51
|
Thornalley PJ, Rabbani N. Protein damage in diabetes and uremia—identifying hotspots of proteome damage where minimal modification is amplified to marked pathophysiological effect. Free Radic Res 2010; 45:89-100. [DOI: 10.3109/10715762.2010.534162] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
52
|
Gaens KH, Stehouwer CDA, Schalkwijk CG. The N ε-(carboxymethyl)lysine-RAGE axis: putative implications for the pathogenesis of obesity-related complications. Expert Rev Endocrinol Metab 2010; 5:839-854. [PMID: 30780826 DOI: 10.1586/eem.10.68] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is an important contributor to the burden of insulin resistance, Type 2 diabetes and cardiovascular disease. An important mechanism by which excess adiposity causes obesity-associated complications is the dysregulated production and secretion of biologically active molecules derived from adipocytes. These adipokines affect the vascular wall and contribute to the development of insulin resistance and Type 2 diabetes. However, factors that cause an increased production of pro-inflammatory adipokines, while decreasing anti-inflammatory adipokines, have not been fully clarified. Owing to local conditions in adipose tissue, that is, increased fatty acids, hypoxia and oxidative stress, we speculate that an increased formation of the major advanced lipoxidation end product, Nε-(carboxymethyl)lysine (CML), may play a role. CML-adducts in proteins are major ligands for the receptor for advanced glycation end products (RAGE). The consequence of RAGE activation by CML is the activation of important signaling inflammatory pathways. The putative role of CML-modified proteins in obesity is addressed in this article. The identification of this pathway may provide an important strategy for novel therapeutic approaches against obesity-associated complications.
Collapse
Affiliation(s)
- Katrien Hj Gaens
- a Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, P Debeyelaan 25, PO Box 5800, 6206 AZ Maastricht, The Netherlands
- b Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Coen DA Stehouwer
- a Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, P Debeyelaan 25, PO Box 5800, 6206 AZ Maastricht, The Netherlands
- b Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- a Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, P Debeyelaan 25, PO Box 5800, 6206 AZ Maastricht, The Netherlands
- b Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- c
| |
Collapse
|
53
|
Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 2010; 42:1133-42. [DOI: 10.1007/s00726-010-0783-0] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/02/2010] [Indexed: 01/18/2023]
|
54
|
Labieniec M, Watala C. Use of poly(amido)amine dendrimers in prevention of early non-enzymatic modifications of biomacromolecules. Biochimie 2010; 92:1296-305. [DOI: 10.1016/j.biochi.2010.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 06/03/2010] [Indexed: 10/19/2022]
|
55
|
Hipkiss AR. Proteotoxicity and the Contrasting Effects of Oxaloacetate and Glycerol onCaenorhabditis elegansLife Span: A Role for Methylglyoxal? Rejuvenation Res 2010; 13:547-51. [DOI: 10.1089/rej.2010.1025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alan R. Hipkiss
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
56
|
Nakamura A, Kawakami K, Kametani F, Nakamoto H, Goto S. Biological significance of protein modifications in aging and calorie restriction. Ann N Y Acad Sci 2010; 1197:33-9. [DOI: 10.1111/j.1749-6632.2009.05374.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
57
|
Price CL, Hassi HOSA, English NR, Blakemore AIF, Stagg AJ, Knight SC. Methylglyoxal modulates immune responses: relevance to diabetes. J Cell Mol Med 2010; 14:1806-15. [PMID: 19538479 PMCID: PMC3829040 DOI: 10.1111/j.1582-4934.2009.00803.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 05/18/2009] [Indexed: 11/27/2022] Open
Abstract
Increased methylglyoxal (MG) concentrations and formation of advanced glycation end-products (AGEs) are major pathways of glycaemic damage in diabetes, leading to vascular and neuronal complications. Diabetes patients also suffer increased susceptibility to many common infections, the underlying causes of which remain elusive. We hypothesized that immune glycation damage may account for this increased susceptibility. We previously showed that the reaction mixture (RM) for MG glycation of peptide blocks up regulation of CD83 in myeloid cells and inhibits primary stimulation of T cells. Here, we continue to investigate immune glycation damage, assessing surface and intracellular cytokine protein expression by flow cytometry, T-cell proliferation using a carboxyfluorescein succinimidyl ester assay, and mRNA levels by RT-PCR. We show that the immunomodulatory component of this RM was MG itself, with MG alone causing equivalent block of CD83 and loss of primary stimulation. Block of CD83 expression could be reversed by MG scavenger N-acetyl cysteine. Further, MG within RM inhibited stimulated production of interleukin (IL)-10 protein from myeloid cells plus interferon (IFN)-gamma and tumour necrosis factor (TNF)-alpha from T cells. Loss of IL-10 and IFN-gamma was confirmed by RT-PCR analysis of mRNA, while TNF-alpha message was raised. Loss of TNF-alpha protein was also shown by ELISA of culture supernatants. In addition, MG reduced major histocompatibility complex (MHC) class I expression on the surface of myeloid cells and increased their propensity to apoptose. We conclude that MG is a potent suppressor of myeloid and T-cell immune function and may be a major player in diabetes-associated susceptibility to infection.
Collapse
Affiliation(s)
- Claire L Price
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Marks CampusHarrow, Middlesex, UK
| | - Hafid O S Al Hassi
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Marks CampusHarrow, Middlesex, UK
| | - Nicholas R English
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Marks CampusHarrow, Middlesex, UK
| | | | - Andrew J Stagg
- Centre for Infectious Disease, Barts and The London School of Medicine and DentistryLondon, UK
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Marks CampusHarrow, Middlesex, UK
| |
Collapse
|
58
|
Hipkiss AR. Aging, Proteotoxicity, Mitochondria, Glycation, NAD and Carnosine: Possible Inter-Relationships and Resolution of the Oxygen Paradox. Front Aging Neurosci 2010; 2:10. [PMID: 20552048 PMCID: PMC2874395 DOI: 10.3389/fnagi.2010.00010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/01/2010] [Indexed: 11/13/2022] Open
Abstract
It is suggested that NAD(+) availability strongly affects cellular aging and organism lifespan: low NAD(+) availability increases intracellular levels of glycolytic triose phosphates (glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate) which, if not further metabolized, decompose spontaneously into methylglyoxal (MG), a glycating agent and source of protein and mitochondrial dysfunction and reactive oxygen species (ROS). MG-damaged proteins and other aberrant polypeptides can induce ROS generation, promote mitochondrial dysfunction and inhibit proteasomal activity. Upregulation of mitogenesis and mitochondrial activity by increased aerobic exercise, or dietary manipulation, helps to maintain NAD(+)availability and thereby decreases MG-induced proteotoxicity. These proposals can explain the apparent paradox whereby aging is seemingly caused by increased ROS-mediated macromolecular damage but is ameliorated by increased aerobic activity. It is also suggested that increasing mitochondrial activity decreases ROS generation, while excess numbers of inactive mitochondria are deleterious due to increased ROS generation. The muscle- and brain-associated dipeptide, carnosine, is an intracellular buffer which can delay senescence in cultured human fibroblasts and delay aging in senescence-accelerated mice. Carnosine's ability to react with MG and possibly other deleterious carbonyl compounds, and scavenge various ROS, may account for its protective ability towards ischemia and ageing.
Collapse
Affiliation(s)
- Alan R Hipkiss
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, The University of Birmingham Birmingham, UK
| |
Collapse
|
59
|
|
60
|
Nass N, Kukat A, Seibel P, Brömme HJ, Schinzel R, Silber RE, Simm A. Advanced glycation end product accumulation in rho0 cells without a functional respiratory chain. Biol Chem 2009; 390:915-9. [DOI: 10.1515/bc.2009.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Advanced glycation end products (AGEs) accumulate during ageing with reactive oxygen species from the mitochondrial respiratory chain discussed as a driving force. To determine the role of mitochondrial activity for AGE formation, a rho0 derivative of the 143B.TK- osteosarcoma cell line lacking the respiratory chain, was analysed. These cells exhibit decreased superoxide formation but unchanged mitochondrial SOD expression as well as unchanged antioxidative free sulfhydryl (SH) levels. Whereas total protein content shows no differences in AGE levels, cell fractionation and Western blotting demonstrates some changes in the AGE pattern. Thus, the absence of functional respiration has only a negligible impact on AGE accumulation.
Collapse
|
61
|
Bechtold U, Rabbani N, Mullineaux PM, Thornalley PJ. Quantitative measurement of specific biomarkers for protein oxidation, nitration and glycation in Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:661-71. [PMID: 19392687 DOI: 10.1111/j.1365-313x.2009.03898.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Higher plants are continually exposed to reactive oxygen and nitrogen species during their lives. Together with glucose and reactive dicarbonyls, these can modify proteins spontaneously, leading to protein oxidation, nitration and glycation. These reactions have the potential to damage proteins and have an impact on physiological processes. The levels of protein oxidation, nitration and glycation adducts were assayed, using liquid chromatography coupled with tandem mass spectrometry, in total leaf extracts over a diurnal cycle and when exposed to conditions that promote oxidative stress. Changes in the levels of oxidation, glycation and nitration adducts were found between the light and dark phases under non-stress conditions. A comparison between wild-type plants and a mutant lacking peptide methionine sulfoxide reductase (pmsr2-1) showed increased protein oxidation, nitration and glycation of specific amino acid residues during darkness in pmsr2-1. Short-term excess light exposure, which promoted oxidative stress, led to increased protein glycation, specifically by glyoxal. This suggested that any increased oxidative damage to proteins was within the repair capacity of the plant. The methods developed here provide the means to simultaneously detect a range of protein oxidation, nitration and glycation adducts within a single sample. Thus, these methods identify a range of biomarkers to monitor a number of distinct biochemical processes that have an impact on the proteome and therefore the physiological state of the plant.
Collapse
Affiliation(s)
- Ulrike Bechtold
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | | | | | | |
Collapse
|
62
|
"Blinding" of AMP-dependent kinase by methylglyoxal: a mechanism that allows perpetuation of hepatic insulin resistance? Med Hypotheses 2009; 73:921-4. [PMID: 19643547 DOI: 10.1016/j.mehy.2009.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 06/22/2009] [Accepted: 06/24/2009] [Indexed: 01/01/2023]
Abstract
AMP-dependent kinase (AMPK) is a regulatory carrefour and a key target for therapeutics. The role of AMPK in regulating cellular energy status (by sensing low energy using [AMP] as its signal) and activating catabolic pathways while inhibiting anabolic routes, places this enzyme at a central control point in maintaining energy homeostasis. The exquisite allosteric sensing of AMP is done by a domain with three arginine residues, which make it very vulnerable to glycation, especially by the alpha-dicarbonyl methylglyoxal (MG). MG accumulates in hyperglycemia, insulin resistance, diabetes and when there is excess flux of reactive oxygen species coming from the mitochondria. We hypothesize that excess MG in the above-mentioned conditions blocks the sensing of AMP by AMPK, thereby favoring gluconeogenesis (thus hepatic glucose output and hyperglycemia) and lipogenesis (hepatic steatosis and high VLDL), hallmarks of insulin resistance and diabetes. Our hypothesis may explain, for instance, the perpetuation of hepatic insulin resistance, as well as part of the action of metformin, which is a potent anti-glycation agent. Future targets for type 2 diabetes treatments will likely be those that can effect beneficial changes in the activity of AMPK, and our theory predicts that anti-glycation agents may become part of that armamentarium.
Collapse
|
63
|
Reddy VP, Zhu X, Perry G, Smith MA. Oxidative stress in diabetes and Alzheimer's disease. J Alzheimers Dis 2009; 16:763-74. [PMID: 19387111 DOI: 10.3233/jad-2009-1013] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress plays a major role in diabetes as well as in Alzheimer's disease and other related neurological diseases. Intracellular oxidative stress arises due to the imbalance in the production of reactive oxygen/reactive nitrogen species and cellular antioxidant defense mechanisms. In turn, the excess reactive oxygen/reactive nitrogen species mediate the damage of proteins and nucleic acids, which have been shown to have direct and deleterious consequences in diabetes and Alzheimer's disease. Oxidative stress also contributes to the production of advanced glycation end products through glycoxidation and lipid peroxidation. The advanced glycation end products and lipid peroxidation products are ubiquitous to diabetes and Alzheimer's disease and serve as markers of disease progression in both disorders. Antioxidants and advanced glycation end products inhibitors, either induced endogenously or exogenously introduced, may counteract with the deleterious effects of the reactive oxygen/reactive nitrogen species and thereby, in prevention or treatment paradigms, attenuate or substantially delay the onset of these devastating pathologies.
Collapse
Affiliation(s)
- V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | | | | | | |
Collapse
|
64
|
Hipkiss AR. NAD+ availability and proteotoxicity. Neuromolecular Med 2009; 11:97-100. [PMID: 19554482 DOI: 10.1007/s12017-009-8069-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/21/2009] [Indexed: 11/25/2022]
Abstract
It has been shown that NAD(+) availability is important for neuronal survival following ischemia (Liu et al., Neuromolecular Med 11:28-42, 2009). It is proposed here that NAD(+) may also control proteotoxicity by influencing both formation and catabolism of altered proteins. It is suggested that low NAD(+) availability promotes synthesis of methylglyoxal (MG) which can induce formation of glycated proteins, ROS, and dysfunctional mitochondria. That glyoxalase overexpression and carnosine are both protective against MG and ischemic injury support this proposal. Recognition and elimination of altered proteins is enhanced by NAD(+) through effects on stress protein expression and autophagy.
Collapse
Affiliation(s)
- Alan R Hipkiss
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
65
|
Zhang Q, Ames JM, Smith RD, Baynes JW, Metz TO. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J Proteome Res 2009; 8:754-69. [PMID: 19093874 DOI: 10.1021/pr800858h] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide an overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the analysis of glycated proteins by mass spectrometry. We propose that proteomics approaches, particularly bottom-up proteomics, will play a significant role in analyses of clinical samples leading to the identification of new markers of disease development and progression.
Collapse
Affiliation(s)
- Qibin Zhang
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | |
Collapse
|
66
|
Bruno M, Moore T, Nesnow S, Ge Y. Protein Carbonyl Formation in Response to Propiconazole-Induced Oxidative Stress. J Proteome Res 2009; 8:2070-8. [DOI: 10.1021/pr801061r] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maribel Bruno
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Tanya Moore
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Stephen Nesnow
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Yue Ge
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
67
|
Hipkiss AR. Carnosine and its possible roles in nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2009; 57:87-154. [PMID: 19595386 DOI: 10.1016/s1043-4526(09)57003-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The dipeptide carnosine has been observed to exert antiaging activity at cellular and whole animal levels. This review discusses the possible mechanisms by which carnosine may exert antiaging action and considers whether the dipeptide could be beneficial to humans. Carnosine's possible biological activities include scavenger of reactive oxygen species (ROS) and reactive nitrogen species (RNS), chelator of zinc and copper ions, and antiglycating and anticross-linking activities. Carnosine's ability to react with deleterious aldehydes such as malondialdehyde, methylglyoxal, hydroxynonenal, and acetaldehyde may also contribute to its protective functions. Physiologically carnosine may help to suppress some secondary complications of diabetes, and the deleterious consequences of ischemic-reperfusion injury, most likely due to antioxidation and carbonyl-scavenging functions. Other, and much more speculative, possible functions of carnosine considered include transglutaminase inhibition, stimulation of proteolysis mediated via effects on proteasome activity or induction of protease and stress-protein gene expression, upregulation of corticosteroid synthesis, stimulation of protein repair, and effects on ADP-ribose metabolism associated with sirtuin and poly-ADP-ribose polymerase (PARP) activities. Evidence for carnosine's possible protective action against secondary diabetic complications, neurodegeneration, cancer, and other age-related pathologies is briefly discussed.
Collapse
Affiliation(s)
- Alan R Hipkiss
- School of Clinicial and Experimental Medicine, College of Medical and Dental Sciences, The Univeristy of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
68
|
Lee HK, Seo IA, Suh DJ, Lee HJ, Park HT. A novel mechanism of methylglyoxal cytotoxicity in neuroglial cells. J Neurochem 2008; 108:273-84. [PMID: 19012752 DOI: 10.1111/j.1471-4159.2008.05764.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Methylglyoxal (MGO) is an endogenous dicarbonyl compound that is highly produced in hyperglycemic conditions. It forms advanced glycation endproducts that are believed to contribute, as etiological factors, to the pathophysiology of diabetic complications. In addition, MGO suppresses cell viability through the induction of apoptosis in vitro. In this study, we have, for the first time, demonstrated the effect of MGO on the gp130 cytokine-induced signal transducer and activator of transcription 3 (STAT3) responses in RT4 schwannoma, PC12 pheochromocytoma and U87MG glioma cells. At dose that very mildly affects cell viability, MGO rapidly induces endocytotic degradation of gp130, which involves the di-leucine internalization motif in the cytoplasmic domain of gp130, without affecting other growth factor receptors. Concomitant inhibition of basal and interleukin-6-induced STAT3 activation was observed following pre-treatment with MGO. The inhibitory effect of MGO on the gp130/STAT3 signaling was prevented by the pre-treatment with an advanced glycation endproduct scavenger aminoguanidine. Finally, these deleterious effects of MGO on STAT3 signaling led to down-regulation of a STAT3 target gene, Bcl-2, and sensitized cellular toxicity induced by H(2)O(2) and etoposide. Our data indicate that MGO affects cell viability via desensitization of gp130/STAT3 signaling, which is the key signaling pathway for cell survival, and thereby promotes cytotoxicity.
Collapse
Affiliation(s)
- Hyun Kyoung Lee
- Department of Physiology, Medical Science Research, Institute, College of Medicine, Dong-A University, Busan, South Korea
| | | | | | | | | |
Collapse
|