51
|
Wojta J. Cenderitide: a multivalent designer-peptide-agonist of particulate guanylyl cyclase receptors with considerable therapeutic potential in cardiorenal disease states. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2015; 2:106-7. [PMID: 27533521 DOI: 10.1093/ehjcvp/pvv043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
52
|
Lee CYW, Huntley BK, McCormick DJ, Ichiki T, Sangaralingham SJ, Lisy O, Burnett JC. Cenderitide: structural requirements for the creation of a novel dual particulate guanylyl cyclase receptor agonist with renal-enhancing in vivo and ex vivo actions. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2015; 2:98-105. [PMID: 27340557 DOI: 10.1093/ehjcvp/pvv040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022]
Abstract
AIMS Cenderitide is a novel dual natriuretic peptide (NP) receptor chimeric peptide activator, which targets the particulate guanylyl cyclase B (pGC-B) receptor and pGC-A unlike native NPs. Cenderitide was engineered to retain the anti-fibrotic properties of C-type natriuretic peptide (CNP)/pGC-B with renal-enhancing actions facilitated by fusion to the carboxyl terminus of Dendroaspis NP (DNP), a pGC-A agonist, to CNP. Here, we address significance of the DNP carboxyl terminus in dual pGC receptor activation and actions of cenderitide compared with CNP on renal function and cyclic guanosine monophosphate (cGMP) in vivo and ex vivo in normal canines. METHODS AND RESULTS In vitro, only cenderitide and not CNP or three CNP-based variants was a potent dual pGC-A/pGC-B activator of cGMP production (from 5 to 237 pmol/mL) in human embryonic kidney (HEK) 293 cells overexpressing human pGC-A while in pGC-B overexpressing cells cenderitide increased cGMP production (from 4 to 321 pmol/mL) while the three CNP-based variants were weak agonists. Based upon our finding that the DNP carboxyl terminus is a key structural requirement for dual pGC-A/pGC-B activation, we defined in vivo the renal-enhancing actions of cenderitide compared with CNP. Cenderitide increased urinary cGMP excretion (from 989 to 5977 pmol/mL), net generation of renal cGMP (821-4124 pmol/min), natriuresis (12-242 μEq/min), and glomerular filtration rate (GFR) (37-51 mL/min) while CNP did not. We then demonstrated the transformation of CNP ex vivo into a renal cGMP-activating peptide which increased cGMP in freshly isolated glomeruli eight-fold greater than CNP. CONCLUSION The current study establishes that dual pGC-A and pGC-B activation with CNP requires the specific carboxyl terminus of DNP. In normal canines in vivo and in glomeruli ex vivo, the carboxyl terminus of DNP transforms CNP into a natriuretic and GFR-enhancing peptide. Future studies of cenderitide are warranted in cardiorenal disease states to explore its efficacy in overall cardiorenal homeostasis.
Collapse
Affiliation(s)
- Candace Y W Lee
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine, Bioengineering & Physiology, and Biochemistry and Molecular Biology, College of Medicine Mayo Clinic, Guggenheim 915, 200 First Street S.W., Rochester, MN 55905, USA
| | - Brenda K Huntley
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine, Bioengineering & Physiology, and Biochemistry and Molecular Biology, College of Medicine Mayo Clinic, Guggenheim 915, 200 First Street S.W., Rochester, MN 55905, USA
| | - Daniel J McCormick
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine, Bioengineering & Physiology, and Biochemistry and Molecular Biology, College of Medicine Mayo Clinic, Guggenheim 915, 200 First Street S.W., Rochester, MN 55905, USA
| | - Tomoko Ichiki
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine, Bioengineering & Physiology, and Biochemistry and Molecular Biology, College of Medicine Mayo Clinic, Guggenheim 915, 200 First Street S.W., Rochester, MN 55905, USA
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine, Bioengineering & Physiology, and Biochemistry and Molecular Biology, College of Medicine Mayo Clinic, Guggenheim 915, 200 First Street S.W., Rochester, MN 55905, USA
| | - Ondrej Lisy
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine, Bioengineering & Physiology, and Biochemistry and Molecular Biology, College of Medicine Mayo Clinic, Guggenheim 915, 200 First Street S.W., Rochester, MN 55905, USA
| | - John C Burnett
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine, Bioengineering & Physiology, and Biochemistry and Molecular Biology, College of Medicine Mayo Clinic, Guggenheim 915, 200 First Street S.W., Rochester, MN 55905, USA
| |
Collapse
|
53
|
Roloff K, Werner F, Abeßer M, Völker K, Baba HA, Schuh K, Kuhn M. C-type natriuretic peptide prevents angiotensin II-induced cardiac remodelling and dysfunction. BMC Pharmacol Toxicol 2015. [PMCID: PMC4565488 DOI: 10.1186/2050-6511-16-s1-a78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
54
|
Kerkelä R, Ulvila J, Magga J. Natriuretic Peptides in the Regulation of Cardiovascular Physiology and Metabolic Events. J Am Heart Assoc 2015; 4:e002423. [PMID: 26508744 PMCID: PMC4845118 DOI: 10.1161/jaha.115.002423] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Risto Kerkelä
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.) Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland (R.K.)
| | - Johanna Ulvila
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.)
| | - Johanna Magga
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.)
| |
Collapse
|
55
|
Abstract
Heart failure (HF) can rightfully be called the epidemic of the 21(st) century. Historically, the only available medical treatment options for HF have been diuretics and digoxin, but the capacity of these agents to alter outcomes has been brought into question by the scrutiny of modern clinical trials. In the past 4 decades, neurohormonal blockers have been introduced into clinical practice, leading to marked reductions in morbidity and mortality in chronic HF with reduced left ventricular ejection fraction (LVEF). Despite these major advances in pharmacotherapy, our understanding of the underlying disease mechanisms of HF from epidemiological, clinical, pathophysiological, molecular, and genetic standpoints remains incomplete. This knowledge gap is particularly evident with respect to acute decompensated HF and HF with normal (preserved) LVEF. For these clinical phenotypes, no drug has been shown to reduce long-term clinical event rates substantially. Ongoing developments in the pharmacotherapy of HF are likely to challenge our current best-practice algorithms. Novel agents for HF therapy include dual-acting neurohormonal modulators, contractility-enhancing agents, vasoactive and anti-inflammatory peptides, and myocardial protectants. These novel compounds have the potential to enhance our armamentarium of HF therapeutics.
Collapse
Affiliation(s)
- Thomas G von Lueder
- Department of Cardiology, Oslo University Hospital Ullevål, 0407 Oslo, Norway
| | - Henry Krum
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, VIC 3004, Australia
| |
Collapse
|
56
|
Rationale and therapeutic opportunities for natriuretic peptide system augmentation in heart failure. Curr Heart Fail Rep 2015; 12:7-14. [PMID: 25331110 DOI: 10.1007/s11897-014-0235-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The natriuretic peptide system (NPS) is intimately involved in cardiorenal homeostasis in health, and dysregulation of the NPS plays an important role in the pathophysiology of heart failure (HF). Indeed, the diuretic, vasorelaxation, beneficial remodeling, and potent neurohumoral inhibition of the NPS support the therapeutic development of chronic augmentation of the NPS in symptomatic HF. Further, chronic augmentation of the protective NPS and in early stages of HF may ultimately prevent the progression of HF and reduced subsequent morbidity and mortality. In the current manuscript, we review the rationale for as well as previous and current efforts aimed at chronic therapeutic augmentation of the NPS in HF.
Collapse
|
57
|
Emani S, Meyer M, Palm D, Holzmeister J, Haas GJ. Ularitide: a natriuretic peptide candidate for the treatment of acutely decompensated heart failure. Future Cardiol 2015; 11:531-46. [PMID: 26278236 DOI: 10.2217/fca.15.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Treatment for acutely decompensated heart failure (ADHF) has not changed much in the last two decades. Currently available therapies have variable efficacy and can be associated with adverse outcomes. Natriuretic peptides properties include diuresis, natriuresis, vasorelaxation, inhibition of renin-angiotensin-aldosterone system, and are thus chosen in the treatment of ADHF. Two forms of natriuretic peptides are currently available for the treatment of ADHF. Urodilatin (INN: ularitide) represents another member of the natriuretic peptide family with a unique molecular structure that may provide distinct benefits in the treatment of ADHF. Early clinical exploratory and Phase II studies have demonstrated that ularitide has potential cardiovascular and renal benefits. Ularitide is currently being tested in the Phase III TRUE-AHF clinical study. TRUE-AHF has features that may be different when compared with other recent outcome studies in ADHF. These distinct differences aim to maximize clinical effects and minimize potential adverse events of ularitide. However, whether this rationale translates into a better outcome needs to be awaited.
Collapse
Affiliation(s)
- Sitaramesh Emani
- Division of Cardiology, The Ohio State University, 473 W 12th Ave, Suite 200 DHLRI, Columbus, OH 43210, USA
| | - Markus Meyer
- Cardiorentis Ltd, Steinhauserstrasse 74, Zug 6300, Switzerland
| | - Denada Palm
- Department of Internal Medicine, University of Cincinnati, Medical Sciences Building, 231 Albert Sabin Way #6065, Cincinnati, OH 45267, USA
| | | | - Garrie J Haas
- Division of Cardiology, The Ohio State University, 473 W 12th Ave, Suite 200 DHLRI, Columbus, OH 43210, USA
| |
Collapse
|
58
|
Buggey J, Mentz RJ, DeVore AD, Velazquez EJ. Angiotensin receptor neprilysin inhibition in heart failure: mechanistic action and clinical impact. J Card Fail 2015. [PMID: 26209000 DOI: 10.1016/j.cardfail.2015.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Heart failure (HF) is an increasingly common syndrome associated with high mortality and economic burden, and there has been a paucity over the past decade of new pharmacotherapies that improve outcomes. However, recent data from a large randomized controlled trial compared the novel agent LCZ696, a dual-acting angiotensin receptor blocker and neprilysin inhibitor (ARNi), with the well established angiotensin-converting enzyme (ACE) inhibitor enalapril and found significant reduction in mortality among the chronic reduced ejection fraction HF population. Preclinical and clinical data suggest that neprilysin inhibition provides beneficial outcomes in HF patients by preventing the degradation of natriuretic peptides and thereby promoting natriuresis and vasodilatation and counteracting the negative cardiorenal effects of the up-regulated renin-angiotensin-aldosterone system. Agents such as omapatrilat combined neprilysin and ACE inhibition but had increased rates of angioedema. Goals of an improved safety profile provided the rationale for the development of the ARNi LCZ696. Along with significant reductions in mortality and hospitalizations, clinical trials suggest that LCZ696 may improve surrogate markers of HF severity. In this paper, we review the preclinical and clinical data that led to the development of LCZ696, the understanding of the underlying mechanistic action, and the robust clinical impact that LCZ696 may have in the near future.
Collapse
Affiliation(s)
- Jonathan Buggey
- Department of Medicine, Duke University Medical Center, Durham, North Carolina.
| | - Robert J Mentz
- Department of Medicine, Duke University Medical Center, Durham, North Carolina; Department of Medicine, Duke Clinical Research Institute, Durham, North Carolina
| | - Adam D DeVore
- Department of Medicine, Duke University Medical Center, Durham, North Carolina; Department of Medicine, Duke Clinical Research Institute, Durham, North Carolina
| | - Eric J Velazquez
- Department of Medicine, Duke University Medical Center, Durham, North Carolina; Department of Medicine, Duke Clinical Research Institute, Durham, North Carolina
| |
Collapse
|
59
|
Sangaralingham SJ, McKie PM, Ichiki T, Scott CG, Heublein DM, Chen HH, Bailey KR, Redfield MM, Rodeheffer RJ, Burnett JC. Circulating C-type natriuretic peptide and its relationship to cardiovascular disease in the general population. Hypertension 2015; 65:1187-94. [PMID: 25895587 DOI: 10.1161/hypertensionaha.115.05366] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/31/2015] [Indexed: 11/16/2022]
Abstract
C-type natriuretic peptide (CNP) is an endothelium-derived peptide that is released as a protective mechanism in response cardiovascular injury or disease. However, no studies have investigated circulating CNP, identifying clinical factors that may influence CNP and its relationship to cardiovascular disease in the general population. We studied 1841 randomly selected subjects from Olmsted County, MN (mean age, 63±11 years; 48% men). Plasma CNP was measured by a well-established radioimmunoassay and echocardiography, clinical characterization, and detailed medical record review were performed. We report that CNP circulates at various concentrations (median, 13 pg/mL), was unaffected by sex, was weakly associated by age, and that highest quartile of CNP identified a high-risk phenotype. Subjects with CNP in the highest quartile were associated with increased risk of myocardial infarction (multivariable-adjusted hazard ratio, 1.51; 95% confidence interval, 1.09-2.09; P=0.01) but not heart failure, cerebrovascular accidents, or death during a follow-up of 12 years. Addition of the highest quartile of CNP to clinical variables led to a modest increase in the integrated discrimination improvement for risk of myocardial infarction. In a large community-based cohort, elevated circulating CNP identified a high-risk phenotype that included cardiovascular comorbidities and left ventricular dysfunction, and provided evidence that highest concentrations of CNP potentially has prognostic value in predicting future risk of myocardial infarction. Together, these data from the general population highlight the potential value of CNP and support the need for additional studies to evaluate whether mechanisms regulating CNP could improve outcomes.
Collapse
Affiliation(s)
- S Jeson Sangaralingham
- From the Cardiorenal Research Laboratory (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., J.C.B.), Divisions of Cardiovascular Diseases (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., R.J.R., J.C.B.), and Biomedical Statistics and Informatics (C.G.S., K.R.B.), Mayo Clinic, Rochester, MN.
| | - Paul M McKie
- From the Cardiorenal Research Laboratory (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., J.C.B.), Divisions of Cardiovascular Diseases (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., R.J.R., J.C.B.), and Biomedical Statistics and Informatics (C.G.S., K.R.B.), Mayo Clinic, Rochester, MN
| | - Tomoko Ichiki
- From the Cardiorenal Research Laboratory (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., J.C.B.), Divisions of Cardiovascular Diseases (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., R.J.R., J.C.B.), and Biomedical Statistics and Informatics (C.G.S., K.R.B.), Mayo Clinic, Rochester, MN
| | - Christopher G Scott
- From the Cardiorenal Research Laboratory (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., J.C.B.), Divisions of Cardiovascular Diseases (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., R.J.R., J.C.B.), and Biomedical Statistics and Informatics (C.G.S., K.R.B.), Mayo Clinic, Rochester, MN
| | - Denise M Heublein
- From the Cardiorenal Research Laboratory (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., J.C.B.), Divisions of Cardiovascular Diseases (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., R.J.R., J.C.B.), and Biomedical Statistics and Informatics (C.G.S., K.R.B.), Mayo Clinic, Rochester, MN
| | - Horng H Chen
- From the Cardiorenal Research Laboratory (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., J.C.B.), Divisions of Cardiovascular Diseases (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., R.J.R., J.C.B.), and Biomedical Statistics and Informatics (C.G.S., K.R.B.), Mayo Clinic, Rochester, MN
| | - Kent R Bailey
- From the Cardiorenal Research Laboratory (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., J.C.B.), Divisions of Cardiovascular Diseases (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., R.J.R., J.C.B.), and Biomedical Statistics and Informatics (C.G.S., K.R.B.), Mayo Clinic, Rochester, MN
| | - Margaret M Redfield
- From the Cardiorenal Research Laboratory (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., J.C.B.), Divisions of Cardiovascular Diseases (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., R.J.R., J.C.B.), and Biomedical Statistics and Informatics (C.G.S., K.R.B.), Mayo Clinic, Rochester, MN
| | - Richard J Rodeheffer
- From the Cardiorenal Research Laboratory (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., J.C.B.), Divisions of Cardiovascular Diseases (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., R.J.R., J.C.B.), and Biomedical Statistics and Informatics (C.G.S., K.R.B.), Mayo Clinic, Rochester, MN
| | - John C Burnett
- From the Cardiorenal Research Laboratory (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., J.C.B.), Divisions of Cardiovascular Diseases (S.J.S., P.M.M., T.I., D.M.H., H.H.C., M.M.R., R.J.R., J.C.B.), and Biomedical Statistics and Informatics (C.G.S., K.R.B.), Mayo Clinic, Rochester, MN
| |
Collapse
|
60
|
Egom EE, Vella K, Hua R, Jansen HJ, Moghtadaei M, Polina I, Bogachev O, Hurnik R, Mackasey M, Rafferty S, Ray G, Rose RA. Impaired sinoatrial node function and increased susceptibility to atrial fibrillation in mice lacking natriuretic peptide receptor C. J Physiol 2015; 593:1127-46. [PMID: 25641115 DOI: 10.1113/jphysiol.2014.283135] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/06/2014] [Indexed: 12/17/2022] Open
Abstract
Natriuretic peptides (NPs) are critical regulators of the cardiovascular system that are currently viewed as possible therapeutic targets for the treatment of heart disease. Recent work demonstrates potent NP effects on cardiac electrophysiology, including in the sinoatrial node (SAN) and atria. NPs elicit their effects via three NP receptors (NPR-A, NPR-B and NPR-C). Among these receptors, NPR-C is poorly understood. Accordingly, the goal of this study was to determine the effects of NPR-C ablation on cardiac structure and arrhythmogenesis. Cardiac structure and function were assessed in wild-type (NPR-C(+/+)) and NPR-C knockout (NPR-C(-/-)) mice using echocardiography, intracardiac programmed stimulation, patch clamping, high-resolution optical mapping, quantitative polymerase chain reaction and histology. These studies demonstrate that NPR-C(-/-) mice display SAN dysfunction, as indicated by a prolongation (30%) of corrected SAN recovery time, as well as an increased susceptibility to atrial fibrillation (6% in NPR-C(+/+) vs. 47% in NPR-C(-/-)). There were no differences in SAN or atrial action potential morphology in NPR-C(-/-) mice; however, increased atrial arrhythmogenesis in NPR-C(-/-) mice was associated with reductions in SAN (20%) and atrial (15%) conduction velocity, as well as increases in expression and deposition of collagen in the atrial myocardium. No differences were seen in ventricular arrhythmogenesis or fibrosis in NPR-C(-/-) mice. This study demonstrates that loss of NPR-C results in SAN dysfunction and increased susceptibility to atrial arrhythmias in association with structural remodelling and fibrosis in the atrial myocardium. These findings indicate a critical protective role for NPR-C in the heart.
Collapse
Affiliation(s)
- Emmanuel E Egom
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Urinary C-type natriuretic peptide: an emerging biomarker for heart failure and renal remodeling. Clin Chim Acta 2014; 443:108-13. [PMID: 25512164 DOI: 10.1016/j.cca.2014.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/30/2014] [Accepted: 12/08/2014] [Indexed: 12/18/2022]
Abstract
The public health and economic burden of heart failure (HF) is staggering and the need for relevant pathophysiologic and clinical biomarkers to advance the field and improve HF therapy remains high. Renal dysfunction is common among HF patients and is associated with increased HF hospitalization and mortality. It is widely recognized that mechanisms contributing to HF pathogenesis include a complex bidirectional interaction between the kidney and heart, encompassed by the term cardiorenal syndrome (CRS). Among a new wave of urinary biomarkers germane to CRS, C-type natriuretic peptide (CNP) has emerged as an innovative biomarker of renal structural and functional impairment in HF and chronic renal disease states. CNP is a hormone, synthesized in the kidney, and is an important regulator of cell proliferation and organ fibrosis. Hypoxia, cytokines and fibrotic growth factors, which are inherent to both cardiac and renal remodeling processes, are among the recognized stimuli for CNP production and release. In this review we aim to highlight current knowledge regarding the biology and pathophysiological correlates of urinary CNP, and its potential clinical utility as a diagnostic and prognostic biomarker in HF and renal disease states.
Collapse
|
62
|
Li ZQ, Liu YL, Li G, Li B, Liu Y, Li XF, Liu AJ. Inhibitory effects of C-type natriuretic peptide on the differentiation of cardiac fibroblasts, and secretion of monocyte chemoattractant protein-1 and plasminogen activator inhibitor-1. Mol Med Rep 2014; 11:159-65. [PMID: 25352084 PMCID: PMC4237089 DOI: 10.3892/mmr.2014.2763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/28/2014] [Indexed: 01/03/2023] Open
Abstract
The present study aimed to investigate the effect of C-type natriuretic peptide (CNP) on the function of cardiac fibroblasts (CFs). Western blotting was used to investigate the expression of myofibroblast marker proteins: α-smooth muscle actin (α-SMA), extra domain-A fibronectin, collagen I and collagen III, and the activity of extracellular signal-regulated kinase 1/2 (ERK1/2). Immunofluorescence was used to examine the morphological changes; a transwell assay was used to analyze migration, and reverse transcription-quantitative polymerase chain reaction and ELISA were employed to determine the mRNA expression and protein secretion of monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1). The results demonstrated that CNP significantly reduced the protein expression of α-SMA, fibronectin, collagen I and collagen III, and suppressed the migratory ability of CFs. Additionally, the mRNA and protein expression of MCP-1 and PAI-1 was inhibited under the CNP treatment; and this effect was mediated by the inhibition of the ERK1/2 activity. In conclusion, CNP inhibited cardiac fibroblast differentiation and migration, and reduced the secretion of MCP-1 and PAI-1, which demonstrates novel mechanisms to explain the antifibrotic effect of CNP.
Collapse
Affiliation(s)
- Zhi-Qiang Li
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Ying-Long Liu
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Gang Li
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Bin Li
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yang Liu
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Xiao-Feng Li
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Ai-Jun Liu
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| |
Collapse
|
63
|
Roles of cGMP-dependent protein kinase I (cGKI) and PDE5 in the regulation of Ang II-induced cardiac hypertrophy and fibrosis. Proc Natl Acad Sci U S A 2014; 111:12925-9. [PMID: 25139994 DOI: 10.1073/pnas.1414364111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Conflicting results have been reported for the roles of cGMP and cGMP-dependent protein kinase I (cGKI) in various pathological conditions leading to cardiac hypertrophy and fibrosis. A cardioprotective effect of cGMP/cGKI has been reported in whole animals and isolated cardiomyocytes, but recent evidence from a mouse model expressing cGKIβ only in smooth muscle (βRM) but not in cardiomyocytes, endothelial cells, or fibroblasts has forced a reevaluation of the requirement for cGKI activity in the cardiomyocyte antihypertrophic effects of cGMP. In particular, βRM mice developed the same hypertrophy as WT controls when subjected to thoracic aortic constriction or isoproterenol infusion. Here, we challenged βRM and WT (Ctr) littermate control mice with angiotensin II (AII) infusion (7 d; 2 mg ⋅ kg(-1) ⋅ d(-1)) to induce hypertrophy. Both genotypes developed cardiac hypertrophy, which was more pronounced in Ctr animals. Cardiomyocyte size and interstitial fibrosis were increased equally in both genotypes. Addition of sildenafil, a phosphodiesterase 5 (PDE5) inhibitor, in the drinking water had a small effect in reducing myocyte hypertrophy in WT mice and no effect in βRM mice. However, sildenafil substantially blocked the increase in collagen I, fibronectin 1, TGFβ, and CTGF mRNA in Ctr but not in βRM hearts. These data indicate that, for the initial phase of AII-induced cardiac hypertrophy, lack of cardiomyocyte cGKI activity does not worsen hypertrophic growth. However, expression of cGKI in one or more cell types other than smooth muscle is necessary to allow the antifibrotic effect of sildenafil.
Collapse
|
64
|
Schumacher KR, Reichel RA, Vlasic JR, Yu S, Donohue J, Gajarski RJ, Charpie JR. Rate of increase in serum lactate level risk-stratifies infants after surgery for congenital heart disease. J Thorac Cardiovasc Surg 2014; 148:589-95. [DOI: 10.1016/j.jtcvs.2013.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 08/13/2013] [Accepted: 09/16/2013] [Indexed: 11/26/2022]
|
65
|
Abstract
In the 30 years since the identification of the natriuretic peptides, their involvement in regulating fluid and blood pressure has become firmly established. Data indicating a role for these hormones in lifestyle-related metabolic and cardiovascular disorders have also accumulated over the past decade. Dysregulation of the natriuretic peptide system has been associated with obesity, glucose intolerance, type 2 diabetes mellitus, and essential hypertension. Moreover, the natriuretic peptides have been implicated in the protection against atherosclerosis, thrombosis, and myocardial ischaemia. All these conditions can coexist and potentially lead to heart failure, a syndrome associated with a functional natriuretic peptide deficiency despite high circulating concentrations of immunoreactive peptides. Therefore, dysregulation of the natriuretic peptide system, a 'natriuretic handicap', might be an important factor in the initiation and progression of metabolic dysfunction and its accompanying cardiovascular complications. This Review provides a summary of the natriuretic peptide system and its involvement in these cardiometabolic conditions. We propose that these peptides might have an integrating role in lifestyle-related metabolic and cardiovascular disorders.
Collapse
|
66
|
Abstract
Cardiac hypertrophy and fibrosis are two closely related adaptive response mechanisms of the myocardium to mechanical, metabolic, and genetic stress that finally contribute to the development of heart failure (HF). This relation is based on a dynamic interplay between many cell types including cardiomyocytes and fibroblasts during disease progression. Both cell types secrete a variety of growth factors, cytokines, and hormones that influence hypertrophic cardiomyocyte growth and fibrotic fibroblast activation in a paracrine and autocrine manner. It has become evident that, aside proteinous signals, microRNAs (miRNAs) and possible other RNA species such as long non-coding RNAs are potential players in such a cell-to-cell communication. By directly acting as paracrine signals or by modulating downstream intercellular signalling mediators, miRNAs can act as moderators of the intercellular crosstalk. These small regulators can potentially be secreted in a 'mircrine' fashion, so that miRNAs can be assumed as the message itself. This review will summarize the recent findings about the paracrine crosstalk between cardiac fibroblasts and cardiomyocytes and addresses how miRNAs may be involved in this interplay. It also highlights therapeutic strategies targeting factors of pathological communication for the treatment of HF.
Collapse
Affiliation(s)
- Janika Viereck
- Institute of Molecular and Translational Therapeutic Strategies , IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover D-30625, Germany
| | | | | | | |
Collapse
|
67
|
Abstract
The concept of the heart as an endocrine organ arises from the observation that the atrial cardiomyocytes in the mammalian heart display a phenotype that is partly that of endocrine cells. Investigations carried out between 1971 and 1983 characterised, by virtue of its natriuretic properties, a polypeptide referred to atrial natriuretic factor (ANF). Another polypeptide isolated from brain in 1988, brain natriuretic peptide (BNP), was subsequently characterised as a second hormone produced by the mammalian heart atria. These peptides were associated with the maintenance of extracellular fluid volume and blood pressure. Later work demonstrated a plethora of other properties for ANF and BNP, now designated cardiac natriuretic peptides (cNPs). In addition to the cNPs, other polypeptide hormones are expressed in the heart that likely act upon the myocardium in a paracrine or autocrine fashion. These include the C-type natriuretic peptide, adrenomedullin, proadrenomedullin N-terminal peptide and endothelin-1. Expression and secretion of ANF and BNP are increased in various cardiovascular pathologies and their levels in blood are used in the diagnosis and prognosis of cardiovascular disease. In addition, therapeutic uses for these peptides or related substances have been found. In all, the discovery of the endocrine heart provided a shift from the classical functional paradigm of the heart that regarded this organ solely as a blood pump to one that regards this organ as self-regulating its workload humorally and that also influences the function of several other organs that control cardiovascular function.
Collapse
|
68
|
Wang D, Gladysheva IP, Fan THM, Sullivan R, Houng AK, Reed GL. Atrial natriuretic peptide affects cardiac remodeling, function, heart failure, and survival in a mouse model of dilated cardiomyopathy. Hypertension 2013; 63:514-9. [PMID: 24379183 DOI: 10.1161/hypertensionaha.113.02164] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dilated cardiomyopathy is a frequent cause of heart failure and death. Atrial natriuretic peptide (ANP) is a biomarker of dilated cardiomyopathy, but there is controversy whether ANP modulates the development of heart failure. Therefore, we examined whether ANP affects heart failure, cardiac remodeling, function, and survival in a well-characterized, transgenic model of dilated cardiomyopathy. Mice with dilated cardiomyopathy with normal ANP levels survived longer than mice with partial ANP (P<0.01) or full ANP deficiency (P<0.001). In dilated cardiomyopathy mice, ANP protected against the development of heart failure as indicated by reduced lung water, alveolar congestion, pleural effusions, etc. ANP improved systolic function and reduced cardiomegaly. Pathological cardiac remodeling was diminished in mice with normal ANP as indicated by decreased ventricular interstitial and perivascular fibrosis. Mice with dilated cardiomyopathy and normal ANP levels had better systolic function (P<0.001) than mice with dilated cardiomyopathy and ANP deficiency. Dilated cardiomyopathy was associated with diminished cardiac transcripts for NP receptors A and B in mice with normal ANP and ANP deficiency, but transcripts for NP receptor C and C-type natriuretic peptide were selectively altered in mice with dilated cardiomyopathy and ANP deficiency. Taken together, these data indicate that ANP has potent effects in experimental dilated cardiomyopathy that reduce the development of heart failure, prevent pathological remodeling, preserve systolic function, and reduce mortality. Despite the apparent overlap in physiological function between the NPs, these data suggest that the role of ANP in dilated cardiomyopathy and heart failure is not compensated physiologically by other NPs.
Collapse
Affiliation(s)
- Dong Wang
- Department of Medicine, University of Tennessee Health Science Center, Coleman, D334, 956 Court Ave, Memphis, TN 38163.
| | | | | | | | | | | |
Collapse
|
69
|
Cabiati M, Sabatino L, Caruso R, Verde A, Caselli C, Prescimone T, Giannessi D, Del Ry S. C-type natriuretic peptide transcriptomic profiling increases in human leukocytes of patients with chronic heart failure as a function of clinical severity. Peptides 2013; 47:110-4. [PMID: 23911666 DOI: 10.1016/j.peptides.2013.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/18/2013] [Accepted: 07/18/2013] [Indexed: 11/22/2022]
Abstract
The aim of this study was to evaluate the transcriptomic profiling of C-type natriuretic peptide (CNP) and of its specific receptor, NPR-B in human leukocytes of heart failure (HF) patients as a function of clinical severity, assessing the possible changes with respect to healthy subjects (C). mRNA expression was evaluated by Real-Time PCR and total RNA was extracted from leukocytes of C (n=8) and of HF patients (NYHA I-II, n=7; NYHA III-IV, n=13) with PAXgene Blood RNA Kit. Significantly higher levels of CNP mRNA expression were found in HF patients as a function of clinical severity (C=0.23±0.058, NYHA I-II=0.47±0.18, NYHA III-IV=2.58±0.71, p=0.005 C vs NYHA III-IV, p=0.017 NYHA I-II vs NYHA III-IV) and NPR-B transcript levels resulted down-regulated in HF patients with higher NYHA class (C=2.2±0.61, NYHA I-II=2.76±0.46, NYHA III-IV=0.29±0.13, p=0.001 C vs NYHA III-IV, p<0.0001 NYHA I-II vs NYHA III-IV). A significant negative correlation between CNP and NPR-B mRNA expression (r=0.5, p=0.03) was also observed. These results suggest a co-regulation of NPR-B and CNP expression supporting the relevance of this receptor in human disease characterized by a marked inflammatory/immune component and suggesting the possibility of manipulating inflammation via pharmacological agents selective for this receptor.
Collapse
Affiliation(s)
- M Cabiati
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Heart failure is an important public health problem that is increasing in prevalence throughout the world. Not only is this condition common, but it is associated with significant morbidity and mortality as well as high costs to medical care systems. Vasodilator drugs help unload the heart and may have other effects that could benefit heart failure patients. Consequently, they have emerged as an important therapeutic approach for patients with this condition. Novel vasodilator therapies that are currently in development target new pathways, potentially giving clinicians alternate options for improving outcomes in this vulnerable population. This review focuses on investigational drugs that have the ability to dilate blood vessels amongst their therapeutic properties. These drugs include the natriuretic peptides that activate particulate guanylate cyclase, the novel agent cinaciguat that activates the soluble guanylate cyclase system, and finally a recombinant form of the naturally occurring vasodilating agent relaxin, a hormone that mediates many of the changes that allows the cardiovascular system to successfully adapt to pregnancy.
Collapse
|
71
|
von Lueder TG, Sangaralingham SJ, Wang BH, Kompa AR, Atar D, Burnett JC, Krum H. Renin-angiotensin blockade combined with natriuretic peptide system augmentation: novel therapeutic concepts to combat heart failure. Circ Heart Fail 2013; 6:594-605. [PMID: 23694773 PMCID: PMC3981104 DOI: 10.1161/circheartfailure.112.000289] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Thomas G. von Lueder
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Cardiology B, Oslo University Hospital Ullevål, 0407 Oslo and Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - S. Jeson Sangaralingham
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Bing H. Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Andrew R. Kompa
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Dan Atar
- Department of Cardiology B, Oslo University Hospital Ullevål, 0407 Oslo and Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - John C. Burnett
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Henry Krum
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, VIC 3004, Australia
| |
Collapse
|
72
|
Lim SG, Venkatraman SS, Burnett JC, Chen HH. In-vivo evaluation of an in situ polymer precipitation delivery system for a novel natriuretic peptide. PLoS One 2013; 8:e52484. [PMID: 23441143 PMCID: PMC3575325 DOI: 10.1371/journal.pone.0052484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/19/2012] [Indexed: 11/23/2022] Open
Abstract
This study reports on the release of a novel natriuretic peptide, CD-NP, from an in situ polymer precipitation delivery system. Following extensive screening of in-vitro release profiles, an in-vivo evaluation of the efficacy of the delivery system was carried out in Wistar rats. Gel injection was performed subcutaneously on the back of the rats. A secondary messenger, cyclic Guanosine 3'5' Monophosphate (cGMP), was tested for verification of CD-NP bioactivity, in addition to direct measurements of CD-NP levels in plasma and urine using a radio-immuno assay. Plasma evaluation showed an elevated level of CD-NP over 3 weeks' duration. Unexpectedly, plasma cGMP level followed a decreasing trend over the same duration despite high CD-NP level. Loss of drug bioactivity was ruled out as a high level of CD-NP and cGMP excretion was observed in the treatment group as compared to baseline readings. This unexpected low-plasma cGMP levels and high-urinary cGMP excretion suggest that there might be other compensatory responses to regulation of the CDNP bioactivity as a result of the high drug dosing. The results stress the importance of assessing the overall bioactivity of released drug (in-vivo) concurrently in addition to measuring its concentrations, to determine the correct release profile.
Collapse
Affiliation(s)
- Soo Ghim Lim
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Subbu S. Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - John C. Burnett
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Horng H. Chen
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
73
|
Del Ry S. C-type natriuretic peptide: a new cardiac mediator. Peptides 2013; 40:93-8. [PMID: 23262354 DOI: 10.1016/j.peptides.2012.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 01/27/2023]
Abstract
Natriuretic peptides are endogenous hormones released by the heart in response to myocardial stretch and overload. While atrial and brain natriuretic peptides (ANP, BNP) were immediately considered cardiac hormones and their role was well-characterized and defined in predicting risk in cardiovascular disease, evidence indicating the role of C-type natriuretic peptide (CNP) in cardiovascular regulation was slow to emerge until about 8 years ago. Since then, considerable literature on CNP and the cardiovascular system has been published; the aim of this review is to examine current literature relating to CNP and cardiovascular disease, in particular its role in heart failure (HF) and myocardial infarction (MI). This review retraces the fundamental steps in research that led understanding the role of CNP in HF and MI; from increased CNP mRNA expression and plasmatic concentrations in humans and in animal models, to detection of CNP expression in cardiomyocytes, to its evaluation in human leukocytes. The traditional view of CNP as an endothelial peptide has been surpassed by the results of many studies published in recent years, and while its physiological role is still under investigation, information is now available regarding its contribution to cardiovascular function. Taken together, these observations suggest that CNP and its specific receptor, NPR-B, can play a very important role in regulating cardiac hypertrophy and remodeling, indicating NPR-B as a new potential drug target for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- S Del Ry
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy.
| |
Collapse
|
74
|
Martin FL, Sangaralingham SJ, Huntley BK, McKie PM, Ichiki T, Chen HH, Korinek J, Harders GE, Burnett JC. CD-NP: a novel engineered dual guanylyl cyclase activator with anti-fibrotic actions in the heart. PLoS One 2012; 7:e52422. [PMID: 23272242 PMCID: PMC3525541 DOI: 10.1371/journal.pone.0052422] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/13/2012] [Indexed: 12/31/2022] Open
Abstract
Natriuretic peptides (NPs) are cardioprotective through the activation of guanylyl cyclase (GC) receptors A and B. CD-NP, also known as cenderitide, is a novel engineered NP that was designed to uniquely serve as a first-in-class dual GC receptor agonist. Recognizing the aldosterone suppressing actions of GC-A activation and the potent inhibitory actions on collagen synthesis and fibroblast proliferation through GC-B activation, the current study was designed to establish the anti-fibrotic actions of CD-NP, administered subcutaneously, in an experimental rat model of early cardiac fibrosis induced by unilateral nephrectomy (UNX). Our results demonstrate that a two week subcutaneous infusion of CD-NP significantly suppresses left ventricular fibrosis and circulating aldosterone, while preserving both systolic and diastolic function, in UNX rats compared to vehicle treated UNX rats. Additionally we also confirmed, in vitro, that CD-NP significantly generates the second messenger, cGMP, through both the GC-A and GC-B receptors. Taken together, this novel dual GC receptor activator may represent an innovative anti-fibrotic therapeutic agent.
Collapse
Affiliation(s)
- Fernando L. Martin
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - S. Jeson Sangaralingham
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| | - Brenda K. Huntley
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Paul M. McKie
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tomoko Ichiki
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Horng H. Chen
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Josef Korinek
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gerald E. Harders
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - John C. Burnett
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
75
|
Ichiki T, Boerrigter G, Huntley BK, Sangaralingham SJ, McKie PM, Harty GJ, Harders GE, Burnett JC. Differential expression of the pro-natriuretic peptide convertases corin and furin in experimental heart failure and atrial fibrosis. Am J Physiol Regul Integr Comp Physiol 2012; 304:R102-9. [PMID: 23152112 DOI: 10.1152/ajpregu.00233.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In heart failure (HF), the cardiac hormone natriuretic peptides (NPs) atrial (ANP), B-type (BNP), and C-type (CNP) play a key role to protect cardiac remodeling. The proprotein convertases corin and furin process their respective pro-NPs into active NPs. Here we define in a canine model of HF furin and corin gene and protein expression in normal and failing left atrium (LA) or ventricle (LV) testing the hypothesis that the NP proproteins convertases production is altered in experimental HF. Experimental canine HF was produced by rapid right ventricular pacing for 10 days. NPs, furin, and corin mRNA expression were determined by quantitative RT-PCR. Protein concentration or expression was determined by immunostaining, radioimmunoassay, or Western blot. Furin and corin proteins were present in normal canine LA and LV myocardium and vasculature and in smooth muscle cells. In normal canines, expression of NPs was dominant in the atrium compared with the ventricle. In experimental early stage HF characterized with marked atrial fibrosis, ANP, BNP, and CNP mRNA, and protein concentrations were higher in HF LA but not HF LV compared with normals. In LA, corin mRNA and protein expressions in HF were lower, whereas furin mRNA and protein expressions were higher than normals. NPs and furin expressions were augmented in the atrium in experimental early stage HF and, conversely, corin mRNA and protein expressions were decreased with atrial remodeling. Selective changes of these NP convertases may have significance in the regulation of pro-NP processing and atrial remodeling in early stage HF.
Collapse
Affiliation(s)
- Tomoko Ichiki
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
A new method for establishing stable cell lines and its use for large-scale production of human guanylyl cyclase-B receptor and of the extracellular domain. Biochem Biophys Res Commun 2012; 426:260-5. [PMID: 22935423 DOI: 10.1016/j.bbrc.2012.08.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 08/15/2012] [Indexed: 11/24/2022]
Abstract
Guanylyl cyclase-B receptor (GC-B) is a membrane receptor that induces intracellular accumulation of cGMP when a specific ligand, C-type natriuretic peptide (CNP), binds to the extracellular ligand-binding domain (ECD). Despite of its medical and biological importance, characterization of GC-B is hampered by limited amounts of protein obtainable. To circumvent this problem, a method was developed for rapidly and semi-automatically establishing stable cell lines specialized for large-scale production. This method, utilizing a bicistronic expression vector for co-expressing a green fluorescent protein and FACS-based selection of high-expressing cells, is generally applicable. It worked particularly well with the ECD and yielded highly purified ECD at 1 mg/l of culture medium by affinity chromatography using modified CNPs. Measurements of ligand-binding and guanylyl cyclase activities for various natriuretic peptides showed that, as expected, CNP is by far the most potent agonist of GC-B with IC(50) of ~7.5 nM. This value is at least an order of magnitude larger than that reported earlier but similar to that established with the guanylyl cyclase-A receptor for its ligand, atrial natriuretic peptide. The methods developed here will be useful, at the least, for characterizing other members of the guanylyl cyclase receptor family.
Collapse
|
77
|
Chronic C-Type Natriuretic Peptide Infusion Attenuates Angiotensin II-Induced Myocardial Superoxide Production and Cardiac Remodeling. Int J Vasc Med 2012; 2012:246058. [PMID: 22848833 PMCID: PMC3405723 DOI: 10.1155/2012/246058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/21/2012] [Accepted: 06/08/2012] [Indexed: 01/21/2023] Open
Abstract
Myocardial oxidative stress and inflammation are key mechanisms in cardiovascular remodeling. C-type natriuretic peptide (CNP) is an endothelium-derived cardioprotective factor, although its effect on cardiac superoxide generation has not been investigated in vivo. This study tested the hypothesis that suppression of superoxide production contributes to the cardioprotective action of CNP. Angiotensin II (Ang II) or saline was continuously infused subcutaneously into mice using an osmotic minipump. Simultaneously with the initiation of Ang II treatment, mice were infused with CNP (0.05 μg/kg/min) or vehicle for 2 weeks. The heart weight to tibial length ratio was significantly increased by Ang II in vehicle-treated mice. Treatment with CNP decreased Ang II-induced cardiac hypertrophy without affecting systolic blood pressure. Echocardiography showed that CNP attenuated Ang II-induced increase in wall thickness, left ventricular dilatation, and decrease in fractional shortening. CNP reduced Ang II-induced increases in cardiomyocyte size and interstitial fibrosis and suppressed hypertrophic- and fibrosis-related gene expression. Finally, CNP decreased Ang II-induced cardiac superoxide production. These changes were accompanied by suppression of NOX4 gene expression. Our data indicate that treatment with CNP attenuated Ang II-induced cardiac hypertrophy, fibrosis, and contractile dysfunction which were accompanied by reduced cardiac superoxide production.
Collapse
|
78
|
Guanylyl cyclase (GC)-A and GC-B activities in ventricles and cardiomyocytes from failed and non-failed human hearts: GC-A is inactive in the failed cardiomyocyte. J Mol Cell Cardiol 2011; 52:727-32. [PMID: 22133375 DOI: 10.1016/j.yjmcc.2011.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 12/31/2022]
Abstract
Cardiomyocytes release atrial natriuretic peptide (ANP) and B-type natriuretic peptide to stimulate processes that compensate for the failing heart by activating guanylyl cyclase (GC)-A. C-type natriuretic peptide is also elevated in the failing heart and inhibits cardiac remodeling by activating the homologous receptor, GC-B. We previously reported that GC-A is the most active membrane GC in normal mouse ventricles while GC-B is the most active membrane GC in failing ventricles due to increased GC-B and decreased GC-A activities. Here, we examined ANP and CNP-specific GC activity in membranes obtained from non-failing and failing human left ventricles and in membranes from matched cardiomyocyte-enriched pellet preparations. Similar to our findings in the murine study, we found that CNP-dependent GC activity was about half of the ANP-dependent GC activity in the non-failing ventricular and was increased in the failing ventricle. ANP and CNP increased GC activity 9- and 5-fold in non-failing ventricles, respectively. In contrast to the mouse study, in failing human ventricles, ANP-dependent activity was unchanged compared to non-failing values whereas CNP-dependent activity increased 35% (p=0.005). Compared with ventricular membranes, basal GC activity was reduced an order of magnitude in membranes derived from myocyte-enriched pellets from non-failing ventricles. ANP increased GC activity 2.4-fold but CNP only increased GC activity 1.3-fold. In contrast, neither ANP nor CNP increased GC activity in equivalent preparations from failing ventricles. We conclude that: 1) GC-B activity is increased in non-myocytes from failing human ventricles, possibly as a result of increased fibrosis, 2) human ventricular cardiomyocytes express low levels of GC-A and much lower levels or possibly no GC-B, and 3) GC-A in cardiomyocytes from failing human hearts is refractory to ANP stimulation.
Collapse
|
79
|
Sellitti DF, Koles N, Mendonça MC. Regulation of C-type natriuretic peptide expression. Peptides 2011; 32:1964-71. [PMID: 21816187 DOI: 10.1016/j.peptides.2011.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 01/17/2023]
Abstract
C-type natriuretic peptide (CNP) is a member of the small family of natriuretic peptides that also includes atrial natriuretic peptide (ANP) and brain, or B-type natriuretic peptide (BNP). Unlike them, it performs its major functions in an autocrine or paracrine manner. Those functions, mediated through binding to the membrane guanylyl cyclase natriuretic peptide receptor B (NPR-B), or by signaling through the non-enzyme natriuretic peptide receptor C (NPR-C), include the regulation of endochondral ossification, reproduction, nervous system development, and the maintenance of cardiovascular health. To date, the regulation of CNP gene expression has not received the attention that has been paid to regulation of the ANP and BNP genes. CNP expression in vitro is regulated by TGF-β and receptor tyrosine kinase growth factors in a cell/tissue-specific and sometimes species-specific manner. Expression of CNP in vivo is altered in diseased organs and tissues, including atherosclerotic vessels, and the myocardium of failing hearts. Analysis of the human CNP gene has led to the identification of a number of regulatory sites in the proximal promoter, including a GC-rich region approximately 50 base pairs downstream of the Tata box, and shown to be a binding site for several putative regulatory proteins, including transforming growth factor clone 22 domain 1 (TSC22D1) and a serine threonine kinase (STK16). The purpose of this review is to summarize the current literature on the regulation of CNP expression, emphasizing in particular the putative regulatory elements in the CNP gene and the potential DNA-binding proteins that associate with them.
Collapse
Affiliation(s)
- Donald F Sellitti
- Department of Medicine, Division of Endocrinology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA.
| | | | | |
Collapse
|
80
|
Sangaralingham SJ, Heublein DM, Grande JP, Cataliotti A, Rule AD, McKie PM, Martin FL, Burnett JC. Urinary C-type natriuretic peptide excretion: a potential novel biomarker for renal fibrosis during aging. Am J Physiol Renal Physiol 2011; 301:F943-52. [PMID: 21865266 DOI: 10.1152/ajprenal.00170.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal aging is characterized by structural changes in the kidney including fibrosis, which contributes to the increased risk of kidney and cardiac failure in the elderly. Studies involving healthy kidney donors demonstrated subclinical age-related nephropathy on renal biopsy that was not detected by standard diagnostic tests. Thus there is a high-priority need for novel noninvasive biomarkers to detect the presence of preclinical age-associated renal structural and functional changes. C-type natriuretic peptide (CNP) possesses renoprotective properties and is present in the kidney; however, its modulation during aging remains undefined. We assessed circulating and urinary CNP in a Fischer rat model of experimental aging and also determined renal structural and functional adaptations to the aging process. Histological and electron microscopic analysis demonstrated significant renal fibrosis, glomerular basement membrane thickening, and mesangial matrix expansion with aging. While plasma CNP levels progressively declined with aging, urinary CNP excretion increased, along with the ratio of urinary to plasma CNP, which preceded significant elevations in proteinuria and blood pressure. Also, CNP immunoreactivity was increased in the distal and proximal tubules in both the aging rat and aging human kidneys. Our findings provide evidence that urinary CNP and its ratio to plasma CNP may represent a novel biomarker for early age-mediated renal structural alterations, particularly fibrosis. Thus urinary CNP could potentially aid in identifying subjects with preclinical structural changes before the onset of symptoms and disease, allowing for the initiation of strategies designed to prevent the progression of chronic kidney disease particularly in the aging population.
Collapse
Affiliation(s)
- S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Div. of Cardiovascular Diseases, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Calvieri C, Rubattu S, Volpe M. Molecular mechanisms underlying cardiac antihypertrophic and antifibrotic effects of natriuretic peptides. J Mol Med (Berl) 2011; 90:5-13. [PMID: 21826523 DOI: 10.1007/s00109-011-0801-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/16/2011] [Accepted: 08/02/2011] [Indexed: 01/01/2023]
Abstract
Natriuretic peptides (NPs) exert well-characterized protective effects on the cardiovascular system, such as vasorelaxation, natri- and diuresis, increase of endothelial permeability, and inhibition of renin-angiotensin-aldosterone system. It has been reported that they also possess antihypertrophic and antifibrotic properties and contribute actively to cardiac remodeling. As a consequence, they are involved in several aspects of cardiovascular diseases. Antihypertrophic and antifibrotic actions of NPs appear to be mediated by specific signaling pathways within a more complex cellular network. Elucidation of the molecular mechanisms underlying the effects of NPs on cardiac remodeling represents an important research objective in order to gain more insights on the complex network leading to cardiac hypertrophy, ventricular dysfunction, and transition to heart failure, and in the attempt to develop novel therapeutic agents. The aim of the present article is to review well-characterized molecular mechanisms underlying the antihypertrophic and antifibrotic effects of NPs in the heart that appear to be mainly mediated by guanylyl cyclase type A receptor. In particular, we discuss the calcineurin/NFAT, the sodium exchanger NHE-1, and the TGFβ1/Smad signaling pathways. The role of guanylyl cyclase type B receptor, along with the emerging functional significance of natriuretic peptide receptor type C as mediators of CNP antihypertrophic and antifibrotic actions in the heart are also considered.
Collapse
Affiliation(s)
- Camilla Calvieri
- Cardiology, Department of Clinical and Molecular Medicine, School of Medicine and Psychology, University Sapienza of Rome, Ospedale S. Andrea, Rome, Italy
| | | | | |
Collapse
|
82
|
Zakeri R, Burnett JC. Designer natriuretic peptides: a vision for the future of heart failure therapeutics. Can J Physiol Pharmacol 2011; 89:593-601. [DOI: 10.1139/y11-048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite recent pharmacological advances in heart failure therapy, mortality from acute decompensated heart failure remains high. Conventional therapies are often insufficient to address the complex interplay between structural, functional, neurohumoral, and renal mechanisms involved in the heart failure syndrome. The natriuretic peptide system, however, offers a unique pleiotropic strategy which could bridge this gap in heart failure therapy. Exogenous administration of native A-type and B-type natriuretic peptides has been met with both success and limitations, and despite the limitations, remains a worthwhile endeavor. Alternatively, synthetic modification to create “designer” chimeric peptides holds the possibility to extend both the application and therapeutic benefits possible with a natriuretic peptide based approach. Herein we describe the development of natriuretic peptide based heart failure therapies, including the design, rationale, and preliminary studies of the novel chimeric peptides CD-NP and CU-NP.
Collapse
Affiliation(s)
- Rosita Zakeri
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine and Physiology, Mayo Clinic College of Medicine, 200 First Street S.W, Rochester, MN 55906, USA
| | - John C. Burnett
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine and Physiology, Mayo Clinic College of Medicine, 200 First Street S.W, Rochester, MN 55906, USA
| |
Collapse
|
83
|
Del Ry S, Cabiati M, Vozzi F, Battolla B, Caselli C, Forini F, Segnani C, Prescimone T, Giannessi D, Mattii L. Expression of C-type natriuretic peptide and its receptor NPR-B in cardiomyocytes. Peptides 2011; 32:1713-8. [PMID: 21723350 DOI: 10.1016/j.peptides.2011.06.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 11/20/2022]
Abstract
C-type natriuretic peptide (CNP) was recently found in myocardium at the mRNA and protein levels, but it is not known whether cardiomyocytes are able to produce CNP. The aim of this study was to determine the expression of CNP and its specific receptor NPR-B in cardiac cells, both in vitro and ex vivo. CNP, brain natriuretic peptide (BNP) and natriuretic peptide receptor (NPR)-B mRNA expression were examined by RT-PCR in the H9c2 rat cardiac myoblast cell line, in neonatal rat primary cardiomyocytes and in human umbilical vein endothelial cells (HUVECs) as control. CNP protein expression was probed in cardiac tissue sections obtained from adult male minipigs by immunohistochemistry, and in H9c2 cells both by immunocytochemistry and by specific radioimmunoassay. The results showed that cardiac cells as well as endothelial cells were able to produce CNP. Unlike cardiomyocytes, as expected, in endothelial cells expression of BNP was not detected. NPR-B mRNA expression was found in both cell types. Production of CNP in the heart muscle cells at protein level was confirmed by radioimmunological determination (H9c2: CNP=0.86 ± 0.083 pg/mg) and by immunocytochemistry studies. By immunostaining of tissue sections, CNP was detected in both endothelium and cardiomyocytes. Expression of CNP in cardiac cells at gene and protein levels suggests that the heart is actively involved in the production of CNP.
Collapse
Affiliation(s)
- S Del Ry
- CNR Institute of Clinical Physiology Laboratory of Cardiovascular Biochemistry, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Nishikimi T, Kuwahara K, Nakao K. Current biochemistry, molecular biology, and clinical relevance of natriuretic peptides. J Cardiol 2011; 57:131-40. [PMID: 21296556 DOI: 10.1016/j.jjcc.2011.01.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
The mammalian natriuretic peptide family consists of atrial (ANP), brain [B-type; BNP] and C-type natriuretic peptide (CNP) and three receptors, natriuretic receptors-A (NPR-A), -B (NPR-B) and -C (NPR-C). Both ANP and BNP are abundantly expressed in the heart and are secreted mainly from the atria and ventricles, respectively. By contrast, CNP is mainly expressed in the central nervous system, bone and vasculature. Plasma concentrations of both ANP and BNP are elevated in patients with cardiovascular disease, though the magnitude of the increase in BNP is usually greater than the increase in ANP. This makes BNP is a clinically useful diagnostic marker for several pathophysiological conditions, including heart failure, ventricular remodeling and pulmonary hypertension, among others. Recent studies have shown that in addition to BNP-32, proBNP-108 also circulates in human plasma and that levels of both forms are increased in heart failure. Furthermore, proBNP-108 is O-glycosylated and circulates at higher levels in patients with severe heart failure. In this review we discuss recent progress in our understanding of the biochemistry, molecular biology and clinical relevance of the natriuretic peptide system.
Collapse
Affiliation(s)
- Toshio Nishikimi
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54, Shogoin-Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | |
Collapse
|
85
|
|
86
|
Sangaralingham SJ, Huntley BK, Martin FL, McKie PM, Bellavia D, Ichiki T, Harders GE, Chen HH, Burnett JC. The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic Peptide. Hypertension 2010; 57:201-7. [PMID: 21189408 DOI: 10.1161/hypertensionaha.110.160796] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myocardial aging is characterized by left ventricular (LV) fibrosis leading to diastolic and systolic dysfunction. Studies have established the potent antifibrotic and antiproliferative properties of C-type natriuretic peptide (CNP); however, the relationship between circulating CNP, LV fibrosis, and associated changes in LV function with natural aging are undefined. Accordingly, we characterized the relationship of plasma CNP with LV fibrosis and function in 2-, 11-, and 20-month-old male Fischer rats. Further in vitro, we established the antiproliferative actions of CNP and the participation of the clearance receptor using adult human cardiac fibroblasts. Here we establish for the first time that a progressive decline in circulating CNP characterizes natural aging and is strongly associated with a reciprocal increase in LV fibrosis that precedes impairment of diastolic and systolic function. Additionally, we demonstrate in cultured adult human cardiac fibroblasts that the direct antiproliferative actions of high-dose CNP may involve a non-cGMP pathway via the clearance receptor. Together, these studies provide new insights into myocardial aging and the relationship to the antifibrotic and antiproliferative peptide CNP.
Collapse
Affiliation(s)
- S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
CD-NP: an innovative designer natriuretic peptide activator of particulate guanylyl cyclase receptors for cardiorenal disease. Curr Heart Fail Rep 2010; 7:93-9. [PMID: 20582736 DOI: 10.1007/s11897-010-0016-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The natriuretic peptide (NP) family consists of structurally similar, although physiologically distinct, peptides that play an important role in cardiorenal homeostasis. CD-NP is a novel chimeric natriuretic peptide developed by the Mayo Clinic, in which the 15-amino acid COOH-terminus of dendroaspis NP is fused to C-type NP. CD-NP is a dual activator of NP receptors A and B, and therefore, possesses the strong antiproliferative and antifibrotic properties of C-type NP with the potent natriuretic, diuretic, and aldosterone-inhibiting properties of dendroaspis NP. CD-NP has favorable cardiorenal properties when compared to recombinant B-type NP (nesiritide), including preservation of glomerular filtration rate with minimal blood pressure-lowering effects. Thus, CD-NP has emerged as an appealing novel therapeutic strategy for heart failure. The endogenous NP system, the development rationale for CD-NP, as well as in vitro, animal, and human studies and future directions will be reviewed.
Collapse
|
88
|
Huntley BK, Ichiki T, Sangaralingham SJ, Chen HH, Burnett JC. B-type natriuretic peptide and extracellular matrix protein interactions in human cardiac fibroblasts. J Cell Physiol 2010; 225:251-5. [PMID: 20506274 DOI: 10.1002/jcp.22253] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cardiac fibroblasts (CFs) regulate myocardial remodeling by proliferating, differentiating, and secreting extracellular matrix (ECM) proteins. B-type natriuretic peptide (BNP) is anti-fibrotic, inhibits collagen production, augments matrix metalloproteinases, and suppresses CF proliferation. Recently, we demonstrated that the ECM protein fibronectin (FN) augmented production of BNP's second messenger, 3', 5' cyclic guanosine monophosphate (cGMP) in CFs, supporting crosstalk between FN, BNP, and its receptor, natriuretic peptide receptor A (NPR-A). Here, we address the specificity of FN to augment cGMP generation by investigating other matrix proteins, including collagen IV which contains RGD motifs and collagen I and poly-L-lysine, which have no RGD domain. Collagen IV showed increased cGMP generation to BNP similar to FN. Collagen I and poly-L-lysine had no effect. As FN also interacts with integrins, we then examined the effect of integrin receptor antibody blockade on BNP-mediated cGMP production. On FN plates, antibodies blocking RGD-binding domains of several integrin subtypes had little effect, while a non-RGD domain interfering integrin alphavbeta3 antibody augmented cGMP production. Further, on uncoated plates, integrin alphavbeta3 blockade continued to potentiate the BNP/cGMP response. These studies suggest that both RGD containing ECM proteins and integrins may interact with BNP/NPR-A to modulate cGMP generation.
Collapse
Affiliation(s)
- Brenda K Huntley
- Cardiorenal Research Laboratory, Division of Cardiovascular Disease, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | | | |
Collapse
|
89
|
|
90
|
Tsuruda T, Imamura T, Hatakeyama K, Asada Y, Kitamura K. Stromal cell biology--a way to understand the evolution of cardiovascular diseases. Circ J 2010; 74:1042-50. [PMID: 20378995 DOI: 10.1253/circj.cj-10-0024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stromal cells, composed of fibroblasts, microvascular endothelial cells, immune cells and inflammatory cells, are critical determinants of the mechanical properties and function of the heart and vasculature, and the mechanisms whereby these types of cells are activated are important to understand the progression of cardiovascular diseases. Emerging studies have suggested that the activation of autocrine and paracrine signaling pathways by stromal cell-derived growth factors, cytokines and bioactive molecules contributes to disease progression. Disruption of the stromal network will result in alterations in the geometry and function in these organs. Interventions targeting the stromal cells (eg, myofibroblasts, microvascular endothelial cells, inflammatory cells) by pharmacological agents or direct gene delivery/small interfering RNA would be potential novel therapeutic strategies to prevent/attenuate the progression of cardiovascular disorders.
Collapse
Affiliation(s)
- Toshihiro Tsuruda
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, University of Miyazaki, Miyazaki, Japan.
| | | | | | | | | |
Collapse
|
91
|
Martel G, Hamet P, Tremblay J. Central role of guanylyl cyclase in natriuretic peptide signaling in hypertension and metabolic syndrome. Mol Cell Biochem 2009; 334:53-65. [PMID: 19937369 DOI: 10.1007/s11010-009-0326-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 11/04/2009] [Indexed: 01/05/2023]
Abstract
Studied for nearly 30 years for its ability to control many parameters, such as vascular smooth muscle cell relaxation, heart fibrosis, and kidney function, the natriuretic peptide (NP) system is now considered to be a key element in several other major metabolic pathways. After stimulation by NPs, natriuretic peptide receptors (NPR) convert GTP to the second messenger cGMP. In addition to its vasodilatory effects and natriuretic and diuretic functions, cGMP has been positively associated with fat cell function, apoptosis, and NPR expression/activity modulation. The NP system is also closely linked to metabolic syndrome (MetS) progression and obesity control. A new era is now on its way targeting the NP system to not only treat high blood pressure, but to also assist in the fight against the obesity pandemic. Here, we summarize recent data on the role of NPs in hypertension and MetS.
Collapse
Affiliation(s)
- G Martel
- Laboratory of Cellular Biology of Hypertension, Centre for Ecogenomic Models of Human Diseases, Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Technopôle Angus, 2901 rue Rachel est, bureau 314, Montreal, QC H1W 4A4, Canada
| | | | | |
Collapse
|
92
|
Natriuretic peptides and cardiovascular damage in the metabolic syndrome: molecular mechanisms and clinical implications. Clin Sci (Lond) 2009; 118:231-40. [PMID: 19886866 DOI: 10.1042/cs20090204] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natriuretic peptides are endogenous antagonists of vasoconstrictor and salt- and water-retaining systems in the body's defence against blood pressure elevation and plasma volume expansion, through direct vasodilator, diuretic and natriuretic properties. In addition, natriuretic peptides may play a role in the modulation of the molecular mechanisms involved in metabolic regulation and cardiovascular remodelling. The metabolic syndrome is characterized by visceral obesity, hyperlipidaemia, vascular inflammation and hypertension, which are linked by peripheral insulin resistance. Increased visceral adiposity may contribute to the reduction in the circulating levels of natriuretic peptides. The dysregulation of neurohormonal systems, including the renin-angiotensin and the natriuretic peptide systems, may in turn contribute to the development of insulin resistance in dysmetabolic patients. In obese subjects with the metabolic syndrome, reduced levels of natriuretic peptides may be involved in the development of hypertension, vascular inflammation and cardio vascular remodelling, and this may predispose to the development of cardiovascular disease. The present review summarizes the regulation and function of the natriuretic peptide system in obese patients with the metabolic syndrome and the involvement of altered bioactive levels of natriuretic peptides in the pathophysiology of cardiovascular disease in patients with metabolic abnormalities.
Collapse
|
93
|
Zhou HY, Chen WD, Zhu DL, Wu LY, Zhang J, Han WQ, Li JD, Yan C, Gao PJ. The PDE1A-PKCalpha signaling pathway is involved in the upregulation of alpha-smooth muscle actin by TGF-beta1 in adventitial fibroblasts. J Vasc Res 2009; 47:9-15. [PMID: 19672103 DOI: 10.1159/000231716] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 12/31/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Increasing evidence has suggested that differentiation of adventitial fibroblasts (AFs) to myofibroblasts plays an important role in arterial remodeling. The molecular mechanisms by which myofibroblast formation is regulated still remain largely unknown. This study aimed to evaluate the role of cyclic nucleotide phosphodiesterase 1A (PDE1A) in the formation of adventitial myofibroblasts induced by transforming growth factor (TGF)-beta(1). METHODS AND RESULTS AFs were cultured by the explant method. Western blot and immunocytochemistry were applied for alpha-smooth muscle actin (SMA) or protein kinase C (PKC) alpha protein analysis. Results showed that TGF-beta(1) upregulated PDE1A protein expression in rat aortic AFs and pharmacological inhibition of PDE1A blocked TGF-beta(1)-induced alpha-SMA expression, a marker of myofibroblast formation, suggesting that the upregulation of PDE1A may mediate TGF-beta(1)-induced AF transformation. Moreover, calphostin C (a PKC inhibitor) inhibited TGF-beta(1)-induced alpha-SMA expression, whereas phorbol-12-myristate-13-acetate (a PKC activator) induced it. Finally, the upregulation of PKCalpha expression by TGF-beta(1) was also inhibited by PDE1A inhibition. CONCLUSIONS Taken together, our data suggest that TGFbeta(1) induces alpha-SMA expression and myofibroblast formation via a PDE1A-PKCalpha-dependent mechanism. Our study thus unveils a novel signaling mechanism underlying TGF-beta(1)-induced adventitial myofibroblast formation.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- Shanghai Key Laboratory of Vascular Biology, Ruijin Hospital, and Laboratory of Vascular Biology, Health Science Center, Shanghai JiaoTong University School of Medicine and Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Palmer SC, Prickett TCR, Espiner EA, Yandle TG, Richards AM. Regional release and clearance of C-type natriuretic peptides in the human circulation and relation to cardiac function. Hypertension 2009; 54:612-8. [PMID: 19620509 DOI: 10.1161/hypertensionaha.109.135608] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Production and clearance of plasma C-type natriuretic peptide (CNP) and amino terminal (NT)-proCNP immunoreactivity in the human circulation remain poorly characterized. Accordingly, we have measured arterial and venous concentrations of CNP and NT-proCNP across multiple tissue beds during cardiac catheterization in 120 subjects (age: 64.2+/-9.0 years; 73% men) investigated for cardiovascular disorders. The heart, head and neck, and musculoskeletal tissues made the clearest contributions to both plasma CNP and NT-proCNP (P<0.05). Net release of NT-proCNP was also observed from hepatic tissue (P<0.001). Negative arteriovenous gradients for CNP were observed across renal, hepatic, and pulmonary tissue (P<0.05), indicating net clearance, whereas no tissue-specific site of NT-proCNP clearance was identified. Age, mean pulmonary artery pressure, left ventricular end diastolic pressure, Brandt score of myocardial jeopardy, and troponin I were independent predictors of circulating CNP levels in multivariable analysis. Sex and kidney function were independently predictive of arterial NT-proCNP. The proportional step-up of CNP (+60%) across the heart was less than for brain natriuretic peptide (+123%) but greater than for NT-pro-brain natriuretic peptide (NT-proBNP) (+36%) and NT-proCNP (+42%; P<0.001 for all). We conclude that cardiac and head and neck tissue are important sources of CNP. Circulating CNP but not NT-proCNP concentrations are related to cardiac hemodynamic load and ischemic burden. Although cardiac release is most evident, multiple additional tissues release NT-proCNP immunoreactivity without evidence for an organ-specific site for NT-proCNP degradation. Taken together, differences in magnitude and direction of transorgan gradients for CNP compared with NT-proCNP suggest net generalized cosecretion with differing mechanisms of clearance.
Collapse
Affiliation(s)
- Suetonia C Palmer
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
95
|
Glenn DJ, Rahmutula D, Nishimoto M, Liang F, Gardner DG. Atrial natriuretic peptide suppresses endothelin gene expression and proliferation in cardiac fibroblasts through a GATA4-dependent mechanism. Cardiovasc Res 2009; 84:209-17. [PMID: 19546173 DOI: 10.1093/cvr/cvp208] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Atrial natriuretic peptide (ANP) is a hormone that has both antihypertrophic and antifibrotic properties in the heart. We hypothesized that myocyte-derived ANP inhibits endothelin (ET) gene expression in fibroblasts. METHODS AND RESULTS We have investigated the mechanism(s) involved in the antiproliferative effect of ANP on cardiac fibroblasts in a cell culture model. We found that cardiac myocytes inhibited DNA synthesis in co-cultured cardiac fibroblasts as did treatment with the ET-1 antagonist BQ610. The effect of co-culture was reversed by antibody directed against ANP or the ANP receptor antagonist HS-142-1. ANP inhibited the expression of the ET-1 gene and ET-1 gene promoter activity in cultured fibroblasts. The site of the inhibition was localized to a GATA-binding site positioned between -132 and -135 upstream from the transcription start site. GATA4 expression was demonstrated in cardiac fibroblasts, GATA4 bound the ET-1 promoter both in vitro and in vivo, and siRNA-mediated knockdown of GATA4 inhibited ET-1 expression. ET-1 treatment resulted in increased levels of phospho-serine(105) GATA4 in cardiac fibroblasts and this induction was partially suppressed by co-treatment with ANP. CONCLUSION Collectively, these findings suggest that locally produced ET-1 serves as an autocrine stimulator of fibroblast proliferation, that ANP produced in neighbouring myocytes serves as a paracrine inhibitor of this proliferation, and that the latter effect operates through a reduction in GATA4 phosphorylation and coincident reduction in GATA4-dependent transcriptional activity.
Collapse
Affiliation(s)
- Denis J Glenn
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
96
|
Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 2009; 123:255-78. [PMID: 19460403 DOI: 10.1016/j.pharmthera.2009.05.002] [Citation(s) in RCA: 779] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 05/05/2009] [Indexed: 12/24/2022]
Abstract
Cardiac fibroblasts are the most prevalent cell type in the heart and play a key role in regulating normal myocardial function and in the adverse myocardial remodeling that occurs with hypertension, myocardial infarction and heart failure. Many of the functional effects of cardiac fibroblasts are mediated through differentiation to a myofibroblast phenotype that expresses contractile proteins and exhibits increased migratory, proliferative and secretory properties. Cardiac myofibroblasts respond to proinflammatory cytokines (e.g. TNFalpha, IL-1, IL-6, TGF-beta), vasoactive peptides (e.g. angiotensin II, endothelin-1, natriuretic peptides) and hormones (e.g. noradrenaline), the levels of which are increased in the remodeling heart. Their function is also modulated by mechanical stretch and changes in oxygen availability (e.g. ischaemia-reperfusion). Myofibroblast responses to such stimuli include changes in cell proliferation, cell migration, extracellular matrix metabolism and secretion of various bioactive molecules including cytokines, vasoactive peptides and growth factors. Several classes of commonly prescribed therapeutic agents for cardiovascular disease also exert pleiotropic effects on cardiac fibroblasts that may explain some of their beneficial outcomes on the remodeling heart. These include drugs for reducing hypertension (ACE inhibitors, angiotensin receptor blockers, beta-blockers), cholesterol levels (statins, fibrates) and insulin resistance (thiazolidinediones). In this review, we provide insight into the properties of cardiac fibroblasts that underscores their importance in the remodeling heart, including their origin, electrophysiological properties, role in matrix metabolism, functional responses to environmental stimuli and ability to secrete bioactive molecules. We also review the evidence suggesting that certain cardiovascular drugs can reduce myocardial remodeling specifically via modulatory effects on cardiac fibroblasts.
Collapse
|
97
|
van Kimmenade RR, Januzzi JL. The evolution of the natriuretic peptides – Current applications in human and animal medicine. J Vet Cardiol 2009; 11 Suppl 1:S9-21. [DOI: 10.1016/j.jvc.2009.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 11/16/2022]
|
98
|
Mathematical simulations of ligand-gated and cell-type specific effects on the action potential of human atrium. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 98:161-70. [PMID: 19186188 DOI: 10.1016/j.pbiomolbio.2009.01.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the mammalian heart, myocytes and fibroblasts can communicate via gap junction, or connexin-mediated current flow. Some of the effects of this electrotonic coupling on the action potential waveform of the human ventricular myocyte have been analyzed in detail. The present study employs a recently developed mathematical model of the human atrial myocyte to investigate the consequences of this heterogeneous cell-cell interaction on the action potential of the human atrium. Two independent physiological processes which alter the physiology of the human atrium have been studied. i) The effects of the autonomic transmitter acetylcholine on the atrial action potential have been investigated by inclusion of a time-independent, acetylcholine-activated K(+) current in this mathematical model of the atrial myocyte. ii) A non-selective cation current which is activated by natriuretic peptides has been incorporated into a previously published mathematical model of the cardiac fibroblast. These results identify subtle effects of acetylcholine, which arise from the nonlinear interactions between ionic currents in the human atrial myocyte. They also illustrate marked alterations in the action potential waveform arising from fibroblast-myocyte source-sink principles when the natriuretic peptide-mediated cation conductance is activated. Additional calculations also illustrate the effects of simultaneous activation of both of these cell-type specific conductances within the atrial myocardium. This study provides a basis for beginning to assess the utility of mathematical modeling in understanding detailed cell-cell interactions within the complex paracrine environment of the human atrial myocardium.
Collapse
|
99
|
Watanabe H, Murakami M, Ohba T, Ono K, Ito H. The Pathological Role of Transient Receptor Potential Channels in Heart Disease. Circ J 2009; 73:419-27. [DOI: 10.1253/circj.cj-08-1153] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hiroyuki Watanabe
- Second Department of Internal Medicine, Akita University School of Medicine
| | - Manabu Murakami
- Department of Physiology, Akita University School of Medicine
| | - Takayoshi Ohba
- Department of Physiology, Akita University School of Medicine
| | - Kyoichi Ono
- Department of Physiology, Akita University School of Medicine
| | - Hiroshi Ito
- Second Department of Internal Medicine, Akita University School of Medicine
| |
Collapse
|
100
|
Abstract
Heart failure (HF) is a common disease that continues to be associated with high morbidity and mortality warranting novel therapeutic strategies. Cyclic guanosine monophosphate (cGMP) is the second messenger of several important signaling pathways based on distinct guanylate cyclases (GCs) in the cardiovascular system. Both the nitric oxide/soluble GC (NO/sGC) as well as the natriuretic peptide/GC-A (NP/GC-A) systems are disordered in HF, providing a rationale for their therapeutic augmentation. Soluble GC activation with conventional nitrovasodilators has been used for more than a century but is associated with cGMP-independent actions and the development of tolerance, actions which novel NO-independent sGC activators now in clinical development lack. Activation of GC-A by administration of naturally occurring or designer natriuretic peptides is an emerging field, as is the inhibition of enzymes that degrade endogenous NPs. Finally, inhibition of cGMP-degrading phosphodiesterases, particularly phosphodiesterase 5 provides an additional strategy to augment cGMP-signaling.
Collapse
Affiliation(s)
- Guido Boerrigter
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Heart and Lung Research Center, Mayo Clinic and Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|