51
|
Zarei M, Rahbar MR, Morowvat MH, Nezafat N, Negahdaripour M, Berenjian A, Ghasemi Y. Arginine Deiminase: Current Understanding and Applications. Recent Pat Biotechnol 2019; 13:124-136. [PMID: 30569861 DOI: 10.2174/1872208313666181220121400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/07/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Arginine deiminase (ADI), an arginine catabolizing enzyme, is considered as an anti-tumor agent for the treatment of arginine auxotrophic cancers. However, some obstacles limit its clinical applications. OBJECTIVE This review will summarize the clinical applications of ADI, from a brief history to its limitations, and will discuss the different ways to deal with the clinical limitations. METHOD The structure analysis, cloning, expression, protein engineering and applications of arginine deiminase enzyme have been explained in this review. CONCLUSION Recent patents on ADI are related to ADI engineering to increase its efficacy for clinical application. The intracellular delivery of ADI and combination therapy seem to be the future strategies in the treatment of arginine auxotrophic cancers. Applying ADIs with optimum features from different sources and or ADI engineering, are promising strategies to improve the clinical application of ADI.
Collapse
Affiliation(s)
- Mahboubeh Zarei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Rahbar
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aydin Berenjian
- School of Engineering, Faculty of Science & Engineering, The University of Waikato, Hamilton, New Zealand
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
52
|
Abstract
Oncogenic signalling and metabolic alterations are interrelated in cancer cells. mTOR, which is frequently activated in cancer, controls cell growth and metabolism. mTOR signalling regulates amino acid, glucose, nucleotide, fatty acid and lipid metabolism. Conversely, metabolic inputs, such as amino acids, activate mTOR. In this Review, we discuss how mTOR signalling rewires cancer cell metabolism and delineate how changes in metabolism, in turn, sustain mTOR signalling and tumorigenicity. Several drugs are being developed to perturb cancer cell metabolism. However, their efficacy as stand-alone therapies, similar to mTOR inhibitors, is limited. Here, we discuss how the interdependence of mTOR signalling and metabolism can be exploited for cancer therapy.
Collapse
Affiliation(s)
| | - Sujin Park
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
53
|
Abstract
Cancer cells reprogramme metabolism to maximize the use of nitrogen and carbon for the anabolic synthesis of macromolecules that are required during tumour proliferation and growth. To achieve this aim, one strategy is to reduce catabolism and nitrogen disposal. The urea cycle (UC) in the liver is the main metabolic pathway to convert excess nitrogen into disposable urea. Outside the liver, UC enzymes are differentially expressed, enabling the use of nitrogen for the synthesis of UC intermediates that are required to accommodate cellular needs. Interestingly, the expression of UC enzymes is altered in cancer, revealing a revolutionary mechanism to maximize nitrogen incorporation into biomass. In this Review, we discuss the metabolic benefits underlying UC deregulation in cancer and the relevance of these alterations for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Peter Szlosarek
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
- Barts Health NHS Trust, St Bartholomew's Hospital, London, UK
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
54
|
Tripathi SC, Fahrmann JF, Vykoukal JV, Dennison JB, Hanash SM. Targeting metabolic vulnerabilities of cancer: Small molecule inhibitors in clinic. Cancer Rep (Hoboken) 2018; 2:e1131. [PMID: 32721114 DOI: 10.1002/cnr2.1131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Altered cell metabolism is an established hallmark of cancer. Advancement in our understanding of dysregulated cellular metabolism has aided drastically in identifying metabolic vulnerabilities that can be exploited therapeutically. Indeed, this knowledge has led to the development of a multitude of agents targeting various aspects of tumor metabolism. RECENT FINDINGS The intent of this review is to provide insight into small molecule inhibitors that target tumor metabolism and that are currently being explored in active clinical trials as either preventive, stand-alone, or adjuvant therapies for various malignancies. For each inhibitor, we outline the mechanism (s) of action, preclinical/clinical findings, and limitations. Sections are divided into three aspects based on the primary target of the small molecule inhibitor (s): those that impact (1) cancer cells directly, (2) immune cells present in the tumor microenvironment, or (3) both cancer cells and immune cells. We highlight small molecule targeting of metabolic pathways including de novo fatty acid synthesis, NAD+ biosynthesis, 2-hydroxyglutarate biosynthesis, polyamine metabolism, the kynurenine pathway, as well as glutamine and arginine metabolism. CONCLUSIONS Use of small molecule inhibitors aimed at exploiting tumor metabolic vulnerabilities continues to be an active area of research. Identifying metabolic dependencies specific to cancer cells and/or constituents of the tumor microenvironment is a viable area of therapeutic intervention that holds considerable clinical potential.
Collapse
Affiliation(s)
- Satyendra C Tripathi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jody V Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| |
Collapse
|
55
|
Gupta S, Sahu D, Bomalaski JS, Frank I, Boorjian SA, Thapa P, Cheville JC, Hansel DE. Argininosuccinate Synthetase-1 (ASS1) Loss in High-Grade Neuroendocrine Carcinomas of the Urinary Bladder: Implications for Targeted Therapy with ADI-PEG 20. Endocr Pathol 2018; 29:236-241. [PMID: 29453600 DOI: 10.1007/s12022-018-9516-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-grade neuroendocrine carcinomas (HGNECs) of the urinary bladder encompass small cell (SCNEC) and large cell neuroendocrine carcinomas (LCNEC). Currently, recommended initial management is with systemic chemotherapy, followed by consolidative therapy with either radical cystectomy or radiotherapy in patients with localized disease. Nevertheless, survival in this setting remains poor. We therefore evaluated the potential to modify arginine metabolism as an alternative, targeted therapy approach in these carcinomas. In humans, arginine is a semi-essential amino acid and its synthesis enzyme argininosuccinate synthetase (ASS1) represents the rate-limiting step in arginine biosynthesis. Neoplasms that show low to absent ASS1 expression require extracellular arginine for cancer cell survival, and thus can be targeted using arginine-degrading enzymes such as pegylated arginine deiminase (ADI-PEG 20). An initial study by our group of 19 patients demonstrated that a high percentage of SCNEC lack ASS1 expression. Herein, we evaluated an expanded cohort of 74 radical cystectomy patients with HGNEC, including 63 SCNEC, 5 LCNEC, and 6 mixed morphology HGNEC patients. ASS1 expression was assessed through immunohistochemistry. Fifty-eight (of 74, 78%) patients with HGNEC showed absent ASS1 expression, including all patients with LCNEC and mixed morphology (11 of 11, 100%). Ten-year survival from disease-specific death was not statistically significant between ASS1-expressing and ASS1-deficient cases (p = 0.75). Our results show that HGNEC of the bladder may be candidates for arginine deprivation therapy using drugs such as ADI-PEG 20. Further studies are needed to validate these findings and to determine the therapeutic efficacy of such agents.
Collapse
Affiliation(s)
- Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Divya Sahu
- Department of Pathology, University of California at San Diego, 9500 Gilman Dr., MC 0612, La Jolla, CA, 92093, USA
| | | | - Igor Frank
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | | - Prabin Thapa
- Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - John C Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Donna E Hansel
- Department of Pathology, University of California at San Diego, 9500 Gilman Dr., MC 0612, La Jolla, CA, 92093, USA.
| |
Collapse
|
56
|
Harding JJ, Do RK, Dika IE, Hollywood E, Uhlitskykh K, Valentino E, Wan P, Hamilton C, Feng X, Johnston A, Bomalaski J, Li CF, O'Reilly EM, Abou-Alfa GK. A phase 1 study of ADI-PEG 20 and modified FOLFOX6 in patients with advanced hepatocellular carcinoma and other gastrointestinal malignancies. Cancer Chemother Pharmacol 2018; 82:429-440. [PMID: 29971467 PMCID: PMC6850802 DOI: 10.1007/s00280-018-3635-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Arginine depletion interferes with pyrimidine metabolism as well as DNA damage repair pathways. Preclinical data indicates that pairing pegylated arginine deiminase (ADI-PEG 20) with fluoropyrimidines or platinum enhances cytotoxicity in vitro and in vivo in arginine auxotrophs. METHODS This is a single-center, open-label, phase 1 trial of ADI-PEG 20 and modified FOLFOX6 (mFOLFOX6) in treatment-refractory hepatocellular carcinoma (HCC) and other advanced gastrointestinal tumors. A 3 + 3 dose escalation design was employed to assess safety, tolerability, and determine the recommended phase 2 dose (RP2D) of ADI-PEG 20. A RP2D expansion cohort for patients with HCC was employed to define the objective response rate (ORR). Secondary objectives were to estimate progression-free survival (PFS), overall survival (OS), and to explore pharmacodynamics and immunogenicity. Eligible patients were treated with mFOLFOX6 intravenously biweekly at standard doses and ADI-PEG-20 intramuscularly weekly at 18 (Cohort 1) or 36 mg/m2 (Cohort 2 and RP2D expansion). RESULTS Twenty-seven patients enrolled-23 with advanced HCC and 4 with other gastrointestinal tumors. No dose-limiting toxicities were observed in cohort 1 or 2. The RP2D for ADI-PEG 20 was 36 mg/m2 weekly with mFOLFOX6. The most common any grade adverse events (AEs) were thrombocytopenia, neutropenia, leukopenia, anemia, and fatigue. Among the 23 HCC patients, the most frequent treatment-related Grade ≥ 3 AEs were neutropenia (47.8%), thrombocytopenia (34.7%), leukopenia (21.7%), anemia (21.7%), and lymphopenia (17.4%). The ORR for this group was 21% (95% CI 7.5-43.7). Median PFS and OS were 7.3 and 14.5 months, respectively. Arginine levels were depleted with therapy despite the emergence of low levels of anti-ADI-PEG 20 antibodies. Arginine depletion at 4 and 8 weeks and archival tumoral argininosuccinate synthetase-1 levels did not correlate with response. CONCLUSIONS Concurrent mFOLFOX6 plus ADI-PEG-20 intramuscularly at 36 mg/m2 weekly shows an acceptable safety profile and favorable efficacy compared to historic controls. Further evaluation of this combination is warranted in advanced HCC patients.
Collapse
Affiliation(s)
- James J Harding
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
- Department of Medicine, Gastrointestinal Oncology Service, 300 East 66th Street, New York, NY, 10065, USA.
| | - Richard K Do
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Imane El Dika
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Peter Wan
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Casey Hamilton
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Chien-Feng Li
- Chi Mei Medical Center, Tainan, Taiwan, Republic of China
| | - Eileen M O'Reilly
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Ghassan K Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
57
|
Keshet R, Erez A. Arginine and the metabolic regulation of nitric oxide synthesis in cancer. Dis Model Mech 2018; 11:11/8/dmm033332. [PMID: 30082427 PMCID: PMC6124554 DOI: 10.1242/dmm.033332] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO) is a signaling molecule that plays important roles in diverse biological processes and thus its dysregulation is involved in the pathogenesis of various disorders. In cancer, NO has broad and sometimes dichotomous roles; it is involved in cancer initiation and progression, but also restricts cancer proliferation and invasion, and contributes to the anti-tumor immune response. The importance of NO in a range of cellular processes is exemplified by its tight spatial and dosage control at multiple levels, including via its transcriptional, post-translational and metabolic regulation. In this Review, we focus on the regulation of NO via the synthesis and availability of its precursor, arginine, and discuss the implications of this metabolic regulation for cancer biology and therapy. Despite the established contribution of NO to cancer pathogenesis, the implementation of NO-related cancer therapeutics remains limited, likely due to the challenge of targeting and inducing its protective functions in a cell- and dosage-specific manner. A better understanding of how arginine regulates the production of NO in cancer might thus support the development of anti-cancer drugs that target this key metabolic pathway, and other metabolic pathways involved in NO production.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
58
|
Bayci AWL, Baker DA, Somerset AE, Turkoglu O, Hothem Z, Callahan RE, Mandal R, Han B, Bjorndahl T, Wishart D, Bahado-Singh R, Graham SF, Keidan R. Metabolomic identification of diagnostic serum-based biomarkers for advanced stage melanoma. Metabolomics 2018; 14:105. [PMID: 30830422 DOI: 10.1007/s11306-018-1398-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/18/2018] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Melanoma is a highly aggressive malignancy and is currently one of the fastest growing cancers worldwide. While early stage (I and II) disease is highly curable with excellent prognosis, mortality rates rise dramatically after distant spread. We sought to identify differences in the metabolome of melanoma patients to further elucidate the pathophysiology of melanoma and identify potential biomarkers to aid in earlier detection of recurrence. METHODS Using 1H NMR and DI-LC-MS/MS, we profiled serum samples from 26 patients with stage III (nodal metastasis) or stage IV (distant metastasis) melanoma and compared their biochemical profiles with 46 age- and gender-matched controls. RESULTS We accurately quantified 181 metabolites in serum using a combination of 1H NMR and DI-LC-MS/MS. We observed significant separation between cases and controls in the PLS-DA scores plot (permutation test p-value = 0.002). Using the concentrations of PC-aa-C40:3, DL-carnitine, octanoyl-L-carnitine, ethanol, and methylmalonyl-L-carnitine we developed a diagnostic algorithm with an AUC (95% CI) = 0.822 (0.665-0.979) with sensitivity and specificity of 100 and 56%, respectively. Furthermore, we identified arginine, proline, tryptophan, glutamine, glutamate, glutathione and ornithine metabolism to be significantly perturbed due to disease (p < 0.05). CONCLUSION Targeted metabolomic analysis demonstrated significant differences in metabolic profiles of advanced stage (III and IV) melanoma patients as compared to controls. These differences may represent a potential avenue for the development of multi-marker serum-based assays for earlier detection of recurrences, allow for newer, more effective targeted therapy when tumor burden is less, and further elucidate the pathophysiologic changes that occur in melanoma.
Collapse
Affiliation(s)
- A W L Bayci
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA
| | - D A Baker
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA.
- Department of Surgery, Beaumont Health, 3601 W. 13 Mile Rd., Royal Oak, MI, 48073, USA.
| | - A E Somerset
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA
| | - O Turkoglu
- Department of Obstetrics and Gynecology, Beaumont Health, Royal Oak, MI, USA
| | - Z Hothem
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA
| | - R E Callahan
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA
| | - R Mandal
- Department of Biological and Computing Sciences, University of Alberta Edmonton, Edmonton, AB, Canada
| | - B Han
- Department of Biological and Computing Sciences, University of Alberta Edmonton, Edmonton, AB, Canada
| | - T Bjorndahl
- Department of Biological and Computing Sciences, University of Alberta Edmonton, Edmonton, AB, Canada
| | - D Wishart
- Department of Biological and Computing Sciences, University of Alberta Edmonton, Edmonton, AB, Canada
| | - R Bahado-Singh
- Department of Obstetrics and Gynecology, Beaumont Health, Royal Oak, MI, USA
| | - S F Graham
- Department of Obstetrics and Gynecology, Beaumont Health, Royal Oak, MI, USA
| | - R Keidan
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA
| |
Collapse
|
59
|
Yuan Y, Mohammad MA, Betancourt A, Didelija IC, Yallampalli C, Marini JC. The Citrulline Recycling Pathway Sustains Cardiovascular Function in Arginine-Depleted Healthy Mice, but Cannot Sustain Nitric Oxide Production during Endotoxin Challenge. J Nutr 2018; 148:844-850. [PMID: 29878271 PMCID: PMC6670044 DOI: 10.1093/jn/nxy065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/08/2018] [Indexed: 12/12/2022] Open
Abstract
Background The recycling of citrulline by argininosuccinate synthase 1 (ASS1) and argininosuccinate lyase (ASL) is crucial to maintain arginine availability and nitric oxide (NO) production. Pegylated arginine deiminase (ADI-PEG20) is a bacterial enzyme used to deplete circulating arginine. Objective The goal of this research was to test the hypothesis that citrulline is able to sustain intracellular arginine availability for NO production in ADI-PEG20 arginine-depleted mice. Methods Six- to 8-wk-old male C57BL/6J mice injected with ADI-PEG20 (5 IU) or saline (control) were used in 4 different studies. Arginine, citrulline, and NO kinetics were determined by using stable isotopes in unchallenged (study 1) and endotoxin-challenged (study 2) mice. Blood pressure was determined by telemetry for 6 d after ADI-PEG20 administration (study 3), and vasomotor activity and ASS1 and ASL gene expression were determined in mesenteric arteries collected from additional mice (study 4). Results ADI-PEG20 administration resulted in arginine depletion (<1 compared with 111 ± 37 µmol/L) but in greater plasma citrulline concentrations (900 ± 123 compared with 76 ± 8 µmol/L; P < 0.001) and fluxes (402 ± 17 compared with 126 ± 4 µmol ⋅ kg-1 ⋅ h-1; P < 0.001) compared with controls. Endotoxin-challenged ADI-PEG20-treated mice produced less NO than controls (13 ± 1 compared with 27 ± 2 µmol ⋅ kg-1 ⋅ h-1; P < 0.001). No differences (P > 0.50) were observed for cardiovascular variables (heart rate, blood pressure) between ADI-PEG20-treated and control mice. Furthermore, no ex vivo vasomotor differences were observed between the 2 treatments. ADI-PEG20 administration resulted in greater gene expression of ASS1 (∼3-fold) but lower expression of ASL (-30%). Conclusion ADI-PEG20 successfully depleted circulating arginine without any effect on cardiovascular endpoints in healthy mice but limited NO production after endotoxin challenge. Therefore, the citrulline recycling pathway can sustain local arginine availability independently from circulating arginine, satisfying the demand of arginine for endothelial NO production; however, it is unable to do so when a high demand for arginine is elicited by endotoxin.
Collapse
Affiliation(s)
- Yang Yuan
- USDA–Agricultural Research Service Children's Nutrition Research Center
| | | | | | - Inka C Didelija
- USDA–Agricultural Research Service Children's Nutrition Research Center
| | | | - Juan C Marini
- USDA–Agricultural Research Service Children's Nutrition Research Center,Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX,Address correspondence to JCM (e-mail: )
| |
Collapse
|
60
|
Simabuco FM, Morale MG, Pavan IC, Morelli AP, Silva FR, Tamura RE. p53 and metabolism: from mechanism to therapeutics. Oncotarget 2018; 9:23780-23823. [PMID: 29805774 PMCID: PMC5955117 DOI: 10.18632/oncotarget.25267] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022] Open
Abstract
The tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics.
Collapse
Affiliation(s)
- Fernando M. Simabuco
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mirian G. Morale
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Isadora C.B. Pavan
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana P. Morelli
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando R. Silva
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo E. Tamura
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
61
|
McCambridge AJ, Napolitano A, Mansfield AS, Fennell DA, Sekido Y, Nowak AK, Reungwetwattana T, Mao W, Pass HI, Carbone M, Yang H, Peikert T. Progress in the Management of Malignant Pleural Mesothelioma in 2017. J Thorac Oncol 2018; 13:606-623. [PMID: 29524617 PMCID: PMC6544834 DOI: 10.1016/j.jtho.2018.02.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
Malignant pleural mesothelioma (MPM) is an uncommon, almost universally fatal, asbestos-induced malignancy. New and effective strategies for diagnosis, prognostication, and treatment are urgently needed. Herein we review the advances in MPM achieved in 2017. Whereas recent epidemiological data demonstrated that the incidence of MPM-related death continued to increase in United States between 2009 and 2015, new insight into the molecular pathogenesis and the immunological tumor microenvironment of MPM, for example, regarding the role of BRCA1 associated protein 1 and the expression programmed death receptor ligand 1, are highlighting new potential therapeutic strategies. Furthermore, there continues to be an ever-expanding number of clinical studies investigating systemic therapies for MPM. These trials are primarily focused on immunotherapy using immune checkpoint inhibitors alone or in combination with other immunotherapies and nonimmunotherapies. In addition, other promising targeted therapies, including pegylated adenosine deiminase (ADI-PEG20), which focuses on argininosuccinate synthase 1-deficient tumors, and tazemetostat, an enhancer of zeste 2 polycomb repressive complex 2 subunit inhibitor of BRCA1 associated protein 1 gene (BAP1)-deficient tumors, are currently being explored.
Collapse
Affiliation(s)
| | - Andrea Napolitano
- University of Hawaii Cancer Center, Honolulu, HI, USA
- Medical Oncology Department, Campus Bio-Medico, University of Rome,
Rome, Italy
| | | | - Dean A. Fennell
- Department of Genetics and Genome Biology, University of Leicester
& University Hospitals of Leicester, UK
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center Research
Institute, Chikusa-ku, Nagoya, Japan
| | - Anna K. Nowak
- Division of Medical Oncology, School of Medicine, Faculty of Health
and Medical Sciences; National Center for Asbestos Related Diseases, University of
Western Australia, Perth, Australia
| | - Thanyanan Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of
Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Weimin Mao
- Department of Thoracic Surgery, Zhejiang Cancer Hospital; Key
Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zehjiang
Province, Hangzhou, China
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, New York University, Langone
Medical Center, New York, NY, USA
| | | | - Haining Yang
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Tobias Peikert
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic,
Rochester, MN, USA
| |
Collapse
|
62
|
Prudner BC, Sun F, Kremer JC, Xu J, Huang C, Sai KKS, Morgan Z, Leeds H, McConathy J, Van Tine BA. Amino Acid Uptake Measured by [ 18F]AFETP Increases in Response to Arginine Starvation in ASS1-Deficient Sarcomas. Am J Cancer Res 2018; 8:2107-2116. [PMID: 29721066 PMCID: PMC5928874 DOI: 10.7150/thno.22083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/13/2018] [Indexed: 01/04/2023] Open
Abstract
Rational: In a subset of cancers, arginine auxotrophy occurs due to the loss of expression of argininosuccinate synthetase 1 (ASS1). This loss of ASS1 expression makes cancers sensitive to arginine starvation that is induced by PEGylated arginine deiminase (ADI-PEG20). Although ADI-PEG20 treatment is effective, it does have important limitations. Arginine starvation is only beneficial in patients with cancers that are ASS1-deficient. Also, these tumors may metabolically reprogram to express ASS1, transforming them from an auxotrophic phenotype to a prototrophic phenotype and thus rendering ADI-PEG20 ineffective. Due to these limitations of ADI-PEG20 treatment and the potential for developing resistance, non-invasive tools to monitor sensitivity to arginine starvation are needed. Methods: Within this study, we assess the utility of a novel positron emission tomography (PET) tracer to determine sarcomas reliant on extracellular arginine for survival by measuring changes in amino acid transport in arginine auxotrophic sarcoma cells treated with ADI-PEG20. The uptake of the 18F-labeled histidine analogue, (S)-2-amino-3-[1-(2-[18F]fluoroethyl)-1H-[1,2,3]triazol-4-yl]propanoic acid (AFETP), was assessed in vitro and in vivo using human-derived sarcoma cell lines. In addition, we examined the expression and localization of cationic amino acid transporters in response to arginine starvation with ADI-PEG20. Results: In vitro studies revealed that in response to ADI-PEG20 treatment, arginine auxotrophs increase the uptake of L-[3H]arginine and [18F]AFETP due to an increase in the expression and localization to the plasma membrane of the cationic amino acid transporter CAT-1. Furthermore, in vivo PET imaging studies in mice with arginine-dependent osteosarcoma xenografts showed increased [18F]AFETP uptake in tumors 4 days after ADI-PEG20 treatment compared to baseline. Conclusion: CAT-1 transporters localizes to the plasma membrane as a result of arginine starvation with ADI-PEG20 in ASS1-deficient tumor cells and provides a mechanism for using cationic amino acid transport substrates such as [18F]AFETP for identifying tumors susceptible to ADI-PEG20 treatment though non-invasive PET imaging techniques. These findings indicate that [18F]AFETP-PET may be suitable for the early detection of tumor response to arginine depletion due to ADI-PEG20 treatment.
Collapse
|
63
|
Zarei M, Nezafat N, Rahbar MR, Negahdaripour M, Sabetian S, Morowvat MH, Ghasemi Y. Decreasing the immunogenicity of arginine deiminase enzyme via structure-based computational analysis. J Biomol Struct Dyn 2018; 37:523-536. [PMID: 29363409 DOI: 10.1080/07391102.2018.1431151] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The clinical applications of therapeutic enzymes are often limited due to their immunogenicity. B-cell epitope removal is an effective approach to solve this obstacle. The identification of hot spot epitopic residues is a critical step in the removal of protein B-cell epitope. Hereof, computational approaches are a suitable alternative to costly and labor-intensive experimental approaches. Arginine deiminase, a Mycoplasma arginine-catabolizing enzyme, is in the clinical trial for treating arginine auxotrophic cancers, especially hepatocellular carcinomas and melanomas through depleting plasma arginine and causing cell starvation. In this study, arginine deiminase from Mycoplasma hominis (MhADI) was computationally analyzed for recognizing and locating its immune-reactive regions. The 3D structure of the bioactive form of MhADI was modeled. The B-cell epitope mapping of protein was performed using various servers with different algorithms. Six segments: 31-40, 48-55, 131-140, 196-206, 294-314, and 331-344 were predicted to be the consensus immunogenic regions. The modification of epitopic hot spot residue was performed to reduce immune-reactiveness. The hot spot residue was selected considering a high B-cell epitope score, convexity index, surface accessibility, flexibility, and hydrophilicity. The structure stability of native and mutant proteins was evaluated through molecular dynamics simulation. The E304L mutein was suggested as a lower antigenic and stable enzyme derivative.
Collapse
Affiliation(s)
- Mahboubeh Zarei
- a Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Navid Nezafat
- a Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mohammad Reza Rahbar
- a Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Manica Negahdaripour
- a Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Soudabeh Sabetian
- b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | | | - Younes Ghasemi
- a Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
64
|
Min HY, Lee HY. Oncogene-Driven Metabolic Alterations in Cancer. Biomol Ther (Seoul) 2018; 26:45-56. [PMID: 29212306 PMCID: PMC5746037 DOI: 10.4062/biomolther.2017.211] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer is the leading cause of human deaths worldwide. Understanding the biology underlying the evolution of cancer is important for reducing the economic and social burden of cancer. In addition to genetic aberrations, recent studies demonstrate metabolic rewiring, such as aerobic glycolysis, glutamine dependency, accumulation of intermediates of glycolysis, and upregulation of lipid and amino acid synthesis, in several types of cancer to support their high demands on nutrients for building blocks and energy production. Moreover, oncogenic mutations are known to be associated with metabolic reprogramming in cancer, and these overall changes collectively influence tumor-microenvironment interactions and cancer progression. Accordingly, several agents targeting metabolic alterations in cancer have been extensively evaluated in preclinical and clinical settings. Additionally, metabolic reprogramming is considered a novel target to control cancers harboring un-targetable oncogenic alterations such as KRAS. Focusing on lung cancer, here, we highlight recent findings regarding metabolic rewiring in cancer, its association with oncogenic alterations, and therapeutic strategies to control deregulated metabolism in cancer.
Collapse
Affiliation(s)
- Hye-Young Min
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
65
|
Savaraj N, Wu C, Kuo MT, You M, Wangpaichitr M, Robles C, Spector S, Feun L. The Relationship of Arginine Deprivation, Argininosuccinate Synthetase and Cell Death in Melanoma. Drug Target Insights 2017. [DOI: 10.1177/117739280700200016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Niramol Savaraj
- VA Medical Center, Hematology-Oncology, Miami, Florida, U.S.A
| | - Chunjing Wu
- University of Miami, Hematology-Oncology, Miami, Florida, U.S.A
| | - Marcus Tien Kuo
- M.D. Anderson Cancer Center, Molecular Pathology, Houston, Texas, U.S.A
| | - Min You
- University of Miami, Hematology-Oncology, Miami, Florida, U.S.A
| | | | - Carlos Robles
- VA Medical Center, Hematology-Oncology, Miami, Florida, U.S.A
| | - Seth Spector
- VA Medical Center, Hematology-Oncology, Miami, Florida, U.S.A
| | - Lynn Feun
- University of Miami, Hematology-Oncology, Miami, Florida, U.S.A
| |
Collapse
|
66
|
Affiliation(s)
- Wissam Zam
- Al-Andalus University for Medical Sciences, Syrian Arab Republic
| |
Collapse
|
67
|
Turato C, Balasso A, Carloni V, Tiribelli C, Mastrotto F, Mazzocca A, Pontisso P. New molecular targets for functionalized nanosized drug delivery systems in personalized therapy for hepatocellular carcinoma. J Control Release 2017; 268:184-197. [PMID: 29051062 DOI: 10.1016/j.jconrel.2017.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma, the most frequent solid tumor of the liver, has a very poor prognosis, being the second most common cause of death from cancer worldwide. The incidence and mortality of this liver tumor are increasing in most areas of the world as a consequence of aging and the emerging of new risk factors such as the metabolic syndrome, beside the recognized role of hepatitis B and C viral infections and alcohol abuse. Despite the increasing knowledge on the molecular mechanisms underlying hepatic carcinogenesis, effective therapeutic strategies are still an unmet clinical need. Efforts have been made to develop selective drugs as well as effective targeted drug delivery systems. The development of novel drug carriers for therapeutic molecules can indeed offer a valuable strategy to ameliorate the efficacy of HCC treatment. In this review, we discuss recent drug delivery strategies for HCC treatment based on the exploitation of targeted nanoparticles (NPs). Indeed, a few of these platforms have achieved an advanced stage of preclinical development. Here, we review the most promising drug nanovehicles based on both synthetic and natural polymers, including polysaccharides that have emerged for their biocompatibility and biodegradability. To maximize site-selectivity and therapeutic efficacy, drug delivery systems should be functionalized with ligands which can specifically recognize and bind targets expressed by HCC, namely cell membrane associated antigens, receptors or biotransporters. Cell surface and intracellular molecular targets are exploited either to selectively deliver drug-loaded nanovehicles or to design novel selective therapeutics. In conclusion, the combination of novel and safe drug delivery strategies based on site-specific targeted drug nanovehicles with therapeutic molecular targets may significantly improve the pharmacological efficacy for the treatment of HCC.
Collapse
Affiliation(s)
| | - Anna Balasso
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, Padova, Italy
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Francesca Mastrotto
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, Padova, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy.
| | | |
Collapse
|
68
|
Luengo A, Gui DY, Vander Heiden MG. Targeting Metabolism for Cancer Therapy. Cell Chem Biol 2017; 24:1161-1180. [PMID: 28938091 PMCID: PMC5744685 DOI: 10.1016/j.chembiol.2017.08.028] [Citation(s) in RCA: 668] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/06/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
Metabolic reprogramming contributes to tumor development and introduces metabolic liabilities that can be exploited to treat cancer. Chemotherapies targeting metabolism have been effective cancer treatments for decades, and the success of these therapies demonstrates that a therapeutic window exists to target malignant metabolism. New insights into the differential metabolic dependencies of tumors have provided novel therapeutic strategies to exploit altered metabolism, some of which are being evaluated in preclinical models or clinical trials. Here, we review our current understanding of cancer metabolism and discuss how this might guide treatments targeting the metabolic requirements of tumor cells.
Collapse
Affiliation(s)
- Alba Luengo
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dan Y Gui
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew G Vander Heiden
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
69
|
Connell LC, Harding JJ, Abou-Alfa GK. Advanced Hepatocellular Cancer: the Current State of Future Research. Curr Treat Options Oncol 2017; 17:43. [PMID: 27344158 DOI: 10.1007/s11864-016-0415-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OPINION STATEMENT Hepatocellular carcinoma is a common malignancy worldwide, rapidly rising in incidence. While there have been some developments in advancing therapeutic options in this disease, these have admittedly been modest to date, and as a result, this is a patient population with an inherently poor prognosis. Currently, sorafenib remains the only established systemic therapy proven to increase the overall survival of patients with advanced disease. The approval of sorafenib in 2007 ushered in the era of targeted therapies. Several phase 2 and 3 clinical trials have failed however to improve on sorafenib in the first-line setting, and no single agent has been demonstrated to impact outcomes after sorafenib failure. Having reached somewhat of an impasse in terms of drug development in hepatocellular carcinoma, enthusiasm in the field has moved toward innovative approaches such as molecular characterization and immunotherapy in an attempt to impact survival. This review highlights the current endeavors in terms of experimental research for patients with advanced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Louise C Connell
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA
| | - James J Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
70
|
Le Grazie M, Biagini MR, Tarocchi M, Polvani S, Galli A. Chemotherapy for hepatocellular carcinoma: The present and the future. World J Hepatol 2017; 9:907-920. [PMID: 28824742 PMCID: PMC5545136 DOI: 10.4254/wjh.v9.i21.907] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/20/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver. Its relationship to chronic liver diseases, in particular cirrhosis, develops on a background of viral hepatitis, excessive alcohol intake or metabolic steatohepatitis, leads to a high incidence and prevalence of this neoplasia worldwide. Despite the spread of HCC, its treatment it’s still a hard challenge, due to high rate of late diagnosis and to lack of therapeutic options for advanced disease. In fact radical surgery and liver transplantation, the most radical therapeutic approaches, are indicated only in case of early diagnosis. Even local therapies, such as transarterial chemoembolization, find limited indications, leading to an important problem regarding treatment of advanced disease. In this situation, until terminal HCC occurs, systemic therapy is the only possible approach, with sorafenib as the only standard treatment available. Anyway, the efficacy of this drug is limited and many efforts are necessary to understand who could benefit more with this treatment. Therefore, other molecules for a targeted therapy were evaluated, but only regorafenib showed promising results. Beside molecular target therapy, also cytotoxic drugs, in particular oxaliplatin- and gemcitabine-based regimens, and immune-checkpoint inhibitors were tested with interesting results. The future of the treatment of this neoplasia is linked to our ability to understand its mechanisms of resistance and to find novel therapeutic targets, with the objective to purpose individualized approaches to patients affected by advanced HCC.
Collapse
|
71
|
Mayevska O, Chen O, Karatsai O, Bobak Y, Barska M, Lyniv L, Pavlyk I, Rzhepetskyy Y, Igumentseva N, Redowicz MJ, Stasyk O. Nitric oxide donor augments antineoplastic effects of arginine deprivation in human melanoma cells. Exp Cell Res 2017; 355:162-171. [DOI: 10.1016/j.yexcr.2017.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/25/2017] [Accepted: 04/04/2017] [Indexed: 01/08/2023]
|
72
|
Mancuso MR, Neal JW. Novel systemic therapy against malignant pleural mesothelioma. Transl Lung Cancer Res 2017; 6:295-314. [PMID: 28713675 PMCID: PMC5504105 DOI: 10.21037/tlcr.2017.06.01] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesothelioma is an aggressive tumor of the pleura with an overall poor prognosis. Even with surgical resection, for which only a subset of patients are eligible, long term disease free survival is rare. Standard first-line systemic treatment consists of a platinum analog, an anti-metabolite, and sometimes anti-angiogenic therapy, but there is currently no well-established standard therapy for refractory or relapsed disease. This review focuses on efforts to develop improved systemic therapy for the treatment of malignant pleural mesothelioma (MPM) including cytotoxic systemic therapy, a variety of tyrosine kinase inhibitors and their downstream effector pathways, pharmacologic targeting of the epigenome, novel approaches to target proteins expressed on mesothelioma cells (such as mesothelin), arginine depletion therapy, and the emerging role of immunotherapy. Overall, these studies demonstrate the challenges of improving systemic therapy for MPM and highlight the need to develop therapeutic strategies to control this disease.
Collapse
Affiliation(s)
- Michael R Mancuso
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joel W Neal
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
73
|
Ho JCM, Lam SK. Combination of Arginine Depletion and Chemotherapy in Thoracic Malignancies. J Clin Oncol 2017; 35:1758-1759. [DOI: 10.1200/jco.2017.72.7305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- James Chung-Man Ho
- James Chung-Man Ho and Sze-Kwan Lam, The University of Hong Kong, Hong Kong, Special Administrative Region, People’s Republic of China
| | - Sze-Kwan Lam
- James Chung-Man Ho and Sze-Kwan Lam, The University of Hong Kong, Hong Kong, Special Administrative Region, People’s Republic of China
| |
Collapse
|
74
|
Beddowes E, Spicer J, Chan PY, Khadeir R, Corbacho JG, Repana D, Steele JP, Schmid P, Szyszko T, Cook G, Diaz M, Feng X, Johnston A, Thomson J, Sheaff M, Wu BW, Bomalaski J, Pacey S, Szlosarek PW. Phase 1 Dose-Escalation Study of Pegylated Arginine Deiminase, Cisplatin, and Pemetrexed in Patients With Argininosuccinate Synthetase 1-Deficient Thoracic Cancers. J Clin Oncol 2017; 35:1778-1785. [PMID: 28388291 PMCID: PMC6141244 DOI: 10.1200/jco.2016.71.3230] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose Pegylated arginine deiminase (ADI-PEG 20) depletes essential amino acid levels in argininosuccinate synthetase 1 (ASS1) -negative tumors by converting arginine to citrulline and ammonia. The main aim of this study was to determine the recommended dose, safety, and tolerability of ADI-PEG 20, cisplatin, and pemetrexed in patients with ASS1-deficient malignant pleural mesothelioma (MPM) or non-small-cell lung cancer (NSCLC). Patients and Methods Using a 3 + 3 + 3 dose-escalation study, nine chemotherapy-naïve patients (five MPM, four NSCLC) received weekly ADI-PEG 20 doses of 18 mg/m2, 27 mg/m2, or 36 mg/m2, together with pemetrexed 500 mg/m2 and cisplatin 75 mg/m2 which were given every three weeks (maximum of six cycles). Patients achieving stable disease or better could continue ADI-PEG 20 monotherapy until disease progression or withdrawal. Adverse events were assessed by Common Terminology Criteria for Adverse Events version 4.03, and pharmacodynamics and immunogenicity were also evaluated. Tumor response was assessed by Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 for NSCLC and by modified RECIST criteria for MPM. Results No dose-limiting toxicities were reported; nine of 38 reported adverse events (all grade 1 or 2) were related to ADI-PEG 20. Circulating arginine concentrations declined rapidly, and citrulline levels increased; both changes persisted at 18 weeks. Partial responses were observed in seven of nine patients (78%), including three with either sarcomatoid or biphasic MPM. Conclusion Target engagement with depletion of arginine was maintained throughout treatment with no dose-limiting toxicities. In this biomarker-selected group of patients with ASS1-deficient cancers, clinical activity was observed in patients with poor-prognosis tumors. Therefore, we recommend a dose for future studies of weekly ADI-PEG 20 36 mg/m2 plus three-weekly cisplatin 75 mg/m2 and pemetrexed 500 mg/m2.
Collapse
Affiliation(s)
- Emma Beddowes
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - James Spicer
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Pui Ying Chan
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Ramsay Khadeir
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Javier Garcia Corbacho
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Dimitra Repana
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Jeremy P. Steele
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Peter Schmid
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Teresa Szyszko
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Gary Cook
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Monica Diaz
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Xiaoxing Feng
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Amanda Johnston
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Jim Thomson
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Michael Sheaff
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Bor-Wen Wu
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - John Bomalaski
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Simon Pacey
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Peter W. Szlosarek
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| |
Collapse
|
75
|
Construction and in vitro evaluation of enzyme nanoreactors based on carboxymethyl chitosan for arginine deprivation in cancer therapy. Carbohydr Polym 2017; 162:35-41. [DOI: 10.1016/j.carbpol.2017.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 11/22/2022]
|
76
|
Rodriguez PC, Ochoa AC, Al-Khami AA. Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity. Front Immunol 2017; 8:93. [PMID: 28223985 PMCID: PMC5293781 DOI: 10.3389/fimmu.2017.00093] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/19/2017] [Indexed: 01/02/2023] Open
Abstract
Arginine metabolism has been a key catabolic and anabolic process throughout the evolution of the immune response. Accruing evidence indicates that arginine-catabolizing enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the control of immune response under physiological and pathological conditions. Myeloid cells are major players that exploit the regulators of arginine metabolism to mediate diverse, although often opposing, immunological and functional consequences. In this article, we focus on the importance of arginine catabolism by myeloid cells in regulating innate and adaptive immunity. Revisiting this matter could result in novel therapeutic approaches by which the immunoregulatory nodes instructed by arginine metabolism can be targeted.
Collapse
Affiliation(s)
| | - Augusto C Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Amir A Al-Khami
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
77
|
Kremer JC, Prudner BC, Lange SES, Bean GR, Schultze MB, Brashears CB, Radyk MD, Redlich N, Tzeng SC, Kami K, Shelton L, Li A, Morgan Z, Bomalaski JS, Tsukamoto T, McConathy J, Michel LS, Held JM, Van Tine BA. Arginine Deprivation Inhibits the Warburg Effect and Upregulates Glutamine Anaplerosis and Serine Biosynthesis in ASS1-Deficient Cancers. Cell Rep 2017; 18:991-1004. [PMID: 28122247 PMCID: PMC5840045 DOI: 10.1016/j.celrep.2016.12.077] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 11/08/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Targeting defects in metabolism is an underutilized strategy for the treatment of cancer. Arginine auxotrophy resulting from the silencing of argininosuccinate synthetase 1 (ASS1) is a common metabolic alteration reported in a broad range of aggressive cancers. To assess the metabolic effects that arise from acute and chronic arginine starvation in ASS1-deficient cell lines, we performed metabolite profiling. We found that pharmacologically induced arginine depletion causes increased serine biosynthesis, glutamine anaplerosis, oxidative phosphorylation, and decreased aerobic glycolysis, effectively inhibiting the Warburg effect. The reduction of glycolysis in cells otherwise dependent on aerobic glycolysis is correlated with reduced PKM2 expression and phosphorylation and upregulation of PHGDH. Concurrent arginine deprivation and glutaminase inhibition was found to be synthetic lethal across a spectrum of ASS1-deficient tumor cell lines and is sufficient to cause in vivo tumor regression in mice. These results identify two synthetic lethal therapeutic strategies exploiting metabolic vulnerabilities of ASS1-negative cancers.
Collapse
Affiliation(s)
- Jeff Charles Kremer
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bethany Cheree Prudner
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara Elaine Stubbs Lange
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory Richard Bean
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew Bailey Schultze
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Caitlyn Brook Brashears
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Megan DeAnna Radyk
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan Redlich
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shin-Cheng Tzeng
- Division of Molecular Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenjiro Kami
- Human Metabolome Technologies, 246-2 Mizukami Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Laura Shelton
- Human Metabolome Technologies America, Boston, MA 02134, USA
| | - Aixiao Li
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zack Morgan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Takashi Tsukamoto
- Department of Neurology and Johns Hopkins Drug Discovery Program, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jon McConathy
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiology, University of Alabama, Birmingham, AL 35249, USA
| | - Loren Scott Michel
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason Matthew Held
- Division of Molecular Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Andrew Van Tine
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
78
|
Manig F, Kuhne K, von Neubeck C, Schwarzenbolz U, Yu Z, Kessler BM, Pietzsch J, Kunz-Schughart LA. The why and how of amino acid analytics in cancer diagnostics and therapy. J Biotechnol 2017; 242:30-54. [DOI: 10.1016/j.jbiotec.2016.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
|
79
|
Zauderer MG. Standard Chemotherapy Options and Clinical Trials of Novel Agents for Mesothelioma. ASBESTOS AND MESOTHELIOMA 2017. [DOI: 10.1007/978-3-319-53560-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
80
|
Fernandes HS, Silva Teixeira CS, Fernandes PA, Ramos MJ, Cerqueira NMFSA. Amino acid deprivation using enzymes as a targeted therapy for cancer and viral infections. Expert Opin Ther Pat 2016; 27:283-297. [DOI: 10.1080/13543776.2017.1254194] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- H. S. Fernandes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - C. S. Silva Teixeira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - P. A. Fernandes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M. J. Ramos
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - N. M. F. S. A. Cerqueira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
81
|
Albaugh VL, Pinzon-Guzman C, Barbul A. Arginine-Dual roles as an onconutrient and immunonutrient. J Surg Oncol 2016; 115:273-280. [PMID: 27861915 DOI: 10.1002/jso.24490] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/22/2016] [Indexed: 12/12/2022]
Abstract
Arginine is an important player in numerous biologic processes and studies have demonstrated its importance for cellular growth that becomes limiting in states of rapid turnover (e.g., malignancy). Thus, arginine deprivation therapy is being examined as an adjuvant cancer therapy, however, arginine is also necessary for immune destruction of malignant cells. Herein we review the data supporting arginine deprivation or supplementation in cancer treatment and the currently registered trials aimed at understanding these divergent strategies. J. Surg. Oncol. 2017;115:273-280. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vance L Albaugh
- Division of General Surgery, Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Carolina Pinzon-Guzman
- Division of General Surgery, Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Adrian Barbul
- Division of General Surgery, Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
82
|
Kurlishchuk Y, Vynnytska-Myronovska B, Grosse-Gehling P, Bobak Y, Manig F, Chen O, Merker SR, Henle T, Löck S, Stange DE, Stasyk O, Kunz LA. Co-application of canavanine and irradiation uncouples anticancer potential of arginine deprivation from citrulline availability. Oncotarget 2016; 7:73292-73308. [PMID: 27689335 PMCID: PMC5341980 DOI: 10.18632/oncotarget.12320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/19/2016] [Indexed: 12/17/2022] Open
Abstract
The moderate anticancer effect of arginine deprivation in clinical trials has been linked to an induced argininosuccinate synthetase (ASS1) expression in initially ASS1-negative tumors, and ASS1-positive cancers are anticipated as non-responders. Our previous studies indicated that arginine deprivation and low doses of the natural arginine analog canavanine can enhance radioresponse. However, the efficacy of the proposed combination in the presence of extracellular citrulline, the substrate for arginine synthesis by ASS1, remains to be elucidated, in particular for malignant cells with positive and/or inducible ASS1 as in colorectal cancer (CRC). Here, the physiological citrulline concentration of 0.05 mM was insufficient to overcome cell cycle arrest and radiosensitization triggered by arginine deficiency. Hyperphysiological citrulline (0.4 mM) did not entirely compensate for the absence of arginine and significantly decelerated cell cycling. Similar levels of canavanine-induced apoptosis were detected in the absence of arginine regardless of citrulline supplementation both in 2-D and advanced 3-D assays, while normal colon epithelial cells in organoid/colonosphere culture were unaffected. Notably, canavanine tremendously enhanced radiosensitivity of arginine-starved 3-D CRC spheroids even in the presence of hyperphysiological citrulline. We conclude that the novel combinatorial targeting strategy of metabolic-chemo-radiotherapy has great potential for the treatment of malignancies with inducible ASS1 expression.
Collapse
Affiliation(s)
- Yuliya Kurlishchuk
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Bozhena Vynnytska-Myronovska
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
- Current address: Clinic of Urology and Pediatric Urology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Philipp Grosse-Gehling
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
| | - Yaroslav Bobak
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Friederike Manig
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
- Institute of Food Chemistry, TU Dresden, Dresden, Germany
| | - Oleg Chen
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Sebastian R. Merker
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Thomas Henle
- Institute of Food Chemistry, TU Dresden, Dresden, Germany
| | - Steffen Löck
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
| | - Daniel E. Stange
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Oleh Stasyk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Leoni A. Kunz
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| |
Collapse
|
83
|
Ribeiro de Souza A, Reig M, Bruix J. Systemic treatment for advanced hepatocellular carcinoma: the search of new agents to join sorafenib in the effective therapeutic armamentarium. Expert Opin Pharmacother 2016; 17:1923-36. [DOI: 10.1080/14656566.2016.1225722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
84
|
Gong XL, Qin SK. Progress in systemic therapy of advanced hepatocellular carcinoma. World J Gastroenterol 2016; 22:6582-94. [PMID: 27547002 PMCID: PMC4970483 DOI: 10.3748/wjg.v22.i29.6582] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer, mainly consisting of hepatocellular carcinoma (HCC), is one of common malignancies worldwide, and prevalent among the Chinese population. A diagnosis of early stage HCC has proven to be very difficult because of its insidious feature in onset and development. At the time of diagnosis, most HCC cases are locally advanced and/or distant metastatic, which results in difficulty to be treated and poor prognosis. For advanced HCC, systemic therapy is frequently adopted as an important palliative method. In recent years, clinical studies and observations have often reported about systemic anti-cancer therapy of advanced HCC, including molecular target therapy, systemic chemotherapy and immunotherapy. In this article, we review these treatment modalities to provide a reference for clinicians.
Collapse
|
85
|
Patil MD, Bhaumik J, Babykutty S, Banerjee UC, Fukumura D. Arginine dependence of tumor cells: targeting a chink in cancer's armor. Oncogene 2016; 35:4957-72. [PMID: 27109103 DOI: 10.1038/onc.2016.37] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase, arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be advanced as anti-cancer modalities.
Collapse
Affiliation(s)
- M D Patil
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - J Bhaumik
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - S Babykutty
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - U C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - D Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
86
|
Arginine Metabolism in Bacterial Pathogenesis and Cancer Therapy. Int J Mol Sci 2016; 17:363. [PMID: 26978353 PMCID: PMC4813224 DOI: 10.3390/ijms17030363] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/29/2016] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Antibacterial resistance to infectious diseases is a significant global concern for health care organizations; along with aging populations and increasing cancer rates, it represents a great burden for government healthcare systems. Therefore, the development of therapies against bacterial infection and cancer is an important strategy for healthcare research. Pathogenic bacteria and cancer have developed a broad range of sophisticated strategies to survive or propagate inside a host and cause infection or spread disease. Bacteria can employ their own metabolism pathways to obtain nutrients from the host cells in order to survive. Similarly, cancer cells can dysregulate normal human cell metabolic pathways so that they can grow and spread. One common feature of the adaption and disruption of metabolic pathways observed in bacterial and cancer cell growth is amino acid pathways; these have recently been targeted as a novel approach to manage bacterial infections and cancer therapy. In particular, arginine metabolism has been illustrated to be important not only for bacterial pathogenesis but also for cancer therapy. Therefore, greater insights into arginine metabolism of pathogenic bacteria and cancer cells would provide possible targets for controlling of bacterial infection and cancer treatment. This review will summarize the recent progress on the relationship of arginine metabolism with bacterial pathogenesis and cancer therapy, with a particular focus on arginase and arginine deiminase pathways of arginine catabolism.
Collapse
|
87
|
Nurcahyanti AD, Wink M. L-Canavanine potentiates the cytotoxicity of doxorubicin and cisplatin in arginine deprived human cancer cells. PeerJ 2016; 4:e1542. [PMID: 26839743 PMCID: PMC4734457 DOI: 10.7717/peerj.1542] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/07/2015] [Indexed: 12/13/2022] Open
Abstract
The non-protein amino acid L-canavanine (L-CAV), an antimetabolite of L-arginine (L-ARG), can alter the 3D conformation of proteins when incorporated into a protein instead of L-ARG. L-CAV inhibits the proliferation of some tumour cells. The deprivation of L-ARG in the culture medium enhances the response of cells to L-CAV. This study aimed to investigate the interaction of L-CAV in combination with the chemotherapeutic drugs, doxorubicin (DOX) or cisplatin (CIS), in cancer cells, especially in the absence of L-ARG. A combination method based on the median-effect principle and mass-action law was used. The following cancer cells were employed: HeLa and Caco-2 cells, overexpressing argininosuccinate synthase (ASS), pancreatic cells (MIA PaCa-2 and BxPC-3) and hepatocellular carcinoma cells (Hep G2 and SK-HEP-1), with down-regulated ASS. When constant and non-constant ratios of L-CAV were combined with DOX and CIS, a synergistic potentiation of cytotoxicity was recorded. Cells expressing high levels of ASS were more sensitive to the treatment as compared to the cells with reduced ASS levels. Overall, this study may provide a new approach to targeting some cancer cells with L-CAV in combination with DNA-targeting drugs such as DOX and CIS, especially those cells which overexpress ASS, such as human cervical and colorectal carcinoma cells.
Collapse
Affiliation(s)
- Agustina Dr Nurcahyanti
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University , Heidelberg , Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University , Heidelberg , Germany
| |
Collapse
|
88
|
Vynnytska-Myronovska BO, Kurlishchuk Y, Chen O, Bobak Y, Dittfeld C, Hüther M, Kunz-Schughart LA, Stasyk OV. Arginine starvation in colorectal carcinoma cells: Sensing, impact on translation control and cell cycle distribution. Exp Cell Res 2016; 341:67-74. [PMID: 26751966 DOI: 10.1016/j.yexcr.2016.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/04/2015] [Accepted: 01/01/2016] [Indexed: 11/15/2022]
Abstract
Tumor cells rely on a continued exogenous nutrient supply in order to maintain a high proliferative activity. Although a strong dependence of some tumor types on exogenous arginine sources has been reported, the mechanisms of arginine sensing by tumor cells and the impact of changes in arginine availability on translation and cell cycle regulation are not fully understood. The results presented herein state that human colorectal carcinoma cells rapidly exhaust the internal arginine sources in the absence of exogenous arginine and repress global translation by activation of the GCN2-mediated pathway and inhibition of mTOR signaling. Tumor suppressor protein p53 activation and G1/G0 cell cycle arrest support cell survival upon prolonged arginine starvation. Cells with the mutant or deleted TP53 fail to stop cell cycle progression at defined cell cycle checkpoints which appears to be associated with reduced recovery after durable metabolic stress triggered by arginine withdrawal.
Collapse
Affiliation(s)
- Bozhena O Vynnytska-Myronovska
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov str., 14/16, Lviv 79005, Ukraine; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Fetscherstr. 74, 01307 Dresden, Germany
| | - Yuliya Kurlishchuk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov str., 14/16, Lviv 79005, Ukraine; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Fetscherstr. 74, 01307 Dresden, Germany
| | - Oleh Chen
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov str., 14/16, Lviv 79005, Ukraine; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Fetscherstr. 74, 01307 Dresden, Germany
| | - Yaroslav Bobak
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov str., 14/16, Lviv 79005, Ukraine
| | - Claudia Dittfeld
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Fetscherstr. 74, 01307 Dresden, Germany
| | - Melanie Hüther
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Fetscherstr. 74, 01307 Dresden, Germany
| | - Leoni A Kunz-Schughart
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Fetscherstr. 74, 01307 Dresden, Germany; Department of Oncology, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Oleh V Stasyk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov str., 14/16, Lviv 79005, Ukraine.
| |
Collapse
|
89
|
Ananieva E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J Biol Chem 2015; 6:281-289. [PMID: 26629311 PMCID: PMC4657121 DOI: 10.4331/wjbc.v6.i4.281] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/07/2015] [Accepted: 09/30/2015] [Indexed: 02/05/2023] Open
Abstract
Recent advances in amino acid metabolism have revealed that targeting amino acid metabolic enzymes in cancer therapy is a promising strategy for the development of novel therapeutic agents. There are currently several drugs in clinical trials that specifically target amino acid metabolic pathways in tumor cells. In the context of the tumor microenvironment, however, tumor cells form metabolic relationships with immune cells, and they often compete for common nutrients. Many tumors evolved to escape immune surveillance by taking advantage of their metabolic flexibility and redirecting nutrients for their own advantage. This review outlines the most recent advances in targeting amino acid metabolic pathways in cancer therapy while giving consideration to the impact these pathways may have on the anti-tumor immune response.
Collapse
|
90
|
Qiu F, Huang J, Sui M. Targeting arginine metabolism pathway to treat arginine-dependent cancers. Cancer Lett 2015; 364:1-7. [DOI: 10.1016/j.canlet.2015.04.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/28/2015] [Accepted: 04/19/2015] [Indexed: 01/01/2023]
|
91
|
Walts AE, Bomalaski JS, Ines D, Orsulic S. Argininosuccinate synthetase (ASS) deficiency in high-grade pulmonary neuroendocrine carcinoma: an opportunity for personalized targeted therapy. J Cancer Res Clin Oncol 2015; 141:1363-9. [PMID: 25548129 DOI: 10.1007/s00432-014-1904-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/21/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE Cells deficient in argininosuccinate synthetase (ASS) must absorb the arginine they need for growth from circulating blood. Treatment with pegylated arginine deiminase (ADI-PEG 20) selectively eliminates arginine from the circulation and has shown some efficacy against ASS-deficient tumors including small cell lung cancer (SCLC). We sought to assess ASS expression in a cohort of high-grade pulmonary neuroendocrine carcinomas (PNEC) which include SCLC and large cell neuroendocrine carcinoma (LCNEC). METHODS Sixty-nine PNEC (49 SCLC and 20 LCNEC) were retrieved from our pathology archives. Formalin-fixed paraffin-embedded sections of the 54 primary tumors, 15 metastases and appropriate positive and negative controls were immunostained using an ASS-specific monoclonal antibody. Positive staining in <30 % of the tumor was scored as weak; staining in ≥30 % of the tumor was scored as strong. The absence of staining in the tumor was recorded as ASS negative. RESULTS 58 % of the PNEC including 61.2 % of the SCLC and 50 % of the LCNEC were ASS negative. These ASS-negative tumors included 63 % of the primary and 40 % of the metastatic lesions tested. CONCLUSIONS More than 50 % of the high-grade PNEC tested lack immunohistochemically detectable ASS, suggesting that they are auxotrophic for arginine and potential candidates for arginine deprivation therapy. PNEC comprise about 25 % of primary lung cancers and have a 5-year overall survival of only 5-10 %, underscoring the need for new and more effective therapies. Immunostaining for ASS has potential to improve the selection of patients with PNEC for arginine deprivation therapy with ADI-PEG 20.
Collapse
Affiliation(s)
- Ann E Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA,
| | | | | | | |
Collapse
|
92
|
Hydrophobic Mutagenesis and Semi-rational Engineering of Arginine Deiminase for Markedly Enhanced Stability and Catalytic Efficiency. Appl Biochem Biotechnol 2015; 176:1335-50. [DOI: 10.1007/s12010-015-1649-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022]
|
93
|
Argininosuccinate synthetase 1 suppression and arginine restriction inhibit cell migration in gastric cancer cell lines. Sci Rep 2015; 5:9783. [PMID: 25928182 PMCID: PMC4415574 DOI: 10.1038/srep09783] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 03/19/2015] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer metastasis remains a major cause of cancer-related deaths. There is an
urgent need to develop new therapeutic approaches targeting metastatic gastric
cancer. Argininosuccinate synthetase 1 (ASS1) expression is increased in gastric
cancer. We detected the protein expression of ASS1 in human gastric cancer cell
lines (AGS, NCI-N87, and MKN45) and in murine gastric cancer cell lines (3I and
3IB2). We used vector-mediated short hairpin RNA (shRNA) expression to silence ASS1
expression in the MKN45 and 3IB2 cell lines, and analyzed the effects of this
protein on cell migration and metastasis. We demonstrated that ASS1 silencing
suppressed cell migration in the MKN45 and 3IB2 cell lines. ASS1 knockdown
significantly reduced liver metastasis in mice after the intrasplenic implantation
of 3IB2 cancer cell clones. To determine whether arginine restriction may represent
a therapeutic approach to treat gastric cancer, the sensitivity of tumor cells to
arginine depletion was determined in gastric cancer cells. Arginine depletion
significantly inhibited cell migration in the gastric cancer cell line. The
silencing of ASS1 expression in MKN45 and 3IB2 gastric cancer cells markedly
decreased STAT3 protein expression. In conclusion, our results indicate that the
ASS1 protein is required for cell migration in gastric cancer cell lines.
Collapse
|
94
|
Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo. Blood 2015; 125:4060-8. [PMID: 25896651 DOI: 10.1182/blood-2014-10-608133] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/12/2015] [Indexed: 01/02/2023] Open
Abstract
The strategy of enzymatic degradation of amino acids to deprive malignant cells of important nutrients is an established component of induction therapy of acute lymphoblastic leukemia. Here we show that acute myeloid leukemia (AML) cells from most patients with AML are deficient in a critical enzyme required for arginine synthesis, argininosuccinate synthetase-1 (ASS1). Thus, these ASS1-deficient AML cells are dependent on importing extracellular arginine. We therefore investigated the effect of plasma arginine deprivation using pegylated arginine deiminase (ADI-PEG 20) against primary AMLs in a xenograft model and in vitro. ADI-PEG 20 alone induced responses in 19 of 38 AMLs in vitro and 3 of 6 AMLs in vivo, leading to caspase activation in sensitive AMLs. ADI-PEG 20-resistant AMLs showed higher relative expression of ASS1 than sensitive AMLs. This suggests that the resistant AMLs survive by producing arginine through this metabolic pathway and ASS1 expression could be used as a biomarker for response. Sensitive AMLs showed more avid uptake of arginine from the extracellular environment consistent with their auxotrophy for arginine. The combination of ADI-PEG 20 and cytarabine chemotherapy was more effective than either treatment alone resulting in responses in 6 of 6 AMLs tested in vivo. Our data show that arginine deprivation is a reasonable strategy in AML that paves the way for clinical trials.
Collapse
|
95
|
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93:52-79. [PMID: 25813885 DOI: 10.1016/j.ejpb.2015.03.018] [Citation(s) in RCA: 1141] [Impact Index Per Article: 114.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 02/08/2023]
Abstract
Cancer is the second worldwide cause of death, exceeded only by cardiovascular diseases. It is characterized by uncontrolled cell proliferation and an absence of cell death that, except for hematological cancers, generates an abnormal cell mass or tumor. This primary tumor grows thanks to new vascularization and, in time, acquires metastatic potential and spreads to other body sites, which causes metastasis and finally death. Cancer is caused by damage or mutations in the genetic material of the cells due to environmental or inherited factors. While surgery and radiotherapy are the primary treatment used for local and non-metastatic cancers, anti-cancer drugs (chemotherapy, hormone and biological therapies) are the choice currently used in metastatic cancers. Chemotherapy is based on the inhibition of the division of rapidly growing cells, which is a characteristic of the cancerous cells, but unfortunately, it also affects normal cells with fast proliferation rates, such as the hair follicles, bone marrow and gastrointestinal tract cells, generating the characteristic side effects of chemotherapy. The indiscriminate destruction of normal cells, the toxicity of conventional chemotherapeutic drugs, as well as the development of multidrug resistance, support the need to find new effective targeted treatments based on the changes in the molecular biology of the tumor cells. These novel targeted therapies, of increasing interest as evidenced by FDA-approved targeted cancer drugs in recent years, block biologic transduction pathways and/or specific cancer proteins to induce the death of cancer cells by means of apoptosis and stimulation of the immune system, or specifically deliver chemotherapeutic agents to cancer cells, minimizing the undesirable side effects. Although targeted therapies can be achieved directly by altering specific cell signaling by means of monoclonal antibodies or small molecules inhibitors, this review focuses on indirect targeted approaches that mainly deliver chemotherapeutic agents to molecular targets overexpressed on the surface of tumor cells. In particular, we offer a detailed description of different cytotoxic drug carriers, such as liposomes, carbon nanotubes, dendrimers, polymeric micelles, polymeric conjugates and polymeric nanoparticles, in passive and active targeted cancer therapy, by enhancing the permeability and retention or by the functionalization of the surface of the carriers, respectively, emphasizing those that have received FDA approval or are part of the most important clinical studies up to date. These drug carriers not only transport the chemotherapeutic agents to tumors, avoiding normal tissues and reducing toxicity in the rest of the body, but also protect cytotoxic drugs from degradation, increase the half-life, payload and solubility of cytotoxic agents and reduce renal clearance. Despite the many advantages of all the anticancer drug carriers analyzed, only a few of them have reached the FDA approval, in particular, two polymer-protein conjugates, five liposomal formulations and one polymeric nanoparticle are available in the market, in contrast to the sixteen FDA approval of monoclonal antibodies. However, there are numerous clinical trials in progress of polymer-protein and polymer-drug conjugates, liposomal formulations, including immunoliposomes, polymeric micelles and polymeric nanoparticles. Regarding carbon nanotubes or dendrimers, there are no FDA approvals or clinical trials in process up to date due to their unresolved toxicity. Moreover, we analyze in detail the more promising and advanced preclinical studies of the particular case of polymeric nanoparticles as carriers of different cytotoxic agents to active and passive tumor targeting published in the last 5 years, since they have a huge potential in cancer therapy, being one of the most widely studied nano-platforms in this field in the last years. The interest that these formulations have recently achieved is stressed by the fact that 90% of the papers based on cancer therapeutics with polymeric nanoparticles have been published in the last 6 years (PubMed search).
Collapse
|
96
|
Tomlinson BK, Thomson JA, Bomalaski JS, Diaz M, Akande T, Mahaffey N, Li T, Dutia MP, Kelly K, Gong IY, Semrad T, Gandara DR, Pan CX, Lara PN. Phase I Trial of Arginine Deprivation Therapy with ADI-PEG 20 Plus Docetaxel in Patients with Advanced Malignant Solid Tumors. Clin Cancer Res 2015; 21:2480-6. [PMID: 25739672 DOI: 10.1158/1078-0432.ccr-14-2610] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/11/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE This phase I study examined the toxicity and tolerability of pegylated arginine deiminase (ADI-PEG 20) in combination with docetaxel in patients with advanced solid malignancies. EXPERIMENTAL DESIGN Eligible patients had histologically proven advanced solid malignancies, with any number of prior therapies, Zubrod performance status 0-2, and adequate organ function. Patients received ADI-PEG 20 weekly intramuscular injection ranging from 4.5 to 36 mg/m(2) and up to 10 doses of docetaxel (75 mg/m(2)) every 3 weeks. Primary endpoints were safety, toxicity, and a recommended phase II dose. Circulating arginine levels were measured before each cycle. Tumor response was measured as a secondary endpoint every 6 weeks on study. RESULTS Eighteen patients received a total of 116 cycles of therapy through four dose levels of ADI-PEG 20. A single dose-limiting toxicity (grade 3 urticarial rash) was observed at the 1st dose level, with no additional dose-limiting toxicities observed. Hematologic toxicities were common with 14 patients experiencing at least one grade 3 to 4 leukopenia. Fatigue was the most prevalent toxicity reported by 16 patients. Arginine was variably suppressed with 10 patients achieving at least a 50% reduction in baseline values. In 14 patients with evaluable disease, four partial responses (including 2 patients with PSA response) were documented, and 7 patients had stable disease. CONCLUSIONS ADI-PEG 20 demonstrated reasonable toxicity in combination with docetaxel. Promising clinical activity was noted, and expansion cohorts are now accruing for both castrate-resistant prostate cancer and non-small cell lung cancer at a recommended phase II dose of 36 mg/m(2).
Collapse
Affiliation(s)
- Benjamin K Tomlinson
- The University of California Davis Comprehensive Cancer Center, Sacramento, California
| | | | | | - Monica Diaz
- Polaris Pharmaceuticals, Inc., San Diego, California
| | - Taiwo Akande
- The University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Nichole Mahaffey
- The University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Tianhong Li
- The University of California Davis Comprehensive Cancer Center, Sacramento, California. VA Northern California Health Care System, Mather, California
| | - Mrinal P Dutia
- The University of California Davis Comprehensive Cancer Center, Sacramento, California. VA Northern California Health Care System, Mather, California
| | - Karen Kelly
- The University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - I-Yeh Gong
- The University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Thomas Semrad
- The University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - David R Gandara
- The University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Chong-Xian Pan
- The University of California Davis Comprehensive Cancer Center, Sacramento, California. VA Northern California Health Care System, Mather, California
| | - Primo N Lara
- The University of California Davis Comprehensive Cancer Center, Sacramento, California.
| |
Collapse
|
97
|
Preliminary efficacy, safety, pharmacokinetics, pharmacodynamics and quality of life study of pegylated recombinant human arginase 1 in patients with advanced hepatocellular carcinoma. Invest New Drugs 2015; 33:496-504. [DOI: 10.1007/s10637-014-0200-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
|
98
|
Human recombinant arginase I (Co)-PEG5000 [HuArgI (Co)-PEG5000]-induced arginine depletion is selectively cytotoxic to human glioblastoma cells. J Neurooncol 2015; 122:75-85. [PMID: 25567351 DOI: 10.1007/s11060-014-1698-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
In this study, we attempt to target Arginine auxotrophy in glioblastoma multiforme (GBM) cells using a pegylated recombinant human Arginase I cobalt [HuArgI (Co)-PEG5000]. We tested and characterized the activity of HuArgI (Co)-PEG5000 on a panel of 9 GBM cell lines and on human fetal glial cells (SVG-p12). HuArgI (Co)-PEG5000 was cytotoxic to all GBM cells tested. SVG-p12 cells were not sensitive demonstrating the selective cytotoxicity of HuArgI (Co)-PEG5000-induced arginine deprivation. Addition of L-citrulline led to the rescue of 6 GBM cell lines but only at concentrations of 11.4 mM, reflecting the extent of arginine auxotrophy in GBM. The ability of L-citrulline to rescue cells was dependent on the expression of argininosuccinate synthetase-1 (ASS1) with the cells that were not rescued by L-citrulline being negative for ASS1 expression. Knocking-down ASS1 reversed the ability of L-citrulline to rescue GBM cells, further illustrating the dependence of arginine auxotrophy on ASS1 expression. Inhibition of autophagy increased cell sensitivity to HuArgI (Co)-PEG5000 indicating that, following arginine deprivation, autophagy plays a protective role in GBM cells. Analysis of the type of cell death revealed a lack of AnnexinV staining and caspase activation in HuArgI (Co)-PEG5000-treated cells, indicating that arginine deprivation induces caspase-independent, non-apoptotic cell death in GBM. We have shown that GBM cells are auxotrophic for arginine and can be selectively targeted using HuArgI (Co)-PEG5000-induced arginine depletion, thus demonstrating that L-Arginine deprivation is a potent and selective potential treatment for GBM.
Collapse
|
99
|
Hollebecque A, Malka D, Ferté C, Ducreux M, Boige V. Systemic treatment of advanced hepatocellular carcinoma: from disillusions to new horizons. Eur J Cancer 2015; 51:327-39. [PMID: 25559615 DOI: 10.1016/j.ejca.2014.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy, which accounts for a third of all cancer deaths globally each year. The management of patients with HCC is complex, as both the tumour stage and any underlying liver disease must be considered conjointly. Since the approval of sorafenib in advanced HCC, several phase III clinical trials have failed to demonstrate any superiority over sorafenib in the frontline setting, and no agent has been shown to impact outcomes after sorafenib failure. This review will focus on the range of experimental therapeutics for patients with advanced HCC and highlight the successes and failures of these treatments as well as areas for future development. Specifics such as dose limiting toxicity and safety profile in patients with liver dysfunction related to the underlying chronic liver disease should be considered when developing therapies in HCC. Finally, robust validated and reproducible surrogate end-points as well as predictive biomarkers should be defined in future randomised trials.
Collapse
Affiliation(s)
- Antoine Hollebecque
- Department of Cancer Medicine, Gustave Roussy, University of Paris Sud, Villejuif, France; Drug Development Department (DITEP), Gustave Roussy, University of Paris Sud, Villejuif, France
| | - David Malka
- Department of Cancer Medicine, Gustave Roussy, University of Paris Sud, Villejuif, France
| | - Charles Ferté
- Department of Cancer Medicine, Gustave Roussy, University of Paris Sud, Villejuif, France
| | - Michel Ducreux
- Department of Cancer Medicine, Gustave Roussy, University of Paris Sud, Villejuif, France
| | - Valérie Boige
- Department of Cancer Medicine, Gustave Roussy, University of Paris Sud, Villejuif, France.
| |
Collapse
|
100
|
Wang Z, Shi X, Li Y, Fan J, Zeng X, Xian Z, Wang Z, Sun Y, Wang S, Song P, Zhao S, Hu H, Ju D. Blocking autophagy enhanced cytotoxicity induced by recombinant human arginase in triple-negative breast cancer cells. Cell Death Dis 2014; 5:e1563. [PMID: 25501824 PMCID: PMC4454157 DOI: 10.1038/cddis.2014.503] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/10/2022]
Abstract
Depletion of arginine by recombinant human arginase (rhArg) has proven to be an effective cancer therapeutic approach for a variety of malignant tumors. Triple-negative breast cancers (TNBCs) lack of specific therapeutic targets, resulting in poor prognosis and limited therapeutic efficacy. To explore new therapeutic approaches for TNBC we studied the cytotoxicity of rhArg in five TNBC cells. We found that rhArg could inhibit cell growth in these five TNBC cells. Intriguingly, accumulation of autophagosomes and autophagic flux was observed in rhArg-treated MDA-MB-231 cells. Inhibition of autophagy by chloroquine (CQ), 3-methyladenine (3-MA) and siRNA targeting Beclin1 significantly enhanced rhArg-induced cytotoxic effect, indicating the cytoprotective role of autophagy in rhArg-induced cell death. In addition, N-acetyl-l-cysteine (NAC), a common antioxidant, blocked autophagy induced by rhArg, suggesting that reactive oxygen species (ROS) had an essential role in the cytotoxicity of rhArg. This study provides new insights into the molecular mechanism of autophagy involved in rhArg-induced cytotoxicity in TNBC cells. Meanwhile, our results revealed that rhArg, either alone or in combination with autophagic inhibitors, might be a potential novel therapy for the treatment of TNBC.
Collapse
Affiliation(s)
- Z Wang
- 1] Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China [2] Department of Biopharmaceutical Research, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - X Shi
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - Y Li
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - J Fan
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - X Zeng
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - Z Xian
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - Z Wang
- Department of Pulmonary Medicine, People's Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Y Sun
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - S Wang
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - P Song
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - S Zhao
- Department of Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - H Hu
- Department of Biopharmaceutical Research, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - D Ju
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|