51
|
Wewer Albrechtsen NJ. Glucagon receptor signaling in metabolic diseases. Peptides 2018; 100:42-47. [PMID: 29412830 DOI: 10.1016/j.peptides.2017.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 01/25/2023]
Abstract
Glucagon is a peptide hormone secreted from the pancreatic alpha cells in response to hypoglycemia but in some patients with type 2 diabetes a paradoxical hypersecretion results from the intake of glucose. In rodent, antagonizing the actions of glucagon have been shown to be effective for lowering blood glucose levels and this has recently have been solidified in patients with type 2 diabetes. Although the reported increases of liver enzymes, hyperglucagonemia, and alpha cell hyperplasia resulting from glucagon receptor antagonism may potentially limit the clinical applicability of glucagon receptor antagonists, they may serve as an instrumental toolbox for delineating the physiology of glucagon. Agonizing glucagon receptor signaling may be relevant, in particular when combined with glucagon-like peptide-1 receptor analogues in the perspective of body weight lowering therapy. Here, we will focus on new conceptual aspects of glucagon biology and how this may led to new diagnostics and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, and the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
52
|
Nunez DJ, D'Alessio D. Glucagon receptor as a drug target: A witches' brew of eye of newt (peptides) and toe of frog (receptors). Diabetes Obes Metab 2018; 20:233-237. [PMID: 28842950 DOI: 10.1111/dom.13102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022]
MESH Headings
- Animals
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Drugs, Investigational/adverse effects
- Drugs, Investigational/pharmacology
- Drugs, Investigational/therapeutic use
- Glucagon-Like Peptide-1 Receptor/agonists
- Glucagon-Like Peptide-1 Receptor/metabolism
- Humans
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Molecular Targeted Therapy
- Receptors, Glucagon/agonists
- Receptors, Glucagon/antagonists & inhibitors
- Receptors, Glucagon/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Derek J Nunez
- Division of Endocrinology, Metabolism and Nutrition, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - David D'Alessio
- Division of Endocrinology, Metabolism and Nutrition, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
53
|
Kostic A, King TA, Yang F, Chan K, Yancopoulos GD, Gromada J, Harp JB. A first-in-human pharmacodynamic and pharmacokinetic study of a fully human anti-glucagon receptor monoclonal antibody in normal healthy volunteers. Diabetes Obes Metab 2018; 20:283-291. [PMID: 28755409 PMCID: PMC5813272 DOI: 10.1111/dom.13075] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/11/2017] [Accepted: 07/22/2017] [Indexed: 02/06/2023]
Abstract
AIMS Glucagon receptor (GCGR) blockers are being investigated as potential therapeutics for type 1 and type 2 diabetes. Here we report the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of REGN1193, a fully human glucagon receptor blocking monoclonal antibody from a first-in-human healthy volunteer randomized double-blinded trial. METHODS Healthy men and women received single ascending doses of REGN1193 ranging from 0.05 to 0.6 mg/kg (n = 42) or placebo (n = 14) intravenously. Safety, tolerability and PK were assessed over 106 days. The glucose-lowering effect of REGN1193 was assessed after induction of hyperglycaemia by serial glucagon challenges. RESULTS REGN1193 was generally well tolerated. There were small (<3× the upper limit of normal) and transient dose-dependent increases in hepatic aminotransferases. No increase in LDL-C was observed. Hypoglycaemia, assessed as laboratory blood glucose ≤70 mg/dL, occurred in 6/14 (43%) subjects on placebo and 27/42 (57%) on REGN1193 across all dose groups. All episodes of hypoglycaemia were asymptomatic, >50 mg/dL, and did not require treatment or medical assistance. Concentration-time profiles suggest a 2-compartment disposition and marked nonlinearity, consistent with target-mediated clearance. REGN1193 inhibited the glucagon-stimulated glucose increase in a dose-dependent manner. The 0.6 mg/kg dose inhibited the glucagon-induced glucose area under the curve for 0 to 90 minutes (AUC0-90 minutes ) by 80% to 90% on days 3 and 15, while blunting the increase in C-peptide. REGN1193 dose-dependently increased total GLP-1, GLP-2 and glucagon, with plasma levels returning to baseline by day 29 in all dose groups. CONCLUSION REGN1193, a GCGR-blocking monoclonal antibody, produced a safety, tolerability and PK/PD profile suitable for further clinical development. The occurrence of transient elevations in serum hepatic aminotransferases observed here and reported with several small molecule glucagon receptor antagonists suggests an on-target effect of glucagon receptor blockade. The underlying mechanism is unknown.
Collapse
MESH Headings
- Adult
- Antibodies, Blocking/administration & dosage
- Antibodies, Blocking/adverse effects
- Antibodies, Blocking/blood
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Biomarkers/blood
- Blood Glucose/analysis
- Cohort Studies
- Dose-Response Relationship, Drug
- Double-Blind Method
- Female
- Follow-Up Studies
- Half-Life
- Humans
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/pharmacokinetics
- Hypoglycemic Agents/pharmacology
- Infusions, Intravenous
- Lost to Follow-Up
- Male
- Metabolic Clearance Rate
- Middle Aged
- Patient Dropouts
- Receptors, Glucagon/antagonists & inhibitors
- Receptors, Glucagon/metabolism
- Young Adult
Collapse
Affiliation(s)
- Ana Kostic
- Regeneron Pharmaceuticals, Inc.TarrytownNew York
| | | | - Feng Yang
- Regeneron Pharmaceuticals, Inc.TarrytownNew York
| | | | | | | | | |
Collapse
|
54
|
Hædersdal S, Lund A, Knop FK, Vilsbøll T. The Role of Glucagon in the Pathophysiology and Treatment of Type 2 Diabetes. Mayo Clin Proc 2018; 93:217-239. [PMID: 29307553 DOI: 10.1016/j.mayocp.2017.12.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes is a disease involving both inadequate insulin levels and increased glucagon levels. While glucagon and insulin work together to achieve optimal plasma glucose concentrations in healthy individuals, the usual regulatory balance between these 2 critical pancreatic hormones is awry in patients with diabetes. Although clinical discussion often focuses on the role of insulin, glucagon is equally important in understanding type 2 diabetes. Furthermore, an awareness of the role of glucagon is essential to appreciate differences in the mechanisms of action of various classes of glucose-lowering therapies. Newer drug classes such as dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 receptor agonists improve glycemic control, in part, by affecting glucagon levels. This review provides an overview of the effect of glucose-lowering therapies on glucagon on the basis of an extensive PubMed literature search to identify clinical studies of glucose-lowering therapies in type 2 diabetes that included assessment of glucagon. Clinical practice currently benefits from available therapies that impact the glucagon regulatory pathway. As clinicians look to the future, improved treatment strategies are likely to emerge that will either use currently available therapies whose mechanisms of action complement each other or take advantage of new therapies based on an improved understanding of glucagon pathophysiology.
Collapse
Affiliation(s)
- Sofie Hædersdal
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Asger Lund
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip K Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Steno Diabetes Center Copenhagen, University of Copenhagen, Gentofte, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
55
|
Scheen AJ, Paquot N, Lefèbvre PJ. Investigational glucagon receptor antagonists in Phase I and II clinical trials for diabetes. Expert Opin Investig Drugs 2017; 26:1373-1389. [PMID: 29052441 DOI: 10.1080/13543784.2017.1395020] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Despite type 2 diabetes (T2D) being recognized as a bihormonal pancreatic disease, current therapies are mainly focusing on insulin, while targeting glucagon has been long dismissed. However, glucagon receptor (GCGr) antagonists are currently investigated in clinical trials. Area covered: Following a brief description of the rationale for antagonizing GCGr in T2D, lessons from GCGr knock-out mice and pharmacological means to antagonize GCGr, a detailed description of the main results obtained with GCGr antagonists in Phase I-II clinical trials is provided. The development of several small molecules has been discontinued, while new ones are currently considered as well as innovative approaches such as monoclonal antibodies or antisense oligonucleotides inhibiting GCGr gene expression. Their potential benefits but also limitations are discussed. Expert opinion: The proof-of-concept that antagonizing GCGr improves glucose control in T2D has been confirmed in humans. Nevertheless, some adverse events led to stopping the development of some of these GCGr antagonists. New approaches seem to have a better benefit/risk balance, although none has progressed to Phase III clinical trials so far. Pharmacotherapy of T2D is becoming a highly competitive field so that GCGr antagonists should provide clear advantages over numerous existing glucose-lowering medications before eventually reaching clinical practice.
Collapse
Affiliation(s)
- André J Scheen
- a Division of Clinical Pharmacology , Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Belgium.,b Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine , CHU , Liège , Belgium
| | - Nicolas Paquot
- b Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine , CHU , Liège , Belgium
| | - Pierre J Lefèbvre
- b Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine , CHU , Liège , Belgium
| |
Collapse
|
56
|
More VR, Lao J, McLaren DG, Cumiskey AM, Murphy BA, Chen Y, Previs S, Stout S, Patel R, Satapati S, Li W, Kowalik E, Szeto D, Nawrocki A, Pocai A, Wang L, Carrington P. Glucagon like receptor 1/ glucagon dual agonist acutely enhanced hepatic lipid clearance and suppressed de novo lipogenesis in mice. PLoS One 2017; 12:e0186586. [PMID: 29065174 PMCID: PMC5655430 DOI: 10.1371/journal.pone.0186586] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/03/2017] [Indexed: 02/08/2023] Open
Abstract
Lipid lowering properties of glucagon have been reported. Blocking glucagon signaling leads to rise in plasma LDL levels. Here, we demonstrate the lipid lowering effects of acute dosing with Glp1r/Gcgr dual agonist (DualAG). All the experiments were performed in 25 week-old male diet-induced (60% kCal fat) obese mice. After 2 hrs of fasting, mice were injected subcutaneously with vehicle, liraglutide (25nmol/kg) and DualAG (25nmol/kg). De novo cholesterol and palmitate synthesis was measured by deuterium incorporation method using D2O. 13C18-oleate infusion was used for measuring fatty acid esterification. Simultaneous activation of Glp1r and Gcgr resulted in decrease in plasma triglyceride and cholesterol levels. DualAG enhanced hepatic LDLr protein levels, along with causing decrease in content of plasma ApoB48 and ApoB100. VLDL secretion, de novo palmitate synthesis and fatty acid esterification decreased with acute DualAG treatment. On the other hand, ketone levels were elevated with DualAG treatment, indicating increased fatty acid oxidation. Lipid relevant changes were absent in liraglutide treated group. In an acute treatment, DualAG demonstrated significant impact on lipid homeostasis, specifically on hepatic uptake, VLDL secretion and de novo synthesis. These effects collectively reveal that lipid lowering abilities of DualAG are primarily through glucagon signaling and are liver centric.
Collapse
Affiliation(s)
- Vijay R. More
- Cardiometabolic Diseases Biology- Discovery, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Julie Lao
- Cardiometabolic Diseases Biology- Discovery, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - David G. McLaren
- In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Anne-Marie Cumiskey
- In-Vivo Pharmacology, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Beth Ann Murphy
- In-Vivo Pharmacology, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Ying Chen
- Cardiometabolic Diseases Biology- Discovery, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Stephen Previs
- Cardiometabolic Diseases Biology- Discovery, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Steven Stout
- In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Rajesh Patel
- Cardiometabolic Diseases Biology- Discovery, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Santhosh Satapati
- Cardiometabolic Diseases Biology- Discovery, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Wenyu Li
- Cardiometabolic Diseases Biology- Discovery, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Edward Kowalik
- In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Daphne Szeto
- In-Vivo Pharmacology, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Andrea Nawrocki
- In-Vivo Pharmacology, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Alessandro Pocai
- Cardiometabolic Diseases Biology- Discovery, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Liangsu Wang
- Cardiometabolic Diseases Biology- Discovery, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Paul Carrington
- Cardiometabolic Diseases Biology- Discovery, Merck & Co., Inc., Kenilworth, NJ, United States of America
| |
Collapse
|
57
|
Abstract
The liver is crucial for the maintenance of normal glucose homeostasis - it produces glucose during fasting and stores glucose postprandially. However, these hepatic processes are dysregulated in type 1 and type 2 diabetes mellitus, and this imbalance contributes to hyperglycaemia in the fasted and postprandial states. Net hepatic glucose production is the summation of glucose fluxes from gluconeogenesis, glycogenolysis, glycogen synthesis, glycolysis and other pathways. In this Review, we discuss the in vivo regulation of these hepatic glucose fluxes. In particular, we highlight the importance of indirect (extrahepatic) control of hepatic gluconeogenesis and direct (hepatic) control of hepatic glycogen metabolism. We also propose a mechanism for the progression of subclinical hepatic insulin resistance to overt fasting hyperglycaemia in type 2 diabetes mellitus. Insights into the control of hepatic gluconeogenesis by metformin and insulin and into the role of lipid-induced hepatic insulin resistance in modifying gluconeogenic and net hepatic glycogen synthetic flux are also discussed. Finally, we consider the therapeutic potential of strategies that target hepatosteatosis, hyperglucagonaemia and adipose lipolysis.
Collapse
Affiliation(s)
- Max C Petersen
- Department of Internal Medicine, Yale School of Medicine
- Department of Cellular &Molecular Physiology, Yale School of Medicine
| | | | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine
- Department of Cellular &Molecular Physiology, Yale School of Medicine
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
58
|
Kang L, Connolly TM, Weng N, Jian W. LC-MS/MS quantification of 7α-hydroxy-4-cholesten-3-one (C4) in rat and monkey plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1064:49-55. [PMID: 28915417 DOI: 10.1016/j.jchromb.2017.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 11/26/2022]
Abstract
7α-hydroxy-4-cholesten-3-one (C4) is an oxidative enzymatic product of cholesterol metabolism via cholesterol 7α-hydroxylase, an enzyme also known as cholesterol 7-alpha-monooxygenase or cytochrome P450 7A1 (CYP7A1). C4 is a stable intermediate in the rate limiting pathway of bile acid biosynthesis. Previous studies showed that plasma C4 levels correlated with CYP7A1 enzymatic activity and could serve as a biomarker for bile acid synthesis. Here we developed and qualified a simple and robust high-throughput method using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) to quantify C4 in rat and monkey plasma. As C4 being an endogenous compound, this method used calibration standards in 50/50: acetonitrile/water (v/v). In order to mimic the incurred samples, quality control samples were prepared in the authentic plasma. Stable isotope labeled C4 (C4-d7) was used as the internal standard. The sample volume for analysis was 20μL and the sample preparation method was protein precipitation with acetonitrile. The average endogenous C4 concentrations, from 10 different lots of rat and monkey plasma, were 53.0±16.5ng/mL and 6.8±5.6ng/mL, respectively. Based on these observed endogenous C4 levels, the calibration curve ranges were established at 1-200ng/mL and 0.5-100ng/mL for rat assay and monkey assay, respectively. The method was qualified with acceptable accuracy, precision, linearity, and specificity. Matrix effect, recovery, and plasma stability of bench-top, freeze-thaw, and long-term frozen storage were also evaluated. The method has been successfully applied to pre-clinical studies.
Collapse
Affiliation(s)
- Lijuan Kang
- Janssen Research & Development, Johnson & Johnson, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Thomas M Connolly
- Janssen Research & Development, Johnson & Johnson, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Naidong Weng
- Janssen Research & Development, Johnson & Johnson, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Wenying Jian
- Janssen Research & Development, Johnson & Johnson, 1400 McKean Road, Spring House, PA, 19477, USA.
| |
Collapse
|
59
|
Mani BK, Uchida A, Lee Y, Osborne-Lawrence S, Charron MJ, Unger RH, Berglund ED, Zigman JM. Hypoglycemic Effect of Combined Ghrelin and Glucagon Receptor Blockade. Diabetes 2017; 66:1847-1857. [PMID: 28487437 PMCID: PMC5482080 DOI: 10.2337/db16-1303] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
Abstract
Glucagon receptor (GcgR) blockade has been proposed as an alternative to insulin monotherapy for treating type 1 diabetes since deletion or inhibition of GcgRs corrects hyperglycemia in models of diabetes. The factors regulating glycemia in a setting devoid of insulin and glucagon function remain unclear but may include the hormone ghrelin. Not only is ghrelin release controlled by glucose but also ghrelin has many actions that can raise or reduce falls in blood glucose level. Here, we tested the hypothesis that ghrelin rises to prevent hypoglycemia in the absence of glucagon function. Both GcgR knockout (Gcgr-/-) mice and db/db mice that were administered GcgR monoclonal antibody displayed lower blood glucose levels accompanied by elevated plasma ghrelin levels. Although treatment with the pancreatic β-cell toxin streptozotocin induced hyperglycemia and raised plasma ghrelin levels in wild-type mice, hyperglycemia was averted in similarly treated Gcgr-/- mice and the plasma ghrelin level was further increased. Notably, administration of a ghrelin receptor antagonist further reduced blood glucose levels into the markedly hypoglycemic range in overnight-fasted, streptozotocin-treated Gcgr-/- mice. A lowered blood glucose level also was observed in overnight-fasted, streptozotocin-treated ghrelin receptor-null mice that were administered GcgR monoclonal antibody. These data suggest that when glucagon activity is blocked in the setting of type 1 diabetes, the plasma ghrelin level rises, preventing hypoglycemia.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Atenolol/pharmacology
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cells, Cultured
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Gastric Mucosa/metabolism
- Ghrelin/metabolism
- Immunohistochemistry
- Insulin/metabolism
- Mice
- Mice, Knockout
- Oligopeptides/pharmacology
- Real-Time Polymerase Chain Reaction
- Receptors, Ghrelin/antagonists & inhibitors
- Receptors, Glucagon/antagonists & inhibitors
- Receptors, Glucagon/genetics
- Receptors, Leptin/genetics
- Sympatholytics/pharmacology
Collapse
Affiliation(s)
- Bharath K Mani
- Divisions of Hypothalamic Research and Endocrinology, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Aki Uchida
- Advanced Imaging Center and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Young Lee
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sherri Osborne-Lawrence
- Divisions of Hypothalamic Research and Endocrinology, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Maureen J Charron
- Departments of Biochemistry, Obstetrics and Gynecology and Woman's Health, and Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Roger H Unger
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eric D Berglund
- Advanced Imaging Center and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jeffrey M Zigman
- Divisions of Hypothalamic Research and Endocrinology, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
60
|
Müller TD, Finan B, Clemmensen C, DiMarchi RD, Tschöp MH. The New Biology and Pharmacology of Glucagon. Physiol Rev 2017; 97:721-766. [PMID: 28275047 DOI: 10.1152/physrev.00025.2016] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last two decades we have witnessed sizable progress in defining the role of gastrointestinal signals in the control of glucose and energy homeostasis. Specifically, the molecular basis of the huge metabolic benefits in bariatric surgery is emerging while novel incretin-based medicines based on endogenous hormones such as glucagon-like peptide 1 and pancreas-derived amylin are improving diabetes management. These and related developments have fostered the discovery of novel insights into endocrine control of systemic metabolism, and in particular a deeper understanding of the importance of communication across vital organs, and specifically the gut-brain-pancreas-liver network. Paradoxically, the pancreatic peptide glucagon has reemerged in this period among a plethora of newly identified metabolic macromolecules, and new data complement and challenge its historical position as a gut hormone involved in metabolic control. The synthesis of glucagon analogs that are biophysically stable and soluble in aqueous solutions has promoted biological study that has enriched our understanding of glucagon biology and ironically recruited glucagon agonism as a central element to lower body weight in the treatment of metabolic disease. This review summarizes the extensive historical record and the more recent provocative direction that integrates the prominent role of glucagon in glucose elevation with its under-acknowledged effects on lipids, body weight, and vascular health that have implications for the pathophysiology of metabolic diseases, and the emergence of precision medicines to treat metabolic diseases.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - B Finan
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - C Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - R D DiMarchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| |
Collapse
|
61
|
Bergman A, Tan B, Somayaji VR, Calle RA, Kazierad DJ. A 4-week study assessing the pharmacokinetics, pharmacodynamics, safety, and tolerability of the glucagon receptor antagonist PF-06291874 administered as monotherapy in subjects with type 2 diabetes mellitus. Diabetes Res Clin Pract 2017; 126:95-104. [PMID: 28237861 DOI: 10.1016/j.diabres.2017.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/30/2017] [Indexed: 11/24/2022]
Abstract
AIMS The glucagon receptor antagonist PF-06291874 has demonstrated robust glucose reductions in subjects with type 2 diabetes mellitus (T2DM) on background metformin. This study assessed the pharmacokinetics, pharmacodynamics, safety, and tolerability of PF-06291874 administered as monotherapy in subjects with T2DM. METHODS After a ≥4-week antidiabetic therapy washout period, 172 subjects were randomized to placebo or PF-06291874 15, 35, 75, or 150mg once daily for 28days. Mean daily glucose (MDG), fasting plasma glucose (FPG), and predefined safety endpoints were assessed at baseline and day 28. RESULTS Dose-dependent reductions (placebo-adjusted) from baseline in MDG ranged from 40.3 to 68.8mg/dL and in FPG from 27.1 to 57.2mg/dL after 28days of dosing with PF-06291874. There were no significant changes in low-density lipoprotein cholesterol at doses ≤75mg relative to placebo. Small, dose-dependent increases in alanine aminotransferase and aspartate aminotransferase were observed; however, the incidence of these values >3×upper limit of normal was similar across doses. PF-06291874 exposures were consistent with previous studies and PF-06291874 was well tolerated, with minimal incidence of hypoglycemia. CONCLUSIONS PF-06291874 as monotherapy was well tolerated and produced robust reductions in plasma glucose following 4weeks of dosing in subjects with T2DM.
Collapse
|
62
|
Erion DM, Park HJ, Lee HY. The role of lipids in the pathogenesis and treatment of type 2 diabetes and associated co-morbidities. BMB Rep 2017; 49:139-48. [PMID: 26728273 PMCID: PMC4915228 DOI: 10.5483/bmbrep.2016.49.3.268] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Indexed: 12/25/2022] Open
Abstract
In the past decade, the incidence of type 2 diabetes (T2D) has rapidly increased, along with the associated cardiovascular complications. Therefore, understanding the pathophysiology underlying T2D, the associated complications and the impact of therapeutics on the T2D development has critical importance for current and future therapeutics. The prevailing feature of T2D is hyperglycemia due to excessive hepatic glucose production, insulin resistance, and insufficient secretion of insulin by the pancreas. These contribute to increased fatty acid influx into the liver and muscle causing accumulation of lipid metabolites. These lipid metabolites cause dyslipidemia and non-alcoholic fatty liver disease, which ultimately contributes to the increased cardiovascular risk in T2D. Therefore, understanding the mechanisms of hepatic insulin resistance and the specific role of liver lipids is critical in selecting and designing the most effective therapeutics for T2D and the associated co-morbidities, including dyslipidemia and cardiovascular disease. Herein, we review the effects and molecular mechanisms of conventional anti-hyperglycemic and lipid-lowering drugs on glucose and lipid metabolism. [BMB Reports 2016; 49(3): 139-148].
Collapse
Affiliation(s)
- Derek M Erion
- Takeda Pharmaceuticals 350 Massachusetts Ave. Cambridge, MA, 02139, USA
| | - Hyun-Jun Park
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon 21999, Korea
| | - Hui-Young Lee
- Department of Molecular Medicine and Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon 21999, Korea
| |
Collapse
|
63
|
Singh SB, Kang L, Nawrocki AR, Zhou D, Wu M, Previs S, Miller C, Liu H, Hines CDG, Madeira M, Cao J, Herath K, Wang L, Kelley DE, Li C, Guan HP. The Fatty Acid Synthase Inhibitor Platensimycin Improves Insulin Resistance without Inducing Liver Steatosis in Mice and Monkeys. PLoS One 2016; 11:e0164133. [PMID: 27695056 PMCID: PMC5047649 DOI: 10.1371/journal.pone.0164133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/20/2016] [Indexed: 01/12/2023] Open
Abstract
Objectives Platensimycin (PTM) is a natural antibiotic produced by Streptomyces platensis that selectively inhibits bacterial and mammalian fatty acid synthase (FAS) without affecting synthesis of other lipids. Recently, we reported that oral administration of PTM in mouse models (db/db and db/+) with high de novo lipogenesis (DNL) tone inhibited DNL and enhanced glucose oxidation, which in turn led to net reduction of liver triglycerides (TG), reduced ambient glucose, and improved insulin sensitivity. The present study was conducted to explore translatability and the therapeutic potential of FAS inhibition for the treatment of diabetes in humans. Methods We tested PTM in animal models with different DNL tones, i.e. intrinsic synthesis rates, which vary among species and are regulated by nutritional and disease states, and confirmed glucose-lowering efficacy of PTM in lean NHPs with quantitation of liver lipid by MRS imaging. To understand the direct effect of PTM on liver metabolism, we performed ex vivo liver perfusion study to compare FAS inhibitor and carnitine palmitoyltransferase 1 (CPT1) inhibitor. Results The efficacy of PTM is generally reproduced in preclinical models with DNL tones comparable to humans, including lean and established diet-induced obese (eDIO) mice as well as non-human primates (NHPs). Similar effects of PTM on DNL reduction were observed in lean and type 2 diabetic rhesus and lean cynomolgus monkeys after acute and chronic treatment of PTM. Mechanistically, PTM lowers plasma glucose in part by enhancing hepatic glucose uptake and glycolysis. Teglicar, a CPT1 inhibitor, has similar effects on glucose uptake and glycolysis. In sharp contrast, Teglicar but not PTM significantly increased hepatic TG production, thus caused liver steatosis in eDIO mice. Conclusions These findings demonstrate unique properties of PTM and provide proof-of-concept of FAS inhibition having potential utility for the treatment of diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Sheo B. Singh
- Departments of Discovery Chemistry, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ, 07033, United States of America
- * E-mail: (SBS); (HPG)
| | - Ling Kang
- Department of Cardiometabolic Disease, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ, 07033, United States of America
| | - Andrea R. Nawrocki
- Department of Pharmacology, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ, 07033, United States of America
| | - Dan Zhou
- Department of Pharmacology, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ, 07033, United States of America
| | - Margaret Wu
- Department of Cardiometabolic Disease, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ, 07033, United States of America
| | - Stephen Previs
- Department of Cardiometabolic Disease, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ, 07033, United States of America
| | - Corey Miller
- Department of Imaging and Biomarker, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ, 07033, United States of America
| | - Haiying Liu
- Department of Imaging and Biomarker, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ, 07033, United States of America
| | - Catherine D. G. Hines
- Department of Translational Imaging Biomarkers, Merck Research Laboratories, 770 Sumneytown Pike, West Point, PA, 19486, United States of America
| | - Maria Madeira
- Department of PKPD, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ, 07033, United States of America
| | - Jin Cao
- Department of Imaging and Biomarker, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ, 07033, United States of America
| | - Kithsiri Herath
- Department of Cardiometabolic Disease, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ, 07033, United States of America
| | - Liangsu Wang
- Department of Cardiometabolic Disease, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ, 07033, United States of America
| | - David E. Kelley
- Department of Cardiometabolic Disease, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ, 07033, United States of America
| | - Cai Li
- Department of Pharmacology, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ, 07033, United States of America
| | - Hong-Ping Guan
- Department of Cardiometabolic Disease, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ, 07033, United States of America
- * E-mail: (SBS); (HPG)
| |
Collapse
|
64
|
Rines AK, Sharabi K, Tavares CDJ, Puigserver P. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov 2016; 15:786-804. [PMID: 27516169 DOI: 10.1038/nrd.2016.151] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus is characterized by the dysregulation of glucose homeostasis, resulting in hyperglycaemia. Although current diabetes treatments have exhibited some success in lowering blood glucose levels, their effect is not always sustained and their use may be associated with undesirable side effects, such as hypoglycaemia. Novel antidiabetic drugs, which may be used in combination with existing therapies, are therefore needed. The potential of specifically targeting the liver to normalize blood glucose levels has not been fully exploited. Here, we review the molecular mechanisms controlling hepatic gluconeogenesis and glycogen storage, and assess the prospect of therapeutically targeting associated pathways to treat type 2 diabetes.
Collapse
Affiliation(s)
- Amy K Rines
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Clint D J Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
65
|
Kazierad DJ, Bergman A, Tan B, Erion DM, Somayaji V, Lee DS, Rolph T. Effects of multiple ascending doses of the glucagon receptor antagonist PF-06291874 in patients with type 2 diabetes mellitus. Diabetes Obes Metab 2016; 18:795-802. [PMID: 27059951 DOI: 10.1111/dom.12672] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/21/2023]
Abstract
AIMS To assess the pharmacokinetics, pharmacodynamics, safety and tolerability of multiple ascending doses of the glucagon receptor antagonist PF-06291874 in patients with type 2 diabetes mellitus (T2DM). METHODS Patients were randomized to oral PF-06291874 or placebo on a background of either metformin (Part A, Cohorts 1-5: 5-150 mg once daily), or metformin and sulphonylurea (Part B, Cohorts 1-2: 15 or 30 mg once daily) for 14-28 days. A mixed-meal tolerance test (MMTT) was administered on days -1 (baseline), 14 and 28. Assessments were conducted with regard to pharmacokinetics, various pharmacodynamic variables, safety and tolerability. Circulating amino acid concentrations were also measured. RESULTS PF-06291874 exposure was approximately dose-proportional with a half-life of ∼19.7-22.7 h. Day 14 fasting plasma glucose and mean daily glucose values were reduced from baseline in a dose-dependent manner, with placebo-corrected decreases of 34.3 and 42.4 mg/dl, respectively, at the 150 mg dose. After the MMTT, dose-dependent increases in glucagon and total glucagon-like peptide-1 (GLP-1) were observed, although no meaningful changes were noted in insulin, C-peptide or active GLP-1 levels. Small dose-dependent increases in LDL cholesterol were observed, along with reversible increases in serum aminotransferases that were largely within the laboratory reference range. An increase in circulating gluconeogenic amino acids was also observed on days 2 and 14. All dose levels of PF-06291874 were well tolerated. CONCLUSION PF-06291874 was well tolerated, has a pharmacokinetic profile suitable for once-daily dosing, and results in reductions in glucose with minimal risk of hypoglycaemia.
Collapse
Affiliation(s)
| | | | - B Tan
- Pfizer, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
66
|
Harp JB, Yancopoulos GD, Gromada J. Glucagon orchestrates stress-induced hyperglycaemia. Diabetes Obes Metab 2016; 18:648-53. [PMID: 27027662 PMCID: PMC5084782 DOI: 10.1111/dom.12668] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/19/2016] [Accepted: 03/24/2016] [Indexed: 01/08/2023]
Abstract
Hyperglycaemia is commonly observed on admission and during hospitalization for medical illness, traumatic injury, burn and surgical intervention. This transient hyperglycaemia is referred to as stress-induced hyperglycaemia (SIH) and frequently occurs in individuals without a history of diabetes. SIH has many of the same underlying hormonal disturbances as diabetes mellitus, specifically absolute or relative insulin deficiency and glucagon excess. SIH has the added features of elevated blood levels of catecholamines and cortisol, which are not typically present in people with diabetes who are not acutely ill. The seriousness of SIH is highlighted by its greater morbidity and mortality rates compared with those of hospitalized patients with normal glucose levels, and this increased risk is particularly high in those without pre-existing diabetes. Insulin is the treatment standard for SIH, but new therapies that reduce glucose variability and hypoglycaemia are desired. In the present review, we focus on the key role of glucagon in SIH and discuss the potential use of glucagon receptor blockers and glucagon-like peptide-1 receptor agonists in SIH to achieve target glucose control.
Collapse
Affiliation(s)
- J B Harp
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - J Gromada
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| |
Collapse
|
67
|
Pearson MJ, Unger RH, Holland WL. Clinical Trials, Triumphs, and Tribulations of Glucagon Receptor Antagonists. Diabetes Care 2016; 39:1075-7. [PMID: 27330122 PMCID: PMC5876017 DOI: 10.2337/dci15-0033] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mackenzie J Pearson
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Roger H Unger
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX VA North Texas Health Care System, Dallas, TX
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|