4 (9.2) years and 65% of males. Subgingival plaque samples were analysed using the checkerboard DNA-DNA hybridisation. Serum and saliva antibody levels to periodontal pathogens were analysed with immunoassays and lipopolysaccharide (LPS) activity with the LAL assay. Systemic antibiotics were prescribed for 261 (51.7%) patients during the preceding year. The mean number of prescriptions among them was 2.13 (range 1-12), and 29.4% of the prescriptions were cephalosporins, 25.7% penicillins, 14.3% quinolones, 12.7% macrolides or lincomycin, 12.0% tetracycline, and 5.8% trimethoprim or sulphonamides. In linear regression models adjusted for age, sex, current smoking, and diabetes, number of antibiotic courses associated significantly with low periodontal inflammation burden index (PIBI, p < 0.001), bleeding on probing (BOP, p = 0.006), and alveolar bone loss (ABL, p = 0.042). Cephalosporins associated with all the parameters. The phyla mainly affected by the antibiotics were Bacteroidetes and Spirochaetes. Their levels were inversely associated with the number of prescriptions (p = 0.010 and p < 0.001) and directly associated with the time since the last prescription (p = 0.019 and p < 0.001). Significant inverse associations were observed between the number of prescriptions and saliva concentrations of Prevotella intermedia, Tannerella forsythia, and Treponema denticola and subgingival bacterial amounts of Porphyromonas gingivalis, P. intermedia, T. forsythia, and T. denticola. Saliva or serum antibody levels did not present an association with the use of antibiotics. Both serum (p = 0.031) and saliva (p = 0.032) LPS activity was lower in patients having any antibiotic course less than 1 month before sampling. Systemic antibiotics have effects on periodontal inflammation and oral microbiota composition, whereas the effects on host immune responses against the periodontal biomarker species seem unchanged.
Collapse
Affiliation(s)
- Elisa Kopra
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Laura Lahdentausta
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Milla Pietiäinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kåre Buhlin
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Päivi Mäntylä
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
- Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Rutger Persson
- Department of Periodontics, University of Washington, Seattle, WA, United States
- Department of Oral Medicine, University of Washington, Seattle, WA, United States
- Faculty of Health Sciences, Kristianstad University, Kristianstad, Sweden
| | - Susanna Paju
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Sinisalo
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Division of Cardiology, Heart and Lung Center, Department of Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Aino Salminen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirkko J. Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
56
|
Bajinka O, Qi M, Barrow A, Touray AO, Yang L, Tan Y. Pathogenicity of Salmonella During Schistosoma-Salmonella Co-infections and the Importance of the Gut Microbiota. Curr Microbiol 2021; 79:26. [PMID: 34905113 PMCID: PMC8669234 DOI: 10.1007/s00284-021-02718-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
Antibiotic inefficacy in treating bacterial infections is largely studied in the context of developing resistance mechanisms. However, little attention has been paid to combined diseases mechanisms, interspecies pathogenesis and the resulting impact on antimicrobial treatment. This review will consider the co-infections of Salmonella and Schistosoma mansoni. It summarises the protective mechanisms that the pathophysiology of the two infections confer, which leads to an antibiotic protection phenomenon. This review will elucidate the functional characteristics of the gut microbiota in the context of these co-infections, the pathogenicity of these infections in infected mice, and the efficacy of the antibiotics used in treatment of these co-infections over time. Salmonella-Schistosoma interactions and the mechanism for antibiotic protection are not well established. However, antimicrobial drug inefficacy is an existing phenomenon in these co-infections. The treatment of schistosomiasis to ensure the efficacy of antibiotic therapy for bacterial infections should be considered in co-infected patients.
Collapse
Affiliation(s)
- Ousman Bajinka
- Department of Microbiology, Central South University, Changsha, Hunan, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Mingming Qi
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Amadou Barrow
- Heidelberg Institute of Global Health, University Hospital and Medical Faculty, Heidelberg University, Heidelberg, Germany.,School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Abdoulie O Touray
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Lulu Yang
- Department of Microbiology, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Microbiology, Central South University, Changsha, Hunan, China. .,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China. .,Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|