51
|
Current Methods for Skeletal Muscle Tissue Repair and Regeneration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1984879. [PMID: 29850487 PMCID: PMC5926523 DOI: 10.1155/2018/1984879] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/28/2018] [Accepted: 03/11/2018] [Indexed: 12/11/2022]
Abstract
Skeletal muscle has the capacity of regeneration after injury. However, for large volumes of muscle loss, this regeneration needs interventional support. Consequently, muscle injury provides an ongoing reconstructive and regenerative challenge in clinical work. To promote muscle repair and regeneration, different strategies have been developed within the last century and especially during the last few decades, including surgical techniques, physical therapy, biomaterials, and muscular tissue engineering as well as cell therapy. Still, there is a great need to develop new methods and materials, which promote skeletal muscle repair and functional regeneration. In this review, we give a comprehensive overview over the epidemiology of muscle tissue loss, highlight current strategies in clinical treatment, and discuss novel methods for muscle regeneration and challenges for their future clinical translation.
Collapse
|
52
|
Macri‐Pellizzeri L, De‐Juan‐Pardo EM, Prosper F, Pelacho B. Role of substrate biomechanics in controlling (stem) cell fate: Implications in regenerative medicine. J Tissue Eng Regen Med 2018; 12:1012-1019. [DOI: 10.1002/term.2586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Laura Macri‐Pellizzeri
- Laboratory of Cell Therapy, Foundation for Applied Medical ResearchUniversity of Navarra Pamplona Spain
- Advanced Materials Research GroupFaculty of Engineering, University of Nottingham Nottingham UK
| | - Elena M. De‐Juan‐Pardo
- Regenerative MedicineInstitute of Health and Biomedical Innovation, Queensland University of Technology (QUT) Brisbane Australia
| | - Felipe Prosper
- Laboratory of Cell Therapy, Foundation for Applied Medical ResearchUniversity of Navarra Pamplona Spain
- IdiSNANavarra Institute for Health Research Pamplona Spain
- Hematology and Cell TherapyClínica Universidad de Navarra, University of Navarra Pamplona Spain
| | - Beatriz Pelacho
- Laboratory of Cell Therapy, Foundation for Applied Medical ResearchUniversity of Navarra Pamplona Spain
- IdiSNANavarra Institute for Health Research Pamplona Spain
| |
Collapse
|
53
|
Jossen V, van den Bos C, Eibl R, Eibl D. Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol 2018; 102:3981-3994. [PMID: 29564526 PMCID: PMC5895685 DOI: 10.1007/s00253-018-8912-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 01/10/2023]
Abstract
Human mesenchymal stem cell (hMSC)-based therapies are of increasing interest in the field of regenerative medicine. As economic considerations have shown, allogeneic therapy seems to be the most cost-effective method. Standardized procedures based on instrumented single-use bioreactors have been shown to provide billion of cells with consistent product quality and to be superior to traditional expansions in planar cultivation systems. Furthermore, under consideration of the complex nature and requirements of allogeneic hMSC-therapeutics, a new equipment for downstream processing (DSP) was successfully evaluated. This mini-review summarizes both the current state of the hMSC production process and the challenges which have to be taken into account when efficiently producing hMSCs for the clinical scale. Special emphasis is placed on the upstream processing (USP) and DSP operations which cover expansion, harvesting, detachment, separation, washing and concentration steps, and the regulatory demands.
Collapse
Affiliation(s)
- Valentin Jossen
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland.
| | | | - Regine Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Dieter Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| |
Collapse
|
54
|
Acevedo JP, Angelopoulos I, van Noort D, Khoury M. Microtechnology applied to stem cells research and development. Regen Med 2018; 13:233-248. [PMID: 29557299 DOI: 10.2217/rme-2017-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microfabrication and microfluidics contribute to the research of cellular functions of cells and their interaction with their environment. Previously, it has been shown that microfluidics can contribute to the isolation, selection, characterization and migration of cells. This review aims to provide stem cell researchers with a toolkit of microtechnology (mT) instruments for elucidating complex stem cells functions which are challenging to decipher with traditional assays and animal models. These microdevices are able to investigate about the differentiation and niche interaction, stem cells transcriptomics, therapeutic functions and the capture of their secreted microvesicles. In conclusion, microtechnology will allow a more realistic assessment of stem cells properties, driving and accelerating the translation of regenerative medicine approaches to the clinic.
Collapse
Affiliation(s)
- Juan Pablo Acevedo
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Ioannis Angelopoulos
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Danny van Noort
- Facultad de Ingeniería y Ciencias Aplicadas Universidad de los Andes, Santiago, Chile.,Biotechnology, IFM, Linköping University, Sweden
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Santiago, Chile
| |
Collapse
|
55
|
Srinivasan A, Chang SY, Zhang S, Toh WS, Toh YC. Substrate stiffness modulates the multipotency of human neural crest derived ectomesenchymal stem cells via CD44 mediated PDGFR signaling. Biomaterials 2018; 167:153-167. [PMID: 29571051 DOI: 10.1016/j.biomaterials.2018.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/26/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have been isolated from various mesodermal and ectodermal tissues. While the phenotypic and functional heterogeneity of MSCs stemming from their developmental origins has been acknowledged, the genetic and environmental factors underpinning these differences are not well-understood. Here, we investigated whether substrate stiffness mediated mechanical cues can directly modulate the development of ectodermal MSCs (eMSCs) from a precursor human neural crest stem cell (NCSC) population. We showed that NCSC-derived eMSCs were transcriptionally and functionally distinct from mesodermal bone marrow MSCs. eMSCs derived on lower substrate stiffness specifically increased their expression of the MSC marker, CD44 in a Rho-ROCK signaling dependent manner, which resulted in a concomitant increase in the eMSCs' adipogenic and chondrogenic differentiation potential. This mechanically-induced effect can only be maintained for short-term upon switching back to a stiff substrate but can be sustained for longer-term when the eMSCs were exclusively maintained on soft substrates. We also discovered that CD44 expression modulated eMSC self-renewal and multipotency via the downregulation of downstream platelet-derived growth factor receptor beta (PDGFRβ) signaling. This is the first instance demonstrating that substrate stiffness not only influences the differentiation trajectories of MSCs but also their derivation from upstream progenitors, such as NCSCs.
Collapse
Affiliation(s)
- Akshaya Srinivasan
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, Singapore 117583
| | - Shu-Yung Chang
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, Singapore 117583
| | - Shipin Zhang
- Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083
| | - Wei Seong Toh
- NUS Tissue Engineering Program (NUSTEP), National University of Singapore, DSO (Kent Ridge), 27 Medical Drive, #04-01, Singapore 117510; Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, Singapore 117583; Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Centre for Life Sciences, 28 Medical Drive, #05-COR, Singapore 117456; NUS Tissue Engineering Program (NUSTEP), National University of Singapore, DSO (Kent Ridge), 27 Medical Drive, #04-01, Singapore 117510; Biomedical Institute for Global Health, Research and Technology (BIGHEART), MD6, 14 Medical Drive, #14-01, Singapore 117599.
| |
Collapse
|
56
|
Druso JE, Fischbach C. Biophysical Properties of Extracellular Matrix: Linking Obesity and Cancer. Trends Cancer 2018; 4:271-273. [PMID: 29606310 DOI: 10.1016/j.trecan.2018.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 12/20/2022]
Abstract
Obesity has been associated with increased severity of diagnoses for several types of cancer, and recent evidence suggests that the mechanism by which obese tissues contribute to cancer progression involves the extracellular matrix (ECM). Understanding the physicochemical differences between lean and obese ECM, and how cancer cells respond to these differences, promises therapeutic insight.
Collapse
Affiliation(s)
- Joseph E Druso
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
57
|
La A, Tranquillo RT. Hemocompatible tissue-engineered vascular grafts using adult mesenchymal stem cells. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 5:66-73. [DOI: 10.1016/j.cobme.2018.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
58
|
A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bprint.2018.02.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
59
|
Brown S, Matta A, Erwin M, Roberts S, Gruber HE, Hanley EN, Little CB, Melrose J. Cell Clusters Are Indicative of Stem Cell Activity in the Degenerate Intervertebral Disc: Can Their Properties Be Manipulated to Improve Intrinsic Repair of the Disc? Stem Cells Dev 2018; 27:147-165. [DOI: 10.1089/scd.2017.0213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sharon Brown
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Ajay Matta
- Krembil Research Institute, Toronto, Canada
| | - Mark Erwin
- Krembil Research Institute, Toronto, Canada
| | - Sally Roberts
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Helen E. Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Edward N. Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Christopher B. Little
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
60
|
Tew LS, Ching JY, Ngalim SH, Khung YL. Driving mesenchymal stem cell differentiation from self-assembled monolayers. RSC Adv 2018; 8:6551-6564. [PMID: 35540392 PMCID: PMC9078311 DOI: 10.1039/c7ra12234a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/27/2018] [Indexed: 12/26/2022] Open
Abstract
The utilization of self-assembled monolayer (SAM) systems to direct Mesenchymal Stem Cell (MSC) differentiation has been covered in the literature for years, but finding a general consensus pertaining to its exact role over the differentiation of stem cells had been rather challenging. Although there are numerous reports on surface functional moieties activating and inducing differentiation, the results are often different between reports due to the varying surface conditions, such as topography or surface tension. Herein, in view of the complexity of the subject matter, we have sought to catalogue the recent developments around some of the more common functional groups on predominantly hard surfaces and how these chemical groups may influence the overall outcome of the mesenchymal stem cells (MSC) differentiation so as to better establish a clearer underlying relationship between stem cells and their base substratum interactions. Graphical illustration showing the functional groups that drive MSC differentiation without soluble bioactive cues within the first 14 days.![]()
Collapse
Affiliation(s)
- L. S. Tew
- Regenerative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - J. Y. Ching
- Institute of Biological Science and Technology
- China Medical University
- Taichung
- Republic of China
| | - S. H. Ngalim
- Regenerative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - Y. L. Khung
- Institute of New Drug Development
- China Medical University
- Taichung
- Republic of China
| |
Collapse
|
61
|
Perugini V, Meikle ST, Guildford AL, Santin M. Hyperbranched poly(ϵ-lysine) substrate presenting the laminin sequence YIGSR induces the formation of spheroids in adult bone marrow stem cells. PLoS One 2017; 12:e0187182. [PMID: 29232694 PMCID: PMC5726715 DOI: 10.1371/journal.pone.0187182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Unlike the fibroblast-like cells formed upon monolayer culture of human mesenchymal stem cells, the natural stem cell niche of the bone marrow and other types of tissues favours the formation of 3-dimensional (3D) cell clusters. The structuring and biological activity of these clusters are regulated by the contacts established by cells with both the basement membrane and neighbour cells and results in their asymmetric division and the consequent maintenance of both a stem population and a committed progeny. The present work demonstrates the potential of a synthetic substrate to mimic the stem cell niche in vitro. The side amino groups of a linear Poly-L-lysine were modified with hyperbranched poly-(ϵ-lysine) peptides, named as dendrons, tethered with the laminin-mimicking sequence, YIGSR. These dendrons presented the YIGSR sequence at the uppermost molecular branching ensuring a controlled spacing of the bioligand. When used to coat the surface of tissue culture plates in a serum-free in vitro cell culture system, the substrate was able to mimic the most relevant features of the basement membrane of the stem cell niche, i.e. the mesh structure of Collagen Type IV and the availability of laminin bioligands relevant to integrin biorecognition. The substrate biomimetic properties were tested for their ability to support the formation of human bone marrow mesenchymal stem cells (hMSCs) 3D spheroids similar to those observed in the natural stem cell niches and their ability to maintain stem cell pluripotency markers. These features were related to the substrate-specific expression and localisation of (i) cell adhesion receptors (i.e. β-integrin and N-cadherin), (ii) transcription factors of pluripotency markers and cytoskeleton protein and (iii) regulators of cell migration throughout cell culture passages 2 to 4. The results clearly demonstrate the formation of 3D spheroids starting from the asymmetric division of substrate-adhering spread cells, the clustering of relevant integrins and the expression of specific intracellular pathways controlling cytoskeleton formation suggesting their potential use as a substrate for the handling of stem cells prior to transplantation procedures.
Collapse
Affiliation(s)
- Valeria Perugini
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Steve T. Meikle
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Anna L. Guildford
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
62
|
Kumar A, Placone JK, Engler AJ. Understanding the extracellular forces that determine cell fate and maintenance. Development 2017; 144:4261-4270. [PMID: 29183939 DOI: 10.1242/dev.158469] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells interpret signals from their microenvironment while simultaneously modifying the niche through secreting factors and exerting mechanical forces. Many soluble stem cell cues have been determined over the past century, but in the past decade, our molecular understanding of mechanobiology has advanced to explain how passive and active forces induce similar signaling cascades that drive self-renewal, migration, differentiation or a combination of these outcomes. Improvements in stem cell culture methods, materials and biophysical tools that assess function have improved our understanding of these cascades. Here, we summarize these advances and offer perspective on ongoing challenges.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Jesse K Placone
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA .,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| |
Collapse
|
63
|
Urbanska M, Winzi M, Neumann K, Abuhattum S, Rosendahl P, Müller P, Taubenberger A, Anastassiadis K, Guck J. Single-cell mechanical phenotype is an intrinsic marker of reprogramming and differentiation along the mouse neural lineage. Development 2017; 144:4313-4321. [DOI: 10.1242/dev.155218] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022]
Abstract
Cellular reprogramming is a dedifferentiation process during which cells continuously undergo phenotypical remodeling. Although the genetic and biochemical details of this remodeling are fairly well understood, little is known about the change in cell mechanical properties during the process. In this study, we investigated changes in the mechanical phenotype of murine fetal neural progenitor cells (fNPCs) during reprogramming to induced pluripotent stem cells (iPSCs). We find that fNPCs become progressively stiffer en route to pluripotency, and that this stiffening is mirrored by iPSCs becoming more compliant during differentiation towards the neural lineage. Furthermore, we show that the mechanical phenotype of iPSCs is comparable with that of embryonic stem cells. These results suggest that mechanical properties of cells are inherent to their developmental stage. They also reveal that pluripotent cells can differentiate towards a more compliant phenotype, which challenges the view that pluripotent stem cells are less stiff than any cells more advanced developmentally. Finally, our study indicates that the cell mechanical phenotype might be utilized as an inherent biophysical marker of pluripotent stem cells.
Collapse
Affiliation(s)
- Marta Urbanska
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Maria Winzi
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Katrin Neumann
- Stem Cell Engineering, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Shada Abuhattum
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
- JPK Instruments AG, Colditzstraße 34-36, Berlin 12099, Germany
| | - Philipp Rosendahl
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Paul Müller
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Anna Taubenberger
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Jochen Guck
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| |
Collapse
|
64
|
Kang P, Kumar S, Schaffer D. Novel biomaterials to study neural stem cell mechanobiology and improve cell-replacement therapies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 4:13-20. [PMID: 29399646 PMCID: PMC5791915 DOI: 10.1016/j.cobme.2017.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neural stem cells (NSCs) are a valuable cell source for tissue engineering, regenerative medicine, disease modeling, and drug screening applications. Analogous to other stem cells, NSCs are tightly regulated by their microenvironmental niche, and prior work utilizing NSCs as a model system with engineered biomaterials has offered valuable insights into how biophysical inputs can regulate stem cell proliferation, differentiation, and maturation. In this review, we highlight recent exciting studies with innovative material platforms that enable narrow stiffness gradients, mechanical stretching, temporal stiffness switching, and three-dimensional culture to study NSCs. These studies have significantly advanced our knowledge of how stem cells respond to an array of different biophysical inputs and the underlying mechanosensitive mechanisms. In addition, we discuss efforts to utilize engineered material scaffolds to improve NSC-based translational efforts and the importance of mechanobiology in tissue engineering applications.
Collapse
Affiliation(s)
- Phillip Kang
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory Physical Biosciences Division, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - David Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
65
|
Williams DF. * A Paradigm for the Evaluation of Tissue-Engineering Biomaterials and Templates. Tissue Eng Part C Methods 2017; 23:926-937. [PMID: 28762883 DOI: 10.1089/ten.tec.2017.0181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Procedures for the evaluation of tissue-engineering processes, including those used for the testing of the relevant biomaterials, have not been developed in a logical manner. This perspectives paper discusses the limitations of testing regimes and recommends a very different approach. The main emphasis is on the existing methods for assessing the biological safety of these biomaterials, which, it is suggested, are irrelevant for evaluating materials that are intended to facilitate the generation of new tissue. An algorithm is proposed that sets out the pathway from materials design and characterization through to the production of a file that sets out full biocompatibility, functionality, and tissue incorporation data that are suitable for regulatory consideration for first-in-man experiences. Central to this algorithm is the choice of animal models and the real-time monitoring of the implanted construct performance.
Collapse
Affiliation(s)
- David F Williams
- Wake Forest Institute of Regenerative Medicine , Winston Salem, North Carolina
| |
Collapse
|
66
|
Damayanti NP, Buno K, Narayanan N, Voytik Harbin SL, Deng M, Irudayaraj JMK. Monitoring focal adhesion kinase phosphorylation dynamics in live cells. Analyst 2017; 142:2713-2716. [PMID: 28589989 PMCID: PMC5531600 DOI: 10.1039/c7an00471k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic non-receptor tyrosine kinase essential for a diverse set of cellular functions. Current methods for monitoring FAK activity in response to an extracellular stimulus lack spatiotemporal resolution and/or the ability to perform multiplex detection. Here we report on a novel approach to monitor the real-time kinase phosphorylation activity of FAK in live single cells by fluorescence lifetime imaging.
Collapse
Affiliation(s)
- Nur P Damayanti
- Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA. and Indiana University School of Medicine, 980 West Walnut St. R3 C312, Indianapolis, Indiana 46202, USA
| | - Kevin Buno
- Weldon School of Biomedical Engineering, Collage of Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Nagarajan Narayanan
- Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Sherry L Voytik Harbin
- Weldon School of Biomedical Engineering, Collage of Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Meng Deng
- Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Joseph M K Irudayaraj
- Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
67
|
Heo SJ, Han WM, Szczesny SE, Cosgrove BD, Elliott DM, Lee DA, Duncan RL, Mauck RL. Mechanically Induced Chromatin Condensation Requires Cellular Contractility in Mesenchymal Stem Cells. Biophys J 2017; 111:864-874. [PMID: 27558729 DOI: 10.1016/j.bpj.2016.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/27/2016] [Accepted: 07/11/2016] [Indexed: 02/07/2023] Open
Abstract
Mechanical cues play important roles in directing the lineage commitment of mesenchymal stem cells (MSCs). In this study, we explored the molecular mechanisms by which dynamic tensile loading (DL) regulates chromatin organization in this cell type. Our previous findings indicated that the application of DL elicited a rapid increase in chromatin condensation through purinergic signaling mediated by ATP. Here, we show that the rate and degree of condensation depends on the frequency and duration of mechanical loading, and that ATP release requires actomyosin-based cellular contractility. Increases in baseline cellular contractility via the addition of an activator of G-protein coupled receptors (lysophosphatidic acid) induced rapid ATP release, resulting in chromatin condensation independent of loading. Conversely, inhibition of contractility through pretreatment with either a RhoA/Rock inhibitor (Y27632) or MLCK inhibitor (ML7) abrogated ATP release in response to DL, blocking load-induced chromatin condensation. With loading, ATP release occurred very rapidly (within the first 10-20 s), whereas changes in chromatin occurred at a later time point (∼10 min), suggesting a downstream biochemical pathway mediating this process. When cells were pretreated with blockers of the transforming growth factor (TGF) superfamily, purinergic signaling in response to DL was also eliminated. Further analysis showed that this pretreatment decreased contractility, implicating activity in the TGF pathway in the establishment of the baseline contractile state of MSCs (in the absence of exogenous ligands). These data indicate that chromatin condensation in response to DL is regulated through the interplay between purinergic and RhoA/Rock signaling, and that ligandless activity in the TGF/bone morphogenetic proteins signaling pathway contributes to the establishment of baseline contractility in MSCs.
Collapse
Affiliation(s)
- Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Woojin M Han
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Spencer E Szczesny
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, Pennsylvania
| | - Brian D Cosgrove
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, Pennsylvania
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - David A Lee
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Randall L Duncan
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware; Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, Pennsylvania.
| |
Collapse
|
68
|
Kara N, Wei C, Commanday AC, Patton JG. miR-27 regulates chondrogenesis by suppressing focal adhesion kinase during pharyngeal arch development. Dev Biol 2017. [PMID: 28625871 PMCID: PMC5582384 DOI: 10.1016/j.ydbio.2017.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cranial neural crest cells are a multipotent cell population that generate all the elements of the pharyngeal cartilage with differentiation into chondrocytes tightly regulated by temporal intracellular and extracellular cues. Here, we demonstrate a novel role for miR-27, a highly enriched microRNA in the pharyngeal arches, as a positive regulator of chondrogenesis. Knock down of miR-27 led to nearly complete loss of pharyngeal cartilage by attenuating proliferation and blocking differentiation of pre-chondrogenic cells. Focal adhesion kinase (FAK) is a key regulator in integrin-mediated extracellular matrix (ECM) adhesion and has been proposed to function as a negative regulator of chondrogenesis. We show that FAK is downregulated in the pharyngeal arches during chondrogenesis and is a direct target of miR-27. Suppressing the accumulation of FAK in miR-27 morphants partially rescued the severe pharyngeal cartilage defects observed upon knock down of miR-27. These data support a crucial role for miR-27 in promoting chondrogenic differentiation in the pharyngeal arches through regulation of FAK.
Collapse
Affiliation(s)
- Nergis Kara
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Chunyao Wei
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Alexander C Commanday
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
69
|
Mechanisms governing metastatic dormancy in breast cancer. Semin Cancer Biol 2017; 44:72-82. [PMID: 28344165 DOI: 10.1016/j.semcancer.2017.03.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Breast cancer is a systemic disease characterized by early dissemination of tumor cells to distant organs. In this foreign environment, tumor cells may stay in a dormant state as single cells or as micrometastases for many years before growing out into a macrometastatic lesion. As metastasis is the primary cause for breast cancer-related death, it is important to understand the mechanisms underlying the maintenance of dormancy and dormancy escape to find druggable targets to eradicate metastatic tumor cells. Metastatic dormancy is regulated by complex interactions between tumor cells and the local microenvironment. In addition, cancer-directed immunity and systemic instigation play a crucial role.
Collapse
|
70
|
Zhu P, Zhou Y, Wu F, Hong Y, Wang X, Shekhawat G, Mosenson J, Wu WS. Selective Expansion of Skeletal Muscle Stem Cells from Bulk Muscle Cells in Soft Three-Dimensional Fibrin Gel. Stem Cells Transl Med 2017; 6:1412-1423. [PMID: 28244269 PMCID: PMC5442710 DOI: 10.1002/sctm.16-0427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/06/2017] [Indexed: 01/13/2023] Open
Abstract
Muscle stem cells (MuSCs) exhibit robust myogenic potential in vivo, thus providing a promising curative treatment for muscle disorders. Ex vivo expansion of adult MuSCs is highly desired to achieve a therapeutic cell dose because of their scarcity in limited muscle biopsies. Sorting of pure MuSCs is generally required for all the current culture systems. Here we developed a soft three‐dimensional (3D) salmon fibrin gel culture system that can selectively expand mouse MuSCs from bulk skeletal muscle preparations without cell sorting and faithfully maintain their regenerative capacity in culture. Our study established a novel platform for convenient ex vivo expansion of MuSCs, thus greatly advancing stem cell‐based therapies for various muscle disorders. Stem Cells Translational Medicine2017;6:1412–1423
Collapse
Affiliation(s)
- Pei Zhu
- Division of Hematology/Oncology, Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yalu Zhou
- Division of Hematology/Oncology, Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Furen Wu
- Division of Hematology/Oncology, Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yuanfan Hong
- Division of Hematology/Oncology, Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xin Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, USA
| | - Gajendra Shekhawat
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jeffrey Mosenson
- Division of Hematology/Oncology, Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Wen-Shu Wu
- Division of Hematology/Oncology, Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
71
|
McKee C, Hong Y, Yao D, Chaudhry GR. Compression Induced Chondrogenic Differentiation of Embryonic Stem Cells in Three-Dimensional Polydimethylsiloxane Scaffolds. Tissue Eng Part A 2017; 23:426-435. [PMID: 28103756 DOI: 10.1089/ten.tea.2016.0376] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Embryonic stem cells (ESCs) are an ideal source for chondrogenic progenitors for the repair of damaged cartilage tissue. It is currently difficult to induce uniform and scalable ESC differentiation in vitro, a process required for stem cell therapy. This is partly because stem cell fate is determined by complex interactions with the native microenvironment and mechanical properties of the extracellular matrix. Mechanical signaling is considered to be one of the major factors regulating the proliferation and differentiation of chondrogenic cells both in vitro and in vivo. We used biocompatible and elastic polydimethylsiloxane (PDMS) scaffolds, capable of transducing mechanical signals, including compressive stress in vitro. ESCs seeded into the PDMS scaffolds and subjected to mechanical loading resulted in induction of differentiation. Differentiated ESC derivatives in three-dimensional (3-D) PDMS scaffolds exhibited elongated single cell rather than round clonal ESC morphology. They expressed chondrogenic marker, Col2, with concomitant reduction in the expression of pluripotent marker, Oct4. Immunocytochemical analysis also showed that the expression of COL2 protein was significantly higher in ESCs in 3-D scaffolds subjected to compressive stress. Further analysis showed that compressive stress also resulted in expression of early chondrogenic makers, Sox9 and Acan, but not hypertrophic chondrogenic markers, Runx2, Col10, and Mmp13. Compressive stress induced differentiation caused a reduction in the expression of β-Catenin and an increase in the expression of genes, Rhoa, Yap, and Taz, which are known to be affected by mechanosignaling. The chondroinductive role of RhoA was confirmed by its downregulation with simultaneous decrease in the transcriptional and translational expression of early chondrogenic markers, SOX9, COL2, and ACAN, when ESCs in PDMS scaffolds were subjected to compressive stress and treated with RhoA inhibitor, CCG-1432. Based on these observations, a model for compression induced chondrogenic differentiation of ESCs in 3-D scaffolds was proposed.
Collapse
Affiliation(s)
- Christina McKee
- 1 Department of Biological Sciences, Oakland University , Rochester, Michigan.,2 OU-WB Institute for Stem Cell and Regenerative Medicine , Rochester, Michigan
| | - Yifeng Hong
- 3 School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Donggang Yao
- 3 School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - G Rasul Chaudhry
- 1 Department of Biological Sciences, Oakland University , Rochester, Michigan.,2 OU-WB Institute for Stem Cell and Regenerative Medicine , Rochester, Michigan
| |
Collapse
|
72
|
Pan H, Xie Y, Zhang Z, Li K, Hu D, Zheng X, Fan Q, Tang T. YAP-mediated mechanotransduction regulates osteogenic and adipogenic differentiation of BMSCs on hierarchical structure. Colloids Surf B Biointerfaces 2017; 152:344-353. [PMID: 28131959 DOI: 10.1016/j.colsurfb.2017.01.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/17/2017] [Accepted: 01/22/2017] [Indexed: 02/01/2023]
Abstract
Hierarchical structure mimicking the natural bone microenvironment has been considered as a promising platform to regulate cell functions. We have previously fabricated hierarchical macropore/nanowire structure and evidence has shown that it can better manipulate the cytoskeleton status and osteogenic performance of osteoblasts. However, how cues of hierarchical structure are translated and ultimately linked to BMSC lineage commitment have still remained elusive, which hinders the accurate knowledge and further development of the hierarchical structure. In this study, bone marrow-derived mesenchymal stem cells (BMSCs) fate on hierarchical structure was investigated as well as the detailed mechanisms. It was shown that well-developed cytoskeleton and focal adhesion were observed for BMSCs on hierarchical structure, which was accompanied by enhanced osteogenic and depressed adipogenic potential. Evidence of increased YAP activity and nuclear translocation were exhibited on hierarchical structure and YAP knockdown inhibited osteogenic differentiation and promoted adipogenic differentiation induced by hierarchical structure. Further remove of cytoskeleton tension inhibited YAP function, which confirmed the key role of YAP-mediated mechanotransduction in the BMSC differentiation. These results together provide information of the stem cell fate commitment on hierarchical structure and a promising approach to design advanced biomaterials by focusing on specific mechanotransduction process.
Collapse
Affiliation(s)
- Houhua Pan
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; University of Chinese Academy of Sciences,19 Yuquan Road, Beijing 100049, PR China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050, PR China
| | - Zequan Zhang
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050, PR China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050, PR China
| | - Dandan Hu
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050, PR China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050, PR China.
| | - Qiming Fan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China.
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| |
Collapse
|
73
|
Williams DF. Biocompatibility Pathways: Biomaterials-Induced Sterile Inflammation, Mechanotransduction, and Principles of Biocompatibility Control. ACS Biomater Sci Eng 2016; 3:2-35. [DOI: 10.1021/acsbiomaterials.6b00607] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- David F. Williams
- Wake Forest Institute of Regenerative Medicine, Richard H. Dean Biomedical Building, 391 Technology Way, Winston-Salem, North Carolina 27101, United States
| |
Collapse
|
74
|
Fe 3O 4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field. Acta Biomater 2016; 46:141-150. [PMID: 27646502 DOI: 10.1016/j.actbio.2016.09.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/08/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022]
Abstract
Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe3O4/BSA) particles were prepared, which showed a spherical morphology with a diameter below 200 nm, negatively charged surface, and tunable magnetic property. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field, resulting in almost twice intracellular amount of the particles within 21 d compared to that of the magnetic field free control. Uptake of the Fe3O4/BSA particles enhanced significantly the osteogenic differentiation of MSCs under a static magnetic field, as evidenced by elevated alkaline phosphatase (ALP) activity, calcium deposition, and expressions of collagen type I and osteocalcin at both mRNA and protein levels. Therefore, uptake of the Fe3O4/BSA particles brings significant influence on the differentiation of MSCs under magnetic field, and thereby should be paid great attention for practical applications. STATEMENT OF SIGNIFICANCE Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe3O4/BSA) particles with a diameter below 200nm, negatively charged surface, tunable Fe3O4 content and subsequently adjustable magnetic property were prepared. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field. Uptake of the Fe3O4/BSA particles enhanced significantly the osteogenic differentiation of MSCs under a constant static magnetic field, while the magnetic particles and external magnetic field alone do not influence significantly the osteogenic differentiation potential of MSCs regardless of the uptake amount. The results demonstrate a potential magnetic manipulation method for stem cell differentiation, and also convey the significance of careful evaluation of the safety issue of magnetic particles in real an application situation.
Collapse
|
75
|
von Essen M, Rahikainen R, Oksala N, Raitoharju E, Seppälä I, Mennander A, Sioris T, Kholová I, Klopp N, Illig T, Karhunen PJ, Kähönen M, Lehtimäki T, Hytönen VP. Talin and vinculin are downregulated in atherosclerotic plaque; Tampere Vascular Study. Atherosclerosis 2016; 255:43-53. [PMID: 27816808 DOI: 10.1016/j.atherosclerosis.2016.10.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Focal adhesions (FA) play an important role in the tissue remodeling and in the maintenance of tissue integrity and homeostasis. Talin and vinculin proteins are among the major constituents of FAs contributing to cellular well-being and intercellular communication. METHODS Microarray analysis (MA) and qRT-PCR low-density array were implemented to analyze talin-1, talin-2, meta-vinculin and vinculin gene expression in circulating blood and arterial plaque. RESULTS All analyzed genes were significantly and consistently downregulated in plaques (carotid, abdominal aortic and femoral regions) compared to left internal thoracic artery (LITA) control. The use of LITA samples as controls for arterial plaque samples was validated using immunohistochemistry by comparing LITA samples with healthy arterial samples from a cadaver. Even though the differences in expression levels between stable and unstable plaques were not statistically significant, we observed further negative tendency in the expression in unstable atherosclerotic plaques. The confocal tissue imaging revealed gradient of talin-1 expression in plaque with reduction close to the vessel lumen. Similar gradient was observed for talin-2 expression in LITA controls but was not detected in plaques. This suggests that impaired tissue mechanostability affects the tissue remodeling and healing capabilities leading to development of unstable plaques. CONCLUSIONS The central role of talin and vinculin in cell adhesions suggests that the disintegration of the tissue in atherosclerosis could be partially driven by downregulation of these genes, leading to loosening of cell-ECM interactions and remodeling of the tissue.
Collapse
Affiliation(s)
- Magdaléna von Essen
- BioMediTech, University of Tampere and Fimlab Laboratories, Tampere, Finland
| | - Rolle Rahikainen
- BioMediTech, University of Tampere and Fimlab Laboratories, Tampere, Finland
| | - Niku Oksala
- Dep. of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland; Division of Vascular Surgery, Department of Surgery, Tampere University Hospital, Tampere, Finland
| | - Emma Raitoharju
- Dep. of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland
| | - Ilkka Seppälä
- Dep. of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland
| | - Ari Mennander
- Heart Center, Tampere University Hospital, Tampere, Finland
| | - Thanos Sioris
- Heart Center, Tampere University Hospital, Tampere, Finland
| | - Ivana Kholová
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland
| | - Norman Klopp
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany; Institute of Human Genetics, Hannover Medical School, Hannover, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Pekka J Karhunen
- School of Medicine, University of Tampere and Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland
| | - Terho Lehtimäki
- Dep. of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland
| | - Vesa P Hytönen
- BioMediTech, University of Tampere and Fimlab Laboratories, Tampere, Finland.
| |
Collapse
|
76
|
Vijayavenkataraman S, Lu WF, Fuh JYH. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 2016; 8:032001. [DOI: 10.1088/1758-5090/8/3/032001] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
77
|
Islam A, Younesi M, Mbimba T, Akkus O. Collagen Substrate Stiffness Anisotropy Affects Cellular Elongation, Nuclear Shape, and Stem Cell Fate toward Anisotropic Tissue Lineage. Adv Healthc Mater 2016; 5:2237-47. [PMID: 27377355 PMCID: PMC5203936 DOI: 10.1002/adhm.201600284] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/03/2016] [Indexed: 01/01/2023]
Abstract
Rigidity of substrates plays an important role in stem cell fate. Studies are commonly carried out on isotropically stiff substrate or substrates with unidirectional stiffness gradients. However, many native tissues are anisotropically stiff and it is unknown whether controlled presentation of stiff and compliant material axes on the same substrate governs cytoskeletal and nuclear morphology, as well as stem cell differentiation. In this study, electrocompacted collagen sheets are stretched to varying degrees to tune the stiffness anisotropy (SA) in the range of 1 to 8, resulting in stiff and compliant material axes orthogonal to each other. The cytoskeletal aspect ratio increased with increasing SA by about fourfold. Such elongation was absent on cellulose acetate replicas of aligned collagen surfaces indicating that the elongation was not driven by surface topography. Mesenchymal stem cells (MSCs) seeded on varying anisotropy sheets displayed a dose-dependent upregulation of tendon-related markers such as Mohawk and Scleraxis. After 21 d of culture, highly anisotropic sheets induced greater levels of production of type-I, type-III collagen, and thrombospondin-4. Therefore, SA has direct effects on MSC differentiation. These findings may also have ramifications of stem cell fate on other anisotropically stiff tissues, such as skeletal/cardiac muscles, ligaments, and bone.
Collapse
Affiliation(s)
- Anowarul Islam
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mousa Younesi
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Thomas Mbimba
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Orthopaedics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
78
|
Huang J, Wang L, Xiong C, Yuan F. Elastic hydrogel as a sensor for detection of mechanical stress generated by single cells grown in three-dimensional environment. Biomaterials 2016; 98:103-12. [DOI: 10.1016/j.biomaterials.2016.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
|
79
|
Shinozawa T, Yoshikawa HY, Takebe T. Reverse engineering liver buds through self-driven condensation and organization towards medical application. Dev Biol 2016; 420:221-229. [PMID: 27364470 DOI: 10.1016/j.ydbio.2016.06.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/24/2016] [Accepted: 06/25/2016] [Indexed: 12/15/2022]
Abstract
The self-organizing tissue-based approach coupled with induced pluripotent stem (iPS) cell technology is evolving as a promising field for designing organoids in culture and is expected to achieve valuable practical outcomes in regenerative medicine and drug development. Organoids show properties of functional organs and represent an alternative to cell models in conventional two-dimensional differentiation platforms; moreover, organoids can be used to investigate mechanisms of development and disease, drug discovery and toxicity assessment. Towards a more complex and advanced organoid model, it is essential to incorporate multiple cell lineages including developing vessels. Using a self-condensation method, we recently demonstrated self-organizing "organ buds" of diverse systems together with human mesenchymal and endothelial progenitors, proposing a new reverse engineering method to generate a more complex organoid structure. In this section, we review characters of organ bud technology based on two important principles: self-condensation and self-organization focusing on liver bud as an example, and discuss their practicality in regenerative medicine and potential as research tools for developmental biology and drug discovery.
Collapse
Affiliation(s)
- Tadahiro Shinozawa
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Hiroshi Y Yoshikawa
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan.
| | - Takanori Takebe
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
80
|
Kim JH, Kim HW, Cha KJ, Han J, Jang YJ, Kim DS, Kim JH. Nanotopography Promotes Pancreatic Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. ACS NANO 2016; 10:3342-55. [PMID: 26900863 DOI: 10.1021/acsnano.5b06985] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Although previous studies suggest that nanotopographical features influence properties and behaviors of stem cells, only a few studies have attempted to derive clinically useful somatic cells from human pluripotent stem cells using nanopatterned surfaces. In the present study, we report that polystyrene nanopore-patterned surfaces significantly promote the pancreatic differentiation of human embryonic and induced pluripotent stem cells. We compared different diameters of nanopores and showed that 200 nm nanopore-patterned surfaces highly upregulated the expression of PDX1, a critical transcription factor for pancreatic development, leading to an approximately 3-fold increase in the percentage of differentiating PDX1(+) pancreatic progenitors compared with control flat surfaces. Furthermore, in the presence of biochemical factors, 200 nm nanopore-patterned surfaces profoundly enhanced the derivation of pancreatic endocrine cells producing insulin, glucagon, or somatostatin. We also demonstrate that nanopore-patterned surface-induced upregulation of PDX1 is associated with downregulation of TAZ, suggesting the potential role of TAZ in nanopore-patterned surface-mediated mechanotransduction. Our study suggests that appropriate cytokine treatments combined with nanotopographical stimulation could be a powerful tool for deriving a high purity of desired cells from human pluripotent stem cells.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Hyung Woo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Kyoung Je Cha
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Jiyou Han
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Yu Jin Jang
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
81
|
Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: confocal-based cell-specific finite element analysis. Biomech Model Mechanobiol 2016; 15:1495-1508. [DOI: 10.1007/s10237-016-0779-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/03/2016] [Indexed: 01/07/2023]
|
82
|
Schulte C, Rodighiero S, Cappelluti MA, Puricelli L, Maffioli E, Borghi F, Negri A, Sogne E, Galluzzi M, Piazzoni C, Tamplenizza M, Podestà A, Tedeschi G, Lenardi C, Milani P. Conversion of nanoscale topographical information of cluster-assembled zirconia surfaces into mechanotransductive events promotes neuronal differentiation. J Nanobiotechnology 2016; 14:18. [PMID: 26955876 PMCID: PMC4784317 DOI: 10.1186/s12951-016-0171-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/25/2016] [Indexed: 02/03/2023] Open
Abstract
Background Thanks to mechanotransductive components cells are competent to perceive nanoscale topographical features of their environment and to convert the immanent information into corresponding physiological responses. Due to its complex configuration, unraveling the role of the extracellular matrix is particularly challenging. Cell substrates with simplified topographical cues, fabricated by top-down micro- and nanofabrication approaches, have been useful in order to identify basic principles. However, the underlying molecular mechanisms of this conversion remain only partially understood. Results Here we present the results of a broad, systematic and quantitative approach aimed at understanding how the surface nanoscale information is converted into cell response providing a profound causal link between mechanotransductive events, proceeding from the cell/nanostructure interface to the nucleus. We produced nanostructured ZrO2 substrates with disordered yet controlled topographic features by the bottom-up technique supersonic cluster beam deposition, i.e. the assembling of zirconia nanoparticles from the gas phase on a flat substrate through a supersonic expansion. We used PC12 cells, a well-established model in the context of neuronal differentiation. We found that the cell/nanotopography interaction enforces a nanoscopic architecture of the adhesion regions that affects the focal adhesion dynamics and the cytoskeletal organization, which thereby modulates the general biomechanical properties by decreasing the rigidity of the cell. The mechanotransduction impacts furthermore on transcription factors relevant for neuronal differentiation (e.g. CREB), and eventually the protein expression profile. Detailed proteomic data validated the observed differentiation. In particular, the abundance of proteins that are involved in adhesome and/or cytoskeletal organization is striking, and their up- or downregulation is in line with their demonstrated functions in neuronal differentiation processes. Conclusion Our work provides a deep insight into the molecular mechanotransductive mechanisms that realize the conversion of the nanoscale topographical information of SCBD-fabricated surfaces into cellular responses, in this case neuronal differentiation. The results lay a profound cell biological foundation indicating the strong potential of these surfaces in promoting neuronal differentiation events which could be exploited for the development of prospective research and/or biomedical applications. These applications could be e.g. tools to study mechanotransductive processes, improved neural interfaces and circuits, or cell culture devices supporting neurogenic processes. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0171-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carsten Schulte
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | | | - Martino Alfredo Cappelluti
- SEMM European School of Molecular Medicine, Via Adamello 16, Milan, 20139, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Luca Puricelli
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Elisa Maffioli
- DIVET, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Francesca Borghi
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Armando Negri
- DIVET, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Elisa Sogne
- SEMM European School of Molecular Medicine, Via Adamello 16, Milan, 20139, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Massimiliano Galluzzi
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Claudio Piazzoni
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | | | - Alessandro Podestà
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Gabriella Tedeschi
- DIVET, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Cristina Lenardi
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Paolo Milani
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| |
Collapse
|
83
|
Boo L, Ho WY, Ali NM, Yeap SK, Ky H, Chan KG, Yin WF, Satharasinghe DA, Liew WC, Tan SW, Ong HK, Cheong SK. MiRNA Transcriptome Profiling of Spheroid-Enriched Cells with Cancer Stem Cell Properties in Human Breast MCF-7 Cell Line. Int J Biol Sci 2016; 12:427-45. [PMID: 27019627 PMCID: PMC4807162 DOI: 10.7150/ijbs.12777] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 12/13/2015] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is the second leading cause of cancer-related mortality worldwide as most patients often suffer cancer relapse. The reason is often attributed to the presence of cancer stem cells (CSCs). Recent studies revealed that dysregulation of microRNA (miRNA) are closely linked to breast cancer recurrence and metastasis. However, no specific study has comprehensively characterised the CSC characteristic and miRNA transcriptome in spheroid-enriched breast cells. This study described the generation of spheroid MCF-7 cell in serum-free condition and the comprehensive characterisation for their CSC properties. Subsequently, miRNA expression differences between the spheroid-enriched CSC cells and their parental cells were evaluated using next generation sequencing (NGS). Our results showed that the MCF-7 spheroid cells were enriched with CSCs properties, indicated by the ability to self-renew, increased expression of CSCs markers, and increased resistance to chemotherapeutic drugs. Additionally, spheroid-enriched CSCs possessed greater cell proliferation, migration, invasion, and wound healing ability. A total of 134 significantly (p<0.05) differentially expressed miRNAs were identified between spheroids and parental cells using miRNA-NGS. MiRNA-NGS analysis revealed 25 up-regulated and 109 down-regulated miRNAs which includes some miRNAs previously reported in the regulation of breast CSCs. A number of miRNAs (miR-4492, miR-4532, miR-381, miR-4508, miR-4448, miR-1296, and miR-365a) which have not been previously reported in breast cancer were found to show potential association with breast cancer chemoresistance and self-renewal capability. The gene ontology (GO) analysis showed that the predicted genes were enriched in the regulation of metabolic processes, gene expression, DNA binding, and hormone receptor binding. The corresponding pathway analyses inferred from the GO results were closely related to the function of signalling pathway, self-renewability, chemoresistance, tumorigenesis, cytoskeletal proteins, and metastasis in breast cancer. Based on these results, we proposed that certain miRNAs identified in this study could be used as new potential biomarkers for breast cancer stem cell diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Lily Boo
- 1. Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Cheras, Malaysia
| | - Wan Yong Ho
- 2. Faculty of Medicine and Health Sciences, University of Nottingham (Malaysia Campus), 43500 Semenyih, Malaysia
| | - Norlaily Mohd Ali
- 1. Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Cheras, Malaysia
| | - Swee Keong Yeap
- 3. Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Huynh Ky
- 4. Department of Agriculture Genetics and Breeding, College of Agriculture and Applied Biology, Cantho University, 84071, Vietnam
| | - Kok Gan Chan
- 5. Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wai Fong Yin
- 5. Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Dilan Amila Satharasinghe
- 3. Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia.; 6. Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, 20400, Sri Lanka
| | - Woan Charn Liew
- 3. Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Sheau Wei Tan
- 3. Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Han Kiat Ong
- 1. Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Cheras, Malaysia
| | - Soon Keng Cheong
- 1. Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Cheras, Malaysia;; 7. Cryocord Sdn Bhd, Persiaran Cyberpoint Selatan, 63000 Cyberjaya, Malaysia
| |
Collapse
|
84
|
Kim K, Ossipova O, Sokol SY. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells 2015; 33:674-85. [PMID: 25346532 DOI: 10.1002/stem.1877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/13/2014] [Accepted: 09/13/2014] [Indexed: 01/14/2023]
Abstract
Neural crest is a population of multipotent progenitor cells that form at the border of neural and non-neural ectoderm in vertebrate embryos, and undergo epithelial-mesenchymal transition and migration. According to the traditional view, the neural crest is specified in early embryos by signaling molecules including BMP, FGF, and Wnt proteins. Here, we identify a novel signaling pathway leading to neural crest specification, which involves Rho-associated kinase (ROCK) and its downstream target nonmuscle Myosin II. We show that ROCK inhibitors promote differentiation of human embryonic stem cells (hESCs) into neural crest-like progenitors (NCPs) that are characterized by specific molecular markers and ability to differentiate into multiple cell types, including neurons, chondrocytes, osteocytes, and smooth muscle cells. Moreover, inhibition of Myosin II was sufficient for generating NCPs at high efficiency. Whereas Myosin II has been previously implicated in the self-renewal and survival of hESCs, we demonstrate its role in neural crest development during ESC differentiation. Inhibition of this pathway in Xenopus embryos expanded neural crest in vivo, further indicating that neural crest specification is controlled by ROCK-dependent Myosin II activity. We propose that changes in cell morphology in response to ROCK and Myosin II inhibition initiate mechanical signaling leading to neural crest fates.
Collapse
Affiliation(s)
- Kyeongmi Kim
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | |
Collapse
|
85
|
Tatullo M, Marrelli M, Falisi G, Rastelli C, Palmieri F, Gargari M, Zavan B, Paduano F, Benagiano V. Mechanical influence of tissue culture plates and extracellular matrix on mesenchymal stem cell behavior: A topical review. Int J Immunopathol Pharmacol 2015; 29:3-8. [PMID: 26612837 DOI: 10.1177/0394632015617951] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022] Open
Abstract
Tissue engineering applications need a continuous development of new biomaterials able to generate an ideal cell-extracellular matrix interaction. The stem cell fate is regulated by several factors, such as growth factors or transcription factors. The most recent literature has reported several publications able to demonstrate that environmental factors also contribute to the regulation of stem cell behavior, leading to the opinion that the environment plays the major role in the cell differentiation.The interaction between mesenchymal stem cells (MSCs) and extracellular environment has been widely described, and it has a crucial role in regulating the cell phenotype. In our laboratory (Tecnologica Research Institute, Crotone, Italy), we have recently studied how several physical factors influence the distribution and the morphology of MSCs isolated from dental pulp, and how they are able to regulate stem cell differentiation. Mechanical and geometrical factors are only a small part of the environmental factors able to influence stem cell behavior, however, this influence should be properly known: in fact, this assumption must be clearly considered during those studies involving MSCs; furthermore, these interactions should be considered as an important bias that involves an high number of studies on the MSCs, since in worldwide laboratories the scientists mostly use tissue culture plates for their experiments.
Collapse
Affiliation(s)
- Marco Tatullo
- Unit of Maxillofacial Surgery, Calabrodental, Crotone, Italy Tecnologica Research Institute, Biomedical Section, Crotone, Italy
| | - Massimo Marrelli
- Unit of Maxillofacial Surgery, Calabrodental, Crotone, Italy Tecnologica Research Institute, Biomedical Section, Crotone, Italy
| | - Giovanni Falisi
- Department of Life, Health and Environmental Sciences, School of Dentistry, University of L'Aquila, L'Aquila, Italy
| | - Claudio Rastelli
- Department of Life, Health and Environmental Sciences, School of Dentistry, University of L'Aquila, L'Aquila, Italy
| | | | - Marco Gargari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Barbara Zavan
- Biomedical Department, University of Padova, Padova, Italy
| | | | - Vincenzo Benagiano
- Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| |
Collapse
|
86
|
Choi B, Park KS, Kim JH, Ko KW, Kim JS, Han DK, Lee SH. Stiffness of Hydrogels Regulates Cellular Reprogramming Efficiency Through Mesenchymal-to-Epithelial Transition and Stemness Markers. Macromol Biosci 2015; 16:199-206. [DOI: 10.1002/mabi.201500273] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/26/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Bogyu Choi
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
| | - Kwang-Sook Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
- Center for Biomaterials, Korea Institute of Science and Technology, P.O. Box 131; Cheongryang; Seoul 130-650 Republic of Korea
| | - Ji-Ho Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
| | - Kyoung-Won Ko
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
| | - Jin-Su Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology, P.O. Box 131; Cheongryang; Seoul 130-650 Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
| |
Collapse
|
87
|
Jiang J, Zhang ZH, Yuan XB, Poo MM. Spatiotemporal dynamics of traction forces show three contraction centers in migratory neurons. J Cell Biol 2015; 209:759-74. [PMID: 26056143 PMCID: PMC4460152 DOI: 10.1083/jcb.201410068] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Traction force microscopy provides a comprehensive description of the spatiotemporal dynamics of contractile activities and their regulation by guidance molecules in migrating neurons, as well as the underlying molecular mechanisms. Traction force against the substrate is required for neuronal migration, but how it is generated and regulated remains controversial. Using traction force microscopy, we showed in cultured granule cells the coexistence of three distinct contraction centers (CCs) that are located at the distal and proximal regions of the leading process as well as at the trailing process, regions exhibiting high-level myosin-II activities. The CC activities depended on myosin-II, actin filaments, and microtubules, as well as substrate adhesion, and exhibited apparently independent fluctuation. The difference of strain energies associated with CC activities between leading versus trailing processes tightly correlated with the displacement of the soma at any given time. Application of brain-derived neurotrophic factor (BDNF) and Slit2, factors known to guide neuronal migration, at the leading process altered CC activities by regulating the small GTPases Cdc42 and RhoA, respectively, leading to forward and rearward soma translocation. These results delineate the multiple origins and spatiotemporal dynamics of the traction force underlying neuronal migration.
Collapse
Affiliation(s)
- Jian Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 200031 Graduate School of the Chinese Academy of Sciences, Shanghai, China 200031
| | - Zheng-hong Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 200031
| | - Xiao-bin Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 200031
| | - Mu-ming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 200031
| |
Collapse
|
88
|
Cota CD, Davidson B. Mitotic Membrane Turnover Coordinates Differential Induction of the Heart Progenitor Lineage. Dev Cell 2015; 34:505-19. [PMID: 26300448 DOI: 10.1016/j.devcel.2015.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 04/14/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023]
Abstract
In response to microenvironmental cues, embryonic cells form adhesive signaling compartments that influence survival and patterning. Dividing cells detach from the surrounding matrix and initiate extensive membrane remodeling, but the in vivo impact of mitosis on adhesion-dependent signaling remains poorly characterized. We investigate in vivo signaling dynamics using the invertebrate chordate, Ciona intestinalis. In Ciona, matrix adhesion polarizes fibroblast growth factor (FGF)-dependent heart progenitor induction. Here, we show that adhesion inhibits mitotic FGF receptor internalization, leading to receptor enrichment along adherent membranes. Targeted disruption of matrix adhesion promotes uniform FGF receptor internalization and degradation while enhanced adhesion suppresses degradation. Chimeric analysis indicates that integrin β chain-specific impacts on induction are dictated by distinct internalization motifs. We also found that matrix adhesion impacts receptor enrichment through Caveolin-rich membrane domains. These results redefine the relationship between cell division and adhesive signaling, revealing how mitotic membrane turnover orchestrates adhesion-dependent signal polarization.
Collapse
Affiliation(s)
- Christina D Cota
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Brad Davidson
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA.
| |
Collapse
|
89
|
Ireland RG, Simmons CA. Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications. Stem Cells 2015; 33:3187-96. [DOI: 10.1002/stem.2105] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Ronald G. Ireland
- Institute of Biomaterials and Biomedical Engineering, University of Toronto; Toronto Ontario Canada
| | - Craig A. Simmons
- Institute of Biomaterials and Biomedical Engineering, University of Toronto; Toronto Ontario Canada
- Department of Mechanical and Industrial Engineering; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
90
|
Tijore A, Cai P, Nai MH, Zhuyun L, Yu W, Tay CY, Lim CT, Chen X, Tan LP. Role of Cytoskeletal Tension in the Induction of Cardiomyogenic Differentiation in Micropatterned Human Mesenchymal Stem Cell. Adv Healthc Mater 2015; 4:1399-407. [PMID: 25946615 DOI: 10.1002/adhm.201500196] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/13/2015] [Indexed: 01/08/2023]
Abstract
The role of biophysical induction methods such as cell micropatterning in stem cell differentiation has been well documented previously. However, the underlying mechanistic linkage of the engineered cell shape to directed lineage commitment remains poorly understood. Here, it is reported that micropatterning plays an important role in regulating the optimal cytoskeletal tension development in human mesenchymal stem cell (hMSC) via cell mechanotransduction pathways to induce cardiomyogenic differentiation. Cells are grown on fibronectin strip patterns to control cell polarization and morphology. These patterned cells eventually show directed commitment toward the myocardial lineage. The cell's mechanical properties (cell stiffness and cell traction forces) are observed to be very different for cells that have committed to the myocardial lineage when compared with that of control. These committed cells have mechanical properties that are significantly lower indicating a correlation between the micropatterning-induced differentiation and actomyosin-generated cytoskeletal tension within patterned cells. To study this correlation, patterned cells are treated with RhoA pathway inhibitor. Severely down-regulated cardiomyogenic marker expression is observed in those treated patterned cells, thus emphasizing the direct dependence of hMSCs differentiation fate on the cytoskeletal tension.
Collapse
Affiliation(s)
- Ajay Tijore
- Division of Materials Technology; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Pingqiang Cai
- Division of Materials Technology; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Mui Hoon Nai
- Mechanobiology Institute; National University of Singapore; 5A Engineering Drive 1 Singapore 117411 Singapore
| | - Li Zhuyun
- Division of Materials Technology; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Wang Yu
- Division of Materials Technology; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Chor Yong Tay
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute; National University of Singapore; 5A Engineering Drive 1 Singapore 117411 Singapore
- Department of Biomedical Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117585 Singapore
| | - Xiaodong Chen
- Division of Materials Technology; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Lay Poh Tan
- Division of Materials Technology; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|
91
|
Morrissey JB, Cheng RY, Davoudi S, Gilbert PM. Biomechanical Origins of Muscle Stem Cell Signal Transduction. J Mol Biol 2015; 428:1441-54. [PMID: 26004541 DOI: 10.1016/j.jmb.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/03/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Skeletal muscle, the most abundant and widespread tissue in the human body, contracts upon receiving electrochemical signals from the nervous system to support essential functions such as thermoregulation, limb movement, blinking, swallowing and breathing. Reconstruction of adult muscle tissue relies on a pool of mononucleate, resident muscle stem cells, known as "satellite cells", expressing the paired-box transcription factor Pax7 necessary for their specification during embryonic development and long-term maintenance during adult life. Satellite cells are located around the myofibres in a niche at the interface of the basal lamina and the host fibre plasma membrane (i.e., sarcolemma), at a very low frequency. Upon damage to the myofibres, quiescent satellite cells are activated and give rise to a population of transient amplifying myogenic progenitor cells, which eventually exit the cell cycle permanently and fuse to form new myofibres and regenerate the tissue. A subpopulation of satellite cells self-renew and repopulate the niche, poised to respond to future demands. Harnessing the potential of satellite cells relies on a complete understanding of the molecular mechanisms guiding their regulation in vivo. Over the past several decades, studies revealed many signal transduction pathways responsible for satellite cell fate decisions, but the niche cues driving the activation and silencing of these pathways are less clear. Here we explore the scintillating possibility that considering the dynamic changes in the biophysical properties of the skeletal muscle, namely stiffness, and the stretch and shear forces to which a myofibre can be subjected to may provide missing information necessary to gain a full understanding of satellite cell niche regulation.
Collapse
Affiliation(s)
- James B Morrissey
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Richard Y Cheng
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Sadegh Davoudi
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Penney M Gilbert
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1.
| |
Collapse
|
92
|
Tan KKB, Giam CSY, Leow MY, Chan CW, Yim EKF. Differential cell adhesion of breast cancer stem cells on biomaterial substrate with nanotopographical cues. J Funct Biomater 2015; 6:241-58. [PMID: 25905435 PMCID: PMC4493510 DOI: 10.3390/jfb6020241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 01/05/2023] Open
Abstract
Cancer stem cells are speculated to have the capability of self-renewal and re-establishment of tumor heterogeneity, possibly involved in the potential relapse of cancer. CD44+CD24-/lowESA+ cells have been reported to possess tumorigenic properties, and these biomarkers are thought to be highly expressed in breast cancer stem cells. Cell behavior can be influenced by biomolecular and topographical cues in the natural microenvironment. We hypothesized that different cell populations in breast cancer tissue exhibit different adhesion characteristics on substrates with nanotopography. Adhesion characterizations were performed using human mammary epithelial cells (HMEC), breast cancer cell line MCF7 and primary invasive ductal carcinoma (IDC) cells obtained from patients' samples, on micro- and nano-patterned poly-L-lactic acid (PLLA) films. Topography demonstrated a significant effect on cell adhesion, and the effect was cell type dependent. Cells showed elongation morphology on gratings. The CD44+CD24-/lowESA+ subpopulation in MCF7 and IDC cells showed preferential adhesion on 350-nm gratings. Flow cytometry analysis showed that 350-nm gratings captured a significantly higher percentage of CD44+CD24- in MCF7. A slightly higher percentage of CD44+CD24-/lowESA+ was captured on the 350-nm gratings, although no significant difference was observed in the CD44+CD24-ESA+ in IDC cells across patterns. Taken together, the study demonstrated that the cancer stem cell subpopulation could be enriched using different nanopatterns. The enriched population could subsequently aid in the isolation and characterization of cancer stem cells.
Collapse
Affiliation(s)
- Kenneth K B Tan
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411.
| | - Christine S Y Giam
- Department of Biomedical Engineering, National University of Singapore, EA-03-12, 9 Engineering Drive 1, Singapore 117575.
| | - Ming Yi Leow
- Department of Biomedical Engineering, National University of Singapore, EA-03-12, 9 Engineering Drive 1, Singapore 117575.
| | - Ching Wan Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, 1E Kent Ridge Road, Singapore 119228.
| | - Evelyn K F Yim
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411.
- Department of Biomedical Engineering, National University of Singapore, EA-03-12, 9 Engineering Drive 1, Singapore 117575.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, 1E Kent Ridge Road, Singapore 119228.
| |
Collapse
|
93
|
Abstract
Articular cartilage is a unique load-bearing connective tissue with a low intrinsic capacity for repair and regeneration. Its avascularity makes it relatively hypoxic and its unique extracellular matrix is enriched with cations, which increases the interstitial fluid osmolarity. Several physicochemical and biomechanical stimuli are reported to influence chondrocyte metabolism and may be utilized for regenerative medical approaches. In this review article, we summarize the most relevant stimuli and describe how ion channels may contribute to cartilage homeostasis, with special emphasis on intracellular signaling pathways. We specifically focus on the role of calcium signaling as an essential mechanotransduction component and highlight the role of phosphatase signaling in this context.
Collapse
Affiliation(s)
- Holger Jahr
- Department of Orthopaedic Surgery, University Hospital RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
| | - Csaba Matta
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH UK
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032 Hungary
| | - Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH UK
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah, 21589 Kingdom of Saudi Arabia
| |
Collapse
|
94
|
Ravasio A, Vaishnavi S, Ladoux B, Viasnoff V. High-resolution imaging of cellular processes across textured surfaces using an indexed-matched elastomer. Acta Biomater 2015; 14:53-60. [PMID: 25462842 DOI: 10.1016/j.actbio.2014.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/22/2014] [Accepted: 11/04/2014] [Indexed: 12/29/2022]
Abstract
Understanding and controlling how cells interact with the microenvironment has emerged as a prominent field in bioengineering, stem cell research and in the development of the next generation of in vitro assays as well as organs on a chip. Changing the local rheology or the nanotextured surface of substrates has proved an efficient approach to improve cell lineage differentiation, to control cell migration properties and to understand environmental sensing processes. However, introducing substrate surface textures often alters the ability to image cells with high precision, compromising our understanding of molecular mechanisms at stake in environmental sensing. In this paper, we demonstrate how nano/microstructured surfaces can be molded from an elastomeric material with a refractive index matched to the cell culture medium. Once made biocompatible, contrast imaging (differential interference contrast, phase contrast) and high-resolution fluorescence imaging of subcellular structures can be implemented through the textured surface using an inverted microscope. Simultaneous traction force measurements by micropost deflection were also performed, demonstrating the potential of our approach to study cell-environment interactions, sensing processes and cellular force generation with unprecedented resolution.
Collapse
|
95
|
Biomechanics: Principles. Bioengineering (Basel) 2015. [DOI: 10.1007/978-3-319-10798-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
96
|
Wang PY, Pingle H, Koegler P, Thissen H, Kingshott P. Self-assembled binary colloidal crystal monolayers as cell culture substrates. J Mater Chem B 2015; 3:2545-2552. [DOI: 10.1039/c4tb02006e] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Large-area highly ordered self-assembled binary colloidal crystal (BCC) monolayers are fabricated for mammalian cell culture and biointerface control.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Swinburne University of Technology
- Industrial Research Institute Swinburne (IRIS)
- Department of Chemistry and Biotechnology
- Australia
- CSIRO Manufacturing Flagship
| | - Hitesh Pingle
- Swinburne University of Technology
- Industrial Research Institute Swinburne (IRIS)
- Department of Chemistry and Biotechnology
- Australia
| | - Peter Koegler
- Swinburne University of Technology
- Industrial Research Institute Swinburne (IRIS)
- Department of Chemistry and Biotechnology
- Australia
- CSIRO Manufacturing Flagship
| | | | - Peter Kingshott
- Swinburne University of Technology
- Industrial Research Institute Swinburne (IRIS)
- Department of Chemistry and Biotechnology
- Australia
| |
Collapse
|
97
|
Papadimitriou N, Thorfve A, Brantsing C, Junevik K, Baranto A, Barreto Henriksson H. Cell Viability and Chondrogenic Differentiation Capability of Human Mesenchymal Stem Cells After Iron Labeling with Iron Sucrose. Stem Cells Dev 2014; 23:2568-80. [DOI: 10.1089/scd.2014.0153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Nikolaos Papadimitriou
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Thorfve
- Department for Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University of Gothenburg, Gothenburg, Sweden
| | - Camilla Brantsing
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katarina Junevik
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Adad Baranto
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helena Barreto Henriksson
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
98
|
Wang Q, Wu W, Han X, Zheng A, Lei S, Wu J, Chen H, He C, Luo F, Liu X. Osteogenic differentiation of amniotic epithelial cells: synergism of pulsed electromagnetic field and biochemical stimuli. BMC Musculoskelet Disord 2014; 15:271. [PMID: 25112311 PMCID: PMC4267405 DOI: 10.1186/1471-2474-15-271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/28/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pulsed electromagnetic field (PEMF) is a non-invasive physical therapy used in the treatment of fracture nonunion or delayed healing. PEMF can facilitate the osteogenic differentiation of bone marrow mesenchymal stem cells in vitro. Amniotic epithelial cells (AECs) have been proposed as a potential source of stem cells for cell therapy. However, whether PEMF could modulate the osteogenic differentiation of AECs is unknown. In the present study, the effects of PEMF on the osteogenic differentiation of AECs were investigated. METHODS AECs were isolated from amniotic membrane of human placenta by trypsin digestion and were induced by PEMF and/or osteo-induction medium. After 21 days we used real time RT-PCR and immunocytochemistry to study the expression of osteoblast markers. The signal transduction of osteogenesis was further investigated. RESULTS The PEMF stimulation, or osteo-induction medium alone could induce osteogenic differentiation of AECs, as shown by expression of osteoblast specific genes and proteins including alkaline phosphatase and osteocalcin. Furthermore, a combination of PEMF and osteo-induction medium had synergy effects on osteogenic differentiation. In our study, the gene expression of BMP-2, Runx2, β-catenin, Nrf2, Keap1 and integrinβ1 were up-regulated in the osteogenic differentiation of AECs induced by PEMF and/or osteo-induction medium. CONCLUSIONS Combined application of PEMF and osteo-induction medium is synergistic for the osteogenic differentiation of AECs. It might be a novel approach in the bone regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaojing Liu
- Center of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, P, R, China.
| |
Collapse
|
99
|
Brodland GW, Veldhuis JH, Kim S, Perrone M, Mashburn D, Hutson MS. CellFIT: a cellular force-inference toolkit using curvilinear cell boundaries. PLoS One 2014; 9:e99116. [PMID: 24921257 PMCID: PMC4055627 DOI: 10.1371/journal.pone.0099116] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/11/2014] [Indexed: 11/19/2022] Open
Abstract
Mechanical forces play a key role in a wide range of biological processes, from embryogenesis to cancer metastasis, and there is considerable interest in the intuitive question, "Can cellular forces be inferred from cell shapes?" Although several groups have posited affirmative answers to this stimulating question, nagging issues remained regarding equation structure, solution uniqueness and noise sensitivity. Here we show that the mechanical and mathematical factors behind these issues can be resolved by using curved cell edges rather than straight ones. We present a new package of force-inference equations and assessment tools and denote this new package CellFIT, the Cellular Force Inference Toolkit. In this approach, cells in an image are segmented and equilibrium equations are constructed for each triple junction based solely on edge tensions and the limiting angles at which edges approach each junction. The resulting system of tension equations is generally overdetermined. As a result, solutions can be obtained even when a modest number of edges need to be removed from the analysis due to short length, poor definition, image clarity or other factors. Solving these equations yields a set of relative edge tensions whose scaling must be determined from data external to the image. In cases where intracellular pressures are also of interest, Laplace equations are constructed to relate the edge tensions, curvatures and cellular pressure differences. That system is also generally overdetermined and its solution yields a set of pressures whose offset requires reference to the surrounding medium, an open wound, or information external to the image. We show that condition numbers, residual analyses and standard errors can provide confidence information about the inferred forces and pressures. Application of CellFIT to several live and fixed biological tissues reveals considerable force variability within a cell population, significant differences between populations and elevated tensions along heterotypic boundaries.
Collapse
Affiliation(s)
- G. Wayne Brodland
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| | - Jim H. Veldhuis
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Steven Kim
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Matthew Perrone
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - David Mashburn
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, United States of America
| | - M. Shane Hutson
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Integrative Biosystem Research & Education, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
100
|
Lee J, Abdeen AA, Kilian KA. Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment. Sci Rep 2014; 4:5188. [PMID: 24898422 PMCID: PMC4046125 DOI: 10.1038/srep05188] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/16/2014] [Indexed: 12/29/2022] Open
Abstract
The propensity of stem cells to specify and commit to a particular lineage program is guided by dynamic biophysical and biochemical signals that are temporally regulated. However, most in vitro studies rely on "snapshots" of cell state under static conditions. Here we asked whether changing the biophysical aspects of the substrate could modulate the degree of mesenchymal stem cell (MSC) lineage specification. We chose to explore two diverse differentiation outcomes: MSC osteogenesis and trans-differentiation to neuron-like cells. MSCs were cultured on soft (~0.5 kPa) or stiff (~40 kPa) hydrogels followed by transfer to gels of the opposite stiffness. MSCs on soft gels express elevated neurogenesis markers while MSCs on stiff substrates express elevated osteogenesis markers. Transfer of MSCs from soft to stiff or stiff to soft substrates led to a switch in lineage specification. However, MSCs transferred from stiff to soft substrates maintained elevated osteogenesis markers, suggesting a degree of irreversible activation. Transferring MSCs to micropatterned substrates reveal geometric cues that further modulate lineage reversal. Taken together, this study demonstrates that MSCs remain susceptible to the biophysical properties of the extracellular matrix--even after several weeks of culture--and can redirect lineage specification in response to changes in the microenvironment.
Collapse
Affiliation(s)
- Junmin Lee
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801
| | - Amr A. Abdeen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801
| | - Kristopher A. Kilian
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801
| |
Collapse
|