51
|
Robker RL, Hennebold JD, Russell DL. Coordination of Ovulation and Oocyte Maturation: A Good Egg at the Right Time. Endocrinology 2018; 159:3209-3218. [PMID: 30010832 PMCID: PMC6456964 DOI: 10.1210/en.2018-00485] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/09/2018] [Indexed: 11/19/2022]
Abstract
Ovulation is the appropriately timed release of a mature, developmentally competent oocyte from the ovary into the oviduct, where fertilization occurs. Importantly, ovulation is tightly linked with oocyte maturation, demonstrating the interdependency of these two parallel processes, both essential for female fertility. Initiated by pituitary gonadotropins, the ovulatory process is mediated by intrafollicular paracrine factors from the theca, mural, and cumulus granulosa cells, as well as the oocyte itself. The result is the induction of cumulus expansion, proteolysis, angiogenesis, inflammation, and smooth muscle contraction, which are each required for follicular rupture. These complex intercellular communication networks and the essential ovulatory genes have been well defined in mouse models and are highly conserved in primates, including humans. Importantly, recent discoveries in regulation of ovulation highlight new areas of investigation.
Collapse
Affiliation(s)
- Rebecca L Robker
- Robinson Research Institute, School of Medicine, University of Adelaide, South Australia, Australia
- Correspondence: Rebecca L. Robker, PhD, Robinson Research Institute, School of Medicine, University of Adelaide, South Australia 5005, Australia. E-mail:
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Darryl L Russell
- Robinson Research Institute, School of Medicine, University of Adelaide, South Australia, Australia
| |
Collapse
|
52
|
Shahed A, Young KA. Assessing recrudescence of photoregressed Siberian hamster ovaries using in vitro whole ovary culture. Mol Reprod Dev 2018; 85:746-759. [PMID: 30091812 DOI: 10.1002/mrd.23050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/25/2018] [Accepted: 08/07/2018] [Indexed: 11/08/2022]
Abstract
In vitro culture has been used to study different aspects of ovarian function; however, this technique has not been applied to study recrudescence, or the return of ovarian function in seasonally breeding species. In Siberian hamsters, exposure to inhibitory photoperiods induces declines in ovarian function, which are restored with photostimulation. Because these changes are mediated by changes in systemic gonadotropin (GT) secretion, we hypothesized that culturing photoregressed ovaries with GT would restore aspects of function and induce expression of key folliculogenic factors. Adult female Siberian hamsters were exposed to either long-day (LD; 16L:8D) or short-day (SD; 8L:16D) photoperiods for 14 weeks to maintain in vivo cyclicity or induce gonadal regression, respectively. Isolated ovaries were then cultured for 10 days with or without GT. Ovarian mass and messenger RNA (mRNA) expression of mitotic marker Pcna were increased in cultured SD ovaries (cSD) ovaries with GT as compared to without GT, with no changes noted among cultured LD (cLD) ovaries. Media estradiol and progesterone concentrations increased in both cLD and cSD ovaries cultured with GT as compared to without GT. No differences in follicle numbers or incidence of apoptosis were noted across groups. In addition, differential mRNA expression of folliculogenic growth factors ( Bmp-4, Ntf-3, Inh-α, Gdf-9, Igf-1, Has-2, and Cox-2) was observed in cSD treated with or without GT. Together, these results suggest that this in vitro model could be a useful tool to (a) study the return of function in photoregressed ovaries, and (b) to identify the specific roles folliculogenic factors play in ovarian recrudescence.
Collapse
Affiliation(s)
- Asha Shahed
- Department of Biological Sciences, California State University Long Beach, Long Beach, California
| | - Kelly A Young
- Department of Biological Sciences, California State University Long Beach, Long Beach, California
| |
Collapse
|
53
|
Hannon PR, Duffy DM, Rosewell KL, Brännström M, Akin JW, Curry TE. Ovulatory Induction of SCG2 in Human, Nonhuman Primate, and Rodent Granulosa Cells Stimulates Ovarian Angiogenesis. Endocrinology 2018; 159:2447-2458. [PMID: 29648638 PMCID: PMC6287591 DOI: 10.1210/en.2018-00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
The luteinizing hormone (LH) surge is essential for ovulation, but the intrafollicular factors induced by LH that mediate ovulatory processes (e.g., angiogenesis) are poorly understood, especially in women. The role of secretogranin II (SCG2) and its cleaved bioactive peptide, secretoneurin (SN), were investigated as potential mediators of ovulation by testing the hypothesis that SCG2/SN is induced in granulosa cells by human chorionic gonadotropin (hCG), via a downstream LH receptor signaling mechanism, and stimulates ovarian angiogenesis. Humans, nonhuman primates, and rodents were treated with hCG in vivo resulting in a significant increase in the messenger RNA and protein levels of SCG2 in granulosa cells collected early during the periovulatory period and just prior to ovulation (humans: 12 to 34 hours; monkeys: 12 to 36 hours; rodents: 4 to 12 hours post-hCG). This induction by hCG was recapitulated in an in vitro culture system utilizing granulosa-lutein cells from in vitro fertilization patients. Using this system, inhibition of downstream LH receptor signaling pathways revealed that the initial induction of SCG2 is regulated, in part, by epidermal growth factor receptor signaling. Further, human ovarian microvascular endothelial cells were treated with SN (1 to 100 ng/mL) and subjected to angiogenesis assays. SN significantly increased endothelial cell migration and new sprout formation, suggesting induction of ovarian angiogenesis. These results establish that SCG2 is increased in granulosa cells across species during the periovulatory period and that SN may mediate ovulatory angiogenesis in the human ovary. These findings provide insight into the regulation of human ovulation and fertility.
Collapse
Affiliation(s)
- Patrick R Hannon
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington,
Kentucky
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk,
Virginia
| | - Katherine L Rosewell
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington,
Kentucky
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of
Gothenburg, Gothenburg, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington,
Kentucky
- Correspondence: Thomas E. Curry, Jr., PhD, Department of Obstetrics and Gynecology, University of
Kentucky, 800 Rose Street, Room C351, Lexington, Kentucky 40536. E-mail:
| |
Collapse
|
54
|
Hormonal stimulation in 4 to 7 months old Nelore (Bos taurus indicus) females improved ovarian follicular responses but not the in vitro embryo production. Theriogenology 2018; 118:130-136. [PMID: 29906662 DOI: 10.1016/j.theriogenology.2018.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023]
Abstract
The inclusion of pre-pubertal bovine females in reproductive management could allow in vitro embryo production and reduce generation interval, thereby causing faster genetic gain of the herd. However, oocytes of pre-pubertal females have lower competence, blastocyst production, and pregnancy rates than those collected from pubertal animals. This study aimed to evaluate the effect of an induced hormonal stimulation on the serum concentrations of Anti-Mullerian hormone (AMH) and FSH, ovarian responses, ovum pick up (OPU), and in vitro produced embryos (IVP) from oocytes obtained from four-to seven-months old Nelore female cattle. In a crossover design, these females were randomly allocated into: 1) Treated Group (TG, n = 9): the animals were subjected to a hormonal protocol (implanted progesterone device, estradiol benzoate, LH, and FSH) from Day 0 (the start of the treatment) to Day 7 (OPU day), and 2) Control Group (CG, n = 9): the females did not receive any hormonal stimulation, but they had ablation of their largest follicles on Day 2 of experiment. Blood collection for serum FSH measurements was done on Days 5, 6, 7, and 8, and collection for serum AMH measurements was done on Days 5 and 8. As hypothesized, TG had higher serum FSH concentrations (p < 0.05) on Day 5 (1.16 ± 0.31 ng/mL), Day 6 (1.21 ± 0.45 ng/mL), and Day 7 (0.95 ± 0.26 ng/mL) than CG (0.56 ± 0.17 ng/mL on Day 5, 0.60 ± 0.25 ng/mL on Day 6, and 0.60 ± 0.14 ng/mL on Day 7). However, serum AMH concentrations were neither significantly different (p > 0.05) between CG and TG, nor between the collection days. Hormonal stimulation also increased (p < 0.05) total follicular population (20.0 ± 4.95 CG vs 26.66 ± 4.24 TG), ovarian diameter (13.08 ± 1.0 mm CG vs 14.81 ± 1.38 mm TG) and number of follicles ≥2.5 mm (6.88 ± 2.14 CG vs 11.55 ± 4.09 TG). In TG, grades I and II oocytes predominated, whereas, in CG grades III and IV oocytes were more abundant (p < 0.05). No significant increases (p > 0.05) in the cleavage (49.33% CG vs 51.42% TG), cleavage > 4 cells (9.33% CG vs 16.19% TG), and blastocysts rates (1.33% CG vs 8.57% TG) were seen in TG. This hormonal protocol increased serum FSH concentrations that possibly contributed to increases in the observed follicle, as well as improving oocyte quality. This exogenous hormonal stimulation increased available oocytes numbers for IVP, despite no increase in the in vitro embryo production efficiency.
Collapse
|
55
|
Richani D, Gilchrist RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update 2018; 24:1-14. [PMID: 29029246 DOI: 10.1093/humupd/dmx029] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The LH surge induces great physiological changes within the preovulatory follicle, which culminate in the ovulation of a mature oocyte that is capable of supporting embryo and foetal development. However, unlike mural granulosa cells, the oocyte and its surrounding cumulus cells are not directly responsive to LH, indicating that the LH signal is mediated by secondary factors produced by the granulosa cells. The mechanisms by which the oocyte senses the ovulatory LH signal and hence prepares for ovulation has been a subject of considerable controversy for the past four decades. Within the last 15 years several significant insights have been made into the molecular mechanisms orchestrating oocyte development, maturation and ovulation. These findings centre on the epidermal growth factor (EGF) pathway and the role it plays in the complex signalling network that finely regulates oocyte maturation and ovulation. OBJECTIVE AND RATIONALE This review outlines the role of the EGF network during oocyte development and regulation of the ovulatory cascade, and in particular focuses on the effect of the EGF network on oocyte developmental competence. Application of this new knowledge to advances in ART is examined. SEARCH METHODS The PubMed database was used to search for peer-reviewed original and review articles concerning the EGF network. Publications offering a comprehensive description of the role of the EGF network in follicle and oocyte development were used. OUTCOMES It is now clear that acute upregulation of the EGF network is an essential component of the ovulatory cascade as it transmits the LH signal from the periphery of the follicle to the cumulus-oocyte complex (COC). More recent findings have elucidated new roles for the EGF network in the regulation of oocyte development. EGF signalling downregulates the somatic signal 3'5'-cyclic guanine monophosphate that suppresses oocyte meiotic maturation and simultaneously provides meiotic inducing signals. The EGF network also controls translation of maternal transcripts in the quiescent oocyte, a process that is integral to oocyte competence. As a means of restricting the ovulatory signal to the Graffian follicle, most COCs in the ovary are unresponsive to EGF-ligands. Recent studies have revealed that development of a functional EGF signalling network in cumulus cells requires dual endocrine (FSH) and oocyte paracrine cues (growth differentiation factor 9 and bone morphogenetic protein 15), and this occurs progressively in COCs during the last stages of folliculogenesis. Hence, a new concept to emerge is that cumulus cell acquisition of EGF receptor responsiveness represents a developmental hallmark in folliculogenesis, analogous to FSH-induction of LH receptor signalling in mural granulosa cells. Likewise, this event represents a major milestone in the oocyte's developmental progression and acquisition of developmental competence. It is now clear that EGF signalling is perturbed in COCs matured in vitro. This has inspired novel concepts in IVM systems to ameliorate this perturbation, resulting in improved oocyte developmental competence. WIDER IMPLICATIONS An oocyte of high quality is imperative for fertility. Elucidating the fundamental molecular and cellular mechanims by which the EGF network regulates oocyte maturation and ovulation can be expected to open new opportunities in ART. This knowledge has already led to advances in oocyte IVM in animal models. Translation of such advances into a clinical setting should increase the efficacy of IVM, making it a viable treatment option for a wide range of patients, thereby simplifying fertility treatment and bringing substantial cost and health benefits.
Collapse
Affiliation(s)
- Dulama Richani
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| |
Collapse
|
56
|
Molecular Mechanisms of Prophase I Meiotic Arrest Maintenance and Meiotic Resumption in Mammalian Oocytes. Reprod Sci 2018; 26:1519-1537. [DOI: 10.1177/1933719118765974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanisms of meiotic prophase I arrest maintenance (germinal vesicle [GV] stage) and meiotic resumption (germinal vesicle breakdown [GVBD] stage) in mammalian oocytes seem to be very complicated. These processes are regulated via multiple molecular cascades at transcriptional, translational, and posttranslational levels, and many of them are interrelated. There are many molecular cascades of meiosis maintaining and meiotic resumption in oocyte which are orchestrated by multiple molecules produced by pituitary gland and follicular cells. Furthermore, many of these molecular cascades are duplicated, thus ensuring the stability of the entire system. Understanding mechanisms of oocyte maturation is essential to assess the oocyte status, develop effective protocols of oocyte in vitro maturation, and design novel contraceptive drugs. Mechanisms of meiotic arrest maintenance at prophase I and meiotic resumption in mammalian oocytes are covered in the present article.
Collapse
|
57
|
Schuermann Y, Siddappa D, Pansera M, Duggavathi R. Activated receptor tyrosine kinases in granulosa cells of ovulating follicles in mice. Mol Reprod Dev 2018; 85:316-324. [DOI: 10.1002/mrd.22966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/06/2018] [Accepted: 01/25/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yasmin Schuermann
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| | - Dayananda Siddappa
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| | - Melissa Pansera
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| | - Raj Duggavathi
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| |
Collapse
|
58
|
Takahashi T, Hagiwara A, Ogiwara K. Prostaglandins in teleost ovulation: A review of the roles with a view to comparison with prostaglandins in mammalian ovulation. Mol Cell Endocrinol 2018; 461:236-247. [PMID: 28919301 DOI: 10.1016/j.mce.2017.09.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Prostaglandins are well known to be central regulators of vertebrate ovulation. Studies addressing the role of prostaglandins in mammalian ovulation have established that they are involved in the processes of oocyte maturation and cumulus oocyte complex expansion. In contrast, despite the first indication of the role of prostaglandins in teleost ovulation appearing 40 years ago, the mechanistic background of their role has long been unknown. However, studies conducted on medaka over the past decade have provided valuable information. Emerging evidence indicates an indispensable role of prostaglandin E2 and its receptor subtype Ptger4b in the process of follicle rupture. In this review, we summarize studies addressing the role of prostaglandins in teleost ovulation and describe recent advances. To help understand differences from and similarities to ovulation in mammalian species, the findings on the roles of prostaglandins in mammalian ovulation are discussed in parallel.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Akane Hagiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
59
|
The Biological Role of Hyaluronan-Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction. Int J Mol Sci 2018; 19:ijms19010283. [PMID: 29346283 PMCID: PMC5796229 DOI: 10.3390/ijms19010283] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
Fertilization of the mammalian oocyte requires interactions between spermatozoa and expanded cumulus extracellular matrix (ECM) that surrounds the oocyte. This review focuses on key molecules that play an important role in the formation of the cumulus ECM, generated by the oocyte-cumulus complex. In particular, the specific inhibitors (AG1478, lapatinib, indomethacin and MG132) and progesterone receptor antagonist (RU486) exerting their effects through the remodeling of the ECM of the cumulus cells surrounding the oocyte have been described. After gonadotropin stimulus, cumulus cells expand and form hyaluronan (HA)-rich cumulus ECM. In pigs, the proper structure of the cumulus ECM depends on the interaction between HA and serum-derived proteins of the inter-alpha-trypsin inhibitor (IαI) protein family. We have demonstrated the synthesis of HA by cumulus cells, and the presence of the IαI, tumor necrosis factor-alpha-induced protein 6 and pentraxin 3 in expanding oocyte-cumulus complexes (OCC). We have evaluated the covalent linkage of heavy chains of IαI proteins to HA, as the principal component of the expanded HA-rich cumulus ECM, in porcine OCC cultured in medium with specific inhibitors: AG1478 and lapatinib (both inhibitors of epidermal growth factor receptor tyrosine kinase activity); MG132 (a specific proteasomal inhibitor), indomethacin (cyclooxygenase inhibitor); and progesterone receptor antagonist (RU486). We have found that both RU486 and indomethacin does not disrupt the formation of the covalent linkage between the heavy chains of IαI to HA in the expanded OCC. In contrast, the inhibitors AG1478 and lapatinib prevent gonadotropin-induced cumulus expansion. Finally, the formation of oocyte-cumulus ECM relying on the covalent transfer of heavy chains of IαI molecules to HA has been inhibited in the presence of MG132.
Collapse
|
60
|
Diógenes MN, Guimarães ALS, Leme LO, Maurício MF, Dode MAN. Effect of prematuration and maturation with fibroblast growth factor 10 (FGF10) on in vitro development of bovine oocytes. Theriogenology 2017; 102:190-198. [DOI: 10.1016/j.theriogenology.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/02/2017] [Accepted: 06/04/2017] [Indexed: 01/10/2023]
|
61
|
Chowdhury I, Branch A, Mehrabi S, Ford BD, Thompson WE. Gonadotropin-Dependent Neuregulin-1 Signaling Regulates Female Rat Ovarian Granulosa Cell Survival. Endocrinology 2017; 158:3647-3660. [PMID: 28938399 PMCID: PMC5659703 DOI: 10.1210/en.2017-00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 08/08/2017] [Indexed: 12/30/2022]
Abstract
Mammalian ovarian follicular development and maturation of an oocyte competent to be fertilized and develop into an embryo depends on tightly regulated, spatiotemporally orchestrated crosstalk among cell death, survival, and differentiation signals through extra- and intraovarian signals, as well as on a permissive ovarian follicular microenvironment. Neuregulin-1 (NRG1) is a member of the epidermal growth factor-like factor family that mediates its effects by binding to a member of the erythroblastoma (ErbB) family. Our experimental results suggest gonadotropins promote differential expression of NRG1 and erbB receptors in granulosa cells (GCs), and NRG1 in theca cells during follicular development, and promote NRG1 secretions in the follicular fluid (FF) of rat ovaries. During the estrous cycle of rat, NRG1 and erbB receptors are differentially expressed in GCs and correlate positively with serum gonadotropins and steroid hormones. Moreover, in vitro experimental studies suggest that the protein kinase C inhibitor staurosporine (STS) causes the physical destruction of GCs by the activation of caspase-3. Exogenous NRG1 treatment of GCs delayed onset of STS-induced apoptosis and inhibited cleaved caspase-3 expressions. Moreover, exogenous NRG1 treatment of GCs alters STS-induced death by maintaining the expression of ErbB2, ErbB3, pAkt, Bcl2, and BclxL proteins. Taken together, these studies demonstrate that NRG1 is gonadotropin dependent, differentially regulated in GCs and theca cells, and secreted in ovarian FF as an intracellular survival factor that may govern follicular maturation.
Collapse
Affiliation(s)
- Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia 30310
- Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Alicia Branch
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia 30310
- Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Sharifeh Mehrabi
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia 30310
- Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Byron D. Ford
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, California 92521
| | - Winston E. Thompson
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia 30310
- Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia 30310
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310
| |
Collapse
|
62
|
Bovine ovarian follicular growth and development correlate with lysophosphatidic acid expression. Theriogenology 2017; 106:1-14. [PMID: 29028570 DOI: 10.1016/j.theriogenology.2017.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 01/19/2023]
Abstract
The basis of successful reproduction is proper ovarian follicular growth and development. In addition to prostaglandins and vascular endothelial growth factor, a number of novel factors are suggested as important regulators of follicular growth and development: PGES, TFG, CD36, RABGAP1, DBI and BTC. This study focuses on examining the expression of these factors in granulosa and thecal cells that originate from different ovarian follicle types and their link with the expression of lysophosphatidic acid (LPA), known local regulator of reproductive functions in the cow. Ovarian follicles were divided into healthy, transitional, and atretic categories. The mRNA expression levels for PGES, TFG, CD36, RABGAP1, DBI and BTC in granulosa and thecal cells in different follicle types were measured by real-time PCR. The correlations among expression of enzymes synthesizing LPA (autotaxin, phospholipase A2), receptors for LPA and examined factors were measured. Immunolocalization of PGES, TFG, CD36, RABGAP1, DBI and BTC was examined by immunohistochemistry. We investigated follicle-type dependent mRNA expression of factors potentially involved in ovarian follicular growth and development, both in granulosa and thecal cells of bovine ovarian follicles. Strong correlations among receptors for LPA, enzymes synthesizing LPA, and the examined factors in healthy and transitional follicles were observed, with its strongest interconnection with TFG, DBI and RABGAP1 in granulosa cells, and TFG in thecal cells; whereas no correlations in atretic follicles were detected. A greater number of correlations were found in thecal cells than in granulosa cells as well as in healthy follicles than in transitional follicles. These data indicate the role of LPA in the growth, development and physiology of the bovine ovarian follicle.
Collapse
|
63
|
Relationship between apoptosis and survival molecules in human cumulus cells as markers of oocyte competence. ZYGOTE 2017; 25:583-591. [PMID: 28786369 DOI: 10.1017/s0967199417000429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To select from a single patient the best oocytes able to reach the blastocyst stage, we searched for valuable markers for oocytes competence. We evaluated the DNA fragmentation index (DFI) and the level of some survival molecules, such as AKT, pAKT and pERK1/2, in individual cumulus cell-oocyte complexes (COC). The study included normo-responder women. The average age of the patients was 34.3. DFI in cumulus cells was evaluated using the terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labelling (TUNEL) assay in situ. AKT, pAKT and pERK1/2 were measured by immunological assay and densitometric analysis of fluorescent signals using NIS-Elements BR 3.10 image software. Statistical analysis was performed using STATA SE/14.1. The study focused on 53 patients involved after informed consent. Out of 255 MII oocytes, 197 were fertilized and the derived embryos had the following evolution: 117 completed the development to blastocyst and were transferred to uterus; 57 were vitrified at the blastocyst stage; and 23 were arrested during in vitro culture at different stages of cleavage. We found a significant statistical difference between the DFI of cumulus cells of the arrested embryos and the transferred blastocysts (P = 0.004), confirming that DFI could be considered as a valuable marker of oocyte competence. In addition, the pAKT/DFI ratio was higher in cumulus cells of oocytes able to produce blastocysts, indicating that DFI is significantly lower when pAKT is higher (P = 0.043). This study demonstrates for the first time that the relationship between apoptosis and survival molecules can be used as a marker to select the best oocytes.
Collapse
|
64
|
Yuan Y, Spate LD, Redel BK, Tian Y, Zhou J, Prather RS, Roberts RM. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proc Natl Acad Sci U S A 2017; 114:E5796-E5804. [PMID: 28673989 PMCID: PMC5530680 DOI: 10.1073/pnas.1703998114] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Assisted reproductive technologies in all mammals are critically dependent on the quality of the oocytes used to produce embryos. For reasons not fully clear, oocytes matured in vitro tend to be much less competent to become fertilized, advance to the blastocyst stage, and give rise to live young than their in vivo-produced counterparts, particularly if they are derived from immature females. Here we show that a chemically defined maturation medium supplemented with three cytokines (FGF2, LIF, and IGF1) in combination, so-called "FLI medium," improves nuclear maturation of oocytes in cumulus-oocyte complexes derived from immature pig ovaries and provides a twofold increase in the efficiency of blastocyst production after in vitro fertilization. Transfer of such blastocysts to recipient females doubles mean litter size to about nine piglets per litter. Maturation of oocytes in FLI medium, therefore, effectively provides a fourfold increase in piglets born per oocyte collected. As they progress in culture, the FLI-matured cumulus-oocyte complexes display distinctly different kinetics of MAPK activation in the cumulus cells, much increased cumulus cell expansion, and an accelerated severance of cytoplasmic projections between the cumulus cells outside the zona pellucida and the oocyte within. These events likely underpin the improvement in oocyte quality achieved by using the FLI medium.
Collapse
Affiliation(s)
- Ye Yuan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211;
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Bethany K Redel
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Yuchen Tian
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Jie Zhou
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO 65212
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - R Michael Roberts
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211;
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| |
Collapse
|
65
|
Sisto M, Lorusso L, Ingravallo G, Lisi S. Exocrine Gland Morphogenesis: Insights into the Role of Amphiregulin from Development to Disease. Arch Immunol Ther Exp (Warsz) 2017; 65:477-499. [DOI: 10.1007/s00005-017-0478-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
|
66
|
Choi Y, Wilson K, Hannon PR, Rosewell KL, Brännström M, Akin JW, Curry TE, Jo M. Coordinated Regulation Among Progesterone, Prostaglandins, and EGF-Like Factors in Human Ovulatory Follicles. J Clin Endocrinol Metab 2017; 102:1971-1982. [PMID: 28323945 PMCID: PMC5470773 DOI: 10.1210/jc.2016-3153] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/06/2017] [Indexed: 01/12/2023]
Abstract
CONTEXT In animal models, the luteinizing hormone surge increases progesterone (P4) and progesterone receptor (PGR), prostaglandins (PTGs), and epidermal growth factor (EGF)-like factors that play essential roles in ovulation. However, little is known about the expression, regulation, and function of these key ovulatory mediators in humans. OBJECTIVE To determine when and how these key ovulatory mediators are induced after the luteinizing hormone surge in human ovaries. DESIGN AND PARTICIPANTS Timed periovulatory follicles were obtained from cycling women. Granulosa/lutein cells were collected from in vitro fertilization patients. MAIN OUTCOME MEASURES The in vivo and in vitro expression of PGR, PTG synthases and transporters, and EGF-like factors were examined at the level of messenger RNA and protein. PGR binding to specific genes was assessed. P4 and PTGs in conditioned media were measured. RESULTS PGR, PTGS2, and AREG expressions dramatically increased in ovulatory follicles at 12 to 18 hours after human chorionic gonadotropin (hCG). In human granulosa/lutein cell cultures, hCG increased P4 and PTG production and the expression of PGR, specific PTG synthases and transporters, and EGF-like factors, mimicking in vivo expression patterns. Inhibitors for P4/PGR and EGF-signaling pathways reduced hCG-induced increases in PTG production and the expression of EGF-like factors. PGR bound to the PTGS2, PTGES, and SLCO2A1 genes. CONCLUSIONS This report demonstrated the time-dependent induction of PGR, AREG, and PTGS2 in human periovulatory follicles. In vitro studies indicated that collaborative actions of P4/PGR and EGF signaling are required for hCG-induced increases in PTG production and potentiation of EGF signaling in human periovulatory granulosa cells.
Collapse
Affiliation(s)
- Yohan Choi
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Kalin Wilson
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Patrick R Hannon
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Katherine L Rosewell
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Mats Brännström
- Department of Obstetrics and Gynecology, University of Gothenburg, 405 30 Gothenburg, Sweden
- Stockholm IVF, 112 81 Stockholm, Sweden
| | - James W Akin
- Bluegrass Fertility Center, Lexington, Kentucky 40503
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| |
Collapse
|
67
|
Campos-Chillon F, Farmerie TA, Bouma GJ, Clay CM, Carnevale EM. Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. Reprod Fertil Dev 2017; 27:925-33. [PMID: 25786490 DOI: 10.1071/rd14472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/18/2015] [Indexed: 11/23/2022] Open
Abstract
We hypothesised that advanced mare age is associated with follicle and oocyte gene alterations. The aims of the study were to examine quantitative and temporal differences in mRNA for LH receptor (LHR), amphiregulin (AREG) and epiregulin (EREG) in granulosa cells, phosphodiesterase (PDE) 4D in cumulus cells and PDE3A, G-protein-coupled receptor 3 (GPR3), growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and mitochondrial (mt) DNA in oocytes. Samples were collected from dominant follicles of Young (3-12 years) and Old (≥20 years) mares at 0, 6, 9 and 12h after administration of equine recombinant LH. LHR mRNA declined after 0h in Young mares, with no time effect in Old mares. For both ages, gene expression of AREG was elevated at 6 and 9h and EREG was expression was elevated at 9h, with higher expression in Old than Young mares. Cumulus cell PDE4D expression increased by 6h (Old) and 12h (Young). Oocyte GPR3 expression peaked at 9 and 12h in Young and Old mares, respectively. Expression of PDE3A increased at 6h, with the increase greater in oocytes from Old than Young mares at 6 and 9h. Mean GDF9 and BMP15 transcripts were higher in Young than Old, with a peak at 6h. Copy numbers of mtDNA did not vary over time in oocytes from Young mares, but a temporal decrease was observed in oocytes from Old mares. The results support an age-associated asynchrony in the expression of genes that are essential for follicular and oocyte maturation before ovulation.
Collapse
Affiliation(s)
| | - Todd A Farmerie
- Washington State University, PO Box 647520, Pullman, WA 99164, USA
| | - Gerrit J Bouma
- Colorado State University, 1693 Campus Delivery, Fort Collins, CO 80523, USA
| | - Colin M Clay
- Colorado State University, 1693 Campus Delivery, Fort Collins, CO 80523, USA
| | - Elaine M Carnevale
- Colorado State University, 1693 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
68
|
Li F, Miao X, Chen Y, Curry TE. CXADR-like membrane protein (CLMP) in the rat ovary: stimulation by human chorionic gonadotrophin during the periovulatory period. Reprod Fertil Dev 2017; 28:742-9. [PMID: 25400132 DOI: 10.1071/rd14201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/17/2014] [Indexed: 01/20/2023] Open
Abstract
CXADR-like membrane protein (CLMP) is a novel cell-cell adhesion molecule. The present study investigated the spatiotemporal expression pattern of CLMP and its regulation in the rat ovary during the periovulatory period. Real-time polymerase chain reaction analysis revealed that Clmp mRNA was rapidly stimulated in intact ovaries by 4h after human chorionic gonadotrophin (hCG) treatment. In situ hybridisation analysis demonstrated that Clmp mRNA expression was stimulated in theca cells at 4h after hCG and remained elevated until 12h. Clmp mRNA was also upregulated in granulosa cells and was present in forming corpora lutea. Our data indicate that the protein kinase A but not the protein kinase C pathway regulates the expression of Clmp mRNA in granulosa cells. Phosphatidylinositol 3 kinase and p38 kinase are also involved in regulating Clmp mRNA expression. The stimulation of Clmp mRNA by hCG requires new protein synthesis. Furthermore, inhibition of epidermal growth factor receptor activation significantly inhibited Clmp mRNA expression, whereas inhibition of prostaglandin synthesis or progesterone action had no effect. The stimulation of CLMP in the rat ovary may be important in cell adhesion events during ovulation and luteal formation such as maintaining the structure and communication of ovarian follicular and luteal cells.
Collapse
Affiliation(s)
- Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | - Xiaoping Miao
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | - Yonglong Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
69
|
Brown HM, Dunning KR, Sutton-McDowall M, Gilchrist RB, Thompson JG, Russell DL. Failure to launch: aberrant cumulus gene expression during oocyte in vitro maturation. Reproduction 2017; 153:R109-R120. [DOI: 10.1530/rep-16-0426] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 01/13/2023]
Abstract
In vitro maturation (IVM) offers significant benefits for human infertility treatment and animal breeding, but this potential is yet to be fully realised due to reduced oocyte developmental competence in comparison with in vivo matured oocytes. Cumulus cells occupy an essential position in determining oocyte developmental competence. Here we have examined the areas of deficient gene expression, as determined within microarrays primarily from cumulus cells of mouse COCs, but also other species, between in vivo matured and in vitro matured oocytes. By retrospectively analysing the literature, directed by focussing on downregulated genes, we provide an insight as to why the in vitro cumulus cells fail to support full oocyte potential and dissect molecular pathways that have important roles in oocyte competence. We conclude that the roles of epidermal growth factor signalling, the expanded extracellular matrix, cumulus cell metabolism and the immune system are critical deficiencies in cumulus cells of IVM COCs.
Collapse
|
70
|
Jaffe LA, Egbert JR. Regulation of Mammalian Oocyte Meiosis by Intercellular Communication Within the Ovarian Follicle. Annu Rev Physiol 2017; 79:237-260. [PMID: 27860834 PMCID: PMC5305431 DOI: 10.1146/annurev-physiol-022516-034102] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Meiotic progression in mammalian preovulatory follicles is controlled by the granulosa cells around the oocyte. Cyclic GMP (cGMP) generated in the granulosa cells diffuses through gap junctions into the oocyte, maintaining meiotic prophase arrest. Luteinizing hormone then acts on receptors in outer granulosa cells to rapidly decrease cGMP. This occurs by two complementary pathways: cGMP production is decreased by dephosphorylation and inactivation of the NPR2 guanylyl cyclase, and cGMP hydrolysis is increased by activation of the PDE5 phosphodiesterase. The cGMP decrease in the granulosa cells results in rapid cGMP diffusion out of the oocyte, initiating meiotic resumption. Additional, more slowly developing mechanisms involving paracrine signaling by extracellular peptides (C-type natriuretic peptide and EGF receptor ligands) maintain the low level of cGMP in the oocyte. These coordinated signaling pathways ensure a fail-safe system to prepare the oocyte for fertilization and reproductive success.
Collapse
Affiliation(s)
- Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030; ,
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030; ,
| |
Collapse
|
71
|
Roberts JS, Perets RA, Sarfert KS, Bowman JJ, Ozark PA, Whitworth GB, Blythe SN, Toporikova N. High-fat high-sugar diet induces polycystic ovary syndrome in a rodent model. Biol Reprod 2017; 96:551-562. [PMID: 28203719 DOI: 10.1095/biolreprod.116.142786] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 01/09/2023] Open
Abstract
Obesity has been linked with a host of metabolic and reproductive disorders including polycystic ovary syndrome (PCOS). While a clear association exists between obesity and PCOS, the exact nature of this relationship remains unexplained. The primary symptoms of PCOS include hyperandrogenism, anovulation, and polycystic ovaries. Most animal models utilize androgen treatments to induce PCOS. However, these models often fail to address the underlying causes of the disease and do not effectively reproduce key metabolic features such as hyperinsulinemia. Here, we present a novel rodent model of diet-induced obesity that recapitulates both the metabolic and reproductive phenotypes of human PCOS. Rats on a high-fat high-sugar (HFHS) diet not only demonstrated signs of metabolic impairment, but they also developed polycystic ovaries and experienced irregular estrous cycling. Though hyperandrogenism was not characteristic of HFHS animals as a group, elevated testosterone levels were predictive of high numbers of ovarian cysts. Alterations in steroidogenesis and folliculogenesis gene expression were also found via RNA sequencing of ovarian tissue. Importantly, the PCOS-like symptoms induced in these rats may share a similar etiology to PCOS in humans. Therefore, this model offers a unique opportunity to study PCOS at its genesis rather than following the development of disease symptoms.
Collapse
Affiliation(s)
- Jacob S Roberts
- Neuroscience Program, Washington and Lee University, Lexington, Virginia, USA
| | - Ron A Perets
- Department of Biology, Washington and Lee University, Lexington, Virginia, USA
| | - Kathryn S Sarfert
- Neuroscience Program, Washington and Lee University, Lexington, Virginia, USA
| | - John J Bowman
- Department of Biology, Washington and Lee University, Lexington, Virginia, USA
| | - Patrick A Ozark
- Department of Computer Science, Washington and Lee University, Lexington, Virginia, USA
| | - Gregg B Whitworth
- Department of Biology, Washington and Lee University, Lexington, Virginia, USA
| | - Sarah N Blythe
- Neuroscience Program, Washington and Lee University, Lexington, Virginia, USA.,Department of Biology, Washington and Lee University, Lexington, Virginia, USA
| | - Natalia Toporikova
- Neuroscience Program, Washington and Lee University, Lexington, Virginia, USA.,Department of Biology, Washington and Lee University, Lexington, Virginia, USA
| |
Collapse
|
72
|
Goodwin MR, Rispoli LA, Payton RR, Saxton AM, Edwards JL. Developmental consequences of supplementing with matrix metallopeptidase-9 during in vitro maturation of heat-stressed bovine oocytes. J Reprod Dev 2016; 62:553-560. [PMID: 27440552 PMCID: PMC5177972 DOI: 10.1262/jrd.2015-177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 07/07/2016] [Indexed: 11/25/2022] Open
Abstract
Because latent form of matrix metallopeptidase-9 (proMMP9) levels are positively related to blastocyst development, it was hypothesized that addition during maturation may improve development of heat-stressed oocytes. To test hypothesis, 0, 30 or 300 ng/ml human proMMP9 (hMMP9) was added at 18 h of in vitro maturation (hIVM) to cumulus-oocyte complexes matured at 38.5 or 41.0ºC (first 12 h only). Heat stress decreased 24 hIVM proMMP9 levels only in 0 and 30 ng/ml groups and increased progesterone in 0 and 300 ng/ml hMMP9 groups. Heat stress decreased cleavage and blastocyst development. Independent of maturation temperature, hMMP9 at 18 hIVM decreased blastocyst development. In a second study, cumulus-oocyte complexes were matured for 24 h at 38.5 or 41.0ºC (HS first 12 h only) with 0 or 300 ng/ml hMMP9 added at 12 hIVM. Without hMMP9, heat stress decreased 24 hIVM proMMP9 levels and increased progesterone production. Addition of 300 ng/ml of hMMP9 produced equivalent levels of proMMP9 at 24 hIVM (271 vs. 279 ± 77 for 38.5ºC and 41.0ºC treated oocytes, respectively). Heat stress did not affect ability of oocytes to cleave but reduced blastocyst development. Independent of temperature, hMMP9 decreased cleavage and blastocyst development. In summary, hMMP9 supplementation during IVM did not improve development of heat-stressed oocytes even when it was added for the entire maturation period. At doses tested, hMMP9 appeared detrimental to development when supplemented during the last 12 or 6 h of oocyte maturation.
Collapse
Affiliation(s)
- Megan R Goodwin
- University of Tennessee, Institute of Agriculture, UT AgResearch, Department of Animal Science, Knoxville, TN 37996-4574, USA
| | | | | | | | | |
Collapse
|
73
|
Prochazka R, Blaha M. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals. J Reprod Dev 2016; 61:495-502. [PMID: 26688146 PMCID: PMC4685214 DOI: 10.1262/jrd.2015-069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vivo, resumption of oocyte meiosis occurs in large ovarian follicles after the
preovulatory surge of luteinizing hormone (LH). The LH surge leads to the activation of a broad signaling
network in mural granulosa cells equipped with LH receptors. The signals generated in the mural granulosa
cells are further augmented by locally produced peptides or steroids and transferred to the cumulus cell
compartment and the oocyte itself. Over the last decade, essential progress has been made in the
identification of molecular events associated with the final maturation and ovulation of mammalian oocytes.
All new evidence argues for a multiple roles of mitogen-activated protein kinase 3/1 (MAPK3/1) in the
gonadotropin-induced ovulation processes. However, the knowledge of gonadotropin-induced signaling pathways
leading to MAPK3/1 activation in follicular cells seems limited. To date, only the LH-induced transactivation
of the epidermal growth factor receptor/MAPK3/1 pathway has been described in granulosa/cumulus cells even
though other mechanisms of MAPK3/1 activation have been detected in other types of cells. In this review, we
aimed to summarize recent advances in the elucidation of gonadotropin-induced mechanisms leading to the
activation of MAPK3/1 in preovulatory follicles and cultured cumulus-oocyte complexes and to point out a
specific role of this kinase in the processes accompanying final maturation of the mammalian oocyte.
Collapse
Affiliation(s)
- Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | | |
Collapse
|
74
|
Cheng JC, Fang L, Chang HM, Sun YP, Leung PCK. hCG-induced Sprouty2 mediates amphiregulin-stimulated COX-2/PGE2 up-regulation in human granulosa cells: a potential mechanism for the OHSS. Sci Rep 2016; 6:31675. [PMID: 27539669 PMCID: PMC4990972 DOI: 10.1038/srep31675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022] Open
Abstract
Sprouty2 (SPRY2) is an important intracellular regulator for epidermal growth factor receptor (EGFR)-mediated ERK1/2 signaling. In human granulosa cells, although SPRY2 is expressed, its regulation and function remains complete unknown and must be defined. Our previous study has shown that human chorionic gonadotropin (hCG)/luteinizing hormone (LH) up-regulates the expression levels of EGF-like growth factor, amphiregulin (AREG), which subsequently contributes to the hCG/LH-induced COX-2 expression and PGE2 production. The aim of the present study was to investigate the effect of hCG on SPRY2 expression and the role of hCG-induced SPRY2 in AREG-stimulated COX-2 expression and PGE2 production in human granulosa cells. Our results demonstrated that the expression of SPRY2 was up-regulated by hCG treatment. Using pharmacological inhibitors and siRNA knockdown, we showed that activation of ERK1/2 signaling was required for hCG-induced up-regulation of SPRY2 expression. Further, SPRY2 knockdown attenuated the AREG-induced COX-2 expression and PGE2 production by inhibiting AREG-activated ERK1/2 signaling. Interestingly, we showed that SPRY2 expression levels were significantly increased in granulosa cells of ovarian hyperstimulation syndrome (OHSS) patients. These results for the first time elucidate the physiological roles of SPRY2 in human granulosa cells and suggest that aberrant expression of SPRY2 may contribute to the pathogenesis of OHSS.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child &Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Lanlan Fang
- Department of Obstetrics and Gynaecology, Child &Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.,Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, Child &Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Ying-Pu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child &Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|
75
|
Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X, Vos MD, Sugimura S, Smitz J, Richard FJ, Thompson JG. Oocyte maturation and quality: role of cyclic nucleotides. Reproduction 2016; 152:R143-57. [PMID: 27422885 DOI: 10.1530/rep-15-0606] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/15/2016] [Indexed: 12/12/2022]
Abstract
The cyclic nucleotides, cAMP and cGMP, are the key molecules controlling mammalian oocyte meiosis. Their roles in oocyte biology have been at the forefront of oocyte research for decades, and many of the long-standing controversies in relation to the regulation of oocyte meiotic maturation are now resolved. It is now clear that the follicle prevents meiotic resumption through the actions of natriuretic peptides and cGMP - inhibiting the hydrolysis of intra-oocyte cAMP - and that the pre-ovulatory gonadotrophin surge reverses these processes. The gonadotrophin surge also leads to a transient spike in cAMP in the somatic compartment of the follicle. Research over the past two decades has conclusively demonstrated that this surge in cAMP is important for the subsequent developmental capacity of the oocyte. This is important, as oocyte in vitro maturation (IVM) systems practised clinically do not recapitulate this cAMP surge in vitro, possibly accounting for the lower efficiency of IVM compared with clinical IVF. This review particularly focuses on this latter aspect - the role of cAMP/cGMP in the regulation of oocyte quality. We conclude that clinical practice of IVM should reflect this new understanding of the role of cyclic nucleotides, thereby creating a new generation of ART and fertility treatment options.
Collapse
Affiliation(s)
- R B Gilchrist
- Discipline of Obstetrics and GynaecologySchool of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - A M Luciano
- Reproductive and Developmental Biology LaboratoryDepartment of Health, Animal Science and Food Safety, University of Milan, Milano, Italy
| | - D Richani
- Discipline of Obstetrics and GynaecologySchool of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - H T Zeng
- Center for Reproductive MedicineSixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - X Wang
- Discipline of Obstetrics and GynaecologySchool of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia Department of Obstetrics and GynaecologySt George Public Hospital, Sydney, Australia
| | - M De Vos
- Follicle Biology LaboratoryUniversity Hospital UZBrussel, Medical School, Vrije Universiteit Brussel, Brussels, Belgium
| | - S Sugimura
- Institute of AgricultureDepartment of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - J Smitz
- Follicle Biology LaboratoryUniversity Hospital UZBrussel, Medical School, Vrije Universiteit Brussel, Brussels, Belgium
| | - F J Richard
- Centre de Recherche en Biologie de la ReproductionDépartement des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - J G Thompson
- School of MedicineRobinson Research Institute and ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
76
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
77
|
Nader N, Courjaret R, Dib M, Kulkarni RP, Machaca K. Release from Xenopus oocyte prophase I meiotic arrest is independent of a decrease in cAMP levels or PKA activity. Development 2016; 143:1926-36. [PMID: 27122173 DOI: 10.1242/dev.136168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/07/2016] [Indexed: 12/13/2022]
Abstract
Vertebrate oocytes arrest at prophase of meiosis I as a result of high levels of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) activity. In Xenopus, progesterone is believed to release meiotic arrest by inhibiting adenylate cyclase, lowering cAMP levels and repressing PKA. However, the exact timing and extent of the cAMP decrease is unclear, with conflicting reports in the literature. Using various in vivo reporters for cAMP and PKA at the single-cell level in real time, we fail to detect any significant changes in cAMP or PKA in response to progesterone. More interestingly, there was no correlation between the levels of PKA inhibition and the release of meiotic arrest. Furthermore, we devised conditions whereby meiotic arrest could be released in the presence of sustained high levels of cAMP. Consistently, lowering endogenous cAMP levels by >65% for prolonged time periods failed to induce spontaneous maturation. These results argue that the release of oocyte meiotic arrest in Xenopus is independent of a reduction in either cAMP levels or PKA activity, but rather proceeds through a parallel cAMP/PKA-independent pathway.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City - Qatar Foundation, Doha, Qatar 24144
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City - Qatar Foundation, Doha, Qatar 24144
| | - Maya Dib
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City - Qatar Foundation, Doha, Qatar 24144
| | - Rashmi P Kulkarni
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City - Qatar Foundation, Doha, Qatar 24144
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City - Qatar Foundation, Doha, Qatar 24144
| |
Collapse
|
78
|
Fang L, Yu Y, Zhang R, He J, Sun YP. Amphiregulin mediates hCG-induced StAR expression and progesterone production in human granulosa cells. Sci Rep 2016; 6:24917. [PMID: 27113901 PMCID: PMC4845069 DOI: 10.1038/srep24917] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/07/2016] [Indexed: 01/08/2023] Open
Abstract
Progesterone plays critical roles in maintaining a successful pregnancy at the early embryonic stage. Human chorionic gonadotropin (hCG) rapidly induces amphiregulin (AREG) expression. However, it remains unknown whether AREG mediates hCG-induced progesterone production. Thus, the objective of this study was to investigate the role of AREG in hCG-induced progesterone production and the underlying molecular mechanism in human granulosa cells; primary cells were used as the experimental model. We demonstrated that the inhibition of EGFR and the knockdown of AREG abolished hCG-induced steroidogenic acute regulatory protein (StAR) expression and progesterone production. Importantly, follicular fluid AREG levels were positively correlated with progesterone levels in the follicular fluid and serum. Treatment with AREG increased StAR expression and progesterone production, and these stimulatory effects were abolished by EGFR inhibition. Moreover, activation of ERK1/2, but not PI3K/Akt, signaling was required for the AREG-induced up-regulation of StAR expression and progesterone production. Our results demonstrate that AREG mediates hCG-induced StAR expression and progesterone production in human granulosa cells, providing novel evidence for the role of AREG in the regulation of steroidogenesis.
Collapse
Affiliation(s)
- Lanlan Fang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yiping Yu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Ruizhe Zhang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Jingyan He
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Ying-Pu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
79
|
Egbert JR, Uliasz TF, Shuhaibar LC, Geerts A, Wunder F, Kleiman RJ, Humphrey JM, Lampe PD, Artemyev NO, Rybalkin SD, Beavo JA, Movsesian MA, Jaffe LA. Luteinizing Hormone Causes Phosphorylation and Activation of the cGMP Phosphodiesterase PDE5 in Rat Ovarian Follicles, Contributing, Together with PDE1 Activity, to the Resumption of Meiosis. Biol Reprod 2016; 94:110. [PMID: 27009040 PMCID: PMC4939740 DOI: 10.1095/biolreprod.115.135897] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/14/2016] [Indexed: 12/16/2022] Open
Abstract
The meiotic cell cycle of mammalian oocytes in preovulatory follicles is held in prophase arrest by diffusion of cGMP from the surrounding granulosa cells into the oocyte. Luteinizing hormone (LH) then releases meiotic arrest by lowering cGMP in the granulosa cells. The LH-induced reduction of cGMP is caused in part by a decrease in guanylyl cyclase activity, but the observation that the cGMP phosphodiesterase PDE5 is phosphorylated during LH signaling suggests that an increase in PDE5 activity could also contribute. To investigate this idea, we measured cGMP-hydrolytic activity in rat ovarian follicles. Basal activity was due primarily to PDE1A and PDE5, and LH increased PDE5 activity. The increase in PDE5 activity was accompanied by phosphorylation of PDE5 at serine 92, a protein kinase A/G consensus site. Both the phosphorylation and the increase in activity were promoted by elevating cAMP and opposed by inhibiting protein kinase A, supporting the hypothesis that LH activates PDE5 by stimulating its phosphorylation by protein kinase A. Inhibition of PDE5 activity partially suppressed LH-induced meiotic resumption as indicated by nuclear envelope breakdown, but inhibition of both PDE5 and PDE1 activities was needed to completely inhibit this response. These results show that activities of both PDE5 and PDE1 contribute to the LH-induced resumption of meiosis in rat oocytes, and that phosphorylation and activation of PDE5 is a regulatory mechanism.
Collapse
Affiliation(s)
- Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Leia C Shuhaibar
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Andreas Geerts
- Bayer Pharma AG, Pharma Research Center, Wuppertal, Germany
| | - Frank Wunder
- Bayer Pharma AG, Pharma Research Center, Wuppertal, Germany
| | - Robin J Kleiman
- Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
| | - John M Humphrey
- Pfizer Worldwide Research & Development, Groton, Connecticut
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Sergei D Rybalkin
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Joseph A Beavo
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Matthew A Movsesian
- Cardiology Section, VA Salt Lake City Health Care System and Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
80
|
Boruszewska D, Sinderewicz E, Kowalczyk-Zieba I, Grycmacher K, Woclawek-Potocka I. Studies on lysophosphatidic acid action during in vitro preimplantation embryo development. Domest Anim Endocrinol 2016; 54:15-29. [PMID: 26379100 DOI: 10.1016/j.domaniend.2015.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 11/24/2022]
Abstract
Assisted reproductive technologies, including in vitro embryo production (IVP), have been successfully used in animal reproduction to optimize breeding strategies for improved production and health in animal husbandry. Despite the progress in IVP techniques over the years, further improvements in in vitro embryo culture systems are required for the enhancement of oocyte and embryo developmental competence. One of the most important issues associated with IVP procedures is the optimization of the in vitro culture of oocytes and embryos. Studies in different species of animals and in humans have identified important roles for receptor-mediated lysophosphatidic acid (LPA) signaling in multiple aspects of human and animal reproductive tract function. The data on LPA signaling in the ovary and uterus suggest that LPA can directly contribute to embryo-maternal interactions via its influence on early embryo development beginning from the influence of the ovarian environment on the oocyte to the influence of the uterine environment on the preimplantation embryo. This review discusses the current status of LPA as a potential supplement in oocyte maturation, fertilization, and embryo culture media and current views on the potential involvement of the LPA signaling pathway in early embryo development.
Collapse
Affiliation(s)
- D Boruszewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn 10-748, Poland
| | - E Sinderewicz
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn 10-748, Poland
| | - I Kowalczyk-Zieba
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn 10-748, Poland
| | - K Grycmacher
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn 10-748, Poland
| | - I Woclawek-Potocka
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn 10-748, Poland.
| |
Collapse
|
81
|
Yang CR, Lowther KM, Lalioti MD, Seli E. Embryonic Poly(A)-Binding Protein (EPAB) Is Required for Granulosa Cell EGF Signaling and Cumulus Expansion in Female Mice. Endocrinology 2016; 157:405-16. [PMID: 26492470 PMCID: PMC4701890 DOI: 10.1210/en.2015-1135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Embryonic poly(A)-binding protein (EPAB) is the predominant poly(A)-binding protein in Xenopus, mouse, and human oocytes and early embryos before zygotic genome activation. EPAB is required for translational activation of maternally stored mRNAs in the oocyte and Epab(-/-) female mice are infertile due to impaired oocyte maturation, cumulus expansion, and ovulation. The aim of this study was to characterize the mechanism of follicular somatic cell dysfunction in Epab(-/-) mice. Using a coculture system of oocytectomized cumulus oophorus complexes (OOXs) with denuded oocytes, we found that when wild-type OOXs were cocultured with Epab(-/-) oocytes, or when Epab(-/-) OOXs were cocultured with WT oocytes, cumulus expansion failed to occur in response to epidermal growth factor (EGF). This finding suggests that oocytes and cumulus cells (CCs) from Epab(-/-) mice fail to send and receive the necessary signals required for cumulus expansion. The abnormalities in Epab(-/-) CCs are not due to lower expression of the oocyte-derived factors growth differentiation factor 9 or bone morphogenetic protein 15, because Epab(-/-) oocytes express these proteins at comparable levels with WT. Epab(-/-) granulosa cells (GCs) exhibit decreased levels of phosphorylated MEK1/2, ERK1/2, and p90 ribosomal S6 kinase in response to lutenizing hormone and EGF treatment, as well as decreased phosphorylation of the EGF receptor. In conclusion, EPAB, which is oocyte specific, is required for the ability of CCs and GCs to become responsive to LH and EGF signaling. These results emphasize the importance of oocyte-somatic communication for GC and CC function.
Collapse
Affiliation(s)
- Cai-Rong Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
| | - Katie M Lowther
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
| | - Maria D Lalioti
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
| | - Emre Seli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
82
|
El-Hayek S, Clarke HJ. Control of Oocyte Growth and Development by Intercellular Communication Within the Follicular Niche. Results Probl Cell Differ 2016; 58:191-224. [PMID: 27300180 DOI: 10.1007/978-3-319-31973-5_8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the mammalian ovary, each oocyte grows and develops within its own structural and developmental niche-the follicle. Together with the female germ cell in the follicle are somatic granulosa cells, specialized companion cells that surround the oocyte and provide support to it, and an outer layer of thecal cells that serve crucial roles including steroid synthesis. These follicular compartments function as a single physiological unit whose purpose is to produce a healthy egg, which upon ovulation can be fertilized and give rise to a healthy embryo, thus enabling the female germ cell to fulfill its reproductive potential. Beginning from the initial stage of follicle formation and until terminal differentiation at ovulation, oocyte and follicle growth depend absolutely on cooperation between the different cellular compartments. This cooperation synchronizes the initiation of oocyte growth with follicle activation. During growth, it enables metabolic support for the follicle-enclosed oocyte and allows the follicle to fulfill its steroidogenic potential. Near the end of the growth period, intra-follicular interactions prevent the precocious meiotic resumption of the oocyte and ensure its nuclear differentiation. Finally, cooperation enables the events of ovulation, including meiotic maturation of the oocyte and expansion of the cumulus granulosa cells. In this chapter, we discuss the cellular interactions that enable the growing follicle to produce a healthy oocyte, focusing on the communication between the germ cell and the surrounding granulosa cells.
Collapse
Affiliation(s)
- Stephany El-Hayek
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
- Department of Biology, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Block E-M0.2218, Montreal, QC, Canada, H4A 3J1
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada.
- Department of Biology, McGill University, Montreal, QC, Canada.
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Block E-M0.2218, Montreal, QC, Canada, H4A 3J1.
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
83
|
The effect of angiotensin-converting enzyme inhibition throughout a superovulation protocol in ewes. Res Vet Sci 2015; 103:205-10. [DOI: 10.1016/j.rvsc.2015.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 10/17/2015] [Accepted: 10/25/2015] [Indexed: 01/22/2023]
|
84
|
Blaha M, Nemcova L, Kepkova KV, Vodicka P, Prochazka R. Gene expression analysis of pig cumulus-oocyte complexes stimulated in vitro with follicle stimulating hormone or epidermal growth factor-like peptides. Reprod Biol Endocrinol 2015; 13:113. [PMID: 26445099 PMCID: PMC4596359 DOI: 10.1186/s12958-015-0112-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/02/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The gonadotropin-induced resumption of oocyte meiosis in preovulatory follicles is preceded by expression of epidermal growth factor (EGF)-like peptides, amphiregulin (AREG) and epiregulin (EREG), in mural granulosa and cumulus cells. Both the gonadotropins and the EGF-like peptides possess the capacity to stimulate resumption of oocyte meiosis in vitro via activation of a broad signaling network in cumulus cells. To better understand the rapid genomic actions of gonadotropins (FSH) and EGF-like peptides, we analyzed transcriptomes of cumulus cells at 3 h after their stimulation. METHODS We hybridized aRNA from cumulus cells to a pig oligonucleotide microarray and compared the transcriptomes of FSH- and AREG/EREG-stimulated cumulus cells with untreated control cells and vice versa. The identified over- and underexpressed genes were subjected to functional genomic analysis according to their molecular and cellular functions. The expression pattern of 50 selected genes with a known or potential function in ovarian development was verified by real-time qRT-PCR. RESULTS Both FSH and AREG/EREG increased the expression of genes associated with regulation of cell proliferation, cell migration, blood coagulation and extracellular matrix remodeling. FSH alone induced the expression of genes involved in inflammatory response and in the response to reactive oxygen species. Moreover, FSH stimulated the expression of genes closely related to some ovulatory events either exclusively or significantly more than AREG/EREG (AREG, ADAMTS1, HAS2, TNFAIP6, PLAUR, PLAT, and HSD17B7). In contrast to AREG/EREG, FSH also increased the expression of genes coding for key transcription factors (CEBPB, FOS, ID1/3, and NR5A2), which may contribute to the differing expression profiles of FSH- and AREG/EREG-treated cumulus cells. CONCLUSIONS The impact of FSH on cumulus cell gene transcription was higher than the impact of EGF-like factors in terms of the number of cell functions affected as well as the number of over- and underexpressed genes. Both FSH and EGF-like factors overexpressed genes involved in the post-ovulatory switch in steroidogenesis and tissue remodelling. However, FSH was remarkably more efficient in the up-regulation of several specific genes essential for ovulation of matured oocytes and also genes that been reported to play an important role in maturation of cumulus-enclosed oocytes in vitro.
Collapse
Affiliation(s)
- Milan Blaha
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Lucie Nemcova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Katerina Vodickova Kepkova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Petr Vodicka
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic.
| |
Collapse
|
85
|
Yang WJ, Liu FC, Hsieh JS, Chen CH, Hsiao SY, Lin CS. Matrix metalloproteinase 2 level in human follicular fluid is a reliable marker of human oocyte maturation in in vitro fertilization and intracytoplasmic sperm injection cycles. Reprod Biol Endocrinol 2015; 13:102. [PMID: 26337061 PMCID: PMC4559921 DOI: 10.1186/s12958-015-0099-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/23/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND To determine whether matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMP-1 and TIMP-2) in human follicular fluid, have any relationships with oocyte maturation in vivo and subsequent fertilization during in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) cycles. METHODS The follicular fluids were obtained from 150 female patients undergoing IVF/ICSI cycles and a total of 1504 oocytes were retrieved for analysis. MMP-2 and MMP-9 activities were measured using zymography assay. TIMP-1 and TIMP-2 concentrations were quantitatively assessed using enzyme-linked immunosorbent assay (ELISA). RESULTS Human follicular fluid MMP-2 level was significantly associated with the rate of maturity of oocytes (P < 0.001). Furthermore, the MMP-2 was significantly associated with the higher fertilization rate (P < 0.01). There was no significant correlation between follicular MMP-9 and the maturation rate of oocytes. The TIMP-1 and TIMP-2 also showed no correlation with the oocyte maturation rate. CONCLUSIONS The level of gelatinase MMP-2 in human follicular fluid might be a reliable marker of mature oocytes during IVF/ICSI cycles. Furthermore, the MMP-2 expression has a strong association with higher fertilization rate. Further studies are needed to support this theory.
Collapse
Affiliation(s)
- Wen-Jui Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City, Taiwan.
- Department of Fertility and Reproductive Medicine, Ton-Yen General Hospital, Hsinchu County, Taiwan.
- Division of Infertility and Reproductive Medicine, Taiwan IVF Group Center, Hsinchu City, Taiwan.
| | - Fon-Chang Liu
- Department of Pharmacy, Wei Gong Memorial Hospital, Miaoli County, Taiwan.
| | - Jih-Sheng Hsieh
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City, Taiwan.
| | - Ching-Hung Chen
- Department of Fertility and Reproductive Medicine, Ton-Yen General Hospital, Hsinchu County, Taiwan.
| | - Shun-Yu Hsiao
- Department of Surgery, Mackay Memorial Hospital, Hsin-Chu Branch, No.690, Sec. 2, Guangfu Road, Hsinchu City, 30071, Taiwan.
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City, Taiwan.
| |
Collapse
|
86
|
Sayasith K, Sirois J. Molecular characterization of a disintegrin and metalloprotease-17 (ADAM17) in granulosa cells of bovine preovulatory follicles. Mol Cell Endocrinol 2015; 411:49-57. [PMID: 25917455 DOI: 10.1016/j.mce.2015.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 11/29/2022]
Abstract
A disintegrin and metalloprotease-17 (ADAM17) is thought to play a key role in the release of soluble and active epiregulin (EREG) and amphiregulin (AREG) in ovarian follicles but its transcriptional regulation in follicular cells remains largely unknown. The objectives of this study were to characterize the regulation of ADAM17 transcripts in bovine follicles prior to ovulation and to investigate its transcriptional control in bovine granulosa cells. To study the regulation of ADAM17 transcripts, RT-PCR analyses were performed using total RNA extracted from bovine follicles collected between 0 h and 24 h post-hCG. Results showed that levels of ADAM17 mRNA were low prior to hCG (0 h), markedly and transiently increased 6-12 h post-hCG (P <0.05), and returned to low baseline levels at 24 h post-hCG in granulosa and theca interna cells of preovulatory follicles. To determine the transcriptional control of ADAM17 expression, primary cultures of bovine granulosa cells were used. Forskolin (FSK) stimulation induced a pattern of ADAM17 mRNA up-regulation in vitro similar to that observed by hCG in vivo. 5'-Deletion mutagenesis studies identified a minimal region of the bovine ADAM17 promoter containing basal and FSK-inducible activities, which were dependent on the presence of a consensus AP1 cis-element. Electrophoretic mobility shift assays revealed an interaction between AP1 and the trans-acting factor Fra2. Chromatin immunoprecipitation assays confirmed an endogenous interaction between Fra2 and the ADAM17 promoter in granulosa cell cultures. FSK-inducible ADAM17 promoter activity and mRNA expression were suppressed by PKA and ERK1/2 inhibitors but not by a p38MAPK inhibitor, pointing to the importance of PKA and ERK1/2 signaling pathways in the up-regulation of bovine ADAM17 mRNA. Collectively, these findings describe the gonadotropin/FSK-dependent up-regulation of ADAM17 transcripts in bovine preovulatory follicles and unravel for the first time some of the molecular mechanisms involved in ADAM17 gene expression in granulosa cells of a monoovulatory species.
Collapse
Affiliation(s)
- Khampoun Sayasith
- Centre de Recherche en Reproduction Animale, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada.
| | - Jean Sirois
- Centre de Recherche en Reproduction Animale, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada
| |
Collapse
|
87
|
Light A, Hammes SR. LH-Induced Steroidogenesis in the Mouse Ovary, but Not Testis, Requires Matrix Metalloproteinase 2- and 9-Mediated Cleavage of Upregulated EGF Receptor Ligands. Biol Reprod 2015. [PMID: 26203177 DOI: 10.1095/biolreprod.115.130971] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Oocyte maturation and cumulus cell expansion depend on luteinizing hormone (LH)-mediated upregulation of membrane-bound epidermal growth factor (EGF)-like ligands, including amphiregulin, epiregulin, and betacellulin. These ligands then transactivate the EGF receptor (EGFR) after release by matrix metalloproteinases (MMPs). However, direct measurement of released EGF-like ligands or MMPs from granulosa cells has not been formally evaluated, nor has direct identification of responsible MMPs. Here we address these issues by analyzing LH-induced steroidogenesis, which is also MMP and EGFR dependent, in freshly isolated mouse primary granulosa cells. We demonstrate a correlation between amphiregulin and epiregulin mRNA induction and steroid production in LH-treated granulosa cells as well as in ovaries of human chorionic gonadotropin-treated mice. In contrast, LH does not alter Mmp1, Mmp2, Mmp3, Mmp8, Mmp9, or Adam17 mRNA expression. We demonstrate that, in primary mouse granulosa cells, LH triggers release of soluble amphiregulin that correlates with steroid production, both of which are blocked by MMP2/9 inhibition, confirming that MMP2/9 likely regulates LH-induced amphiregulin release and downstream processes. Notably, LH does not alter secretion of MMP2/9 from primary granulosa cells, nor does it modulate MMP activity. These findings indicate that, in the ovary, LH dictates EGFR-mediated processes not by regulating MMPs, but instead by increasing EGF-like ligand availability. In contrast, LH stimulation of primary mouse Leydig cells does not induce EGF-like ligand expression or require MMP2/9 for steroidogenesis, confirming marked differences in LH receptor-induced processes in the testes. Our results suggest that MMP inhibition may be a means of attenuating excess ovarian steroid production in diseases like polycystic ovary syndrome.
Collapse
Affiliation(s)
- Allison Light
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Stephen R Hammes
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
88
|
Ritter LJ, Sugimura S, Gilchrist RB. Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence. Endocrinology 2015; 156:2299-312. [PMID: 25849729 DOI: 10.1210/en.2014-1884] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oocytes progressively acquire the competence to support embryo development as oogenesis proceeds with ovarian folliculogenesis. The objectives of this study were to investigate oocyte-secreted factor (OSF) participation in the development of somatic cell epidermal growth factor (EGF) responsiveness associated with oocyte developmental competence. A well-established porcine model was employed using oocytes from small (<4 mm) vs medium sized (>4 mm) antral follicles, representing low vs moderate developmental competence, respectively. Cumulus-oocyte complexes (COCs) were treated in vitro with inducers of oocyte maturation, and cumulus cell functions and oocyte developmental competence were assessed. COCs from small follicles responded to FSH but, unlike COCs from larger follicles, were incapable of responding to EGF family growth factors known to mediate oocyte maturation in vivo, exhibiting perturbed cumulus expansion and expression of associated transcripts (HAS2 and TNFAIP6). Low and moderate competence COCs expressed equivalent levels of EGF receptor (EGFR) mRNA; however, the former had less total EGFR protein leading to failed activation of phospho-EGFR and phospho-ERK1/2, despite equivalent total ERK1/2 protein levels. Native OSFs from moderate, but not from low, competence oocytes established EGF responsiveness in low competence COCs. Four candidate recombinant OSFs failed to mimic the actions of native OSFs in regulating cumulus expansion. Treatment with OSFs and EGF enhanced oocyte competence but only of the low competence COCs. These data suggest that developmental acquisition by the oocyte of capacity to regulate EGF responsiveness in the oocyte's somatic cells is a major milestone in the oocyte's developmental program and contributes to coordinated oocyte and somatic cell development.
Collapse
Affiliation(s)
- Lesley J Ritter
- School of Paediatrics and Reproductive Health and Robinson Research Institute (L.J.R., S.S., R.B.G.) Australian Research Council Centre of Excellence in Nanoscale BioPhotonics (L.J.R.), The University of Adelaide, Adelaide, SA 5005, Australia; Institute of Agriculture (S.S.), Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; and Discipline of Obstetrics and Gynaecology (R.B.G.), School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
89
|
Boruszewska D, Sinderewicz E, Kowalczyk-Zieba I, Grycmacher K, Woclawek-Potocka I. The effect of lysophosphatidic acid during in vitro maturation of bovine cumulus-oocyte complexes: cumulus expansion, glucose metabolism and expression of genes involved in the ovulatory cascade, oocyte and blastocyst competence. Reprod Biol Endocrinol 2015; 13:44. [PMID: 25981539 PMCID: PMC4438640 DOI: 10.1186/s12958-015-0044-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/12/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In the cow, lysophosphatidic acid (LPA) acts as an auto-/paracrine factor, through its receptors LPAR1-4, on oocytes and cumulus cells during in vitro maturation (IVM). The aim of the present work was to determine the effect of LPA during IVM of bovine oocytes on: 1) oocyte maturation; 2) apoptosis of COCs; 3) expression of genes involved in developmental competence and apoptosis in bovine oocytes and subsequent blastocysts; 4) cumulus expansion and expression of genes involved in the ovulatory cascade in cumulus cells; 5) glucose metabolism and expression of genes involved in glucose utilization in cumulus cells; 6) cleavage and blastocyst rates on Day 2 and Day 7 of in vitro culture, respectively. METHODS Cumulus-oocyte complexes (COCs) were matured in vitro in the presence or absence of LPA (10(-5) M) for 24 h. Following maturation, we determined: oocyte maturation stage, cumulus expansion, COCs apoptosis and glucose and lactate levels in the maturation medium. Moreover, COCs were either used for gene expression analysis or fertilized in vitro. The embryos were cultured until Day 7 to assess cleavage and blastocyst rates. Oocytes, cumulus cells and blastocysts were used for gene expression analysis. RESULTS Supplementation of the maturation medium with LPA enhanced oocyte maturation rates and stimulated the expression of developmental competence-related factors (OCT4, SOX2, IGF2R) in oocytes and subsequent blastocysts. Moreover, LPA reduced the occurrence of apoptosis in COCs and promoted an antiapoptotic balance in the transcription of genes involved in apoptosis (BAX and BCL2) either in oocytes or blastocysts. LPA increased glucose uptake by COCs via augmentation of GLUT1 expression in cumulus cells as well as stimulating lactate production via the enhancement of PFKP expression in cumulus cells. LPA did not affect cumulus expansion as visually assessed, however, it stimulated upstream genes of cumulus expansion cascade, AREG and EREG. CONCLUSIONS Supplementation of the maturation medium with LPA improves oocyte maturation rates, decreases extent of apoptosis in COCs and sustains the expression of developmental competence related factors during oocyte maturation and subsequently affects gene expression profile at the blastocyst stage. We also demonstrate that LPA directs glucose metabolism toward the glycolytic pathway during IVM.
Collapse
Affiliation(s)
- Dorota Boruszewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Emilia Sinderewicz
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Ilona Kowalczyk-Zieba
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Katarzyna Grycmacher
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Izabela Woclawek-Potocka
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
90
|
Lambertini M, Peccatori FA, Azim HA. Targeted agents for cancer treatment during pregnancy. Cancer Treat Rev 2015; 41:301-9. [DOI: 10.1016/j.ctrv.2015.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/06/2015] [Indexed: 02/07/2023]
|
91
|
Siddappa D, Beaulieu É, Gévry N, Roux PP, Bordignon V, Duggavathi R. Effect of the transient pharmacological inhibition of Mapk3/1 pathway on ovulation in mice. PLoS One 2015; 10:e0119387. [PMID: 25803847 PMCID: PMC4372293 DOI: 10.1371/journal.pone.0119387] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022] Open
Abstract
Mitogen-activated protein kinase 3/1 (Mapk3/1) pathway is critical for LH signal transduction during ovulation. However, the mechanisms remain incompletely understood. We hypothesized that Mapk pathway regulates ovulation through transcriptional regulation of ovulatory genes. To test this hypothesis we used immature mice superovulated with equine and human chorionic gonadotropins (eCG and hCG) and PD0325901, to inhibit hCG-induced Mapk3/1 activity. Mice received either the inhibitor PD0325901 (25 μg/g, i.p.) or vehicle at 2h before hCG stimulation. Administration of the inhibitor abolished Mapk3/1 phosphorylation in granulosa cells. While vehicle-treated mice ovulated normally, there were no ovulations in inhibitor-treated mice. First, we analyzed gene expression in granulosa cells at 0h, 1h and 4h post-hCG. There was expected hCG-driven increase in mRNA abundance of many ovulation-related genes including Ptgs2 in vehicle-treated granulosa cells, but not (P<0.05) in inhibitor-treated group. There was also reduced mRNA and protein abundance of the transcription factor, early growth response 1 (Egr1) in inhibitor-treated granulosa cells. We then used GRMO2 cell-line to test if Egr1 is recruited to promoter of Ptgs2 followed by chromatin immunoprecipitation with either Egr1 or control antibody. Enrichment of the promoter regions in immunoprecipitants of Egr1 antibody indicated that Egr1 binds to the Ptgs2 promoter. We then knocked down Egr1 expression in mouse primary granulosa cells using siRNA technology. Treatment with Egr1-siRNA inhibited Egr1 transcript accumulation, which was associated with reduced expression of Ptgs2 when compared to control-siRNA treated granulosa cells. These data demonstrate that transient inhibition of LH-stimulated MAPK3/1 activity abrogates ovulation in mice. We conclude that Mapk3/1 regulates ovulation, at least in part, through Egr1 and its target gene, Ptgs2 in granulosa cells of ovulating follicles in mice.
Collapse
Affiliation(s)
- Dayananda Siddappa
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Élaine Beaulieu
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Nicolas Gévry
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
- * E-mail:
| |
Collapse
|
92
|
Altered amphiregulin expression induced by diverse luteinizing hormone receptor reactivity in granulosa cells affects IVF outcomes. Reprod Biomed Online 2015; 30:593-601. [PMID: 25911599 DOI: 10.1016/j.rbmo.2015.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/22/2022]
Abstract
The expression of specific genes (LHR, AREG, EREG, EGFR, NPPC and NPR2) involved in peri-ovulatory signalling pathways induced by LH surge in granulosa cells was investigated, and their relationships with IVF outcomes analysed. mRNA levels of the genes of 147 infertile women undergoing IVF and intracytoplasmic sperm injection (ICSI) with embryo transfer were evaluated. Compared with non-pregnant women, amphiregulin (AREG) mRNA levels in mural and cumulus graunulosa cells were significantly higher (P < 0.05) in pregnant women, and were positively correlated with number of oocytes retrieved and good-quality embryos. No significant differences were found between the two groups in the remaining detected genes. To investigate the reason for the differences in AREG expression, mural granulosa cells were cultured and stimulated with human chorionic gonadotrophin (HCG) for 2-24 h. At 4 h after HCG stimulation, AREG and epiregulin mRNA expression peaked, with much greater increases in the pregnant group. The fold-change of AREG expression was positively correlated with number of good-quality embryos. No obvious correlation, however, was found between NPPC/Npr2 expression levels in granulosa cells and IVF outcomes. Altered AREG expression induced by diverse luteinizing hormone receptor reactivity in granulosa cells may provide a useful marker for oocyte developmental competency.
Collapse
|
93
|
Shrestha K, Lukasik K, Baufeld A, Vanselow J, Moallem U, Meidan R. Regulation of ovulatory genes in bovine granulosa cells: lessons from siRNA silencing of PTGS2. Reproduction 2015; 149:21-9. [DOI: 10.1530/rep-14-0337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostaglandin endoperoxide synthase-2 (PTGS2), tumour necrosis factor-alpha-induced protein-6 (TNFAIP6), pentraxin-3 (PTX3), epidermal growth factor-like factors: amphiregulin (AREG) and epiregulin (EREG) are essential for successful ovulation. In this study, we compared the induction of these ovulatory genes in bovine granulosa cells (GCs) in vivo (after LH surge) and in vitro (forskolin (FRS) treatment). These genes were markedly stimulated in GCs isolated from cows 21 h after LH-surge. In isolated GCs, FRS induced a distinct temporal profile for each gene. Generally, there was a good agreement between the in vivo and in vitro inductions of these genes except for PTX3. Lack of PTX3 induction in isolated GCs culture suggests that other follicular compartments may mediate its induction by LH. Next, to study the role of PTGS2 and prostaglandins (PGs) in the cascade of ovulatory genes, PTGS2 was silenced with siRNA. PTGS2 siRNA caused a marked and specific knockdown of PTGS2 mRNA and PGE2 production (70% compared with scrambled siRNA) in bovine GCs. Importantly, PTGS2 silencing also reduced AREG, EREG and TNFAIP6 mRNA levels but not PTX3. Exogenous PGE2 increased AREG, EREG and TNFAIP6 mRNA levels, further confirming that these genes are prostanoid dependent. A successful and specific knockdown of PTGS2 was also achieved in endometrial cells (EndoCs) expressing PTGS2. Then, cholesterol-conjugated PTGS2 (chol-PTGS2) siRNA that facilitates cells' entry was investigated. In EndoCs, but not in GCs, chol-PTGS2 siRNA succeeded to reduce PTGS2 and PGE2 levels even without transfection reagent. PTGS2 knockdown is a promising tool to critically examine the functions of PTGS2 in the reproductive tract.
Collapse
|
94
|
Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle. Proc Natl Acad Sci U S A 2014; 111:16778-83. [PMID: 25385589 DOI: 10.1073/pnas.1414648111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fertility depends on the precise coordination of multiple events within the ovarian follicle to ensure ovulation of a fertilizable egg. FSH promotes late follicular development, including expression of luteinizing hormone (LH) receptor by the granulosa cells. Expression of its receptor permits the subsequent LH surge to trigger the release of ligands that activate EGF receptors (EGFR) on the granulosa, thereby initiating the ovulatory events. Here we identify a previously unknown role for FSH in this signaling cascade. We show that follicles of Fshb(-/-) mice, which cannot produce FSH, have a severely impaired ability to support two essential EGFR-regulated events: expansion of the cumulus granulosa cell layer that encloses the oocyte and meiotic maturation of the oocyte. These defects are not caused by an inability of Fshb(-/-) oocytes to produce essential oocyte-secreted factors or of Fshb(-/-) cumulus cells to respond. In contrast, although expression of both Egfr and EGFR increases during late folliculogenesis in Fshb(+/-) females, these increases fail to occur in Fshb(-/-) females. Remarkably, supplying a single dose of exogenous FSH activity to Fshb(-/-) females is sufficient to increase Egfr and EGFR expression and to restore EGFR-dependent cumulus expansion and oocyte maturation. These studies show that FSH induces an increase in EGFR expression during late folliculogenesis and provide evidence that the FSH-dependent increase is necessary for EGFR physiological function. Our results demonstrate an unanticipated role for FSH in establishing the signaling axis that coordinates ovulatory events and may contribute to the diagnosis and treatment of some types of human infertility.
Collapse
|
95
|
Chen Q, Zhang W, Ran H, Feng L, Yan H, Mu X, Han Y, Liu W, Xia G, Wang C. PKCδ and θ possibly mediate FSH-induced mouse oocyte maturation via NOX-ROS-TACE cascade signaling pathway. PLoS One 2014; 9:e111423. [PMID: 25350560 PMCID: PMC4211700 DOI: 10.1371/journal.pone.0111423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/25/2014] [Indexed: 01/28/2023] Open
Abstract
In mammals, gonadotropins stimulate oocyte maturation via the epidermal growth factor (EGF) network, and the protein kinase C (PKC) signaling pathway mediates this process. Tumor necrosis factor-α converting enzyme (TACE) is an important protein responding to PKC activation. However, the detailed signaling cascade between PKC and TACE in follicle-stimulating hormone (FSH)-induced oocyte maturation in vitro remains unclear. In this study, we found that rottlerin (mallotoxin, MTX), the inhibitor of PKC δ and θ, blocked FSH-induced maturation of mouse cumulus-oocyte complexes (COCs) in vitro. We further clarified the relationship between two molecules downstream of PKC δ and θ and TACE in COCs: nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and its products, reactive oxygen species (ROS). We proved that the respective inhibitors of NOX, ROS and TACE could block FSH-stimulated oocyte maturation dose-dependently, but these inhibitory effects could be reversed partially by amphiregulin (Areg), an EGF family member. Notably, inhibition of PKC δ and θ prevented FSH-induced translocation of two cytosolic components of NOX, p47phox and p67phox, to the plasma membrane in cumulus cells. Moreover, FSH-induced TACE activity in cumulus cells was decreased markedly by inhibition of NOX and ROS. In conclusion, PKC δ and θ possibly mediate FSH-induced meiotic resumption in mouse COCs via NOX-ROS-TACE signaling pathway.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Wenqiang Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Hao Ran
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Lizhao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Hao Yan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Xinyi Mu
- Department of histology and embryology, Chongqing medical university, Chongqing, People’s Republic of China
| | - Yingying Han
- College of biological sciences and technology, Beijing Forestry University, Beijing, People’s Republic of China
| | - Wei Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
96
|
Egbert JR, Shuhaibar LC, Edmund AB, Van Helden DA, Robinson JW, Uliasz TF, Baena V, Geerts A, Wunder F, Potter LR, Jaffe LA. Dephosphorylation and inactivation of NPR2 guanylyl cyclase in granulosa cells contributes to the LH-induced decrease in cGMP that causes resumption of meiosis in rat oocytes. Development 2014; 141:3594-604. [PMID: 25183874 DOI: 10.1242/dev.112219] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In mammals, the meiotic cell cycle of oocytes starts during embryogenesis and then pauses. Much later, in preparation for fertilization, oocytes within preovulatory follicles resume meiosis in response to luteinizing hormone (LH). Before LH stimulation, the arrest is maintained by diffusion of cyclic (c)GMP into the oocyte from the surrounding granulosa cells, where it is produced by the guanylyl cyclase natriuretic peptide receptor 2 (NPR2). LH rapidly reduces the production of cGMP, but how this occurs is unknown. Here, using rat follicles, we show that within 10 min, LH signaling causes dephosphorylation and inactivation of NPR2 through a process that requires the activity of phosphoprotein phosphatase (PPP)-family members. The rapid dephosphorylation of NPR2 is accompanied by a rapid phosphorylation of the cGMP phosphodiesterase PDE5, an enzyme whose activity is increased upon phosphorylation. Later, levels of the NPR2 agonist C-type natriuretic peptide decrease in the follicle, and these sequential events contribute to the decrease in cGMP that causes meiosis to resume in the oocyte.
Collapse
Affiliation(s)
- Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Leia C Shuhaibar
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Aaron B Edmund
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dusty A Van Helden
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jerid W Robinson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Valentina Baena
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Andreas Geerts
- Bayer Pharma AG, Pharma Research Center, Wuppertal D-42096, Germany
| | - Frank Wunder
- Bayer Pharma AG, Pharma Research Center, Wuppertal D-42096, Germany
| | - Lincoln R Potter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
97
|
Sayasith K, Sirois J, Lussier JG. Expression and regulation of regulator of G-protein signaling protein-2 (RGS2) in equine and bovine follicles prior to ovulation: molecular characterization of RGS2 transactivation in bovine granulosa cells. Biol Reprod 2014; 91:139. [PMID: 25339105 DOI: 10.1095/biolreprod.114.121186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The luteinizing hormone preovulatory surge stimulates several signal pathways essential for ovulation, and the regulator of G-protein signaling protein-2 (RGS2) is thought to be involved in this process. The objectives of this study were to characterize the regulation of RGS2 transcripts in equine and bovine follicles prior to ovulation and to determine its transcriptional control in bovine granulosa cells. To assess the regulation of equine RGS2 prior to ovulation, RT-PCR was performed using total RNA extracted from equine follicles collected at various times after human chorionic gonadotropin (hCG) injection. Results showed that RGS2 mRNA levels were very low at 0 h but markedly increased 12-39 h post-hCG (P < 0.05). In the bovine species, results revealed that RGS2 mRNA levels were low in small and dominant follicles and in ovulatory follicles obtained at 0 h, but markedly increased in ovulatory follicles 6-24 h post-hCG (P < 0.05). To study the molecular control of RGS2 expression, primary cultures of bovine granulosa cells were used. Stimulation with forskolin induced an up-regulation of RGS2 mRNA in vitro. Studies using 5'-deletion mutants identified a minimal region containing full-length basal and forskolin-inducible RGS2 promoter activities. Site-directed mutagenesis indicated that these activities were dependent on CRE and ETS1 cis-elements. Electrophoretic mobility shift assays confirmed the involvement of these elements and revealed their interactions with CREB1 and ETS1 proteins. Chromatin immunoprecipitation assays confirmed endogenous interactions of these proteins with the RGS2 promoter in granulosa cells. Forskolin-inducible RGS2 promoter activity and mRNA expression were markedly decreased by PKA and ERK1/2 inhibitors, and treatment with an antagonist of PGR (RU486) and inhibitors of PTGS2 (NS398) and EGFR (PD153035) blocked the forskolin-dependent RGS2 transcript expression, suggesting the importance of RGS2 in ovulation. Collectively, this study reports for the first time the gonadotropin-dependent up-regulation of RGS2 in equine and bovine preovulatory follicles and presents some of the regulatory controls involved in RGS2 gene expression in granulosa cells.
Collapse
Affiliation(s)
- Khampoun Sayasith
- Centre de recherche en reproduction animale and the Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jean Sirois
- Centre de recherche en reproduction animale and the Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jacques G Lussier
- Centre de recherche en reproduction animale and the Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
98
|
Ezcurra D, Humaidan P. A review of luteinising hormone and human chorionic gonadotropin when used in assisted reproductive technology. Reprod Biol Endocrinol 2014; 12:95. [PMID: 25280580 PMCID: PMC4287577 DOI: 10.1186/1477-7827-12-95] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/20/2014] [Indexed: 12/02/2022] Open
Abstract
Gonadotropins extracted from the urine of post-menopausal women have traditionally been used to stimulate folliculogenesis in the treatment of infertility and in assisted reproductive technology (ART). Products, such as human menopausal gonadotropin (hMG), consist not only of a mixture of the hormones, follicle-stimulating hormone (FSH), luteinising hormone (LH) and human chorionic gonadotropin (hCG), but also other biologically active contaminants, such as growth factors, binding proteins and prion proteins. The actual amount of molecular LH in hMG preparations varies considerably due to the purification process, thus hCG, mimicking LH action, is added to standardise the product. However, unlike LH, hCG plays a different role during the natural human menstrual cycle. It is secreted by the embryo and placenta, and its main role is to support implantation and pregnancy. More recently, recombinant gonadotropins (r-hFSH and r-hLH) have become available for ART therapies. Recombinant LH contains only LH molecules. In the field of reproduction there has been controversy in recent years over whether r-hLH or hCG should be used for ART. This review examines the existing evidence for molecular and functional differences between LH and hCG and assesses the clinical implications of hCG-supplemented urinary therapy compared with recombinant therapies used for ART.
Collapse
Affiliation(s)
- Diego Ezcurra
- EMD/Merck Serono, One Technology Place, Rockland, MA 02370 USA
| | - Peter Humaidan
- Skive Regional Hospital and Faculty of Health, Aarhus University and Odense University, Resenvej 25, Skive, 7800 Denmark
| |
Collapse
|
99
|
Sayasith K, Sirois J. Expression and regulation of stromal cell-derived factor-1 (SDF1) and chemokine CXC motif receptor 4 (CXCR4) in equine and bovine preovulatory follicles. Mol Cell Endocrinol 2014; 391:10-21. [PMID: 24784705 DOI: 10.1016/j.mce.2014.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022]
Abstract
The interaction between stromal cell-derived factor-1 (SDF1) and chemokine CXC motif receptor 4 (CXCR4) has been implicated in leukocyte attraction, tissue remodeling and angiogenesis. The objective of the present study was to characterize the expression and regulation of SDF1 and CXCR4 in equine follicles during the ovulatory process. Equine preovulatory follicles were isolated during estrus 0-39h after hCG treatment. Follicle wall preparations (theca interna with attached granulosa cells) and isolated preparations of granulosa cells and theca interna were obtained, and total RNA extracts were analyzed by RT-PCR/Southern blot. Results showed that levels of CXCR4 transcripts were induced by hCG in follicles at 36 h post-hCG (P<0.05 vs 0 h), with the induction observed in both granulosa and theca cells. Immunoblotting and immunohistochemical analyses confirmed an increase in CXCR4 protein in follicles after hCG treatment. In contrast, levels of SDF1 transcripts were very low in granulosa cells but high in theca interna cells throughout most of the ovulatory period. Studies in vivo performed with bovine preovulatory follicles collected 0-24h post-hCG revealed a marked and significant up-regulation of CXCR4 transcripts after hCG (P<0.05), as observed in equine follicles. A similar pattern of CXCR4 mRNA up-regulation was observed in cultures of bovine granulosa cells treated with forskolin (P<0.05). This forskolin-dependent induction of CXCR4 mRNA was suppressed by co-treatment with inhibitors of PKA, ERK1/2 and EGFR, and by the progesterone receptor antagonist RU486 (P<0.05), underscoring the contribution of multiple signaling pathways. In complementary studies, treatment of bovine granulosa cells with EGF or the hypoxia mimetic cobalt chloride significantly increased CXCR4 transcript levels, whereas co-treatment with forskolin and a CXCR4 antagonist repressed the expression of several ovulation-related genes. Collectively, this study describes for the first time the gonadotropin-dependent up-regulation of CXCR4 transcript in ovarian follicles of large monoovulatory species, provides some insights into the regulation of CXCR4 gene expression in granulosa cells, and identifies a potential link between follicular SDF1/CXCR4 activation and the regulation of ovulation-related genes.
Collapse
Affiliation(s)
- Khampoun Sayasith
- Centre de Recherche en Reproduction Animale, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada; Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada; Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada.
| | - Jean Sirois
- Centre de Recherche en Reproduction Animale, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada; Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada; Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada
| |
Collapse
|
100
|
Siddappa D, Kalaiselvanraja A, Bordignon V, Dupuis L, Gasperin BG, Roux PP, Duggavathi R. Mechanistic target of rapamycin (MTOR) signaling during ovulation in mice. Mol Reprod Dev 2014; 81:655-65. [PMID: 24753052 DOI: 10.1002/mrd.22333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/16/2014] [Indexed: 01/21/2023]
Abstract
A complex network of endocrine/paracrine signals regulates granulosa-cell function in ovarian follicles. Mechanistic target of rapamycin (MTOR) has recently emerged as a master intracellular integrator of extracellular signals and nutrient availability. The objectives of the present study were to characterize the expression pattern and kinase activity of MTOR during follicular and corpus luteum development, and to examine how inhibition of MTOR kinase activity affects preovulatory maturation of ovarian follicles. MTOR expression was constitutive throughout follicular and corpus luteum development. Gonadotropins induced MTOR kinase activity in the ovary, which was inhibited by rapamycin treatment (10 µg/g body weight, intraperitoneal injection). Inhibition of human chorionic gonadotropin (hCG)-induced MTOR activity during preovulatory follicle maturation did not change key events of ovulation. Granulosa cells of rapamycin-treated mice showed reduced MTOR kinase activity at 1 and 4 hr post-hCG and overexpression of hCG-induced ovulation genes at 4 hr post-hCG. Overexpression of these ovulatory genes was associated with hyper-activation of extracellular signal-regulated kinase 1/2 (ERK1/2), which occurred in response to inhibition of MTOR with rapamycin and suggested that MTOR may function as a negative regulator of the mitogen-activated protein kinase (MAPK) pathway. Indeed, simultaneous inhibition of MTOR and ERK1/2 activities during preovulatory follicle maturation caused anovulation. Inhibition of hCG-induced ERK1/2 activity alone suppressed MTOR kinase activity, indicating that MAPK pathway is upstream of MTOR. Thus, normal ovulation appears to be a result of complex interactions between MTOR and MAPK signaling pathways in granulosa cells of ovulating follicles in mice.
Collapse
Affiliation(s)
- Dayananda Siddappa
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Canada
| | | | | | | | | | | | | |
Collapse
|