51
|
Boomgaarden I, Vock C, Klapper M, Döring F. Comparative analyses of disease risk genes belonging to the acyl-CoA synthetase medium-chain (ACSM) family in human liver and cell lines. Biochem Genet 2009; 47:739-48. [PMID: 19634011 DOI: 10.1007/s10528-009-9273-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
Abstract
The human ACSM1, 2A and B, 3, and 5 genes, located on chromosome 16p12-13, encode for enzymes catalyzing the activation of medium-chain length fatty acids. Association studies have linked several polymorphisms of these genes to traits of insulin resistance syndrome. In our study, ACSM transcripts showed 3 to >400-fold higher expression levels in human liver when compared to cell lines by qRT-PCR. This difference was also evident at the protein level, as shown for ACSM2. In liver, ACSM2 was the most abundant transcript, showing sixfold (vs. ACSM3) to >300-fold higher expression levels (vs. ACSM1). Mitochondrial localization of the ACSM2 protein and the presence of an N-terminal targeting sequence were shown by GFP-tagging. We have shown ACSM2B to be the predominant transcript in human liver, and genetic variations of this gene could therefore play an important role in disease susceptibility.
Collapse
Affiliation(s)
- Inka Boomgaarden
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | | | | | | |
Collapse
|
52
|
Han C, Wang J, Li L, Zhang Z, Wang L, Pan Z. The role of insulin and glucose in goose primary hepatocyte triglyceride accumulation. ACTA ACUST UNITED AC 2009; 212:1553-8. [PMID: 19411549 DOI: 10.1242/jeb.022210] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to obtain some information on how fatty liver arises in geese, we investigated the role of insulin and glucose in triglyceride (TG) accumulation in goose primary hepatocytes. Goose primary hepatocytes were isolated and treated with insulin and glucose. Compared with the control group, 100 and 150 nmol l(-1) insulin increased TG accumulation, acetyl-CoA carboxylase-alpha (ACCalpha) and fatty acid synthase (FAS) activity, and the mRNA levels of sterol regulatory element-binding protein-1 (SREBP-1), FAS and ACCalpha genes. Insulin at 200 nmol l(-1) had an inhibiting effect on TG accumulation and the activity of ACC and FAS, but increased the gene expression of SREBP-1, FAS and ACCalpha. We also found that high glucose (30 mmol l(-1)) increased the TG level, ACC and FAS activity, and the mRNA levels of SREBP-1 and FAS. However, there was no effect of high glucose on ACCalpha mRNA level. In addition, the interaction between insulin and glucose was observed to induce TG accumulation, ACC and FAS activity, and gene expression of SREBP-1, FAS and ACCalpha, and increase SREBP-1 nuclear protein level and binding of nuclear SREBP-1 and the SRE response element of the ACC gene. The result also indicated that the glucose-induced TG accumulation decreased after 96 h when the hepatocytes were cultured with 30 mmol l(-1) glucose. In conclusion, insulin and glucose may affect hepatic lipogenesis by regulating lipogenic gene expression and lipogenic enzyme activity in goose hepatocytes, and SREBP-1 might play an important role in the synergetic activation of lipogenic genes. We propose that the utilization of accumulated TG in hepatocytes is the reason for the reversible phenomenon in goose hepatocellular steatosis.
Collapse
Affiliation(s)
- Chunchun Han
- Key Lab of Animal Genetic Resources, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R.C
| | | | | | | | | | | |
Collapse
|
53
|
Abstract
NAFLD (non-alcoholic fatty liver disease) refers to a wide spectrum of liver damage, ranging from simple steatosis to NASH (non-alcoholic steatohepatitis), advanced fibrosis and cirrhosis. NAFLD is strongly associated with insulin resistance and is defined by accumulation of liver fat >5% per liver weight in the presence of <10 g of daily alcohol consumption. The exact prevalence of NAFLD is uncertain because of the absence of simple non-invasive diagnostic tests to facilitate an estimate of prevalence. In certain subgroups of patients, such as those with Type 2 diabetes, the prevalence of NAFLD, defined by ultrasound, may be as high as 70%. NASH is an important subgroup within the spectrum of NAFLD that progresses over time with worsening fibrosis and cirrhosis, and is associated with increased risk for cardiovascular disease. It is, therefore, important to understand the pathogenesis of NASH and, in particular, to develop strategies for interventions to treat this condition. Currently, the 'gold standard' for the diagnosis of NASH is liver biopsy, and the need to undertake a biopsy has impeded research in subjects in this field. Limited results suggest that the prevalence of NASH could be as high as 11% in the general population, suggesting there is a worsening future public health problem in this field of medicine. With a burgeoning epidemic of diabetes in an aging population, it is likely that the prevalence of NASH will continue to increase over time as both factors are important risk factors for liver fibrosis. The purpose of this review is to: (i) briefly discuss the epidemiology of NAFLD to describe the magnitude of the future potential public health problem; and (ii) to discuss extra- and intra-hepatic mechanisms contributing to the pathogenesis of NAFLD, a better understanding of which may help in the development of novel treatments for this condition.
Collapse
|
54
|
Proszkowiec-Weglarz M, Richards MP, Humphrey BD, Rosebrough RW, McMurtry JP. AMP-activated protein kinase and carbohydrate response element binding protein: a study of two potential regulatory factors in the hepatic lipogenic program of broiler chickens. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:68-79. [PMID: 19427916 DOI: 10.1016/j.cbpb.2009.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 12/11/2022]
Abstract
This study investigated the effects of fasting and refeeding on AMP-activated protein kinase (AMPK) and carbohydrate response element binding protein (ChREBP) mRNA, protein and activity levels; as well as the expression of lipogenic genes involved in regulating lipid synthesis in broiler chicken (Gallus gallus) liver. Fasting for 24 or 48 h produced significant declines in plasma glucose (at 24 h), insulin and thyroid hormone (T3) levels that were accompanied by changes in mRNA expression levels of hepatic lipogenic genes. The mRNA levels of malic enzyme (ME), ATP-citrate lyase (ACL), acetyl-CoA carboxylase alpha (ACCalpha), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1) and thyroid hormone responsive Spot 14 (Spot 14) declined in response to fasting. Refeeding for 24 h increased mRNA levels for each of these genes, characterized by a significant increase ('overshoot') above fed control values. No change in mRNA expression of the two AMPK alpha subunit genes was observed in response to fasting or refeeding. In contrast, ChREBP and sterol regulatory element binding protein-1 (SREBP-1) mRNA levels decreased during fasting and increased with refeeding. Phosphorylation of AMPK alpha subunits increased modestly after a 48 h fast. However, there was no corresponding change in the phosphorylation of ACC, a major downstream target of AMPK. Protein level and DNA-binding activity of ChREBP increased during fasting and declined upon refeeding as measured in whole liver tissue extracts. In general, evidence was found for coordinate transcriptional regulation of lipogenic program genes in broiler chicken liver, but specific regulatory roles for AMPK and ChREBP in that process remain to be further characterized.
Collapse
Affiliation(s)
- Monika Proszkowiec-Weglarz
- United States Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705-2350, USA
| | | | | | | | | |
Collapse
|
55
|
Tang X, Ma H, Huang G, Miao J, Zou S. The effect of dehydroepiandrosterone on lipogenic gene mRNA expression in cultured primary chicken hepatocytes. EUR J LIPID SCI TECH 2009. [DOI: 10.1002/ejlt.200800169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
56
|
Tang X, Ma H, Zou S, Chen W. Effects of Dehydroepiandrosterone (DHEA) on Hepatic Lipid Metabolism Parameters and Lipogenic Gene mRNA Expression in Broiler Chickens. Lipids 2007; 42:1025-33. [PMID: 17704960 DOI: 10.1007/s11745-007-3104-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Accepted: 07/10/2007] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to identify the effects of dehydroepiandrosterone (DHEA) on hepatic lipid metabolism parameters and lipogenic gene mRNA expression in broiler chickens. A total of 72 1-day-old broiler chicks received a common basal diet with DHEA added at either 0 (control), 5 or 20 mg/kg feed. In the present study, the hepatic triglyceride (TG) concentration was significantly lower in male and female broilers that had bed administered DHEA than in control birds. In contrast, DHEA administration caused a marked rise in the hepatic non-esterified fatty acid (NEFA) concentration in both male and female broilers and also increased lipase (HL) activity in male broilers, while in female birds, no significant differences were observed in HL activity. The expression of peroxisome proliferators-activated receptor alpha (PPARalpha) and carnitine palmitoyl transferase I (CPTI) mRNA was decidedly enhanced following treatment with DHEA, and a similar tendency was also observed in the expression of acyl-Coenzyme A oxidase 1 (ACOX1). However, no significant differences were observed in the expression of either sterol regulatory element binding protein-1c (SREBP-1c) or acetyl CoA carboxylase (ACC) mRNA, except for a decline in the expression of ACC in females treated with 5 mg DHEA/kg. Numerous peroxisomes without a core and an increased number of peroxisomes were evident during morphological observations of broiler livers, in animals that had been treated with DHEA. Overall, the results of the present study indicated that DHEA accelerated lipid catabolism by direct regulation of hepatic lipid metabolism and by induction of relevant gene expression.
Collapse
Affiliation(s)
- Xue Tang
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | | | | | | |
Collapse
|
57
|
Denechaud PD, Dentin R, Girard J, Postic C. Role of ChREBP in hepatic steatosis and insulin resistance. FEBS Lett 2007; 582:68-73. [PMID: 17716660 DOI: 10.1016/j.febslet.2007.07.084] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 07/25/2007] [Accepted: 07/25/2007] [Indexed: 12/28/2022]
Abstract
Non-alcoholic fatty liver disease is tightly associated with insulin resistance, type 2 diabetes and obesity, but the molecular links between hepatic fat accumulation and insulin resistance are not fully identified. Excessive accumulation of triglycerides (TG) is one the main characteristics of non-alcoholic fatty liver disease and fatty acids utilized for the synthesis of TG in liver are available from the plasma non-esterified fatty acid pool but also from fatty acids newly synthesized through hepatic de novo lipogenesis. Recently, the transcription factor ChREBP (carbohydrate responsive element binding protein) has emerged as a central determinant of lipid synthesis in liver through its transcriptional control of key genes of the lipogenic pathway, including fatty acid synthase and acetyl CoA carboxylase. In this mini-review, we will focus on the importance of ChREBP in the physiopathology of hepatic steatosis and insulin resistance by discussing the physiological and metabolic consequences of ChREBP knockdown in liver of ob/ob mice.
Collapse
Affiliation(s)
- Pierre-Damien Denechaud
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département d'Endocrinologie, Métabolisme et Cancer, 24 Rue du Faubourg Saint Jacques, Paris, France
| | | | | | | |
Collapse
|
58
|
Domanski D, Helbing CC. Analysis of the Rana catesbeiana tadpole tail fin proteome and phosphoproteome during T3-induced apoptosis: identification of a novel type I keratin. BMC DEVELOPMENTAL BIOLOGY 2007; 7:94. [PMID: 17683616 PMCID: PMC2025591 DOI: 10.1186/1471-213x-7-94] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 08/06/2007] [Indexed: 11/21/2022]
Abstract
BACKGROUND Thyroid hormones (THs) are vital in the maintenance of homeostasis and in the control of development. One postembryonic developmental process that is principally regulated by THs is amphibian metamorphosis. This process has been intensively studied at the genomic level yet very little information at the proteomic level exists. In addition, there is increasing evidence that changes in the phosphoproteome influence TH action. RESULTS Here we identify components of the proteome and phosphoproteome in the tail fin that changed within 48 h of exposure of premetamorphic Rana catesbeiana tadpoles to 10 nM 3,5,3'-triiodothyronine (T3). To this end, we developed a cell and protein fractionation method combined with two-dimensional gel electrophoresis and phosphoprotein-specific staining. Altered proteins were identified using mass spectrometry (MS). We identified and cloned a novel Rana larval type I keratin, RLK I, which may be a target for caspase-mediated proteolysis upon exposure to T3. In addition, the RLK I transcript is reduced during T3-induced and natural metamorphosis which is consistent with a larval keratin. Furthermore, GILT, a protein involved in the immune system, is changed in phosphorylation state which is linked to its activation. Using a complementary MS technique for the analysis of differentially-expressed proteins, isobaric tags for relative and absolute quantitation (iTRAQ) revealed 15 additional proteins whose levels were altered upon T3 treatment. The success of identifying proteins whose levels changed upon T3 treatment with iTRAQ was enhanced through de novo sequencing of MS data and homology database searching. These proteins are involved in apoptosis, extracellular matrix structure, immune system, metabolism, mechanical function, and oxygen transport. CONCLUSION We have demonstrated the ability to derive proteomics-based information from a model species for postembryonic development for which no genome information is currently available. The present study identifies proteins whose levels and/or phosphorylation states are altered within 48 h of the induction of tadpole tail regression prior to overt remodeling of the tail. In particular, we have identified a novel keratin that is a target for T3-mediated changes in the tail that can serve as an indicator of early response to this hormone.
Collapse
Affiliation(s)
- Dominik Domanski
- Department of Biochemistry & Microbiology, University of Victoria, PO Box 3055, Victoria, BC V8W 3P6, Canada
| | - Caren C Helbing
- Department of Biochemistry & Microbiology, University of Victoria, PO Box 3055, Victoria, BC V8W 3P6, Canada
| |
Collapse
|
59
|
Zhao S, Ma H, Zou S, Chen W. Effects of In Ovo Administration of DHEA on Lipid Metabolism and Hepatic Lipogenetic Genes Expression in Broiler Chickens During Embryonic Development. Lipids 2007; 42:749-57. [PMID: 17574488 DOI: 10.1007/s11745-007-3068-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 04/12/2007] [Indexed: 11/30/2022]
Abstract
In order to study the mechanism of DHEA (Dehydroepiandrosterone) in reducing fat in broiler chickens during embryonic development, fertilized eggs were administrated with DHEA before incubation and its effect on lipid metabolism and expression of hepatic lipogenetic genes was investigated. The mRNA levels of acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), malic enzyme (ME), apolipoprotein B100 (apoB100) and sterol regulator element binding protein-1c (SREBP-1c) were determined using real time quantitative PCR. Samples of livers were collected from the chickens on days 9, 14, and 19 of embryonic development as well as at hatching. Blood samples were extracted on days 14, 19 of incubation and at hatching. The results showed that DHEA decreased the concentration of triacyglycerol in the blood and the content in liver, and the mRNA levels of ACC, FAS, ME, SREBP-1c and apoB. This suggested that DHEA decreased the expression of hepatic lipogenetic genes and suppressed triglycerols transport, by which it reduced the deposition of fat in adipose tissue in broiler chickens during embryonic development and hatching.
Collapse
Affiliation(s)
- Sumei Zhao
- Key Laboratory of Animal Physiology and Biochemistry, The Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | |
Collapse
|
60
|
Kanayama T, Arito M, So K, Hachimura S, Inoue J, Sato R. Interaction between sterol regulatory element-binding proteins and liver receptor homolog-1 reciprocally suppresses their transcriptional activities. J Biol Chem 2007; 282:10290-8. [PMID: 17283069 DOI: 10.1074/jbc.m700270200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In previous studies it was demonstrated that sterol regulatory element-binding proteins (SREBPs) are able to interact with one of the nuclear receptors, hepatocyte nuclear receptor (HNF)-4, and that this interaction regulates transcriptional activities of these proteins (Misawa, K., Horiba, T., Arimura, N., Hirano, Y., Inoue, J., Emoto, N., Shimano, H., Shimizu, M., and Sato, R. (2003) J. Biol. Chem. 278, 36176-36182; Yamamoto, T., Shimano, H., Nakagawa, Y., Ide, T., Yahagi, N., Matsuzaka, T., Nakakuki, M., Takahashi, A., Suzuki, H., Sone, H., Toyoshima, H., Sato, R., and Yamada, N. (2004) J. Biol. Chem. 279, 12027-12035). In an attempt to identify other nuclear receptor family members affecting the SREBP transcriptional activities, we found that the liver receptor homolog (LRH)-1 suppresses them. Several types of luciferase assays revealed that coexpression of these two proteins (LRH-1 and SREBP-1a, -1c, or -2) results in reciprocal inhibition of the transcriptional activity of each protein. It was confirmed that suppression in endogenous LRH-1 by small interference RNA stimulates the mRNA levels of certain SREBP target genes and that elevation in active SREBPs in the nucleus in response to cholesterol depletion suppresses the LRH-1 activity. In vitro/in vivo glutathione S-transferase pulldown experiments demonstrated that the basic helix-loop-helix-leucine zipper domain in SREBP-2 binds to the ligand-binding domain in LRH-1. Furthermore, we found that SREBP-2 interferes with the recruitment of a coactivator of LRH-1, the peroxisome proliferator-activated receptor gamma coactivator-1alpha, thereby leading to the inhibition of the LRH-1 transcriptional activity. These results clearly indicate that the interaction between SREBPs and LRH-1 exerts a suppressive influence on their target gene expression responsible for cholesterol and bile acid metabolism.
Collapse
Affiliation(s)
- Tomohiko Kanayama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
61
|
Chu K, Miyazaki M, Man WC, Ntambi JM. Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation. Mol Cell Biol 2006; 26:6786-98. [PMID: 16943421 PMCID: PMC1592860 DOI: 10.1128/mcb.00077-06] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stearoyl-coenzyme A desaturase (SCD) is the rate-limiting enzyme necessary for the biosynthesis of monounsaturated fatty acids. In this study, we investigated the regulation of mouse SCD1 by liver X receptor (LXR) and its role in plasma lipoprotein metabolism upon LXR activation. In vivo, the SCD1 gene remained induced upon LXR activation in the absence of sterol regulatory element-binding protein 1c (SREBP-1c), a known transcriptional regulator of SCD1. Serial deletion and point mutation analyses in reporter gene assays, as well as a gel mobility shift assay, identified an LXR response element in the mouse SCD1 promoter. In addition, SCD1 deficiency prevented the hypertriglyceridemic effect and reduced hepatic triglyceride accumulation associated with LXR activation despite induced hepatic expression of SREBP-1c protein and several SREBP1c and LXR target genes involved in lipoprotein metabolism. Unlike wild-type mice, SCD1-deficient mice failed to elevate the hepatic triglyceride monounsaturated acid (MUFA)/saturated fatty acid (SFA) ratio despite induction of the SCD2 gene. Together, these findings suggest that SCD1 plays a pivotal role in the regulation of hepatic and plasma triglyceride accumulation, possibly by modulating the MUFA-to-SFA ratio. In addition, SCD1 deficiency also increased plasma high-density lipoprotein cholesterol levels induced by LXR activation.
Collapse
Affiliation(s)
- Kiki Chu
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
62
|
Hashimoto K, Yamada M, Matsumoto S, Monden T, Satoh T, Mori M. Mouse sterol response element binding protein-1c gene expression is negatively regulated by thyroid hormone. Endocrinology 2006; 147:4292-302. [PMID: 16794015 DOI: 10.1210/en.2006-0116] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sterol regulatory element-binding protein (SREBP)-1c is a key regulator of fatty acid metabolism and plays a pivotal role in the transcriptional regulation of different lipogenic genes mediating lipid synthesis. In previous studies, the regulation of SREBP-1c mRNA levels by thyroid hormone has remained controversial. In this study, we examined whether T3 regulates the mouse SREBP-1c mRNA expression. We found that T3 negatively regulates the mouse SREBP-1c gene expression in the liver, as shown by ribonuclease protection assays and real-time quantitative RT-PCR. Promoter analysis with luciferase assays using HepG2 and Hepa1-6 cells revealed that T3 negatively regulates the mouse SREBP-1c gene promoter (-574 to +42) and that Site2 (GCCTGACAGGTGAAATCGGC) located around the transcriptional start site is responsible for the negative regulation by T3. Gel shift assays showed that retinoid X receptor-alpha/thyroid hormone receptor-beta heterodimer bound to Site2, but retinoid X receptor-alpha/liver X receptor- heterodimer could not bind to the site. In vivo chromatin immunoprecipitation assays demonstrated that T3 induced thyroid hormone receptor-beta recruitment to Site2. Thus, we demonstrated that mouse SREBP-1c mRNA is down-regulated by T3 in vivo and that T3 negatively regulates mouse SREBP-1c gene transcription via a novel negative thyroid hormone response element: Site2.
Collapse
Affiliation(s)
- Koshi Hashimoto
- Department of Medicine and Molecular Science, Graduate School of Medicine, Gunma University, 3-39-15 Showa-machi Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | |
Collapse
|
63
|
Talukdar S, Hillgartner FB. The mechanism mediating the activation of acetyl-coenzyme A carboxylase-alpha gene transcription by the liver X receptor agonist T0-901317. J Lipid Res 2006; 47:2451-61. [PMID: 16931873 DOI: 10.1194/jlr.m600276-jlr200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In birds and mammals, agonists of the liver X receptor (LXR) increase the expression of enzymes that make up the fatty acid synthesis pathway. Here, we investigate the mechanism by which the synthetic LXR agonist, T0-901317, increases the transcription of the acetyl-coenzyme A carboxylase-alpha (ACC alpha) gene in chick embryo hepatocyte cultures. Transfection analyses demonstrate that activation of ACC alpha transcription by T0-901317 is mediated by a cis-acting regulatory unit (-101 to -71 bp) that is composed of a liver X receptor response element (LXRE) and a sterol-regulatory element (SRE). The SRE enhances the ability of the LXRE to activate ACC alpha transcription in the presence of T0-901317. Treating hepatocytes with T0-901317 increases the concentration of mature sterol-regulatory element binding protein-1 (SREBP-1) in the nucleus and the acetylation of histone H3 and histone H4 at the ACC alpha LXR response unit. These results indicate that T0-901317 increases hepatic ACC alpha transcription by directly activating LXR*retinoid X receptor (RXR) heterodimers and by increasing the activity of an accessory transcription factor (SREBP-1) that enhances ligand induced-LXR*RXR activity.
Collapse
Affiliation(s)
- Saswata Talukdar
- Department of Biochemistry and Molecular Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | | |
Collapse
|
64
|
Kotoulas OB, Kalamidas SA, Kondomerkos DJ. Glycogen autophagy in glucose homeostasis. Pathol Res Pract 2006; 202:631-8. [PMID: 16781826 DOI: 10.1016/j.prp.2006.04.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
Glycogen autophagy, the sequestration and degradation of cell glycogen in the autophagic vacuoles, is a selective, hormonally controlled and highly regulated process, representing a mechanism of glucose homeostasis under conditions of demand for the production of this sugar. In the newborn animals, this process is induced by glucagon secreted during the postnatal hypoglycemia and inhibited by insulin and parenteral glucose, which abolishes glucagon secretion. Hormonal action is mediated by the cAMP/protein kinase A (induction) and phosphoinositides/mTOR (inhibition) pathways that converge on common targets, such as the protein phosphatase 2A to regulate autophgosomal glycogen-hydrolyzing acid glucosidase and glycogen autophagy. Intralysosomal phosphate exchange reactions, which are affected by changes in the calcium levels and acid mannose 6- and acid glucose 6-phosphatase activities, can modify the intralysosomal composition in phosphorylated and nonphosphorylated glucose and promote the exit of free glucose through the lysosomal membrane. Glycogen autophagy-derived nonphosphorylated glucose assists the hyaloplasmic glycogen degradation-derived glucose 6-phosphate to combat postnatal hypoglycemia and participates in other metabolic pathways to secure the fine tuning of glucose homeostasis during the neonatal period.
Collapse
Affiliation(s)
- O B Kotoulas
- Department of Anatomy, Histology and Embryology, Medical School, University of Ioannina, Ioannina, Greece.
| | | | | |
Collapse
|
65
|
Torres N, Torre-Villalvazo I, Tovar AR. Regulation of lipid metabolism by soy protein and its implication in diseases mediated by lipid disorders. J Nutr Biochem 2006; 17:365-73. [PMID: 16481155 DOI: 10.1016/j.jnutbio.2005.11.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Revised: 09/30/2005] [Accepted: 11/01/2005] [Indexed: 01/24/2023]
Abstract
Soybeans have a high-quality protein that has been consumed for approximately 5000 years in Oriental countries. The awareness that soy products are healthy has increased their consumption in Western countries. Substantial data from epidemiological surveys and nutritional interventions in humans and animals indicate that soy protein reduces serum total and low-density lipoprotein (LDL) cholesterol and triglycerides as well as hepatic cholesterol and triglycerides. This review examines the evidence on the possible mechanisms for which soy protein has beneficial effects in diabetes, obesity and some forms of chronic renal disease. Consumption of soy protein due to low methionine content reduces serum homocysteine concentration, decreasing the risk of acquiring a cardiovascular disease. On the other hand, soy protein reduces the insulin/glucagon ratio, which in turn down-regulates the expression of the hepatic transcription factor sterol regulatory element binding protein (SREBP)-1. The reduction of this factor decreases the expression of several lipogenic enzymes, decreasing in this way serum and hepatic triglycerides as well as LDL cholesterol and very LDL triglycerides in diabetes and obesity, reducing lipotoxicity in the liver. Soy protein intake also reduces hepatic lipotoxicity by maintaining the number of functional adipocytes, preventing the transfer of fatty acids to extra adipose tissues. Furthermore, soy protein isoflavones stimulate the transcription factor SREBP-2, increasing serum cholesterol clearance. The reduction of serum cholesterol and triglyceride concentrations by soy protein intake produces beneficial effects in the kidney preventing the inflammatory response, increasing the renal flow by releasing endothelial nitric oxide (NO) synthase from the caveolae, facilitating the synthesis of NO. Thus, soy protein consumption may reduce the clinical and biochemical abnormalities in diseases mediated by lipid disorders.
Collapse
Affiliation(s)
- Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, DF 14000, Mexico
| | | | | |
Collapse
|
66
|
Abstract
Acetyl-CoA carboxylase (ACC) catalyses the formation of malonyl-CoA, an essential substrate for fatty acid synthesis in lipogenic tissues and a key regulatory molecule in muscle, brain and other tissues. ACC contributes importantly to the overall control of energy metabolism and has provided an important model to explore mechanisms of enzyme control and hormone action. Mammalian ACCs are multifunctional dimeric proteins (530–560 kDa) with the potential to further polymerize and engage in multiprotein complexes. The enzymatic properties of ACC are complex, especially considering the two active sites, essential catalytic biotin, the three-substrate reaction and effects of allosteric ligands. The expression of the two major isoforms and splice variants of mammalian ACC is tissue-specific and responsive to hormones and nutritional status. Key regulatory elements and cognate transcription factors are still being defined. ACC specific activity is also rapidly modulated, being increased in response to insulin and decreased following exposure of cells to catabolic hormones or environmental stress. The acute control of ACC activity is the product of integrated changes in substrate supply, allosteric ligands, the phosphorylation of multiple serine residues and interactions with other proteins. This review traces the path and implications of studies initiated with Dick Denton in Bristol in the late 1970s, through to current proteomic and other approaches that have been consistently challenging and immensely rewarding.
Collapse
|
67
|
Kotzka J, Müller-Wieland D. Sterol regulatory element-binding protein (SREBP)-1: gene regulatory target for insulin resistance? Expert Opin Ther Targets 2006; 8:141-9. [PMID: 15102555 DOI: 10.1517/14728222.8.2.141] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The combined appearance of different cardiovascular risk factors seems to be more prevalent in individuals with decreased insulin sensitivity and increased visceral obesity, thereby being components of the so-called metabolic syndrome. Alterations in transcription factors result in complex dysregulation of gene expression, which might be the key to understanding insulin resistance-associated clinical clustering of coronary risk factors at the cellular or gene regulatory level. Recent examples are peroxisome proliferator-activated receptors and sterol regulatory element-binding proteins (SREBPs), which also appear to be novel drug targets. The authors have recently shown that SREBPs are substrates of mitogen-activated protein kinases, and propose that SREBP-1 might play a role in the development of cellular features belonging to lipotoxicity and, possibly, syndrome X.
Collapse
Affiliation(s)
- Jorg Kotzka
- Klinische Biochemie und Pathobiochemie, Deutsches Diabetes-Forschungsinstitut, Leibniz-Institut an der Heinrich-Heine-Universität Düsseldorf, Germany
| | | |
Collapse
|
68
|
Saito T, Kawano T, Saito T, Ikoma A, Namai K, Tamemoto H, Kawakami M, Ishikawa SE. Elevation of serum adiponectin levels in Basedow disease. Metabolism 2005; 54:1461-6. [PMID: 16253634 DOI: 10.1016/j.metabol.2005.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 05/13/2005] [Indexed: 11/24/2022]
Abstract
The present study was undertaken to determine whether thyroid hormone affects serum adiponectin levels in the patients with Basedow disease. Sixty-four patients with Basedow disease were examined; 32 patients had hyperthyroid state and 32 patients had euthyroid state who had been treated with antithyroid drugs. In addition, 30 age- and sex-matched subjects served as a control. Serum adiponectin, free T4, free T3, thyroid-stimulating hormone, and thyroid-stimulating hormone receptor antibody (TRAb) were measured. Serum adiponectin levels were 12.9+/-1.6 microg/mL in the hyperthyroid state, a value significantly greater than that of 8.2 +/- 0.5 microg/mL in the euthyroid state (P<.05) and that of 8.6+/-0.7 microg/mL in the control subjects (P<.05). Serum adiponectin levels had positive correlations with either of serum free T4 (r=0.453, P<.001), free T3 (r=0.47, P< .001), or TRAb (r= 0.491, P<.001), but not with body mass index. Multiple regression analysis showed TRAb had the strongest contribution to serum adiponectin concentration in the patients with Basedow disease. The present findings indicate that hyper-adiponectinemia is closely associated with increases in serum thyroid hormone levels and TRAb in Basedow disease.
Collapse
Affiliation(s)
- Takako Saito
- Department of Medicine, Jichi Medical School, Omiya Medical Center, Saitama 330-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Brewer M, Lange D, Baler R, Anzulovich A. SREBP-1 as a transcriptional integrator of circadian and nutritional cues in the liver. J Biol Rhythms 2005; 20:195-205. [PMID: 15851526 DOI: 10.1177/0748730405275952] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The act of feeding in mammals can generate such powerful cues for peripheral organs that, under certain conditions, they can override the entraining signals coming from the clock in the brain. Restricting the feeding time to the inactivity period, for example, can completely and quickly reverse the rhythms of gene expression in the liver. This manipulation does not affect the central oscillator in the suprachiasmatic nucleus, which is phase-locked to the light-dark cycle, but does release the peripheral oscillations in the liver from central control. It seems reasonable to predict the existence of one or more immediate response systems designed to sense the need to acutely reverse the sequence of absorptive and postabsorptive phases in the liver. In this study, the authors monitored the posttranslational activation of the sterol response element binding proteins from a circadian point of view to evaluate the role they might play in the circadian organization of the liver transcriptome as well as in the reversal of hepatic physiology that accompanies diurnal restricted feeding. This study highlights a possible direct link between the immediate effects of food consumption on the level of key membrane and humoral factors and the expression status of a set of coordinately regulated target genes in the liver.
Collapse
Affiliation(s)
- Michelle Brewer
- Unit on Temporal Gene Expression, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
70
|
Barber MC, Price NT, Travers MT. Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1733:1-28. [PMID: 15749055 DOI: 10.1016/j.bbalip.2004.12.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 11/02/2004] [Accepted: 12/01/2004] [Indexed: 11/16/2022]
Abstract
Acetyl-CoA carboxylase (ACC) plays a fundamental role in fatty acid metabolism. The reaction product, malonyl-CoA, is both an intermediate in the de novo synthesis of long-chain fatty acids and also a substrate for distinct fatty acyl-CoA elongation enzymes. In metazoans, which have evolved energy storage tissues to fuel locomotion and to survive periods of starvation, energy charge sensing at the level of the individual cell plays a role in fuel selection and metabolic orchestration between tissues. In mammals, and probably other metazoans, ACC forms a component of an energy sensor with malonyl-CoA, acting as a signal to reciprocally control the mitochondrial transport step of long-chain fatty acid oxidation through the inhibition of carnitine palmitoyltransferase I (CPT I). To reflect this pivotal role in cell function, ACC is subject to complex regulation. Higher metazoan evolution is associated with the duplication of an ancestral ACC gene, and with organismal complexity, there is an increasing diversity of transcripts from the ACC paraloges with the potential for the existence of several isozymes. This review focuses on the structure of ACC genes and the putative individual roles of their gene products in fatty acid metabolism, taking an evolutionary viewpoint provided by data in genome databases.
Collapse
Affiliation(s)
- Michael C Barber
- Hannah Research Institute, Ayr, KA6 5HL, Scotland, United Kingdom.
| | | | | |
Collapse
|
71
|
Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 2004; 86:839-48. [PMID: 15589694 DOI: 10.1016/j.biochi.2004.09.018] [Citation(s) in RCA: 1109] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 09/27/2004] [Indexed: 02/08/2023]
Abstract
Sterol regulatory element binding proteins (SREBPs) are a family of transcription factors that regulate lipid homeostasis by controlling the expression of a range of enzymes required for endogenous cholesterol, fatty acid (FA), triacylglycerol and phospholipid synthesis. The three SREBP isoforms, SREBP-1a, SREBP-1c and SREBP-2, have different roles in lipid synthesis. In vivo studies using transgenic and knockout mice suggest that SREBP-1c is involved in FA synthesis and insulin induced glucose metabolism (particularly in lipogenesis), whereas SREBP-2 is relatively specific to cholesterol synthesis. The SREBP-1a isoform seems to be implicated in both pathways. SREBP transcription factors are synthetized as inactive precursors bound to the endoplasmic reticulum (ER) membranes. Upon activation, the precursor undergoes a sequential two-step cleavage process to release the NH(2)-terminal active domain in the nucleus (designated nSREBPs). SREBP processing is mainly controlled by cellular sterol content. When sterol levels decrease, the precursor is cleaved to activate cholesterogenic genes and maintain cholesterol homeostasis. This sterol-sensitive process appears to be a major point of regulation for the SREBP-1a and SREBP-2 isoforms but not for SREBP-1c. Moreover, the SREBP-1c isoform seems to be mainly regulated at the transcriptional level by insulin. The unique regulation and activation properties of each SREBP isoform facilitate the co-ordinate regulation of lipid metabolism; however, further studies are needed to understand the detailed regulation pathways that specifically regulate each SREBP isoform.
Collapse
Affiliation(s)
- Delphine Eberlé
- Inserm U465, Université Pierre et Marie Curie, 15, rue de l'Ecole de médecine, 75270 Paris cedex 06, France
| | | | | | | | | |
Collapse
|
72
|
Berkenstam A, Färnegårdh M, Gustafsson JA. Convergence of lipid homeostasis through liver X and thyroid hormone receptors. Mech Ageing Dev 2004; 125:707-17. [PMID: 15541766 DOI: 10.1016/j.mad.2004.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Members of the nuclear receptor gene family act as biological rheostats to maintain metabolic homeostasis in response to endocrine and nutritional changes. The liver X (LXR) and thyroid hormone (TR) receptors have been shown to regulate overlapping but distinct metabolic pathways important for overall lipid homeostasis. Dyslipidemia is one out of four key determinants for cardiovascular risk and both LXRs and TRs may provide attractive targets for intervention of cardiovascular disease. In this review we will compare the two receptor systems to highlight similarities and differences in structure and function with implications for development of novel treatments for dyslipidemia and atherosclerosis.
Collapse
|
73
|
Zhang Y, Hillgartner FB. Starvation and feeding a high-carbohydrate, low-fat diet regulate the expression sterol regulatory element-binding protein-1 in chickens. J Nutr 2004; 134:2205-10. [PMID: 15333705 DOI: 10.1093/jn/134.9.2205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In mammalian liver, the mature form of sterol regulatory element-binding protein-1c (SREBP-1c) is an important activator of a wide array of genes involved in triacylglycerol biosynthesis. Starvation and feeding a high-carbohydrate, low-fat diet modulate the concentration of mature SREBP-1c primarily by a pretranslational mechanism. It is not known whether alterations in nutritional status regulate the concentration of SREBPs in nonmammalian species. In this study, we found that in previously starved chicks, feeding a high-carbohydrate, low-fat diet stimulated a robust increase (14-fold at 5 h of feeding) in the concentration of mature SREBP-1 in liver. Feeding a high-carbohydrate, low-fat diet also increased the concentration of precursor SREBP-1 and SREBP-1 messenger RNA in chick liver; however, the magnitude of this effect was substantially lower than that observed for mature SREBP-1. DNA binding experiments demonstrated that 3 protein complexes containing SREBP bound the acetyl-CoA carboxylase-alpha (ACCalpha) sterol regulatory element (SRE) in chick liver and that the binding activity of 2 of these complexes was increased by consumption of a high-carbohydrate, low-fat diet. Additional analyses showed that feeding a high-carbohydrate, low-fat diet had no effect on the concentration of mature SREBP-2 and the binding of SREBP-2 to the ACCalpha SRE in chick liver. These results indicate that alterations in the concentration of mature SREBP-1 play a role in mediating the effects of starvation and feeding a high-carbohydrate, low-fat diet on ACCalpha transcription in chick liver and that diet-induced changes in mature SREBP-1 concentration in chick liver are mediated primarily by a posttranslational mechanism.
Collapse
Affiliation(s)
- Yanqiao Zhang
- Department of Biochemistry and Molecular Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | | |
Collapse
|
74
|
Assaf S, Lagarrigue S, Daval S, Sansom M, Leclercq B, Michel J, Pitel F, Alizadeh M, Vignal A, Douaire M. Genetic linkage and expression analysis of SREBP and lipogenic genes in fat and lean chicken. Comp Biochem Physiol B Biochem Mol Biol 2004; 137:433-41. [PMID: 15081995 DOI: 10.1016/j.cbpc.2004.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 01/13/2004] [Accepted: 01/14/2004] [Indexed: 01/21/2023]
Abstract
To identify the genes directly responsible, through DNA polymorphism, for the difference in fatness observed between a lean and a fat chicken line, we studied five genes (ACL, ACC, FAS, ME, SCD1) encoding key enzymes involved in liver fatty acid synthesis and secretion. Genetic linkage was tested between polymorphic sites in the genes and the fatness trait segregating in an F2 design obtained by inter-crossing the two fat and lean lines. Despite a confirmation of a higher mRNA level in the fat birds, no genetic linkage of the gene alleles with the phenotype could be found. As a test of the implication of upstream regulatory transcription factors, SREPB genes were also studied. The lack of genetic linkage of SREBP genes with fatness shows that these genes are not directly responsible through polymorphism for fatness variability in our model. Moreover, the similar SREBP mRNA levels observed between the two lines led us to exclude also transcriptional factors regulating the two SREBP genes as being directly responsible for fatness variability. However, the genes involved in post-translational modifications of SREBPs remain candidates to investigate. These results emphasised the interest to perform expression and genetic linkage studies jointly, to progress in identifying the genetic origin of variability of a quantitative trait.
Collapse
Affiliation(s)
- Sirine Assaf
- UMR Génétique Animale, Institut National de la Recherche Agronomique-Ecole Nationale Supérieure Agronomique de Rennes, 65 rue de Saint-Brieuc, 35042 Rennes Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Shin DJ, Osborne TF. Thyroid hormone regulation and cholesterol metabolism are connected through Sterol Regulatory Element-Binding Protein-2 (SREBP-2). J Biol Chem 2003; 278:34114-8. [PMID: 12829694 DOI: 10.1074/jbc.m305417200] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High affinity uptake of serum-derived low density lipoprotein (LDL) cholesterol is accomplished through the LDL receptor in the liver. In mammals, thyroid hormone depletion leads to decreased LDL receptor expression and elevated serum cholesterol. The clinical association in humans has been known since the 1920s; however, a molecular explanation has been lacking. LDL receptor levels are subject to negative feedback regulation by cellular cholesterol through sterol regulatory element-binding protein-2 (SREBP-2). Here we demonstrate that the SREBP-2 gene is regulated by thyroid hormone and that increased SREBP-2 nuclear protein levels in hypothyroid animals results in thyroid hormone-independent activation of LDL receptor gene expression and reversal of the associated hypercholesterolemia. This occurs without effects on other thyroid hormone-regulated genes. Thus, we propose that the decreased LDL receptor and increased serum cholesterol associated with hypothyroidism are secondary to the thyroid hormone effects on SREBP-2. These results suggest that hypercholesterolemia associated with hypothyroidism can be reversed by agents that directly increase SREBP-2. Additionally, these results indicate that mutations or drugs that lower nuclear SREBP-2 would cause hypercholesterolemia.
Collapse
Affiliation(s)
- Dong-Ju Shin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|