51
|
Darst BF, Saunders E, Dadaev T, Sheng X, Wan P, Pooler L, Xia LY, Chanock S, Berndt SI, Wang Y, Patel AV, Albanes D, Weinstein SJ, Gnanapragasam V, Huff C, Couch FJ, Wolk A, Giles GG, Nguyen-Dumont T, Milne RL, Pomerantz MM, Schmidt JA, Travis RC, Key TJ, Stopsack KH, Mucci LA, Catalona WJ, Marosy B, Hetrick KN, Doheny KF, MacInnis RJ, Southey MC, Eeles RA, Wiklund F, Conti DV, Kote-Jarai Z, Haiman CA. Germline Sequencing Analysis to Inform Clinical Gene Panel Testing for Aggressive Prostate Cancer. JAMA Oncol 2023; 9:1514-1524. [PMID: 37733366 PMCID: PMC10881219 DOI: 10.1001/jamaoncol.2023.3482] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/09/2023] [Indexed: 09/22/2023]
Abstract
Importance Germline gene panel testing is recommended for men with advanced prostate cancer (PCa) or a family history of cancer. While evidence is limited for some genes currently included in panel testing, gene panels are also likely to be incomplete and missing genes that influence PCa risk and aggressive disease. Objective To identify genes associated with aggressive PCa. Design, Setting, and Participants A 2-stage exome sequencing case-only genetic association study was conducted including men of European ancestry from 18 international studies. Data analysis was performed from January 2021 to March 2023. Participants were 9185 men with aggressive PCa (including 6033 who died of PCa and 2397 with confirmed metastasis) and 8361 men with nonaggressive PCa. Exposure Sequencing data were evaluated exome-wide and in a focused investigation of 29 DNA repair pathway and cancer susceptibility genes, many of which are included on gene panels. Main Outcomes and Measures The primary study outcomes were aggressive (category T4 or both T3 and Gleason score ≥8 tumors, metastatic PCa, or PCa death) vs nonaggressive PCa (category T1 or T2 and Gleason score ≤6 tumors without known recurrence), and metastatic vs nonaggressive PCa. Results A total of 17 546 men of European ancestry were included in the analyses; mean (SD) age at diagnosis was 65.1 (9.2) years in patients with aggressive PCa and 63.7 (8.0) years in those with nonaggressive disease. The strongest evidence of association with aggressive or metastatic PCa was noted for rare deleterious variants in known PCa risk genes BRCA2 and ATM (P ≤ 1.9 × 10-6), followed by NBN (P = 1.7 × 10-4). This study found nominal evidence (P < .05) of association with rare deleterious variants in MSH2, XRCC2, and MRE11A. Five other genes had evidence of greater risk (OR≥2) but carrier frequency differences between aggressive and nonaggressive PCa were not statistically significant: TP53, RAD51D, BARD1, GEN1, and SLX4. Deleterious variants in these 11 candidate genes were carried by 2.3% of patients with nonaggressive, 5.6% with aggressive, and 7.0% with metastatic PCa. Conclusions and Relevance The findings of this study provide further support for DNA repair and cancer susceptibility genes to better inform disease management in men with PCa and for extending testing to men with nonaggressive disease, as men carrying deleterious alleles in these genes are likely to develop more advanced disease.
Collapse
Affiliation(s)
- Burcu F. Darst
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
- Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ed Saunders
- The Institute of Cancer Research, London, United Kingdom
| | - Tokhir Dadaev
- The Institute of Cancer Research, London, United Kingdom
| | - Xin Sheng
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Peggy Wan
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Loreall Pooler
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Lucy Y. Xia
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ying Wang
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Alpa V. Patel
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie J. Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vincent Gnanapragasam
- Division of Urology, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Chad Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston
| | - Fergus J. Couch
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Victoria, Australia
| | - Roger L. Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | | | - Julie A. Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital and Aarhus University, Aarhus N, Denmark
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | | | - Lorelei A. Mucci
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | - Beth Marosy
- Center for Inherited Disease Research, Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kurt N. Hetrick
- Center for Inherited Disease Research, Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kimberly F. Doheny
- Center for Inherited Disease Research, Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Robert J. MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Melissa C. Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Victoria, Australia
| | - Rosalind A. Eeles
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, Fulham Road, London, United Kingdom
| | | | - David V. Conti
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | | | - Christopher A. Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
52
|
Rendon RA, Selvarajah S, Wyatt AW, Kolinsky M, Schrader KA, Fleshner NE, Kinnaird A, Merrimen J, Niazi T, Saad F, Shayegan B, Wood L, Chi KN. 2023 Canadian Urological Association guideline: Genetic testing in prostate cancer. Can Urol Assoc J 2023; 17:314-325. [PMID: 37851913 PMCID: PMC10581723 DOI: 10.5489/cuaj.8588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Affiliation(s)
| | - Shamini Selvarajah
- Department of Clinical Laboratory Genetics, UHN Laboratory Medicine Program, University of Toronto, Toronto, ON, Canada
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Michael Kolinsky
- Division of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Neil E. Fleshner
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Adam Kinnaird
- Divison of Urology, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | | | - Tamim Niazi
- Division of Radiation Oncology, Department of Oncology, McGill University, Montreal, QC, Canada
| | - Fred Saad
- Division of Urology, Department of Surgery, Université de Montréal, Montreal, QC, Canada
| | - Bobby Shayegan
- Division of Urology, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Lori Wood
- Division of Medical Oncology, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | | |
Collapse
|
53
|
Yip SM, Morash C, Kolinsky MP, Kapoor A, Ong M, Selvarajah S, Nuk J, Compton K, Pouliot F, Lavallée LT, Khalaf DJ, Hamilton RJ, Gotto GT, Rendon RA, Antebi E, Hotte SJ, Malone S, Chi KN, Drachenberg DE, Saad F, Chan J, Ferrario C, Ko J, Shayegan B, Parimi S, So AI, Feifer A, Jansz K, Finch D, Chin JL, Osborne B, Ho KF, Galamo CD, Zardan A, Niazi T. Genetic testing practices among specialist physicians who treat prostate cancer A Canadian, cross-sectional survey. Can Urol Assoc J 2023; 17:326-336. [PMID: 37494316 PMCID: PMC10581730 DOI: 10.5489/cuaj.8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
INTRODUCTION In patients with prostate cancer (PCa), the identification of an alteration in genes associated with homologous recombination repair (HRR) has implications for prognostication, optimization of therapy, and familial risk mitigation. The aim of this study was to assess the genomic testing landscape of PCa in Canada and to recommend an approach to offering germline and tumor testing for HRR-associated genes. METHODS The Canadian Genitourinary Research Consortium (GURC) administered a cross-sectional survey to a largely academic, multidisciplinary group of investigators across 22 GURC sites between January and June 2022. RESULTS Thirty-eight investigators from all 22 sites responded to the survey. Germline genetic testing was initiated by 34%, while 45% required a referral to a genetic specialist. Most investigators (82%) reported that both germline and tumor testing were needed, with 92% currently offering germline and 72% offering tissue testing to patients with advanced PCa. The most cited reasons for not offering testing were an access gap (50%), uncertainties around who to test and which genes to test, (33%) and interpreting results (17%). A majority reported that patients with advanced PCa (74-80%) should be tested, with few investigators testing patients with localized disease except when there is a family history of PCa (45-55%). CONCLUSIONS Canadian physicians with academic subspecialist backgrounds in genitourinary malignancies recognize the benefits of both germline and somatic testing in PCa; however, there are challenges in accessing testing across practices and specialties. An algorithm to reduce uncertainty for providers when ordering genetic testing for patients with PCa is proposed.
Collapse
Affiliation(s)
- Steven M Yip
- Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | | | | | - Anil Kapoor
- St Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| | - Michael Ong
- Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Shamini Selvarajah
- Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network (UHN), Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jennifer Nuk
- Hereditary Cancer Program, BC Cancer, Vancouver, BC, Canada
| | - Katie Compton
- Hereditary Cancer Program, BC Cancer, Vancouver, BC, Canada
| | - Frederic Pouliot
- Centre hospitalier universitaire de Québec, Université Laval, Quebec City, QC, Canada
| | - Luke T Lavallée
- Division of Urology, Department of Surgery, University of Ottawa and Ottawa Hospital Research Institute Epidemiology Program, Ottawa, ON, Canada
| | - Daniel J Khalaf
- Department of Medicine, Medical Oncology Division, BC Cancer, Vancouver Centre, University of British Columbia, Vancouver, BC, Canada
| | - Robert J Hamilton
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Geoffrey T Gotto
- Southern Alberta Institute of Urology, University of Calgary, Calgary, AB, Canada
| | - Ricardo A Rendon
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, NS, Canada
| | - Elie Antebi
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Shawn Malone
- The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Kim N Chi
- BC Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | - Darrel E Drachenberg
- Section of Urology, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Fred Saad
- Centre Hospitalier de l'Université de Montréal, University of Montreal, Montreal, QC, Canada
| | - Jonathan Chan
- Scarborough Health Network, University of Toronto, ON, Canada
| | | | - Jenny Ko
- Department of Medical Oncology, BC Cancer - Abbotsford, Abbotsford, BC, Canada
| | - Bobby Shayegan
- St Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| | - Sunil Parimi
- Department of Medical Oncology, BC Cancer-Victoria, BC, Canada
| | - Alan I So
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Feifer
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON Canada
- Institute for Better Health, Trillium Health Partners, Mississauga, ON Canada
| | - Kenneth Jansz
- Joseph Brant Hospital, McMaster University, Burlington, ON, Canada
| | - Daygen Finch
- Department of Medical Oncology, BC Cancer Agency - Centre for the Southern Interior, Kelowna, BC, Canada
| | - Joseph L Chin
- Department of Surgery (Urology), University of Western Ontario, London Health Sciences Center, London, ON, Canada
| | | | | | | | | | - Tamim Niazi
- Jewish General Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
54
|
Usui Y, Momozawa Y. Personalized medicine with germline pathogenic variants: Importance of population- and region-wide evidence. Cancer Sci 2023; 114:3816-3824. [PMID: 37530079 PMCID: PMC10551596 DOI: 10.1111/cas.15922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Rare germline pathogenic variants in cancer-predisposing genes have a high impact and potential for clinical utility. In the last 30 years, based on evidence of cancer risk associated with germline pathogenic variants, several measures have been suggested for personalized medicine, including the development of novel treatments, treatment stratification, risk reduction by surgical measures, chemoprevention, removal of environmental factors, and surveillance for early detection among specific high-risk individuals. However, this evidence is mainly based on evaluations of European populations. Our large-scale analyses of more than 100,000 individuals, including 14 disease cases and non-cancer controls in the Japanese population, suggest some discrepancies in the associations between cancer-predisposing genes and diseases, expansion of the targeted diseases of BRCA1 and BRCA2, and a potential novel risk-reduction measure for gastric cancer. They are likely to be explained by population and region variations; therefore, more population-wide and region-wide research could provide improved personalized medicine as well as a better understanding of disease mechanisms. This review summarizes current personalized medicine and discusses the potential use of germline pathogenic variants.
Collapse
Affiliation(s)
- Yoshiaki Usui
- Laboratory for Genotyping DevelopmentRIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Yukihide Momozawa
- Laboratory for Genotyping DevelopmentRIKEN Center for Integrative Medical SciencesYokohamaJapan
| |
Collapse
|
55
|
Huang HF, Gao XX, Li Q, Ma XY, Du LN, Sun PF, Li S. Dosimetric comparison between stereotactic body radiotherapy and carbon-ion radiation therapy for prostate cancer. Quant Imaging Med Surg 2023; 13:6965-6978. [PMID: 37869307 PMCID: PMC10585578 DOI: 10.21037/qims-23-340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
Background Prostate cancer rates have been steadily increasing in recent years. As high-precision radiation therapy methods, stereotactic body radiation therapy (SBRT) and carbon-ion radiation therapy (CIRT) have unique advantages. Analyzing the dosimetric differences between SBRT and CIRT in the treatment of localized prostate cancer can help provide patients with more accurate, individualized treatment plans. Methods We selected computed tomography positioning images and the contours of target volumes of 16 patients with localized prostate cancer who received radiotherapy. We delineated the organs at risk (OARs) on the CyberKnife (CK) treatment planning system (TPS) MultiPlan4.0, which were imported into the CIRT uniform scanning TPS HIMM-1 ci-Plan. Two treatment plans, SBRT and CIRT, were designed for the same patient, and we used SPSS 22.0 for the statistical analysis of data. Results Both SBRT and CIRT plans met the prescribed dose requirements. In terms of target volume exposure dose, D2 (P<0.001), D5 (P<0.001), D50 (P<0.001), D90 (P=0.029), D95 (P<0.001), D98 (P<0.001), and Dmean (P<0.001) under SBRT were significantly higher than those under CIRT; the conformity index (CI) under SBRT was significantly better than that under CIRT (P<0.001); the target volume coverage rate (V95%) and dose homogeneity index (HI) under CIRT were significantly better than those under SBRT (P<0.001). In terms of OAR exposure dosage, the Dmax of the bladder and rectum under SBRT was significantly lower than that under CIRT (P<0.001), but Dmean was in the other direction; the exposure dose of the intestinal tract under CIRT was significantly lower than that under SBRT (P<0.05); Dmax of the femoral head under CIRT was significantly lower than that under SBRT (P<0.05), and there was no statistical difference between them at other doses. Conclusions In this study, we found that when CIRT was used for treating localized prostate cancer, the dose distribution in target volume was more homogeneous and the coverage rate was higher; the average dose of OARs was lower. SBRT had a better CI and higher dose in target volume; the dose hotspot was lower in OARs. It is important to comprehensively consider the dose relationship between local tumor and surrounding tissues when selecting treatment plans.
Collapse
Affiliation(s)
- He-Fa Huang
- Department of Irradiation Oncology, the 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Xing-Xin Gao
- Department of Irradiation Oncology, the 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiao-Yun Ma
- Heavy Ion Center, Wuwei Cancer Hospital, Wuwei, China
| | - Lan-Ning Du
- Department of Radiotherapy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Peng-Fei Sun
- Department of Radiotherapy, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Sha Li
- Department of Irradiation Oncology, the 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| |
Collapse
|
56
|
Militaru FC, Militaru V, Crisan N, Bocsan IC, Udrea AA, Catana A, Kutasi E, Militaru MS. Molecular basis and therapeutic targets in prostate cancer: A comprehensive review. BIOMOLECULES & BIOMEDICINE 2023; 23:760-771. [PMID: 37021836 PMCID: PMC10494850 DOI: 10.17305/bb.2023.8782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Prostate cancer is one of the most significant causes of morbidity and mortality in male patients. The incidence increases with age, and it is higher among African Americans. The occurrence of prostate cancer is associated with many risk factors, including genetic and hereditary predisposition. The most common genetic syndromes associated with prostate cancer risk are BRCA-associated hereditary breast and ovarian cancer (HBOC) and Lynch syndrome. Local-regional therapy, i.e., surgery is beneficial in early-stage prostate cancer management. Advanced and metastatic prostate cancers require systemic therapies, including hormonal inhibition, chemotherapy, and targeted agents. Most prostate cancers can be treated by targeting the androgen-receptor pathway and decreasing androgen production or binding to androgen receptors (AR). Castration-resistant prostate cancer (CRPC) usually involves the PI3K/AKT/mTOR pathway and requires targeted therapy. Specific molecular therapy can target mutated cell lines in which DNA defect repair is altered, caused by mutations of BRCA2, partner and localizer of BRCA2 (PALB2), and phosphatase and tensin homolog (PTEN) or the transmembrane protease serine 2-ERG (TMPRSS2-ERG) fusion. Most benefits were demonstrated in cyclin dependent-kinase 12 (CDK12) mutated cell lines when treated with anti-programmed cell death protein 1 (PD1) therapy. Therapies targeting p53 and AKT are the subject of ongoing clinical trials. Many genetic defects are listed as diagnostic, prognostic, and clinically actionable markers in prostate cancer. Androgen receptor splice variant 7 (AR-V7) is an important oncogenic driver and an early diagnostic and prognostic marker, as well as a therapeutic target in hormone-resistant CRPC. This review summarizes the pathophysiological mechanisms and available targeted therapies for prostate cancer.
Collapse
Affiliation(s)
- Florentina Claudia Militaru
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Medisprof Cancer Center, Cluj-Napoca, Romania
| | - Valentin Militaru
- Medisprof Cancer Center, Cluj-Napoca, Romania
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Clinical County Hospital, Cluj-Napoca, Romania
| | - Nicolae Crisan
- Department of Urology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Andreea Catana
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Institute of Oncology I. Chiricuta, Cluj-Napoca, Romania
| | - Eniko Kutasi
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mariela Sanda Militaru
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
57
|
Zhang T, Wei Y, Hong BH, Sumiyoshi T, Ong EHW, Zeng H, Li Y, Ng C, Pan J, Fang B, Wang B, Wu J, Wang H, Akamatsu S, Chua MLK, Ye D, Zhu Y. Development and validation of a nomogram (APGRC) to predict the presence of germline DNA damage repair pathogenic variants in Asian patients with prostate cancer. Clin Transl Med 2023; 13:e1411. [PMID: 37700486 PMCID: PMC10497832 DOI: 10.1002/ctm2.1411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Affiliation(s)
- Tingwei Zhang
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Yu Wei
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Boon Hao Hong
- Division of Medical SciencesNational Cancer Centre SingaporeSingapore
| | - Takayuki Sumiyoshi
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Enya Hui Wen Ong
- Division of Medical SciencesNational Cancer Centre SingaporeSingapore
| | - Hao Zeng
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Yonghong Li
- Department of UrologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Chi‐Fai Ng
- Department of Surgeryand SH Ho Urology CenterChinese University of Hong KongHong KongHong Kong
| | - Jian Pan
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Bangwei Fang
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Beihe Wang
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Junlong Wu
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Hongkai Wang
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Shusuke Akamatsu
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
- Department of UrologyNagoya University Graduate School of MedicineAichiJapan
| | - Melvin Lee Kiang Chua
- Division of Medical SciencesNational Cancer Centre SingaporeSingapore
- Department of Head and Neck and Thoracic CancersDivision of Radiation OncologyNational Cancer Centre SingaporeSingapore
- Oncology Academic ProgrammeDuke‐NUS Medical SchoolSingapore
| | - Dingwei Ye
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Yao Zhu
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| |
Collapse
|
58
|
Lokeshwar SD, Choksi AU, Haltstuch D, Rahman SN, Press BH, Syed J, Hurwitz ME, Kim IY, Leapman MS. Personalizing approaches to the management of metastatic hormone sensitive prostate cancer: role of advanced imaging, genetics and therapeutics. World J Urol 2023; 41:2007-2019. [PMID: 37160450 DOI: 10.1007/s00345-023-04409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/16/2023] [Indexed: 05/11/2023] Open
Abstract
PURPOSE To summarize contemporary and emerging strategies for the diagnosis and management of metastatic hormone sensitive prostate cancer (mHSPC), focusing on diagnostic testing and therapeutics. METHODS Literature review using PUBMED-Medline databases as well as clinicaltrials.gov to include reported or ongoing clinical trials on treatment for mHSPC. We prioritized the findings from phase III randomized clinical trials, systematic reviews, meta-analyses and clinical practice guidelines. RESULTS There have been significant changes to the diagnosis and staging evaluation of mHSPC with the integration of increasingly accurate positron emission tomography (PET) imaging tracers that exceed the performance of conventional computerized tomography (CT) and bone scan. Germline multigene testing is recommended for the evaluation of patients newly diagnosed with mHSPC given the prevalence of actionable alterations that may create candidacy for specific therapies. Although androgen deprivation therapy (ADT) remains the backbone of treatment for mHSPC, approaches to first-line treatment include the integration of multiple agents including androgen receptor synthesis inhibitors (ARSI; abiraterone) Androgen Receptor antagonists (enzalutamide, darolutamide, apalautamide), and docetaxel chemotherapy. The combination of ADT, ARSI, and docetaxel chemotherapy has recently been evaluated in a randomized trial and was associated with significantly improved overall survival including in patients with a high burden of disease. The role of local treatment to the prostate with radiation has been evaluated in randomized trials with additional studies underway evaluating the role of cytoreductive radical prostatectomy. CONCLUSION The staging and initial management of patients with mHSPC has undergone significant advances in the last decade with advancements in the diagnosis, treatment and sequencing of therapies.
Collapse
Affiliation(s)
- Soum D Lokeshwar
- Department of Urology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Ankur U Choksi
- Department of Urology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Daniel Haltstuch
- Department of Urology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Syed N Rahman
- Department of Urology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Benjamin H Press
- Department of Urology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jamil Syed
- Department of Urology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Michael E Hurwitz
- Department of Urology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Isaac Y Kim
- Department of Urology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Michael S Leapman
- Department of Urology, Yale University School of Medicine, New Haven, CT, 06511, USA.
- Department of Urology, Yale School of Medicine, 310 Cedar Street, BML 238C, New Haven, CT, 06520, USA.
| |
Collapse
|
59
|
Ueki A, Yoshida R, Kosaka T, Matsubayashi H. Clinical risk management of breast, ovarian, pancreatic, and prostatic cancers for BRCA1/2 variant carriers in Japan. J Hum Genet 2023; 68:517-526. [PMID: 37088789 DOI: 10.1038/s10038-023-01153-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Opportunities for genetic counseling and germline BRCA1/2 (BRCA) testing are increasing in Japan owing to cancer genomic profiling testing and companion diagnostics being covered by national health insurance for patients with BRCA-related cancers. These tests are useful not only to judge whether platinum agents and PARP inhibitors are indicated but also to reveal an autosomal-dominant inherited cancer syndrome: hereditary breast and ovarian cancer. In individuals with germline BRCA variants, risk of cancers of the breast, ovary, pancreas, and prostate is significantly increased at various ages of onset, but the stomach, uterus, biliary tract, and skin might also be at risk. For women with pathogenic BRCA variants, breast awareness and image analyses should be initiated in their 20s, and risk-reducing procedures such as mastectomy are recommended starting in their 30s, with salpingo-oophorectomy in their late 30s. For male BRCA pathogenic variant carriers, prostatic surveillance should be applied using serum prostate-specific antigen starting in their 40s. For both sexes, image examinations ideally using endoscopic ultrasound and magnetic resonance cholangiopancreatography and blood testing should begin in their 50s for pancreatic surveillance. Homologous recombination pathway-associated genes are also causative candidates. Variant pathogenicity needs to be evaluated every 6-12 months when results are uncertain for clinical significance. Genetic counseling needs to be offered to the blood relatives of the pathogenic variant carriers with suitable timing. We review the recommended cross-organ BRCA risk management in Japan.
Collapse
Affiliation(s)
- Arisa Ueki
- Department of Clinical Genetics, The Cancer Institute Hospital of JFCR, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Reiko Yoshida
- Institute for Clinical Genetics and Genomics, Showa University, 1-5-8 Hatanodai Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Matsubayashi
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shimonagakubo, Nagaizumi, Suntogun, Shizuoka, 411-8777, Japan.
| |
Collapse
|
60
|
Chaddad A, Tan G, Liang X, Hassan L, Rathore S, Desrosiers C, Katib Y, Niazi T. Advancements in MRI-Based Radiomics and Artificial Intelligence for Prostate Cancer: A Comprehensive Review and Future Prospects. Cancers (Basel) 2023; 15:3839. [PMID: 37568655 PMCID: PMC10416937 DOI: 10.3390/cancers15153839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The use of multiparametric magnetic resonance imaging (mpMRI) has become a common technique used in guiding biopsy and developing treatment plans for prostate lesions. While this technique is effective, non-invasive methods such as radiomics have gained popularity for extracting imaging features to develop predictive models for clinical tasks. The aim is to minimize invasive processes for improved management of prostate cancer (PCa). This study reviews recent research progress in MRI-based radiomics for PCa, including the radiomics pipeline and potential factors affecting personalized diagnosis. The integration of artificial intelligence (AI) with medical imaging is also discussed, in line with the development trend of radiogenomics and multi-omics. The survey highlights the need for more data from multiple institutions to avoid bias and generalize the predictive model. The AI-based radiomics model is considered a promising clinical tool with good prospects for application.
Collapse
Affiliation(s)
- Ahmad Chaddad
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montreal, QC H3C 1K3, Canada
| | - Guina Tan
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
| | - Xiaojuan Liang
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
| | - Lama Hassan
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
| | | | - Christian Desrosiers
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montreal, QC H3C 1K3, Canada
| | - Yousef Katib
- Department of Radiology, Taibah University, Al Madinah 42361, Saudi Arabia
| | - Tamim Niazi
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
61
|
Grypari IM, Tzelepi V, Gyftopoulos K. DNA Damage Repair Pathways in Prostate Cancer: A Narrative Review of Molecular Mechanisms, Emerging Biomarkers and Therapeutic Targets in Precision Oncology. Int J Mol Sci 2023; 24:11418. [PMID: 37511177 PMCID: PMC10380086 DOI: 10.3390/ijms241411418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) has a distinct molecular signature, including characteristic chromosomal translocations, gene deletions and defective DNA damage repair mechanisms. One crucial pathway involved is homologous recombination deficiency (HRD) and it is found in almost 20% of metastatic castrate-resistant PCa (mCRPC). Inherited/germline mutations are associated with a hereditary predisposition to early PCa development and aggressive behavior. BRCA2, ATM and CHECK2 are the most frequently HRD-mutated genes. BRCA2-mutated tumors have unfavorable clinical and pathological characteristics, such as intraductal carcinoma. PARP inhibitors, due to the induction of synthetic lethality, have been therapeutically approved for mCRPC with HRD alterations. Mutations are detected in metastatic tissue, while a liquid biopsy is utilized during follow-up, recognizing acquired resistance mechanisms. The mismatch repair (MMR) pathway is another DNA repair mechanism implicated in carcinogenesis, although only 5% of metastatic PCa is affected. It is associated with aggressive disease. PD-1 inhibitors have been used in MMR-deficient tumors; thus, the MMR status should be tested in all metastatic PCa cases. A surrogate marker of defective DNA repair mechanisms is the tumor mutational burden. PDL-1 expression and intratumoral lymphocytes have ambivalent predictive value. Few experimental molecules have been so far proposed as potential biomarkers. Future research may further elucidate the role of DNA damage pathways in PCa, revealing new therapeutic targets and predictive biomarkers.
Collapse
Affiliation(s)
- Ioanna-Maria Grypari
- Cytology Department, Aretaieion University Hospital, National Kapodistrian University of Athens, 11528 Athens, Greece
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Kostis Gyftopoulos
- Department of Anatomy, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
62
|
Maloberti T, De Leo A, Coluccelli S, Sanza V, Gruppioni E, Altimari A, Zagnoni S, Giunchi F, Vasuri F, Fiorentino M, Mollica V, Ferrari S, Miccoli S, Visani M, Turchetti D, Massari F, Tallini G, de Biase D. Multi-Gene Next-Generation Sequencing Panel for Analysis of BRCA1/ BRCA2 and Homologous Recombination Repair Genes Alterations Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:8940. [PMID: 37240284 PMCID: PMC10219522 DOI: 10.3390/ijms24108940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Despite significant therapeutic advances, metastatic CRPC (mCRPC) remains a lethal disease. Mutations in homologous recombination repair (HRR) genes are frequent in mCRPC, and tumors harboring these mutations are known to be sensitive to PARP inhibitors. The aim of this study was to verify the technical effectiveness of this panel in the analysis of mCRPC, the frequency and type of mutations in the BRCA1/BRCA2 genes, as well as in the homologous recombination repair (HRR) genes. A total of 50 mCRPC cases were analyzed using a multi-gene next-generation sequencing panel evaluating a total of 1360 amplicons in 24 HRR genes. Of the 50 cases, 23 specimens (46.0%) had an mCRPC harboring a pathogenic variant or a variant of uncertain significance (VUS), whereas in 27 mCRPCs (54.0%), no mutations were detected (wild-type tumors). BRCA2 was the most commonly mutated gene (14.0% of samples), followed by ATM (12.0%), and BRCA1 (6.0%). In conclusion, we have set up an NGS multi-gene panel that is capable of analyzing BRCA1/BRCA2 and HRR alterations in mCRPC. Moreover, our clinical algorithm is currently being used in clinical practice for the management of patients with mCRPC.
Collapse
Affiliation(s)
- Thais Maloberti
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (T.M.); (A.D.L.); (V.S.); (E.G.); (A.A.); (S.Z.); (G.T.)
| | - Antonio De Leo
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (T.M.); (A.D.L.); (V.S.); (E.G.); (A.A.); (S.Z.); (G.T.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.F.); (D.T.)
| | - Sara Coluccelli
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (T.M.); (A.D.L.); (V.S.); (E.G.); (A.A.); (S.Z.); (G.T.)
| | - Viviana Sanza
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (T.M.); (A.D.L.); (V.S.); (E.G.); (A.A.); (S.Z.); (G.T.)
| | - Elisa Gruppioni
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (T.M.); (A.D.L.); (V.S.); (E.G.); (A.A.); (S.Z.); (G.T.)
| | - Annalisa Altimari
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (T.M.); (A.D.L.); (V.S.); (E.G.); (A.A.); (S.Z.); (G.T.)
| | - Stefano Zagnoni
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (T.M.); (A.D.L.); (V.S.); (E.G.); (A.A.); (S.Z.); (G.T.)
| | - Francesca Giunchi
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.G.); (F.V.)
| | - Francesco Vasuri
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.G.); (F.V.)
| | - Michelangelo Fiorentino
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.F.); (D.T.)
- Pathology Unit, Maggiore Hospital, AUSL Bologna, 40133 Bologna, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Simona Ferrari
- Unit of Medical Genetics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.F.); (S.M.)
| | - Sara Miccoli
- Unit of Medical Genetics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.F.); (S.M.)
| | - Michela Visani
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.F.); (D.T.)
- Unit of Medical Genetics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.F.); (S.M.)
| | - Francesco Massari
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.F.); (D.T.)
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Giovanni Tallini
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (T.M.); (A.D.L.); (V.S.); (E.G.); (A.A.); (S.Z.); (G.T.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.F.); (D.T.)
| | - Dario de Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (T.M.); (A.D.L.); (V.S.); (E.G.); (A.A.); (S.Z.); (G.T.)
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
63
|
Herberts C, Wyatt AW, Nguyen PL, Cheng HH. Genetic and Genomic Testing for Prostate Cancer: Beyond DNA Repair. Am Soc Clin Oncol Educ Book 2023; 43:e390384. [PMID: 37207301 DOI: 10.1200/edbk_390384] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Significant progress has been made in genetic and genomic testing for prostate cancer across the disease spectrum. Molecular profiling is increasingly relevant for routine clinical management, fueled in part by advancements in testing technology and integration of biomarkers into clinical trials. In metastatic prostate cancer, defects in DNA damage response genes are now established predictors of benefit to US Food and Drug Administration-approved poly (ADP-ribose) polymerase inhibitors and immune checkpoint inhibitors, and trials are actively investigating these and other targeted treatment strategies in earlier disease states. Excitingly, opportunities for molecularly informed management beyond DNA damage response genes are also maturing. Germline genetic variants (eg, BRCA2 or MSH2/6) and polygenic germline risk scores are being investigated to inform cancer screening and active surveillance in at-risk carriers. RNA expression tests have recently gained traction in localized prostate cancer, enabling patient risk stratification and tailored treatment intensification via radiotherapy and/or androgen deprivation therapy for localized or salvage treatment. Finally, emerging minimally invasive circulating tumor DNA technology promises to enhance biomarker testing in advanced disease pending additional methodological and clinical validation. Collectively, genetic and genomic tests are rapidly becoming indispensable tools for informing the optimal clinical management of prostate cancer.
Collapse
Affiliation(s)
- Cameron Herberts
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Paul L Nguyen
- Harvard Medical School, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA
| | - Heather H Cheng
- University of Washington, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
64
|
Breen KE, Symecko H, Spielman K, Gebert R, Shah IH, Pundock S, Batson M, Narayan VK, Stadler ZK, Autio KA, Abida W, Danila DC, Scher HI, Morris MJ, Hamilton JG, Robson ME, Domchek SM, Carlo MI. Clinical Impact of a Rapid Genetic Testing Model for Advanced Prostate Cancer Patients. J Urol 2023; 209:918-927. [PMID: 36974724 PMCID: PMC10081955 DOI: 10.1097/ju.0000000000003186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/12/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Genetic testing may alter clinical management for individuals with metastatic prostate cancer by identifying additional therapies. Traditional counseling models are unlikely to enable time-sensitive therapeutic decision-making. This study aimed to determine the feasibility and clinical impact of an alternative hereditary genetic testing model. MATERIALS AND METHODS As part of a multicenter, single-arm prospective trial, individuals with advanced prostate cancer were referred by their oncologist for testing of 14 genes associated with hereditary prostate cancer. Pretest education (brochure and video) was provided in the oncology clinic. Questionnaires assessing participant satisfaction with both pretest education and decision to undergo genetic testing were collected. A genetic counselor contacted participants by phone to obtain family history and discuss results. Medical records were queried to determine whether a change in clinical management was discussed. RESULTS Of 501 participants consented to germline analysis, 51 (10.2%) had at least 1 pathogenic/likely pathogenic variant. Change in treatment was discussed with 22/48 (45.8%) of eligible participants who tested positive. Feasibility of this model was assessed by participant satisfaction and turnaround time. Average±SD satisfaction with the pretest education (15.5±2.2, 4-20 scale) and with the decision to undergo genetic testing (17.1±2.9, 4-20 scale) were both high. Results were returned 20 days (median) after sample collection. CONCLUSIONS Oncologist-initiated germline genetic testing in collaboration with a genetic counselor is a feasible approach to testing advanced prostate cancer patients with impactful clinical actionability. The testing model and educational material serve as resources to clinicians treating prostate cancer patients.
Collapse
Affiliation(s)
- Kelsey E. Breen
- Department of Medicine, Memorial Sloan Kettering Cancer Center
| | | | | | - Rebecca Gebert
- Department of Psychiatry & Behavioral Sciences, Memorial Sloan Kettering Cancer Center
| | - Ibrahim H. Shah
- Department of Psychiatry & Behavioral Sciences, Memorial Sloan Kettering Cancer Center
| | | | | | - Vivek K. Narayan
- Department of Medicine, Hospital of the University of Pennsylvania
| | | | - Karen A. Autio
- Department of Medicine, Memorial Sloan Kettering Cancer Center
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center
| | | | - Howard I. Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center
| | | | - Jada G. Hamilton
- Department of Medicine, Memorial Sloan Kettering Cancer Center
- Department of Psychiatry & Behavioral Sciences, Memorial Sloan Kettering Cancer Center
| | - Mark E. Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center
| | | | - Maria I. Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center
| |
Collapse
|
65
|
Kanesvaran R, Chia PL, Chiong E, Chua MLK, Ngo NT, Ow S, Sim HG, Tan MH, Tay KH, Wong ASC, Wong SW, Tan PH. An approach to genetic testing in patients with metastatic castration-resistant prostate cancer in Singapore. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2023; 52:135-148. [PMID: 38904491 DOI: 10.47102/annals-acadmedsg.2022372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Introduction There has been a rapid evolution in the treatment strategies for metastatic castration-resistant prostate cancer (mCRPC) following the identification of targetable mutations, making genetic testing essential for patient selection. Although several international guidelines recommend genetic testing for patients with mCRPC, there is a lack of locally endorsed clinical practice guidelines in Singapore. Method A multidisciplinary specialist panel with representation from medical and radiation oncology, urology, pathology, interventional radiology, and medical genetics discussed the challenges associated with patient selection, genetic counselling and sample processing in mCRPC. Results A clinical model for incorporating genetic testing into routine clinical practice in Singapore was formulated. Tumour testing with an assay that is able to detect both somatic and germline mutations should be utilised. The panel also recommended the "mainstreaming" approach for genetic counselling in which pre-test counselling is conducted by the managing clinician and post-test discussion with a genetic counsellor, to alleviate the bottlenecks at genetic counselling stage in Singapore. The need for training of clinicians to provide pre-test genetic counselling and educating the laboratory personnel for appropriate sample processing that facilitates downstream genetic testing was recognised. Molecular tumour boards and multidisciplinary discussions are recommended to guide therapeutic decisions in mCRPC. The panel also highlighted the issue of reimbursement for genetic testing to reduce patient-borne costs and increase the reach of genetic testing among this patient population. Conclusion This article aims to provide strategic and implementable recommendations to overcome the challenges in genetic testing for patients with mCRPC in Singapore.
Collapse
Affiliation(s)
| | - Puey Ling Chia
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore
| | - Edmund Chiong
- Department of Urology, National University Hospital, Singapore
- Department of Surgery, National University of Singapore, Singapore
| | | | - Nye Thane Ngo
- Division of Pathology, Singapore General Hospital, Singapore
| | - Samuel Ow
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Hong Gee Sim
- Ravenna Urology Clinic, Gleneagles Medical Centre, Singapore
| | | | - Kiang Hiong Tay
- Department of Vascular and Interventional Radiation, Singapore General Hospital, Singapore
| | | | | | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| |
Collapse
|
66
|
Abdelrazek AS, Ghoniem K, Ahmed ME, Joshi V, Mahmoud AM, Saeed N, Khater N, Elsharkawy MS, Gamal A, Kwon E, Kendi AT. Prostate Cancer: Advances in Genetic Testing and Clinical Implications. URO 2023. [DOI: 10.3390/uro3020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The demand for genetic testing (GT) for prostate cancer (PCa) is expanding, but there is limited knowledge about the genetic counseling (GC) needs of men. A strong-to-moderate inherited genetic predisposition causes approximately 5–20% of prostate cancer (PCa). In men with prostate cancer, germline testing may benefit the patient by informing treatment options, and if a mutation is noticed, it may also guide screening for other cancers and have family implications for cascade genetic testing (testing of close relatives for the same germline mutation). Relatives with the same germline mutations may be eligible for early cancer detection strategies and preventive measures. Cascade family testing can be favorable for family members, but it is currently unutilized, and strategies to overcome obstacles like knowledge deficiency, family communication, lack of access to genetic services, and testing expenses are needed. In this review, we will look at the genetic factors that have been linked to prostate cancer, as well as the role of genetic counseling and testing in the early detection of advanced prostate cancer.
Collapse
|
67
|
Genetic Risk Prediction for Prostate Cancer: Implications for Early Detection and Prevention. Eur Urol 2023; 83:241-248. [PMID: 36609003 DOI: 10.1016/j.eururo.2022.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
CONTEXT Prostate cancer (PCa) is a leading cause of death and partially heritable. Genetic risk prediction might be useful for strategies to reduce PCa mortality through early detection and prevention. OBJECTIVE To review evidence for genetic risk prediction for PCa. EVIDENCE ACQUISITION A collaborative literature review was conducted using PubMed and Google Scholar. Search terms included genetic, risk, prediction, and "prostate cancer". Articles addressing screening, early detection, or prevention were prioritized, as were studies involving diverse populations. EVIDENCE SYNTHESIS Rare pathogenic mutations (RPMs), especially in DNA damage repair genes, increase PCa risk. RPMs in BRCA2 are most clearly deleterious, conferring 2-8.6 times higher risk of PCa and a higher risk of aggressive disease. Common genetic variants can be combined into genetic risk scores (GRSs). A high GRS (top 20-25% of the population) confers two to three times higher risk of PCa than average; a very high GRS (top 1-5%) confers six to eight times higher risk. GRSs are not specific for aggressive PCa, possibly due to methodological limitations and/or a field effect of an elevated risk for both low- and high-grade PCa. It is challenging to disentangle genetics from structural racism and social determinants of health to understand PCa racial disparities. GRSs are independently associated with a lethal PCa risk after accounting for family history and race/ancestry. Healthy lifestyle might partially mitigate the risk of lethal PCa. CONCLUSIONS Genetic risk assessment is becoming more common; implementation studies are needed to understand the implications and to avoid exacerbating healthcare disparities. Men with a high genetic risk of PCa can reasonably be encouraged to adhere to a healthy lifestyle. PATIENT SUMMARY Prostate cancer risk is inherited through rare mutations and through the combination of hundreds of common genetic markers. Some men with a high genetic risk (especially BRCA2 mutations) likely benefit from early screening for prostate cancer. The risk of lethal prostate cancer can be reduced through a healthy lifestyle.
Collapse
|
68
|
Harper JB, Greenberg SE, Hunt TC, Cooney KA, O’Neil BB. Initial outcomes and insights from a novel high-risk prostate cancer screening clinic. Prostate 2023; 83:151-157. [PMID: 36207779 PMCID: PMC9772159 DOI: 10.1002/pros.24447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Guidelines for germline testing in patients with prostate cancer (PCa) are identifying family members who require additional surveillance given pathogenic variants (PVs) that confer increased PCa risk. We established an interdisciplinary clinic for cancer surveillance in high-risk individuals aimed to implement screening recommendations. This study aimed to characterize the clinical features of this cohort. PATIENTS AND METHODS The Prostate Cancer Risk Clinic (PCRC) was established for unaffected individuals with germline PVs or a strong PCa family history. PCa screening, urine labs, and questionnaires were included in the visit. Individuals with BRCA1/2 PVs underwent clinical breast exam as well. Data from the initial visit were abstracted from the medical record and questionnaires for analysis. RESULTS Thirty-five individuals with increased PCa risk were followed by the PCRC with a median age of 47 years of age. Twenty individuals (57%) had a family history of PCa, and 34 (97%) had a germline PV associated with an increased risk for developing PCa. Four individuals underwent biopsy due to care in the PCRC, with one PCa identified in an individual with TP53 PV. Median patient response scores indicated mild symptoms of an enlarged prostate (AUASS), normal erectile function (SHIM), and relatively low anxiety about developing PCa (MAX-PC). However, there were notable "outlier" scores on each questionnaire. CONCLUSIONS Individuals with prostates and BRCA1/2 PVs, among other germline PVs, can benefit from a comprehensive interdisciplinary approach to high-risk management. PCa was identified in an individual with a non-BRCA PV, emphasizing the importance and need for high-risk screening guidelines across all genes with increased risk for PCa. "Outlier" patient response scores demonstrate that some participants experienced worse symptoms or anxiety than was indicated by median scores alone.
Collapse
Affiliation(s)
- Jonathan B. Harper
- Division of Urology, Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Samantha E. Greenberg
- Genetic Counseling Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Corresponding author: Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA, Tel. +1-801-213-5774; Fax: +1-801-585-5763, (S.E. Greenberg)
| | - Trevor C. Hunt
- Division of Urology, Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- University of Rochester Medical Center, Department of Urology, Rochester, NY, USA
| | - Kathleen A. Cooney
- Department of Medicine, Duke University School of Medicine, and the Duke Cancer Institute, Durham, NC, USA
| | - Brock B. O’Neil
- Division of Urology, Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
69
|
Abstract
Knowledge of an underlying genetic predisposition to cancer allows the use of personalised prognostic, preventive and therapeutic strategies for the patient and carries clinical implications for family members. Despite great progress, we identified six challenging areas in the management of patients with hereditary cancer predisposition syndromes and suggest recommendations to aid in their resolution. These include the potential for finding unexpected germline variants through somatic tumour testing, optimal risk management of patients with hereditary conditions involving moderate-penetrance genes, role of polygenic risk score in an under-represented Asian population, management of variants of uncertain significance, clinical trials in patients with germline pathogenic variants and technology in genetic counselling. Addressing these barriers will aid the next step forward in precision medicine in Singapore. All stakeholders in healthcare should be empowered with genetic knowledge to fully leverage the potential of novel genomic insights and implement them to provide better care for our patients.
Collapse
Affiliation(s)
- Jianbang Chiang
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore,Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Tarryn Shaw
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore,Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore,Correspondence: A/Prof. Joanne Ngeow, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Drive, 308232, Singapore. E-mail:
| |
Collapse
|
70
|
Kwon DH, Gordon KM, Tong B, Borno HT, Beigh M, Fattah D, Schleicher A, Aggarwal RR, Blanco AM, Small EJ, Dhawan M. Implementation of a Telehealth Genetic Testing Station to Deliver Germline Testing for Men With Prostate Cancer. JCO Oncol Pract 2023; 19:e773-e783. [PMID: 36649492 DOI: 10.1200/op.22.00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Germline testing for men with prostate cancer (PCa) poses numerous implementation barriers. Alternative models of care delivery are emerging, but implementation outcomes are understudied. We evaluated implementation outcomes of a hybrid oncologist- and genetic counselor-delivered model called the genetic testing station (GTS) created to streamline testing and increase access. METHODS A prospective, single-institution, cohort study of men with PCa referred to the GTS from October 14, 2019, to October 14, 2021, was conducted. Using the Reach, Effectiveness, Adoption, Implementation, and Maintenance framework, we described patients referred to GTS (Reach), the association of GTS with germline testing completion rates within 60 days of a new oncology appointment in a pre- versus post-GTS multivariable logistic regression (Effectiveness), Adoption, Implementation, and Maintenance. Because GTS transitioned from an on-site to remote service during the COVID-19 pandemic, we also compared outcomes for embedded versus remote GTS. RESULTS Overall, 713 patients were referred to and eligible for GTS, and 592 (83%) patients completed germline testing. Seventy-six (13%) patients had ≥ 1 pathogenic variant. Post-GTS was independently associated with higher odds of completing testing within 60 days than pre-GTS (odds ratio, 8.97; 95% CI, 2.71 to 29.75; P < .001). Black race was independently associated with lower odds of testing completion compared with White race (odds ratio, 0.35; 95% CI, 0.13 to 0.96; P = .042). There was no difference in test completion rates or patient-reported decisional conflict for embedded versus remote GTS. GTS has been adopted by 31 oncology providers across four clinics, and implementation fidelity was high with low patient loss to follow-up, but staffing costs are a sustainability concern. CONCLUSION GTS is a feasible, effective model for high-volume germline testing in men with PCa, both in person and using telehealth. GTS does not eliminate racial disparities in germline testing access.
Collapse
Affiliation(s)
- Daniel H Kwon
- Department of Medicine, University of California San Francisco, San Francisco, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Kelly M Gordon
- Cancer Genetics and Prevention Program, University of California San Francisco, San Francisco, CA
| | - Barry Tong
- Cancer Genetics and Prevention Program, University of California San Francisco, San Francisco, CA
| | - Hala T Borno
- Department of Medicine, University of California San Francisco, San Francisco, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Makenna Beigh
- Cancer Genetics and Prevention Program, University of California San Francisco, San Francisco, CA
| | - Delaire Fattah
- Cancer Genetics and Prevention Program, University of California San Francisco, San Francisco, CA
| | - Alexandra Schleicher
- Cancer Genetics and Prevention Program, University of California San Francisco, San Francisco, CA
| | - Rahul R Aggarwal
- Department of Medicine, University of California San Francisco, San Francisco, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Amie M Blanco
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA.,Cancer Genetics and Prevention Program, University of California San Francisco, San Francisco, CA
| | - Eric J Small
- Department of Medicine, University of California San Francisco, San Francisco, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Mallika Dhawan
- Department of Medicine, University of California San Francisco, San Francisco, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| |
Collapse
|
71
|
Yuan S, He SH, Li LY, Xi S, Weng H, Zhang JH, Wang DQ, Guo MM, Zhang H, Wang SY, Ming DJ, Liu MY, Hu H, Zeng XT. A potassium-chloride co-transporter promotes tumor progression and castration resistance of prostate cancer through m 6A reader YTHDC1. Cell Death Dis 2023; 14:7. [PMID: 36609444 PMCID: PMC9822915 DOI: 10.1038/s41419-022-05544-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023]
Abstract
SLC12A5, a neuron-specific potassium-chloride co-transporter, has been reported to promote tumor progression, however, the underlying mechanism remains unclear. Here we report that SLC12A5 functions as an oncogene to promote tumor progression and castration resistance of prostate cancer through the N6-methyladenosine (m6A) reader YTHDC1 and the transcription factor HOXB13. We have shown that the level of SLC12A5 was increased in prostate cancer, in comparison to its normal counterparts, and further elevated in castration-resistant prostate cancer (CRPC). The enhanced expression of SLC12A5 mRNA was associated with neuroendocrine prostate cancer (NEPC) progression and poor survival in prostate cancer. Furthermore, we demonstrated that SLC12A5 promoted the castration resistance development of prostate cancer in addition to the cell proliferation and migration. Interestingly, SLC12A5 was detected in the cell nucleus and formed a complex with nuclear m6A reader YTHDC1, which in turn upregulated HOXB13 to promote the prostate cancer progression. Therefore, our findings reveal a mechanism that how the potassium-chloride cotransporter SLC12A5 promotes the tumor progression and provide a therapeutic opportunity for prostate cancer to apply the neurological disorder drug SLC12A5 inhibitors.
Collapse
Affiliation(s)
- Shuai Yuan
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shao-Hua He
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Precision Medicine Center, The Second People's Hospital of Huaihua, Huaihua, China
| | - Lu-Yao Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu Xi
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Hong Weng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jin-Hui Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Dan-Qi Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meng-Meng Guo
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Haozhe Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shuang-Ying Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dao-Jing Ming
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Meng-Yang Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
72
|
Prostate cancer risk, screening and management in patients with germline BRCA1/2 mutations. Nat Rev Urol 2023; 20:205-216. [PMID: 36600087 DOI: 10.1038/s41585-022-00680-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 01/05/2023]
Abstract
Mutations in the BRCA1 and BRCA2 tumour suppressor genes are associated with prostate cancer risk; however, optimal screening protocols for individuals with these mutations have been a subject of debate. Several prospective studies of prostate cancer incidence and screening among BRCA1/2 mutation carriers have indicated at least a twofold to fourfold increase in prostate cancer risk among carriers of BRCA2 mutations compared with the general population. Moreover, BRCA2 mutations are associated with more aggressive, high-grade disease characteristics at diagnosis, more aggressive clinical behaviour and greater prostate cancer-specific mortality. The risk for BRCA1 mutations seems to be attenuated compared with BRCA2. Prostate-specific antigen (PSA) measurement or prostate magnetic resonance imaging (MRI) alone is an imperfect indicator of clinically significant prostate cancer; therefore, BRCA1/2 mutation carriers might benefit from refined risk stratification strategies. However, the long-term impact of prostate cancer screening is unknown, and the optimal management of BRCA1/2 carriers with prostate cancer has not been defined. Whether timely localized therapy can improve overall survival in the screened population is uncertain. Long-term results of prospective studies are awaited to confirm the optimal screening strategies and benefits of prostate cancer screening among BRCA1/2 mutation carriers, and whether these approaches ultimately have a positive impact on survival and quality of life in these patients.
Collapse
|
73
|
Cheng HH, Sokolova AO, Gulati R, Bowen D, Knerr SA, Klemfuss N, Grivas P, Hsieh A, Lee JK, Schweizer MT, Yezefski T, Zhou A, Yu EY, Nelson PS, Montgomery B. Internet-Based Germline Genetic Testing for Men With Metastatic Prostate Cancer. JCO Precis Oncol 2023; 7:e2200104. [PMID: 36623239 PMCID: PMC9928882 DOI: 10.1200/po.22.00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Germline mutations in DNA repair genes are present in approximately 10% of men with metastatic prostate cancer (mPC), and guidelines recommend genetic germline testing. Notable barriers exist, including access to genetic counseling, insurance coverage, and out-of-pocket costs. The GENTleMEN study was designed to determine the feasibility of an Internet-based, patient-driven germline genetic testing approach for men with mPC. PATIENTS AND METHODS In this prospective cohort study, men with mPC provided informed consent via an Internet-based platform and completed a questionnaire including demographics and family cancer history. Supporting medical data were also collected. Genetic testing was performed using the Color Genomics 30-gene targeted panel of cancer predisposition genes on a mailed saliva sample. Men whose test results identified a germline pathogenic or likely pathogenic variant received results by phone or telehealth genetic counseling; other participants received results by email with an option for phone-based or telehealth genetic counseling. RESULTS As of August 18, 2021, 816 eligible men were consented, of whom 68% (551) completed genetic testing, and 8.7% (48 of 551) were found to carry a pathogenic or likely pathogenic variant in a germline DNA repair gene: CHEK2 (17), BRCA2 (15), ATM (6), NBN1 (3), BRCA1 (2), PALB2 (2), PMS2 (2), and MSH6 (1). Participants were more likely to complete the testing process if they were non-Hispanic White, married, highly educated, or from a higher-income bracket. CONCLUSION Here, we show the feasibility of delivering germline (inherited) genetic testing by a voluntary, patient-driven, Internet-based platform to men with mPC. Preliminary results show rates of germline DNA repair mutations, consistent with other cohorts. Although feasible for some, reduced steps for participation, more dedicated diverse outreach and participant support, and identification and addressing of additional barriers is needed to ensure equitable access and optimization.
Collapse
Affiliation(s)
- Heather H. Cheng
- University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
- Heather H. Cheng, MD, PhD, Division of Medical Oncology, University of Washington, Fred Hutchinson Cancer Center, 825 Eastlake Ave. E., Seattle, WA 98109; e-mail:
| | | | | | | | | | | | - Petros Grivas
- University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
| | - Andrew Hsieh
- University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
| | - John K. Lee
- University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Todd Yezefski
- University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Evan Y. Yu
- University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
| | - Peter S. Nelson
- University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
| | - Bruce Montgomery
- University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
- Veterans Affairs Puget Sound Health Care System, Seattle, WA
| |
Collapse
|
74
|
Guo CC, Czerniak B. Updates of Prostate Cancer from the 2022 World Health Organization Classification of the Urinary and Male Genital Tumors. JOURNAL OF CLINICAL AND TRANSLATIONAL PATHOLOGY 2023; 3:26-34. [PMID: 38605939 PMCID: PMC11007763 DOI: 10.14218/jctp.2022.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Prostate cancer is a heterogeneous disease with a wide spectrum of pathological, clinical, and molecular features. The diagnosis and classification of prostate cancer have been constantly modified with the incorporation of new data. The 5th edition of the World Health Organization (WHO) Classification of Urinary and Genital Tumors was recently published six years after the 4th edition. In this new edition, the classification of prostate cancer has been refined in the diagnostic criteria, grading, nomenclature, and genomics. This paper reviews significant updates to the new WHO classification of prostate cancer, including high-grade prostatic intraepithelial neoplasia, acinar adenocarcinoma, intraductal carcinoma, ductal carcinoma, and neuroendocrine tumors. Controversial issues in the Gleason grading are discussed, such as intraductal carcinoma and tertiary grade. We also highlight distinct genetic and epigenetic alterations in prostate cancer that may contribute to its diverse clinicopathologic features. Overall, the 5th edition of the WHO classification provides a comprehensive assessment of prostate cancer with morphologic, immunohistochemical, genomic, and clinical data, which may represent an optimal paradigm for diagnosing and treating prostate cancer.
Collapse
Affiliation(s)
- Charles C. Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
75
|
Teppala S, Hodgkinson B, Hayes S, Scuffham P, Tuffaha H. A review of the cost-effectiveness of genetic testing for germline variants in familial cancer. J Med Econ 2023; 26:19-33. [PMID: 36426964 DOI: 10.1080/13696998.2022.2152233] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Targeted germline testing is recommended for those with or at risk of breast, ovarian, or colorectal cancer. The affordability of genetic sequencing has improved over the past decade, therefore the cost-effectiveness of testing for these cancers is worthy of reassessment. OBJECTIVE To systematically review economic evaluations on cost-effectiveness of germline testing in breast, ovarian, or colorectal cancer. METHODS A search of PubMed and Embase databases for cost-effectiveness studies on germline testing in breast, ovarian, or colorectal cancer, published between 1999 and May 2022. Synthesis of methodology, cost-effectiveness, and reporting (CHEERS checklist) was performed. RESULTS The incremental cost-effectiveness ratios (ICERs; in 2021-adjusted US$) for germline testing versus the standard care option in hereditary breast or ovarian cancer (HBOC) across target settings were as follows: (1) population-wide testing: 344-2.5 million/QALY; (2) women with high-risk: dominant = 78,118/QALY, 8,337-59,708/LYG; (3) existing breast or ovarian cancer: 3,012-72,566/QALY, 39,835/LYG; and (4) metastatic breast cancer: 158,630/QALY. Likewise, ICERs of germline testing for colorectal cancer across settings were: (1) population-wide testing: 132,200/QALY, 1.1 million/LYG; (2) people with high-risk: 32,322-76,750/QALY, dominant = 353/LYG; and (3) patients with existing colorectal cancer: dominant = 54,122/QALY, 98,790-6.3 million/LYG. Key areas of underreporting were the inclusion of a health economic analysis plan (100% of HBOC and colorectal studies), engagement of patients and stakeholders (95.4% of HBOC, 100% of colorectal studies) and measurement of outcomes (18.2% HBOC, 38.9% of colorectal studies). CONCLUSION Germline testing for HBOC was likely to be cost-effective across most settings, except when used as a co-dependent technology with the PARP inhibitor, olaparib in metastatic breast cancer. In colorectal cancer studies, testing was cost-effective in those with high-risk, but inconclusive in other settings. Cost-effectiveness was sensitive to the prevalence of tested variants, cost of testing, uptake, and benefits of prophylactic measures. Policy advice on germline testing should emphasize the importance of these factors in their recommendations.
Collapse
Affiliation(s)
- Srinivas Teppala
- Centre for Applied Health Economics, Griffith University, Nathan, Australia
| | - Brent Hodgkinson
- Centre for Applied Health Economics, Griffith University, Nathan, Australia
| | - Sandi Hayes
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
| | - Paul Scuffham
- Centre for Applied Health Economics, Griffith University, Nathan, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
| | - Haitham Tuffaha
- Centre for the Business and Economics of Health, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
76
|
Sciarra A, Frisenda M, Bevilacqua G, Gentilucci A, Cattarino S, Mariotti G, Del Giudice F, Di Pierro GB, Viscuso P, Casale P, Chung BI, Autorino R, Crivellaro S, Salciccia S. How the Analysis of the Pathogenetic Variants of DDR Genes Will Change the Management of Prostate Cancer Patients. Int J Mol Sci 2022; 24:ijms24010674. [PMID: 36614122 PMCID: PMC9821239 DOI: 10.3390/ijms24010674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Herein, we analyze answers achieved, open questions, and future perspectives regarding the analysis of the pathogenetic variants (PV) of DNA damage response (and repair) (DDR) genes in prostate cancer (PC) patients. The incidence of PVs in homologous recombination repair (HRR) genes among men with metastatic PC varied between 11% and 33%, which was significantly higher than that in non-metastatic PC, and BRCA2 mutations were more frequent when compared to other DDR genes. The determination of the somatic or germline PVs of BRCA2 was able to define a tailored therapy using PARP inhibitors in metastatic castration-resistant prostate cancer (mCRPC) progression after first-line therapy, with significant improvements in the radiologic progression-free survival (rPFS) and overall survival (OS) rates. We propose testing all metastatic PC patients for somatic and germline HRR mutations. Somatic determination on the primary site or on historic paraffin preparations with a temporal distance of no longer than 5 years should be preferred over metastatic site biopsies. The prognostic use of DDR PVs will also be used in selected high-risk cases with non-metastatic stages to better arrange controls and therapeutic primary options. We anticipate that the use of poly-ADP-ribose polymerase (PARP) inhibitors in hormone-sensitive prostate cancer (HSPC) and in combination with androgen receptor signaling inhibitors (ARSI) will be new strategies.
Collapse
Affiliation(s)
- Alessandro Sciarra
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
- Correspondence:
| | - Marco Frisenda
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| | - Giulio Bevilacqua
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| | - Alessandro Gentilucci
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| | - Susanna Cattarino
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| | - Gianna Mariotti
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| | - Francesco Del Giudice
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| | | | - Pietro Viscuso
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| | - Paolo Casale
- Department of Urology, Humanitas Center, 20089 Milano, Italy
| | - Benjamin I. Chung
- Department of Urology, University School of Stanford, Stanford, CA 94305, USA
| | - Riccardo Autorino
- Department of Urology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Simone Crivellaro
- Department of Urology, University of Illinois Hospital, Chicago, IL 60612, USA
| | - Stefano Salciccia
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| |
Collapse
|
77
|
Espinoza Moya ME, Guertin JR, Dorval M, Lapointe J, Bouchard K, Nabi H, Laberge M. Examining interprofessional collaboration in oncogenetic service delivery models for hereditary cancers: a scoping review protocol. BMJ Open 2022; 12:e066802. [PMID: 36523215 PMCID: PMC9748975 DOI: 10.1136/bmjopen-2022-066802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION In a context of limited genetic specialists, collaborative models have been proposed to ensure timely access to high quality oncogenetic services for individuals with inherited cancer susceptibility. Yet, extensive variability in the terminology used and lack of a clear understanding of how interprofessional collaboration is operationalised and evaluated currently constrains the development of a robust evidence base on the value of different approaches used to optimise access to these services. To fill in this knowledge gap, this scoping review aims to systematically unpack the nature and extent of collaboration proposed by these interventions, and synthesise the evidence available on their implementation, effectiveness and economic impact. METHODS AND ANALYSIS Following the Joanna Briggs Institute guidelines for scoping reviews, a comprehensive literature search will be conducted to identify peer-reviewed and grey literature on collaborative models used for adult patients with, or at increased risk of, hereditary breast, ovarian, colorectal and prostate cancers. An initial search was developed for Medline, Embase, CINAHL (Cumulative Index to Nursing and Allied Health Literature), Cochrane and Web of Science on 13 June 2022 and will be complemented by searches in Google and relevant websites. Documents describing either the theory of change, planning, implementation and/or evaluation of these interventions will be considered for inclusion. Results will be summarised descriptively and used to compare relevant model characteristics and synthesise evidence available on their implementation, effectiveness and economic impact. This process is expected to guide the development of a definition and typology of collaborative models in oncogenetics that could help strengthen the knowledge base on these interventions. Moreover, because we will be mapping the existing evidence on collaborative models in oncogenetics, the proposed review will help us identify areas where additional research might be needed. ETHICS AND DISSEMINATION This research does not require ethics approval. Results from this review will be disseminated through peer-reviewed articles and conferences.
Collapse
Affiliation(s)
- Maria Eugenia Espinoza Moya
- Population Health and Optimal Health Practices Unit, Centre de Recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval, Quebec City, Quebec, Canada
- Département des opérations et systèmes de décision, Faculté des sciences de l'administration, Université Laval, Quebec City, Quebec, Canada
| | - Jason Robert Guertin
- Population Health and Optimal Health Practices Unit, Centre de Recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval, Quebec City, Quebec, Canada
- Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Michel Dorval
- Oncology Division, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada
- CISSS, Chaudière-Appalaches Research Center, Lévis, Québec, Canada
| | - Julie Lapointe
- Oncology Division, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Karine Bouchard
- Département de cancérologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Hermann Nabi
- Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Oncology Division, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Maude Laberge
- Population Health and Optimal Health Practices Unit, Centre de Recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval, Quebec City, Quebec, Canada
- Département des opérations et systèmes de décision, Faculté des sciences de l'administration, Université Laval, Quebec City, Quebec, Canada
- Vitam, Centre de recherche en santé durable, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
78
|
Leader AE, Mercado J, Klein A, Hyatt C, Gross L, Brandt R, Giri VN. Insight into how patients with prostate cancer interpret and communicate genetic test results: implications for families. J Community Genet 2022; 13:547-556. [PMID: 35869324 PMCID: PMC9681950 DOI: 10.1007/s12687-022-00603-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with prostate cancer (PCA) are increasingly being offered germline genetic testing for precision therapy, precision management, and clinical trial options. Genetic test results also have implications for family members. How men with PCA perceive their genetic test results and decide whether to share recommendations with family members is not well studied. We interviewed 12 patients who had PCA and genetic testing and received a positive variant/likely positive variant (PV/LPV) (n = 7) or a variant of unknown significance (VUS) (n = 5) result. The semi-structured interview had five sections: genetic testing experience, impact, and interpretation of the test result, deciding whether to communicate test results to family members, impact of communication on family members, and suggestions for genetic counselors and other PCA patients. Interviews were transcribed verbatim and thematic analysis was completed using NVivo software v10. Receipt of PV/LPV or VUS genetic test results was not as emotional as receiving the diagnosis of PCA itself. Seven of the 12 participants chose to share their test results with all relevant family members, 4 chose to share with select family members, and one chose to not disclose to any family members. The majority of family members who were aware of participants' genetic results have not undergone cascade genetic testing or sought cancer screening. Participants with PCA and positive or VUS genetic test results typically share their results with at least immediate family members, but some communication barriers exist. Understanding the best way to provide actionable and relevant information about genetic testing to family members remains a challenge.
Collapse
Affiliation(s)
- Amy E Leader
- Division of Population Science, Department of Medical Oncology and the Sidney Kimmel Cancer Center, Thomas Jefferson University, 834 Chestnut Street, Suite 314, Philadelphia, PA, 19107, USA.
| | - Joanna Mercado
- Human Genetics and Genetic Counseling Program, College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Austin Klein
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Colette Hyatt
- Clinical Cancer Genetics Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Laura Gross
- Division of Population Science, Department of Medical Oncology and the Sidney Kimmel Cancer Center, Thomas Jefferson University, 834 Chestnut Street, Suite 314, Philadelphia, PA, 19107, USA
- Clinical Cancer Genetics Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rachael Brandt
- Human Genetics and Genetic Counseling Program, College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Veda N Giri
- Division of Population Science, Department of Medical Oncology and the Sidney Kimmel Cancer Center, Thomas Jefferson University, 834 Chestnut Street, Suite 314, Philadelphia, PA, 19107, USA
- Clinical Cancer Genetics Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
79
|
Akhoundova D, Feng FY, Pritchard CC, Rubin MA. Molecular Genetics of Prostate Cancer and Role of Genomic Testing. Surg Pathol Clin 2022; 15:617-628. [PMID: 36344179 DOI: 10.1016/j.path.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Prostate cancer (PCa) is characterized by profound genomic heterogeneity. Recent advances in personalized treatment entail an increasing need of genomic profiling. For localized PCa, gene expression assays can support clinical decisions regarding active surveillance and adjuvant treatment. In metastatic PCa, homologous recombination deficiency, microsatellite instability-high (MSI-H), and CDK12 deficiency constitute main actionable alterations. Alterations in DNA repair genes confer variable sensitivities to poly(ADP-ribose)polymerase inhibitors, and the use of genomic instability assays as predictive biomarker is still incipient. MSI can be assessed by immunohistochemistry To date there is a lack of consensus as to testing standards.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, Bern 3008, Switzerland; Department of Medical Oncology, Inselspital, University Hospital of Bern, Bern 3010, Switzerland
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, 1600 Divisadero Street, Suite H-1031, San Francisco, CA 94115, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St Seattle, WA 98195-7110, USA
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, Bern 3008, Switzerland; Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, 3008, Switzerland.
| |
Collapse
|
80
|
Andolfi C, Vickers AJ, Cooperberg MR, Carroll PR, Cowan JE, Paner GP, Helfand BT, Liauw SL, Eggener SE. Blood Prostate-specific Antigen by Volume of Benign, Gleason Pattern 3 and 4 Prostate Tissue. Urology 2022; 170:154-160. [PMID: 35987380 PMCID: PMC10515713 DOI: 10.1016/j.urology.2022.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To evaluate how blood levels of prostate-specific antigen (PSA) relate to prostate volume of benign tissue, Gleason pattern 3 (GP3) and Gleason pattern 4 (GP4) cancer. METHODS The cohort included 2209 consecutive men undergoing radical prostatectomy at 2 academic institutions with pT2N0, Grade Group 1-4 prostate cancer and an undetectable postoperative PSA. Volume of benign, GP3, and GP4 were estimated. The primary analysis evaluated the association between PSA and volume of each type of tissue using multivariable linear regression. R2, a measure of explained variation, was calculated using a multivariable model. RESULTS Estimated contribution to PSA was 0.04/0.06 ng/mL/cc for benign, 0.08/0.14 ng/mL/cc for GP3, and 0.62/0.80 ng/ml/cc for GP4 for the 2 independent cohorts, respectively. GP4 was associated with 6 to 8-fold more PSA per cc compared to GP3 and 15-fold higher compared to benign tissue. We did not observe a difference between PSA per cc for GP3 vs. benign tissue (P = 0.2). R2 decreased only slightly when removing age (0.006/0.018), volume of benign tissue (0.051/0.054) or GP3 (0.014/0.023) from the model. When GP4 was removed, R2 decreased 0.051/0.310. PSA density (PSA divided by prostate volume) was associated with volume of GP4 but not GP3, after adjustment for benign volume. CONCLUSION Gleason pattern 4 cancer contributes considerably more to PSA and PSA density per unit volume compared to GP3 and benign tissue. Contributions from GP3 and benign are similar. Further research should examine the utility of determining clinical management recommendations by absolute volume of GP4 rather than the ratio of GP3 to GP4.
Collapse
Affiliation(s)
- Ciro Andolfi
- Section of Urology, Department of Surgery, The University of Chicago, Chicago, IL
| | - Andrew J Vickers
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY.
| | - Matthew R Cooperberg
- Department of Urology, University of California San Francisco, San Francisco, CA; Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA
| | - Peter R Carroll
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Janet E Cowan
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Gladell P Paner
- Department of Pathology, The University of Chicago, Chicago, IL
| | | | - Stanley L Liauw
- Department of Radiation Oncology, The University of Chicago, Chicago, IL
| | - Scott E Eggener
- Section of Urology, Department of Surgery, The University of Chicago, Chicago, IL
| |
Collapse
|
81
|
Yang Y, Zhang G, Hu C, Luo W, Jiang H, Liu S, Yang H. The germline mutational landscape of genitourinary cancers and its indication for prognosis and risk. BMC Urol 2022; 22:196. [PMID: 36451132 PMCID: PMC9710079 DOI: 10.1186/s12894-022-01141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Germline mutations represent a high risk of hereditary cancers in population. The landscape and characteristics of germline mutations in genitourinary cancer are largely unknown, and their correlation with patient prognosis has not been defined. METHODS Variant data and relevant clinical data of 10,389 cancer patients in The Cancer Genome Atlas (TCGA) database was downloaded. The subset of data of 206 genitourinary cancer patients containing bladder urothelial carcinoma (BLCA), kidney chromophobe carcinoma (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP) and prostate adenocarcinoma (PRAD) cancer with germline mutation information was filtered for further analysis. Variants were classified into pathogenic, likely pathogenic and non-pathogenic categories based on American College of Medical Genetics and Genomics (ACMG) guidelines. Genome Aggregation Database (gnomAD) database was used to assist risk analysis. RESULTS There were 48, 7, 44, 45 and 62 patients with germline mutations identified in BLCA, KICH, KIRC, KIRP and PRAD, respectively. Pathogenic germline mutations from 26 genes and likely pathogenic mutations from 33 genes were revealed. GJB2, MET, MUTYH and VHL mutations ranked top in kidney cancers, and ATM and CHEK2 mutations ranked top for bladder cancer, while ATM and BRCA1 mutations ranked top for prostate cancer. Frameshift, stop gained and missense mutations were the predominant mutation types. BLCA exhibited the highest ratio of stop gained mutations (22/48 = 45.8%). No difference in patient age was found among pathogenic, likely pathogenic and non-pathogenic groups for all cancer types. The number of male patients far overweight female patients whether PRAD was included (P = 0) or excluded (P < 0.001). Patients with pathogenic or likely pathogenic germline mutations exhibited significantly worse overall survival rate than the non-pathogenic group for all genitourinary cancers. More important, analyses assisted by gnomAD database revealed that pathogenic or likely pathogenic germline mutations significantly increased the risk for genitourinary cancer in population, with the odds ratio at 14.88 (95%CI 11.80-18.77) and 33.18 (95%CI 24.90-44.20), respectively. CONCLUSIONS The germline mutational status for genitourinary cancers has been comprehensively characterized. Pathogenic and likely pathogenic germline mutations increased the risk and indicated poor prognosis of genitourinary cancers.
Collapse
Affiliation(s)
- Yong Yang
- grid.452826.fDepartment of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118 Yunnan Province People’s Republic of China
| | - Guoying Zhang
- grid.452826.fDepartment of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118 Yunnan Province People’s Republic of China
| | - Chen Hu
- grid.452826.fDepartment of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118 Yunnan Province People’s Republic of China
| | - Wei Luo
- grid.452826.fDepartment of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118 Yunnan Province People’s Republic of China
| | - Haiyang Jiang
- grid.452826.fDepartment of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118 Yunnan Province People’s Republic of China
| | - Shaoyou Liu
- grid.452826.fDepartment of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118 Yunnan Province People’s Republic of China
| | - Hong Yang
- grid.452826.fDepartment of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118 Yunnan Province People’s Republic of China
| |
Collapse
|
82
|
Plym A, Zhang Y, Stopsack KH, Jee YH, Wiklund F, Kibel AS, Kraft P, Giovannucci E, Penney KL, Mucci LA. Family History of Prostate and Breast Cancer Integrated with a Polygenic Risk Score Identifies Men at Highest Risk of Dying from Prostate Cancer before Age 75 Years. Clin Cancer Res 2022; 28:4926-4933. [PMID: 36103261 PMCID: PMC9660541 DOI: 10.1158/1078-0432.ccr-22-1723] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Family history of prostate cancer is one of the few universally accepted risk factors for prostate cancer. How much an assessment of inherited polygenic risk for prostate cancer adds to lifetime risk stratification beyond family history is unknown. EXPERIMENTAL DESIGN We followed 10,120 men in the Health Professionals Follow-up Study with existing genotype data for risk of prostate cancer and prostate cancer-specific death. We assessed to what extent family history of prostate or breast cancer, combined with a validated polygenic risk score (PRS) including 269 prostate cancer risk variants, identifies men at risk of prostate cancer and prostate cancer death across the age span. RESULTS During 20 years of follow-up, 1,915 prostate cancer and 166 fatal prostate cancer events were observed. Men in the top PRS quartile with a family history of prostate or breast cancer had the highest rate of both prostate cancer and prostate cancer-specific death. Compared with men at lowest genetic risk (bottom PRS quartile and no family history), the HR was 6.95 [95% confidence interval (CI), 5.57-8.66] for prostate cancer and 4.84 (95% CI, 2.59-9.03) for prostate cancer death. Men in the two upper PRS quartiles (50%-100%) or with a family history of prostate or breast cancer (61.8% of the population) accounted for 97.5% of prostate cancer deaths by age 75 years. CONCLUSIONS Our study shows that prostate cancer risk stratification on the basis of family history and inherited polygenic risk can identify men at highest risk of dying from prostate cancer before age 75 years.
Collapse
Affiliation(s)
- Anna Plym
- Urology Division, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Corresponding Author: Anna Plym, Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, Stockholm SE-171 77, Sweden. Phone: 468-5248-0000; Fax: 468-314-975; E-mail:
| | - Yiwen Zhang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Konrad H. Stopsack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yon Ho Jee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Adam S. Kibel
- Urology Division, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
83
|
Abusamra SM, Solorzano MA, Luke M, Quarles J, Jacobs MF, Das S, Kasputis A, Okoth LA, Patel M, Seymore M, Caram MEV, Dunn RL, Merajver SD, Stoffel EM, Reichert ZR, Morgan TM. Satisfaction With Clinician-Led Germline Genetic Counseling in Patients With Prostate Cancer. J Urol 2022; 208:1007-1017. [PMID: 35930793 PMCID: PMC10544847 DOI: 10.1097/ju.0000000000002865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Indications for germline testing in prostate cancer patients have expanded substantially over the past decade. With a near-universal shortage of genetic counselors and increasing demand, increased access to genetic counseling is crucial. We sought to prospectively implement and assess a clinician-led approach to genetic counseling and testing. MATERIALS AND METHODS Patients with metastatic or localized prostate cancer meeting National Comprehensive Cancer Network® criteria for consideration of genetic testing were offered pre-test genetic counseling by their urologist or medical oncologist as part of their routine clinical care and concurrently approached for enrollment in the Germline Genetics in Prostate Cancer Study. Consented patients filled out a post-counseling survey using validated instruments to assess the quality of counseling. For patients who elected to undergo genetic testing, an additional validated questionnaire was completed following disclosure of results. The primary outcome was the proportion of patients undergoing testing, with a target >60% of patients. The secondary outcome was overall satisfaction with counseling, with a target >85% of patients. RESULTS A total of 275 patients enrolled, and 203 patients elected to undergo genetic testing. Post-counseling surveys were obtained from 265 patients, and post-genetic testing surveys were obtained from 132 patients. Patient satisfaction was high, with 98% of patients reporting being satisfied with the overall quality of pre-test counseling, and 74% of patients elected to undergo genetic testing. CONCLUSIONS These results support the effectiveness of clinician-led genetic counseling in prostate cancer. With clinician training, this approach can be utilized to expand access to appropriate germline genetic testing.
Collapse
Affiliation(s)
| | - Marissa A Solorzano
- Department of Urology, University of Michigan, Ann Arbor, Michigan
- College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Mallory Luke
- Department of Urology, University of Michigan, Ann Arbor, Michigan
- School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | | | - Michelle F Jacobs
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sanjay Das
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Amy Kasputis
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Linda A Okoth
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Milan Patel
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Mariana Seymore
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Megan E V Caram
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rodney L Dunn
- Department of Urology, Dow Division of Health Services Research, University of Michigan, Ann Arbor, Michigan
| | - Sofia D Merajver
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, Michigan
| | - Elena M Stoffel
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, Michigan
| | - Zachery R Reichert
- Department of Internal Medicine, Hematology/Oncology Division, University of Michigan Medical School, Ann Arbor, Michigan
| | - Todd M Morgan
- Department of Urology, Division of Urologic Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
84
|
Loughlin KR. The Inexorable March of Prostate Cancer Research. Urol Clin North Am 2022; 49:567-572. [DOI: 10.1016/j.ucl.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
85
|
Kimura H, Mizuno K, Shiota M, Narita S, Terada N, Fujimoto N, Ogura K, Hatano S, Iwasaki Y, Hakozaki N, Ishitoya S, Sumiyoshi T, Goto T, Kobayashi T, Nakagawa H, Kamoto T, Eto M, Habuchi T, Ogawa O, Momozawa Y, Akamatsu S. Prognostic significance of pathogenic variants in BRCA1, BRCA2, ATM and PALB2 genes in men undergoing hormonal therapy for advanced prostate cancer. Br J Cancer 2022; 127:1680-1690. [PMID: 35986085 PMCID: PMC9596487 DOI: 10.1038/s41416-022-01915-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The prognostic significance of germline variants in homologous recombination repair genes in advanced prostate cancer (PCa), especially with regard to hormonal therapy, remains controversial. METHODS Germline DNA from 549 Japanese men with metastatic and/or castration-resistant PCa was sequenced for 27 cancer-predisposing genes. The associations between pathogenic variants and clinical outcomes were examined. Further, for comparison, DNA from prostate biopsy tissue samples from 80 independent patients with metastatic PCa were analysed. RESULTS Forty-four (8%) patients carried germline pathogenic variants in one of the analysed genes. BRCA2 was most frequently altered (n = 19), followed by HOXB13 (n = 9), PALB2 (n = 5) and ATM (n = 5). Further, the BRCA1, BRCA2, PALB2 and ATM variants showed significant association with a short time to castration resistance and overall survival (hazard ratio = 1.99 and 2.36; 95% CI, 1.15-3.44 and 1.23-4.51, respectively), independent of other clinical variables. Based on log-rank tests, the time to castration resistance was also significantly short in patients with BRCA1, BRCA2, PALB2 or ATM somatic mutations and TP53 mutations. CONCLUSIONS Germline variants in BRCA1, BRCA2, PALB2 or ATM are independent prognostic factors of the short duration of response to hormonal therapy in advanced PCa.
Collapse
Affiliation(s)
- Hiroko Kimura
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kei Mizuno
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Narita
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoki Terada
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyusyu, Japan
| | - Keiji Ogura
- Department of Urology, Japanese Red Cross Otsu Hospital, Otsu, Japan
| | - Shotaro Hatano
- Department of Urology, Japanese Red Cross Otsu Hospital, Otsu, Japan
| | - Yusuke Iwasaki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Nozomi Hakozaki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Ishitoya
- Department of Urology, Japanese Red Cross Otsu Hospital, Otsu, Japan
| | - Takayuki Sumiyoshi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Goto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
86
|
Netto GJ, Amin MB, Berney DM, Compérat EM, Gill AJ, Hartmann A, Menon S, Raspollini MR, Rubin MA, Srigley JR, Hoon Tan P, Tickoo SK, Tsuzuki T, Turajlic S, Cree I, Moch H. The 2022 World Health Organization Classification of Tumors of the Urinary System and Male Genital Organs-Part B: Prostate and Urinary Tract Tumors. Eur Urol 2022; 82:469-482. [PMID: 35965208 DOI: 10.1016/j.eururo.2022.07.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 12/14/2022]
Abstract
The 2022 World Health Organization (WHO) classification of the urinary and male genital tumors was recently published by the International Agency for Research on Cancer. This fifth edition of the WHO "Blue Book" offers a comprehensive update on the terminology, epidemiology, pathogenesis, histopathology, diagnostic molecular pathology, and prognostic and predictive progress in genitourinary tumors. In this review, the editors of the fifth series volume on urologic and male genital neoplasms present a summary of the salient changes introduced to the classification of tumors of the prostate and the urinary tract.
Collapse
Affiliation(s)
- George J Netto
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Urology, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Daniel M Berney
- Barts Cancer Institute, Queen Mary University of London, London, UK; Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Eva M Compérat
- Department of Pathology, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria
| | - Anthony J Gill
- Sydney Medical School, University of Sydney, Sydney, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital St Leonards, Sydney, Australia; Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital St Leonards, Sydney, Australia
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Santosh Menon
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Maria R Raspollini
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Florence, Italy
| | - Mark A Rubin
- Department for BioMedical Research (DBMR), Bern Center for Precision Medicine (BCPM), University of Bern and Inselspital, Bern, Switzerland
| | - John R Srigley
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| | - Satish K Tickoo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, AichiMedicalUniversity Hospital, Nagakut, Japan
| | - Samra Turajlic
- The Francis Crick Institute and The Royal Marsden NHS Foundation Trust, London, UK
| | - Ian Cree
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
87
|
Graffeo R, Rana H, Conforti F, Bonanni B, Cardoso M, Paluch-Shimon S, Pagani O, Goldhirsch A, Partridge A, Lambertini M, Garber J. Moderate penetrance genes complicate genetic testing for breast cancer diagnosis: ATM, CHEK2, BARD1 and RAD51D. Breast 2022; 65:32-40. [PMID: 35772246 PMCID: PMC9253488 DOI: 10.1016/j.breast.2022.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer risk associated with germline likely pathogenic/pathogenic variants (PV) varies by gene, often by penetrance (high >50% or moderate 20–50%), and specific locus. Germline PVs in BRCA1 and BRCA2 play important roles in the development of breast and ovarian cancer in particular, as well as in other cancers such as pancreatic and prostate cancers and melanoma. Recent studies suggest that other cancer susceptibility genes, including ATM, CHEK2, PALB2, RAD51C and RAD51D confer differential risks of breast and other specific cancers. In the era of multigene panel testing, advances in next-generation sequencing technologies have notably reduced costs in the United States (US) and enabled sequencing of BRCA1/2 concomitantly with additional genes. The use of multigene-panel testing is beginning to expand in Europe as well. Further research into the clinical implications of variants in moderate penetrance genes, particularly in unaffected carriers, is needed for appropriate counselling and risk management with data-driven plans for surveillance and/or risk reduction. For individuals at high risk without any pathogenic or likely pathogenic variant in cancer susceptibility genes or some carriers of pathogenic variants in moderate-risk genes such as ATM and CHEK2, polygenic risk scores offer promise to help stratify breast cancer risk and guide appropriate risk management options. Cancer patients whose tumours are driven by the loss of function of both copies of a predisposition gene may benefit from therapies targeting the biological alterations induced by the dysfunctional gene e.g. poly ADP ribose polymerase (PARP) inhibitors and other novel pathway agents in cancers with DNA repair deficiencies. A better understanding of mechanisms by which germline variants drive various malignancies may lead to improvements in both therapeutic and preventive management options. The interpretation of genetic testing results requires careful attention. ATM, CHEK2, RAD51D and BARD1 correlated with breast and other cancers risk. European and American guidelines discrepancies. Support European healthcare providers in interpreting and managing female carriers.
Collapse
|
88
|
Bazarbashi S, Alsharm A, Meshref A, Mrabti H, Ansari J, Ghosn M, Abdulla M, Urun Y. Management of metastatic castration-resistant prostate cancer in Middle East African countries: Challenges and strategic recommendations. Urol Ann 2022; 14:303-313. [PMID: 36505997 PMCID: PMC9731188 DOI: 10.4103/ua.ua_148_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the reliance on Western guidelines for managing prostate cancer (PC), there are wide variations and gaps in treatment among developing countries such as the Middle East African (MEA) region. A multidisciplinary team of experts from the MEA region engaged in a comprehensive discussion to identify the real-world challenges in diagnostics and treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC) and provided insights on the urgent unmet needs. We present a consensus document on the region-specific barriers, key priority areas and strategic recommendations by experts for optimizing management of mCRPC in the MEA. Limited access to genetic testing and economic constraints were highlighted as major concerns in the MEA. As the therapeutic landscape continues to expand, treatment selection for mCRPC needs to be increasingly personalized. Enhanced genetic testing and judicious utilization of newer therapies like olaparib, articulated by reimbursement support, should be made accessible for the underserved populations in the MEA. Increasing awareness on testing through educational activities catalyzed by digital technologies can play a central role in overcoming barriers to patient care in the MEA region. The involvement of multidisciplinary teams can bridge the treatment gaps, facilitating holistic and optimal management of mCRPC. Region-specific guidelines can help health-care workers navigate challenges and deliver personalized management through collaborative efforts - thus curb health-care variations and drive consistency. Development of region-specific scalable guidelines for genetic testing and treatment of mCRPC, factoring in the trade-off for access, availability, and affordability, is crucial.
Collapse
Affiliation(s)
- Shouki Bazarbashi
- Oncology Center, King Faisal Specialist Hospital and Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdullah Alsharm
- Comprehensive Cancer Center, King Fahad Medical City, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Hind Mrabti
- Department of Medical Oncology, National Institute of Oncology, Mohamed V University-Rabat, Morocco
| | - Jawaher Ansari
- Department of Medical Oncology, Tawam Hospital, Al Ain, UAE
| | - Marwan Ghosn
- Department of Medical Oncology, Saint Joseph University in Beirut, Lebanon
| | | | - Yuksel Urun
- Department of Medical Oncology, Ankara University, Turkey
| |
Collapse
|
89
|
Kench JG, Amin MB, Berney DM, Compérat EM, Cree IA, Gill AJ, Hartmann A, Menon S, Moch H, Netto GJ, Raspollini MR, Rubin MA, Tan PH, Tsuzuki T, Turjalic S, van der Kwast TH, Zhou M, Srigley JR. WHO Classification of Tumours fifth edition: evolving issues in the classification, diagnosis, and prognostication of prostate cancer. Histopathology 2022; 81:447-458. [PMID: 35758185 PMCID: PMC9542779 DOI: 10.1111/his.14711] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
The fifth edition of the WHO Classification of Tumours of the Urinary and Male Genital Systems encompasses several updates to the classification and diagnosis of prostatic carcinoma as well as incorporating advancements in the assessment of its prognosis, including recent grading modifications. Some of the salient aspects include: (1) recognition that prostatic intraepithelial neoplasia (PIN)-like carcinoma is not synonymous with a pattern of ductal carcinoma, but better classified as a subtype of acinar adenocarcinoma; (2) a specific section on treatment-related neuroendocrine prostatic carcinoma in view of the tight correlation between androgen deprivation therapy and the development of prostatic carcinoma with neuroendocrine morphology, and the emerging data on lineage plasticity; (3) a terminology change of basal cell carcinoma to "adenoid cystic (basal cell) cell carcinoma" given the presence of an underlying MYB::NFIB gene fusion in many cases; (4) discussion of the current issues in the grading of acinar adenocarcinoma and the prognostic significance of cribriform growth patterns; and (5) more detailed coverage of intraductal carcinoma of prostate (IDC-P) reflecting our increased knowledge of this entity, while recommending the descriptive term atypical intraductal proliferation (AIP) for lesions falling short of IDC-P but containing more atypia than typically seen in high-grade prostatic intraepithelial neoplasia (HGPIN). Lesions previously regarded as cribriform patterns of HGPIN are now included in the AIP category. This review discusses these developments, summarising the existing literature, as well as the emerging morphological and molecular data that underpins the classification and prognostication of prostatic carcinoma.
Collapse
Affiliation(s)
- James G Kench
- Department of Tissue Pathology and Diagnostic OncologyRoyal Prince Alfred Hospital, NSW Health PathologyCamperdownNew South WalesAustralia
- The University of SydneyCamperdownNew South WalesAustralia
| | - Mahul B Amin
- The University of Tennessee Health Science CenterMemphisTNUSA
| | - Daniel M Berney
- Department of Cellular Pathology, Bartshealth NHS TrustRoyal London HospitalLondonUK
| | - Eva M Compérat
- Department of PathologyUniversity of ViennaViennaAustria
| | - Ian A Cree
- International Agency for Research on CancerLyonFrance
| | - Anthony J Gill
- The University of SydneyCamperdownNew South WalesAustralia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Pacific HighwaySt LeonardsNew South WalesAustralia
| | - Arndt Hartmann
- Institute of PathologyUniversity Hospital Erlangen, Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Santosh Menon
- Department of PathologyTata Memorial Centre, Homi Bhabha National InstituteMumbaiIndia
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - George J Netto
- Heersink School of MedicineThe University of Alabama at BirminghamBirminghamALUSA
| | - Maria R Raspollini
- Histopathology and Molecular DiagnosticsUniversity Hospital CareggiFlorenceItaly
| | - Mark A Rubin
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Puay Hoon Tan
- Division of Pathology, Singapore General HospitalSingaporeSingapore
| | - Toyonori Tsuzuki
- Department of Surgical PathologyAichi Medical University HospitalNagakuteJapan
| | - Samra Turjalic
- Skin and Renal UnitsRoyal Marsden NHS Foundation TrustLondonUK
- Cancer Dynamics LaboratoryThe Francis Crick InstituteLondonUK
| | - Theo H van der Kwast
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Ming Zhou
- Pathology and Laboratory MedicineTufts Medical CenterBostonMAUSA
| | - John R Srigley
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
90
|
Selvarajah S, Schrader KA, Kolinsky MP, Rendon RA, El Hallani S, Fleshner NE, Hotte SJ, Lorentz J, Panabaker K, Perrier R, Pouliot F, Spatz A, Yip S, Chi KN. Recommendations for the implementation of genetic testing for metastatic prostate cancer patients in Canada. Can Urol Assoc J 2022; 16:321-332. [PMID: 36240332 PMCID: PMC9565071 DOI: 10.5489/cuaj.7954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
INTRODUCTION Genetic testing in advanced prostate cancer is rapidly moving to become standard of care. Testing for genetic alterations in genes involved in DNA repair pathways, particularly those implicated in the homologous recombination repair (HRR) pathway, in patients with metastatic prostate cancer (mPCa) can inform selection of optimal therapies, as well as provide information about familial cancer risks; however, there are currently no consistent Canadian guidelines in place for genetic testing in mPCa. METHODS A multidisciplinary steering committee guided the process of an environmental scan to define the current landscape, as well as the perceived challenges, through interviews with specialists from 14 sites across Canada. The challenges most commonly identified include limited testing guidelines and protocols, inadequate education and awareness, and insufficient resources. Following the environmental scan, an expert multidisciplinary working group with pan-Canadian representation from medical oncologists, urologists, medical geneticists, genetic counsellors, pathologists, and clinical laboratory scientists convened in virtual meetings to discuss the challenges in implementation of genetic testing in mPCa across Canada. RESULTS Key recommendations from the working group include implementation of germline and tumor HRR testing for all patients with mPCa, with a mainstreaming model in which non-geneticist clinicians can initiate germline testing. The working group defined the roles and responsibilities of the various healthcare providers (HCPs) involved in the genetic testing pathway for mPCa patients. In addition, the educational needs for all HCPs involved in the genetic testing pathway for mPCa were defined. CONCLUSIONS As genetic testing for mPCa becomes standard of care, additional resources and investments will be required to implement the changes that will be needed to support the necessary volume of genetic testing, to ensure equitable access, and to provide education to all stakeholders.
Collapse
Affiliation(s)
- Shamini Selvarajah
- Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network (UHN), Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Kasmintan A. Schrader
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Hereditary Cancer Program, BC Cancer, Vancouver, BC, Canada
| | - Michael P. Kolinsky
- Cross Cancer Institute and Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Ricardo A. Rendon
- Department of Urology, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | - Soufiane El Hallani
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Neil E. Fleshner
- Division of Urology, Departments of Surgery and Surgical Oncology, University Health Network, Toronto, ON, Canada
| | | | - Justin Lorentz
- Genetics and High Risk Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Karen Panabaker
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, ON, Canada
| | - Renée Perrier
- Department of Medical Genetics, Alberta Children’s Hospital and Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Frédéric Pouliot
- Divison of Urology, Department of Surgery, CHU de Québec and Laval University, Quebec, QC, Canada
| | - Alan Spatz
- Department of Laboratory Medicine, McGill University Health Centre, Department of Pathology, McGill University, Research Molecular Pathology Center, Lady Davis Institute, Montreal, QC, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
91
|
Weise N, Shaya J, Javier-Desloges J, Cheng HH, Madlensky L, McKay RR. Disparities in germline testing among racial minorities with prostate cancer. Prostate Cancer Prostatic Dis 2022; 25:403-410. [PMID: 34775478 PMCID: PMC8590439 DOI: 10.1038/s41391-021-00469-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
Germline testing is becoming increasingly relevant in prostate cancer (PCa) screening, prognosis, and management. A subset of patients with PCa harbor pathogenic/likely pathogenic variants (P/LPVs) in genes mediating DNA-repair processes, and these P/LPVs have implications for cancer screening, treatment, and cascade testing. As a result, it is recommended that all men with high-risk localized and metastatic PCa undergo routine germline testing. As more PCa patients undergo germline testing, it is important that clinicians and genetics experts recognize current disparities in germline testing rates among racial/ethnic minorities in the United States. The reasons for these disparities are multiple and require similarly manifold consideration to close the germline testing gap and reduce inequities in PCa screening, management, and treatment.
Collapse
Affiliation(s)
- Nicole Weise
- University of California San Diego, San Diego, CA, USA
| | - Justin Shaya
- University of California San Diego, San Diego, CA, USA
| | | | - Heather H Cheng
- University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Rana R McKay
- University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
92
|
Abstract
BACKGROUND An important fraction (>/~10%) of men with high-risk, localized prostate cancer and metastatic prostate cancer carry germline (heritable) pathogenic and likely pathogenic variants (also known as mutations) in DNA repair genes. These can represent known or suspected autosomal dominant cancer predisposition syndromes. Growing evidence suggests that pathogenic variants in key genes involved in homologous recombination and mismatch DNA repair are important in prostate cancer initiation and/or the development of metastases. AIMS Here we provide a comprehensive review regarding individual genes and available literature regarding risks for developing prostate cancer, and discuss current national guidelines for germline genetic testing in the prostate cancer population and treatment implications. RESULTS The association with prostate cancer risk and treatment implications is best understood for those with germline mutations of BRCA2, with emerging data supporting associations with ATM, CHEK2, BRCA1, HOXB13, MSH2, MSH6, PALB2, TP53 and NBN. Treatment implications in the metastatic castration resistant prostate cancer setting include rucaparib and olaparib, and pembrolizumab with potential clinical trial opportunities in earlier disease settings. DISCUSSION The data summarized in this review has led to the expansion of national guidelines for germline genetic testing in prostate cancer. We review these guidelines, and discuss the importance of cascade genetic testing of relatives, diverse populations with attention to inclusion, as well as prostate cancer screening updates and clinical trial opportunities for men who carry genetic risk factors for prostate cancer.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Medicine, Division of Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Heather H. Cheng
- Department of Medicine, Division of Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
93
|
Petrylak DP, Watkins SP, Loehr A. What Plasma Can Tell Us When Tissue Cannot: A Case Report of Genomic Testing in mCRPC and Clinical Response to Treatment With the PARP Inhibitor Rucaparib. Front Oncol 2022; 12:951348. [PMID: 35978838 PMCID: PMC9377337 DOI: 10.3389/fonc.2022.951348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background The poly(ADP-ribose) polymerase (PARP) inhibitor rucaparib was approved in the United States based on the phase 2 TRITON2 study of patients with BRCA1 or BRCA2 (BRCA)-mutated metastatic castration-resistant prostate cancer (mCRPC). Although genomic screening is recommended as part of a comprehensive assessment of prostate cancer prognosis and treatment options, the best way to select patients with mCRPC for treatment with a PARP inhibitor depends on individual clinical circumstances. For example, assessment of tumor tissue may not always be feasible. Genomic testing of DNA from plasma has become more readily available, providing a minimally invasive option to evaluate DNA from primary and metastatic lesions simultaneously. Case Presentation A patient from TRITON2 with BRCA-mutated mCRPC had a response to the PARP inhibitor rucaparib and remained on treatment for 32 weeks, which was >2 times longer than the duration of each of his prior therapies (bicalutamide, docetaxel, abiraterone). The patient enrolled in TRITON2 based on results of local genomic testing of an archival biopsy that indicated the presence of a BRCA1 T1399I (allelic fraction, 19%) mutation. Local testing also identified an ATM G1663C mutation, a TP53 P191del mutation, and a BRAF K601E mutation. Analysis of a plasma sample obtained before the patient started rucaparib detected the same alterations as those in the archival biopsy, but it also revealed the presence of a BRCA2 homozygous loss (whole gene, 26 of 26 exons) and several other alterations of unknown functional impact. We hypothesize the response of the patient's tumor to rucaparib was likely driven by DNA damage repair deficiency caused by homozygous loss of all BRCA2 exons. Following discontinuation from rucaparib due to clinical disease progression, the patient received carboplatin and cabazitaxel for ≈3 weeks. The patient died due to progression of his disease. Conclusions A notable aspect of this case is the differences in alterations detected in the archival tumor sample and a more recent plasma sample. This highlights the advantages of plasma testing compared with tissue testing when selecting targeted therapies for treatment of mCRPC; however, physicians must determine which tool presents the best solution for each individual case.
Collapse
Affiliation(s)
- Daniel P. Petrylak
- Smilow Cancer Center, Yale School of Medicine, New Haven, CT, United States
| | - Simon P. Watkins
- Clinical Science, Clovis Oncology UK, Ltd, Cambridge, United Kingdom
| | - Andrea Loehr
- Translational Medicine, Clovis Oncology, Inc., Boulder, CO, United States
| |
Collapse
|
94
|
Novel Germline Mutations in a Cohort of Men with Familial Prostate Cancer. Cancers (Basel) 2022; 14:cancers14153623. [PMID: 35892882 PMCID: PMC9332384 DOI: 10.3390/cancers14153623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Germline mutations in BRCA2 are associated with aggressive prostate cancer. Additional information regarding the clinical phenotype of germline pathogenic variants in other prostate cancer predisposition genes is required. Clinical testing has been limited by evidence, further restricting knowledge of variants that contribute to prostate cancer development. Objective: Prostate cancer patients who were first- and second-degree relatives from multi-case prostate cancer families underwent a gene panel screen to identify novel (non-BRCA) germline pathogenic variants in cancer predisposition genes and define clinical phenotypes associated with each gene. Methods: The germline genomic DNA (gDNA) of 94 index cases with verified prostate cancer from families with a minimum of two verified prostate cancer cases was screened with an 84-cancer-gene panel. Families were recruited for multi-case breast/ovarian cancer (n = 66), or multi-case prostate cancer (n = 28). Prostate cancer characteristics associated with each gene were compared with prostate cancer cases of confirmed non-mutation carriers (BRCAX), also from multi-case prostate cancer families (n = 111), and with data from the Prostate Cancer Outcomes Registry (PCOR). Results: Ninety-four prostate cancer index cases underwent gene panel testing; twenty-two index cases (22/94; 23%) were found to carry a class 4-5 (C4/5) variant. Six of twenty-two (27%) variants were not clinically notifiable, and seven of twenty-two (31.8%) variants were in BRCA1/2 genes. Nine of twenty-two (40.9%) index cases had variants identified in ATM (n = 4), CHEK2 (n = 2) and HOXB13G84 (n = 3); gDNA for all relatives of these nine cases was screened for the corresponding familial variant. The final cohort comprised 15 confirmed germline mutation carriers with prostate cancer (ATM n = 9, CHEK2 n = 2, HOXB13G84 n = 4). ATM and CHEK2-associated cancers were D'Amico intermediate or high risk, comparable to our previously published BRCA2 and BRCAX prostate cancer cohort. HOXB13G84 carriers demonstrated low- to intermediate-risk prostate cancer. In the BRCAX cohort, 53.2% of subjects demonstrated high-risk disease compared with 25% of the PCOR cohort. Conclusions:ATM and CHEK2 germline mutation carriers and the BRCAX (confirmed non-mutation carriers) cohort demonstrated high risk disease compared with the general population. Targeted genetic testing will help identify men at greater risk of prostate-cancer-specific mortality. Data correlating rare variants with clinical phenotype and familial predisposition will strengthen the clinical validity and utility of these results and establish these variants as significant in prostate cancer detection and management.
Collapse
|
95
|
Oleocanthal Attenuates Metastatic Castration-Resistant Prostate Cancer Progression and Recurrence by Targeting SMYD2. Cancers (Basel) 2022; 14:cancers14143542. [PMID: 35884603 PMCID: PMC9317016 DOI: 10.3390/cancers14143542] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The Mediterranean, extra-virgin-olive-oil-rich diet ingredient S-(-)-oleocanthal (OC) has emerged as a potential inhibitor for the growth and relapse of the most aggressive prostate cancer type. This effect is mediated through suppression of important enzyme, SMYD2, that drives the activation of several downstream protein effectors. OC treatments reduced SMYD2 downstream substrates, which are critical for prostate cancer growth and relapse. OC is more advantageous than other reported SMYD2 inhibitors because it has shown potent anticancer activity in animal models. OC’s anti-prostate-cancer effect was prominent compared with some standard drugs currently used to control prostate cancer. OC is a potential, novel natural compound appropriate for immediate use by prostate cancer patients and survivors as a nutraceutical or dietary supplement product. Abstract Metastatic castration-resistant prostate cancer (mCRPC) is the most aggressive prostate cancer (PC) phenotype. Cellular lysine methylation is driven by protein lysine methyltransferases (PKMTs), such as those in the SET- and MYND-containing protein (SMYD) family, including SMYD2 methylate, and several histone and non-histone proteins. SMYD2 is dysregulated in metastatic PC patients with high Gleason score and shorter survival. The Mediterranean, extra-virgin-olive-oil-rich diet ingredient S-(-)-oleocanthal (OC) inhibited SMYD2 in biochemical assays and suppressed viability, migration, invasion, and colony formation of PC-3, CWR-R1ca, PC-3M, and DU-145 PC cell lines with IC50 range from high nM to low µM. OC’s in vitro antiproliferative effect was comparable to standard anti-PC chemotherapies or hormone therapies. A daily, oral 10 mg/kg dose of OC for 11 days effectively suppressed the progression of the mCRPC CWR-R1ca cells engrafted into male nude mice. Daily, oral OC treatment for 30 days suppressed tumor locoregional and distant recurrences after the primary tumors’ surgical excision. Collected OC-treated animal tumors showed marked SMYD2 reduction. OC-treated mice showed significant serum PSA reduction. For the first time, this study showed SMYD2 as novel molecular target in mCRPC, and OC emerged as a specific SMYD2 lead inhibitor. OC prevailed over previously reported SMYD2 inhibitors, with validated in vivo potency and high safety profile, and, therefore, is proposed as a novel nutraceutical for mCRPC progression and recurrence control.
Collapse
|
96
|
Novel germline mutations for active surveillance and imaging strategies in prostate cancer. Curr Opin Urol 2022; 32:456-461. [PMID: 35855555 DOI: 10.1097/mou.0000000000001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review highlights the emerging role of genetics-lead medicine (GLM) in prostate cancer. We describe the benefits of GLM integration into prostate cancer screening, diagnosis and management. Imaging techniques enhancing prostate cancer detection are advancing concurrently, facilitating strategic active surveillance protocols for appropriately selected patients. We aim to improve clinician awareness of the role of GLM in current and future practice. RECENT FINDINGS We explore recent literature advancing the role of GLM in prostate cancer detection and management, particularly as this coexists with the development of imaging technology. Our current understanding of germline mutations implicated in familial prostate cancer development is summarized. We describe how these developments are being utilized to inform screening, surveillance and the development of novel therapies. We summarize current guidelines and explore factors inhibiting optimal implementation of recommendations in clinical practice. SUMMARY Integration and further development of genetics-lead medicine in the detection, surveillance and management of prostate cancer will improve clinical outcomes for men at risk of aggressive disease as a result of familial predispositions to prostate cancer. This review summarizes the pertinent developments in the field including improving clinician awareness to facilitate implantation of these strategies into current clinical practice.
Collapse
|
97
|
Chiu PKF, Lee EKC, Chan MTY, Chan WHC, Cheung MH, Lam MHC, Ma ESK, Poon DMC. Genetic Testing and Its Clinical Application in Prostate Cancer Management: Consensus Statements from the Hong Kong Urological Association and Hong Kong Society of Uro-Oncology. Front Oncol 2022; 12:962958. [PMID: 35924163 PMCID: PMC9339641 DOI: 10.3389/fonc.2022.962958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background In recent years, indications for genetic testing in prostate cancer (PC) have expanded from patients with a family history of prostate and/or related cancers to those with advanced castration-resistant disease, and even to early PC patients for determination of the appropriateness of active surveillance. The current consensus aims to provide guidance to urologists, oncologists and pathologists working with Asian PC patients on who and what to test for in selected populations. Methods A joint consensus panel from the Hong Kong Urological Association and Hong Kong Society of Uro-Oncology was convened over a series of 5 physical and virtual meetings. A background literature search on genetic testing in PC was performed in PubMed, ClinicalKey, EBSCOHost, Ovid and ProQuest, and three working subgroups were formed to review and present the relevant evidence. Meeting agendas adopted a modified Delphi approach to ensure that discussions proceed in a structured, iterative and balanced manner, which was followed by an anonymous voting on candidate statements. Of 5 available answer options, a consensus statement was accepted if ≥ 75% of the panelists chose “Accept Completely” (Option A) or “Accept with Some Reservation” (Option B). Results The consensus was structured into three parts: indications for testing, testing methods, and therapeutic implications. A list of 35 candidate statements were developed, of which 31 were accepted. The statements addressed questions on the application of PC genetic testing data and guidelines to Asian patients, including patient selection for germline testing, selection of gene panel and tissue sample, provision of genetic counseling, and use of novel systemic treatments in metastatic castration-resistant PC patients. Conclusion This consensus provides guidance to urologists, oncologists and pathologists working with Asian patients on indications for genetic testing, testing methods and technical considerations, and associated therapeutic implications.
Collapse
Affiliation(s)
- Peter K. F. Chiu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eric K. C. Lee
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong SAR, China
| | - Marco T. Y. Chan
- Division of Urology, Department of Surgery, Tuen Mun Hospital, Hong Kong SAR, China
| | - Wilson H. C. Chan
- Division of Urology, Department of Surgery, United Christian Hospital, Hong Kong SAR, China
| | - M. H. Cheung
- Division of Urology, Department of Surgery, Tseung Kwan O Hospital, Hong Kong SAR, China
| | - Martin H. C. Lam
- Department of Oncology, United Christian Hospital, Hong Kong SAR, China
| | - Edmond S. K. Ma
- Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Darren M. C. Poon
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Comprehensive Oncology Centre, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
- *Correspondence: Darren M. C. Poon,
| |
Collapse
|
98
|
Liu S, He B, Li H. Comprehensive analysis of emerging flame retardants, a risk factor to prostate cancer? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113627. [PMID: 35588625 DOI: 10.1016/j.ecoenv.2022.113627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Among man-made chemicals, flame retardants have caused great environmental concerns. Several studies in recent years have investigated potential sources of flame retardants, environmental distribution, exposure to wild animals and humans and toxicity. However, studies focusing on the prediction of toxicity of flame retardants are limited. Herein, toxicological and tumor databases were applied to evaluate the potential correlation between emerging flame retardants (EFRs) and tumors. Further analysis also showed that EFRs may be associated with prostate cancer (PCa). After constructing an EFR-related prognostic prediction model, it was established that EFR-related genes showed a strong prognostic predictive value among PCa patients. In addition, compared with the clinical characteristics model (including age, Gleason score, prostate-specific antigen level, T stage and N stage), a prognostic predictive model-based risk score demonstrated a better predictive value of PCa. The AUC of the 31-gene prognostic signature at 1, 3 and 5 years was 0.843, 0.824 and 0.819, respectively. In addition, the AUC of the risk score, Gleason score, age, PSA level, T stage and N stage were 0.843, 0.637, 0.414, 0.490, 0.668 and 0.517, respectively. Our analysis provides a comprehensive map of EFR interaction genes and demonstrated a new direction for environmentally hazardous materials and diseases.
Collapse
Affiliation(s)
- Shengdi Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin He
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Li
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
99
|
Giri VN, Morgan TM, Morris DS, Berchuck JE, Hyatt C, Taplin ME. Genetic testing in prostate cancer management: Considerations informing primary care. CA Cancer J Clin 2022; 72:360-371. [PMID: 35201622 DOI: 10.3322/caac.21720] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inherited genetic mutations can significantly increase the risk for prostate cancer (PC), may be associated with aggressive disease and poorer outcomes, and can have hereditary cancer implications for men and their families. Germline genetic testing (hereditary cancer genetic testing) is now strongly recommended for patients with advanced/metastatic PC, particularly given the impact on targeted therapy selection or clinical trial options, with expanded National Comprehensive Cancer Network guidelines and endorsement from multiple professional societies. Furthermore, National Comprehensive Cancer Network guidelines recommend genetic testing for men with PC across the stage and risk spectrum and for unaffected men at high risk for PC based on family history to identify hereditary cancer risk. Primary care is a critical field in which providers evaluate men at an elevated risk for PC, men living with PC, and PC survivors for whom germline testing may be indicated. Therefore, there is a critical need to engage and educate primary care providers regarding the role of genetic testing and the impact of results on PC screening, treatment, and cascade testing for family members of affected men. This review highlights key aspects of genetic testing in PC, the role of clinicians, with a focus on primary care, the importance of obtaining a comprehensive family history, current germline testing guidelines, and the impact on precision PC care. With emerging evidence and guidelines, clinical pathways are needed to facilitate integrated genetic education, testing, and counseling services in appropriately selected patients. There is also a need for providers to understand the field of genetic counseling and how best to collaborate to enhance multidisciplinary patient care.
Collapse
Affiliation(s)
- Veda N Giri
- Department of Medical Oncology, Cancer Biology, and Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Todd M Morgan
- Department of Urology, University of Michigan Urology Cancer Center, Ann Arbor, Michigan
| | | | - Jacob E Berchuck
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Colette Hyatt
- Familial Cancer Program, University of Vermont Medical Center, Burlington, Vermont
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
100
|
Finch A, Clark R, Vesprini D, Lorentz J, Kim RH, Thain E, Fleshner N, Akbari MR, Cybulski C, Narod SA. An appraisal of genetic testing for prostate cancer susceptibility. NPJ Precis Oncol 2022; 6:43. [PMID: 35732815 PMCID: PMC9217944 DOI: 10.1038/s41698-022-00282-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Most criteria for genetic testing for prostate cancer susceptibility require a prior diagnosis of prostate cancer, in particular cases with metastatic disease are selected. Advances in the field are expected to improve outcomes through tailored treatments for men with advanced prostate cancer with germline pathogenic variants, although these are not currently offered in the curative setting. A better understanding of the value of genetic testing for prostate cancer susceptibility in screening, for early detection and prevention is necessary. We review and summarize the literature describing germline pathogenic variants in genes associated with increased prostate cancer risk and aggressivity. Important questions include: what is our ability to screen for and prevent prostate cancer in a man with a germline pathogenic variant and how does knowledge of a germline pathogenic variant influence treatment of men with nonmetastatic disease, with hormone-resistant disease and with metastatic disease? The frequency of germline pathogenic variants in prostate cancer is well described, according to personal and family history of cancer and by stage and grade of disease. The role of these genes in aggressive prostate cancer is also discussed. It is timely to consider whether or not genetic testing should be offered to all men with prostate cancer. The goals of testing are to facilitate screening for early cancers in unaffected high-risk men and to prevent advanced disease in men with cancer.
Collapse
Affiliation(s)
- Amy Finch
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Roderick Clark
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- Division of Urology, University of Toronto, Ontario, Canada
| | - Danny Vesprini
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| | - Justin Lorentz
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| | - Raymond H Kim
- Familial Cancer Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Emily Thain
- Familial Cancer Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Neil Fleshner
- Division of Urology, Departments of Surgery and Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | - Cezary Cybulski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada.
- Dalla Lana School of Public Health, University of Toronto, Ontario, Canada.
| |
Collapse
|