51
|
Ferreira-Correia A, Anderson DG, Cockcroft K, Krause A. A comparison between the neurocognitive profile of Huntington Disease-Like 2 and Huntington Disease: Exploring the presence of double dissociations. APPLIED NEUROPSYCHOLOGY-ADULT 2020; 29:223-233. [PMID: 32149528 DOI: 10.1080/23279095.2020.1734810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Huntington Disease Like-2 (HDL2) is a rare autosomal dominant genetic disease caused by a mutation in the JPH3 gene. HDL2 is the Huntington Disease (HD) phenocopy that has the greatest clinical resemblance to HD. Both are characterized by movement, psychiatric and cognitive dysfunction, which progress to dementia. The present study compared the neuropsychological profile of HDL2 with that of HD. Using a Single Case-Control Methodology in Neuropsychology, three HDL2 and seven matched HD patients were assessed with a comprehensive neuropsychological battery and compared to matched control samples, considering age, years of education, type of school (public/government) and language (all bi/multilingual). Potential double dissociations were explored by using Crawford, Garthwaite, and Wood's Inferential Methods for Comparing the Scores of Two Single-Cases in Case-Control Designs. Double dissociation between HDL2 and HD were identified in three tests, namely Letter Number Sequencing, Rey Auditory Learning Test Delayed and Recognition Trials. These dissociations possible are due to methodological limitations.
Collapse
Affiliation(s)
- Aline Ferreira-Correia
- Department of Psychology, School of Human and Community Development, University of the Witwatersrand, Johannesburg, South Africa
| | - David G Anderson
- Department of Neurology, University of the Witwatersrand Donald Gordon Medical Centre, Johannesburg, South Africa.,Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kate Cockcroft
- Department of Psychology, School of Human and Community Development, University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
52
|
Ramirez-Garcia G, Galvez V, Diaz R, Bayliss L, Fernandez-Ruiz J, Campos-Romo A. Longitudinal atrophy characterization of cortical and subcortical gray matter in Huntington's disease patients. Eur J Neurosci 2019; 51:1827-1843. [PMID: 31705594 DOI: 10.1111/ejn.14617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 01/18/2023]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease with clinical manifestations that involve motor, cognitive and psychiatric deficits. Cross-sectional magnetic resonance imaging (MRI) studies have described the main cortical and subcortical macrostructural atrophy of HD. However, longitudinal studies characterizing progressive atrophy are lacking. This study aimed to describe the cortical and subcortical gray matter atrophy using complementary volumetric and surface-based MRI analyses in a cohort of seventeen early HD patients in a cross-sectional and longitudinal analysis and to correlate the longitudinal volumetric atrophy with the functional decline using several clinical measures. A group of seventeen healthy individuals was included as controls. After obtaining structural MRIs, volumetric analyses were performed in 36 cortical and 7 subcortical regions of interest per hemisphere and surface-based analyses were performed in the whole cortex, caudate, putamen and thalamus. Cross-sectional cortical surface-based and volumetric analyses showed significant decreases in frontoparietal and temporo-occipital cortices, while subcortical volumetric analysis showed significant decreases in all subcortical structures except the hippocampus. The longitudinal surface-based analysis showed widespread cortical thinning with volumetric decreases in the superior frontal lobe, while a subcortical volumetric decrease occurred in the caudate, putamen and thalamus with shape deformation on the anterior, medial and dorsal side. Functional capacity and motor status decline correlated with caudate progressive atrophy, while cognitive decline correlated with left superior frontal and right paracentral progressive atrophy. These results provide new insights into progressive volumetric and surface-based morphometric atrophy of gray matter in HD.
Collapse
Affiliation(s)
- Gabriel Ramirez-Garcia
- Unidad Periférica de Neurociencias, Facultad de Medicina, Instituto Nacional de Neurología y Neurocirugía "MVS", Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Víctor Galvez
- Laboratorio de Neurociencias Cognitivas y Desarrollo, Escuela de Psicología, Universidad Panamericana, Ciudad de México, México
| | - Rosalinda Diaz
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Leo Bayliss
- Departamento de Neurología, Instituto Nacional de Neurología y Neurocirugía "MVS", Ciudad de México, México
| | - Juan Fernandez-Ruiz
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.,Instituto de Neuroetología, Universidad Veracruzana, Ciudad de México, México.,Facultad de Psicología, Universidad Veracruzana, Ciudad de México, México
| | - Aurelio Campos-Romo
- Unidad Periférica de Neurociencias, Facultad de Medicina, Instituto Nacional de Neurología y Neurocirugía "MVS", Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
53
|
Diehl SK, Mefferd AS, Lin YC, Sellers J, McDonell KE, de Riesthal M, Claassen DO. Motor speech patterns in Huntington disease. Neurology 2019; 93:e2042-e2052. [PMID: 31662494 PMCID: PMC6913327 DOI: 10.1212/wnl.0000000000008541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/10/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Dysarthric speech of persons with Huntington disease (HD) is typically described as hyperkinetic; however, studies suggest that dysarthria can vary and resemble patterns in other neurologic conditions. To test the hypothesis that distinct motor speech subgroups can be identified within a larger cohort of patients with HD, we performed a cluster analysis on speech perceptual characteristics of patient audio recordings. METHODS Audio recordings of 48 patients with mild to moderate dysarthria due to HD were presented to 6 trained raters. Raters provided scores for various speech features (e.g., voice, articulation, prosody) of audio recordings using the classic Mayo Clinic dysarthria rating scale. Scores were submitted to an unsupervised k-means cluster analysis to determine the most salient speech features of subgroups based on motor speech patterns. RESULTS Four unique subgroups emerged from the cohort of patients with HD. Subgroup 1 was characterized by an abnormally fast speaking rate among other unique speech features, whereas subgroups 2 and 3 were defined by an abnormally slow speaking rate. Salient speech features for subgroup 2 overlapped with subgroup 3; however, the severity of dysarthria differed. Subgroup 4 was characterized by mild deviations of speech features with typical speech rate. Length of CAG repeats, Unified Huntington's Disease Rating Scale total motor score, and percent intelligibility were significantly different for pairwise comparisons of subgroups. CONCLUSION This study supports the existence of distinct presentations of dysarthria in patients with HD, which may be due to divergent pathologic processes. The findings are discussed in relation to previous literature and clinical implications.
Collapse
Affiliation(s)
- Sarah K Diehl
- From Hearing and Speech Sciences (S.K.D., A.M., M.d.R.), Biostatistics (Y.-C.L.), and Neurology (J.S., K.M., D.O.C.), Vanderbilt University Medical Center, Nashville, TN
| | - Antje S Mefferd
- From Hearing and Speech Sciences (S.K.D., A.M., M.d.R.), Biostatistics (Y.-C.L.), and Neurology (J.S., K.M., D.O.C.), Vanderbilt University Medical Center, Nashville, TN
| | - Ya-Chen Lin
- From Hearing and Speech Sciences (S.K.D., A.M., M.d.R.), Biostatistics (Y.-C.L.), and Neurology (J.S., K.M., D.O.C.), Vanderbilt University Medical Center, Nashville, TN
| | - Jessie Sellers
- From Hearing and Speech Sciences (S.K.D., A.M., M.d.R.), Biostatistics (Y.-C.L.), and Neurology (J.S., K.M., D.O.C.), Vanderbilt University Medical Center, Nashville, TN
| | - Katherine E McDonell
- From Hearing and Speech Sciences (S.K.D., A.M., M.d.R.), Biostatistics (Y.-C.L.), and Neurology (J.S., K.M., D.O.C.), Vanderbilt University Medical Center, Nashville, TN
| | - Michael de Riesthal
- From Hearing and Speech Sciences (S.K.D., A.M., M.d.R.), Biostatistics (Y.-C.L.), and Neurology (J.S., K.M., D.O.C.), Vanderbilt University Medical Center, Nashville, TN
| | - Daniel O Claassen
- From Hearing and Speech Sciences (S.K.D., A.M., M.d.R.), Biostatistics (Y.-C.L.), and Neurology (J.S., K.M., D.O.C.), Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
54
|
Julayanont P, McFarland NR, Heilman KM. Mild cognitive impairment and dementia in motor manifest Huntington's disease: Classification and prevalence. J Neurol Sci 2019; 408:116523. [PMID: 31678902 DOI: 10.1016/j.jns.2019.116523] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/11/2019] [Accepted: 10/04/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVES To identify the characteristics and prevalence of mild cognitive impairment in patients with motor-manifest Huntington's disease (HD) and to propose a new mild cognitive impairment (HD-MCI) classification for HD. METHODS We included 307 motor-manifest HD participants from the ENROLL-HD study who completed the evaluation in four neurocognitive domains including executive functions, processing speed, language, and memory. Cognitive impairment in each domain was determined by age- and education-adjusted cutoffs (> 1.5 standard deviations below the mean). HD-MCI was defined as an impairment in at least one cognitive domain without a loss of functional independence (Function Independence Scale, FIS ≥85). Dementia (HD-Dem) was defined as at least two domains of cognitive impairment with functional impairment (FIS ≤80). RESULTS At the onset of motor symptoms, MCI was present in 84% and dementia in 5% of patients. After 5 years of motor symptoms, 24% of participants met the criteria for MCI and 69% for dementia. Executive dysfunction was the most common impairment, being present in 70% of participants, followed by slowed processing speed in 67%. Language impairment was reported in 55% and memory deficits in 53%. MCI subtypes were classified as "Executive-predominant" (executive impairment and slowed processing speed), "Representational-predominant" (impaired language and memory) and "Mixed Executive-Representational". Executive-predominant MCI comprised 30%, Representational-predominant 15% and Mixed 55% of this cohort. CONCLUSION MCI is highly prevalent in the early stage of motor-manifest HD. Three MCI subgroups are defined suggesting at the earlier stage of this disease the frontal-striatal-executive and/or the temporoparietal-representational functional network can be impaired.
Collapse
Affiliation(s)
- Parunyou Julayanont
- Division of Behavioral and Cognitive Neurology, Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Nikolaus R McFarland
- Center for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Kenneth M Heilman
- Division of Behavioral and Cognitive Neurology, Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA; Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, USA.
| |
Collapse
|
55
|
Kielar C, Morton AJ. Early Neurodegeneration in R6/2 Mice Carrying the Huntington's Disease Mutation with a Super-Expanded CAG Repeat, Despite Normal Lifespan. J Huntingtons Dis 2019; 7:61-76. [PMID: 29480204 DOI: 10.3233/jhd-170265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The threshold of CAG repeat expansion in the HTT gene that causes HD is 36 CAG repeats, although 'superlong' expansions are found in individual neurons in postmortem brains. Previously, we showed that, compared to mice with <250 CAG repeats, onset of disease in R6/2 mice carrying superlong (>440) CAG repeat expansions was delayed, and disease progression was slower. Inclusion pathology also differed from 250 CAG repeat mice, being dominated by a novel kind of extranuclear neuronal inclusion (nENNI) that resembles a class of aggregate seen in patients with the adult onset form of HD. Here, we characterised neuropathology in R6/2 mice with >400 CAG repeats using light and electron microscopy. nENNIs were found with increased frequency and wider distribution with age. Some nENNIs appear to 'mature' as the disease develops, developing a multi-layered cored structure. Mice with superlong CAG repeats do not develop clinical signs until they are around 30-40 weeks of age, and they attain a normal life span (>2 years). Nevertheless, they show brain atrophy and unequivocal neuron loss from the striatum and cortex by 22 weeks of age, an age at which similar pathology is seen in 250 CAG repeat mice. Since this time-point is 'end stage' for a 250 CAG mouse, but very far (at least 18 months) from end stage for a > 440 CAG repeat mouse, our data confirm that the appearance of clinical signs, the formation of inclusions, and neurodegeneration are processes that progress independently. A better understanding of the relationship between CAG repeat length, neurodegenerative pathways, and clinical behavioural signs is essential, if we are to find strategies to delay or reverse the course of this disease.
Collapse
Affiliation(s)
- Catherine Kielar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
56
|
Creus-Muncunill J, Ehrlich ME. Cell-Autonomous and Non-cell-Autonomous Pathogenic Mechanisms in Huntington's Disease: Insights from In Vitro and In Vivo Models. Neurotherapeutics 2019; 16:957-978. [PMID: 31529216 PMCID: PMC6985401 DOI: 10.1007/s13311-019-00782-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant disorder caused by an expansion in the trinucleotide CAG repeat in exon-1 in the huntingtin gene, located on chromosome 4. When the number of trinucleotide CAG exceeds 40 repeats, disease invariably is manifested, characterized by motor, cognitive, and psychiatric symptoms. The huntingtin (Htt) protein and its mutant form (mutant huntingtin, mHtt) are ubiquitously expressed but although multiple brain regions are affected, the most vulnerable brain region is the striatum. Striatal medium-sized spiny neurons (MSNs) preferentially degenerate, followed by the cortical pyramidal neurons located in layers V and VI. Proposed HD pathogenic mechanisms include, but are not restricted to, excitotoxicity, neurotrophic support deficits, collapse of the protein degradation mechanisms, mitochondrial dysfunction, transcriptional alterations, and disorders of myelin. Studies performed in cell type-specific and regionally selective HD mouse models implicate both MSN cell-autonomous properties and cell-cell interactions, particularly corticostriatal but also with non-neuronal cell types. Here, we review the intrinsic properties of MSNs that contribute to their selective vulnerability and in addition, we discuss how astrocytes, microglia, and oligodendrocytes, together with aberrant corticostriatal connectivity, contribute to HD pathophysiology. In addition, mHtt causes cell-autonomous dysfunction in cell types other than MSNs. These findings have implications in terms of therapeutic strategies aimed at preventing neuronal dysfunction and degeneration.
Collapse
Affiliation(s)
- Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
57
|
Harris KL, Armstrong M, Swain R, Erzinclioglu S, Das T, Burgess N, Barker RA, Mason SL. Huntington's disease patients display progressive deficits in hippocampal-dependent cognition during a task of spatial memory. Cortex 2019; 119:417-427. [PMID: 31499434 DOI: 10.1016/j.cortex.2019.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/24/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Cognitive disturbances occur early in Huntington's disease (HD) and place a significant burden on the lives of patients and family members. Whilst these impairments are typically attributed to deterioration of the frontal-striatal pathways, accumulating evidence suggests that hippocampal dysfunction may also contribute to such impairments. Here, we employ a novel spatial memory task that has previously been shown to elicit impairments in individuals with focal hippocampal lesions, as a means to further investigate the role of hippocampal dysfunction in HD. METHOD Sixty-four individuals participated in the study, including 32 healthy controls, 11 patients with diagnosed HD and 16 premanifest HD gene carriers. We also included an additional control group of 5 individuals with focal unilateral basal ganglia lesions. Participants undertook a task that measured perception and short-term spatial memory using computer-generated visual scenes. RESULTS HD patients experienced significant impairments in spatial perception and memory, which strongly correlated with disease burden score (DBS). Premanifest gene carriers performed at a similar level to healthy controls throughout all aspects of the task indicating that the effects seen in the HD patients represent a deterioration in function. Interestingly, basal ganglia lesion patients were not impaired in any aspects of the task. CONCLUSION There is evidence of significant deficits in hippocampal-dependent spatial cognition in HD that cannot be explained as a function of degeneration to the basal ganglia. The impairments were greatest in individuals with higher DBSs, suggesting that deficits relate to the disease process in HD.
Collapse
Affiliation(s)
- Kate L Harris
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
| | - Matthew Armstrong
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Rachel Swain
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Sharon Erzinclioglu
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Tilak Das
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah L Mason
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
58
|
Vitanova KS, Stringer KM, Benitez DP, Brenton J, Cummings DM. Dementia associated with disorders of the basal ganglia. J Neurosci Res 2019; 97:1728-1741. [PMID: 31392765 DOI: 10.1002/jnr.24508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 01/12/2023]
Abstract
Dementia is now the leading cause of death in the United Kingdom, accounting for over 12% of all deaths and is the fifth most common cause of death worldwide. As treatments for heart disease and cancers improve and the population ages, the number of sufferers will only increase, with the chance of developing dementia doubling every 5 years after the age of 65. Finding an effective treatment is ever more critical to avert this pandemic health (and economic) crisis. To date, most dementia-related research has focused on the cortex and the hippocampus; however, with dementia becoming more fully recognized as aspects of diseases historically categorized as motor disorders (e.g., Parkinson's and Huntington's diseases), the role of the basal ganglia in dementia is coming to the fore. Conversely, it is highly likely that neuronal pathways in these structures traditionally considered as spared in Alzheimer's disease are also affected, particularly in later stages of the disease. In this review, we examine some of the limited evidence linking the basal ganglia to dementia.
Collapse
Affiliation(s)
- Karina S Vitanova
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Katie M Stringer
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK.,Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Diana P Benitez
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Jonathan Brenton
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Damian M Cummings
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| |
Collapse
|
59
|
Valdés Hernández MDC, Abu-Hussain J, Qiu X, Priller J, Parra Rodríguez M, Pino M, Báez S, Ibáñez A. Structural neuroimaging differentiates vulnerability from disease manifestation in colombian families with Huntington's disease. Brain Behav 2019; 9:e01343. [PMID: 31276317 PMCID: PMC6710228 DOI: 10.1002/brb3.1343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/29/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION The volume of the striatal structures has been associated with disease progression in individuals with Huntington's disease (HD) from North America, Europe, and Australia. However, it is not known whether the gray matter (GM) volume in the striatum is also sensitive in differentiating vulnerability from disease manifestation in HD families from a South-American region known to have high incidence of the disease. In addition, the association of enlarged brain perivascular spaces (PVS) with cognitive, behavioral, and motor symptoms of HD is unknown. MATERIALS AND METHODS We have analyzed neuroimaging indicators of global atrophy, PVS burden, and GM tissue volume in the basal ganglia and thalami, in relation to behavioral, motor, and cognitive scores, in 15 HD patients with overt disease manifestation and 14 first-degree relatives not genetically tested, which represent a vulnerable group, from the region of Magdalena, Colombia. RESULTS Poor fluid intelligence as per the Raven's Standard Progressive Matrices was associated with global brain atrophy (p = 0.002) and PVS burden (p ≤ 0.02) in HD patients, where the GM volume in all subcortical structures, with the exception of the right globus pallidus, was associated with motor or cognitive scores. Only the GM volume in the right putamen was associated with envy and MOCA scores (p = 0.008 and 0.015 respectively) in first-degree relatives. CONCLUSION Striatal GM volume, global brain atrophy and PVS burden may serve as differential indicators of disease manifestation in HD. The Raven's Standard Progressive Matrices could be a cognitive test worth to consider in the differentiation of vulnerability versus overt disease in HD.
Collapse
Affiliation(s)
- Maria Del C Valdés Hernández
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Janna Abu-Hussain
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Xinyi Qiu
- Glan Clwyd Hospital, North Wales, UK
| | - Josef Priller
- Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Parra Rodríguez
- School of Psychological Sciences and Health, Strathclyde University, Glasgow, UK.,Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia
| | - Mariana Pino
- Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia
| | - Sandra Báez
- Department of Psychology, Universidad de Los Andes, Bogotá, Colombia
| | - Agustín Ibáñez
- Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia.,Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC), Sydney, NSW, Australia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| |
Collapse
|
60
|
Zeun P, Scahill RI, Tabrizi SJ, Wild EJ. Fluid and imaging biomarkers for Huntington's disease. Mol Cell Neurosci 2019; 97:67-80. [PMID: 30807825 DOI: 10.1016/j.mcn.2019.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease is a chronic progressive neurodegenerative condition for which there is no disease-modifying treatment. The known genetic cause of Huntington's disease makes it possible to identify individuals destined to develop the disease and instigate treatments before the onset of symptoms. Multiple trials are already underway that target the cause of HD, yet clinical measures are often insensitive to change over typical clinical trial duration. Robust biomarkers of drug target engagement, disease severity and progression are required to evaluate the efficacy of treatments and concerted efforts are underway to achieve this. Biofluid biomarkers have potential advantages of direct quantification of biological processes at the molecular level, whilst imaging biomarkers can quantify related changes at a structural level in the brain. The most robust biofluid and imaging biomarkers can offer complementary information, providing a more comprehensive evaluation of disease stage and progression to inform clinical trial design and endpoints.
Collapse
Affiliation(s)
- Paul Zeun
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Rachael I Scahill
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Sarah J Tabrizi
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Edward J Wild
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| |
Collapse
|
61
|
Rangel-Barajas C, Rebec GV. Overview of Huntington's Disease Models: Neuropathological, Molecular, and Behavioral Differences. ACTA ACUST UNITED AC 2019; 83:e47. [PMID: 30040221 DOI: 10.1002/cpns.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transgenic mouse models of Huntington's disease (HD), a neurodegenerative condition caused by a single gene mutation, have been transformative in their ability to reveal the molecular processes and pathophysiological mechanisms underlying the HD behavioral phenotype. Three model categories have been generated depending on the genetic context in which the mutation is expressed: truncated, full-length, and knock-in. No single model, however, broadly replicates the behavioral symptoms and massive neuronal loss that occur in human patients. The disparity between model and patient requires careful consideration of what each model has to offer when testing potential treatments. Although the translation of animal data to the clinic has been limited, each model can make unique contributions toward an improved understanding of the neurobehavioral underpinnings of HD. Thus, conclusions based on data obtained from more than one model are likely to have the most success in the search for new treatment targets. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - George V Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| |
Collapse
|
62
|
Shacham T, Sharma N, Lederkremer GZ. Protein Misfolding and ER Stress in Huntington's Disease. Front Mol Biosci 2019; 6:20. [PMID: 31001537 PMCID: PMC6456712 DOI: 10.3389/fmolb.2019.00020] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence in recent years indicates that protein misfolding and aggregation, leading to ER stress, are central factors of pathogenicity in neurodegenerative diseases. This is particularly true in Huntington's disease (HD), where in contrast with other disorders, the cause is monogenic. Mutant huntingtin interferes with many cellular processes, but the fact that modulation of ER stress and of the unfolded response pathways reduces the toxicity, places these mechanisms at the core and gives hope for potential therapeutic approaches. There is currently no effective treatment for HD and it has a fatal outcome a few years after the start of symptoms of cognitive and motor impairment. Here we will discuss recent findings that shed light on the mechanisms of protein misfolding and aggregation that give origin to ER stress in neurodegenerative diseases, focusing on Huntington's disease, on the cellular response and on how to use this knowledge for possible therapeutic strategies.
Collapse
Affiliation(s)
- Talya Shacham
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Neeraj Sharma
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Gerardo Z Lederkremer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
63
|
Petrella LI, Castelhano JM, Ribeiro M, Sereno JV, Gonçalves SI, Laço MN, Hayden MR, Rego AC, Castelo-Branco M. A whole brain longitudinal study in the YAC128 mouse model of Huntington's disease shows distinct trajectories of neurochemical, structural connectivity and volumetric changes. Hum Mol Genet 2019; 27:2125-2137. [PMID: 29668904 DOI: 10.1093/hmg/ddy119] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder causing cognitive and motor impairments, evolving to death within 15-20 years after symptom onset. We previously established a mouse model with the entire human HD gene containing 128 CAG repeats (YAC128) which accurately recapitulates the natural history of the human disease. Defined time points in this natural history enable the understanding of longitudinal trajectories from the neurochemical and structural points of view using non-invasive high-resolution multi-modal imaging. Accordingly, we designed a longitudinal structural imaging (MRI and DTI) and spectroscopy (1H-MRS) study in YAC128, at 3, 6, 9 and 12 months of age, at 9.4 T. Structural analysis (MRI/DTI), confirmed that the striatum is the earliest affected brain region, but other regions were also identified through connectivity analysis (pre-frontal cortex, hippocampus, globus pallidus and thalamus), suggesting a striking homology with the human disease. Importantly, we found for the first time, a negative correlation between striatal and hippocampal changes only in YAC128. In fact, the striatum showed accelerated volumetric decay in HD, as opposed to the hippocampus. Neurochemical analysis of the HD striatum suggested early neurometabolic alterations in neurotransmission and metabolism, with a significant increase in striatal GABA levels, and specifically anticorrelated levels of N-acetyl aspartate and taurine, suggesting that the later is homeostatically adjusted for neuroprotection, as neural loss, indicated by the former, is progressing. These results provide novel insights into the natural history of HD and prove a valuable role for longitudinal multi-modal panels of structural and metabolite/neurotransmission in the YAC128 model.
Collapse
Affiliation(s)
- Lorena I Petrella
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João M Castelhano
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mario Ribeiro
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal
| | - José V Sereno
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sónia I Gonçalves
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal.,Neuroplasticity and Neural Activity Laboratory, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Mário N Laço
- Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Michael R Hayden
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - A Cristina Rego
- Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
64
|
Pervasive autobiographical memory impairments in Huntington's disease. Neuropsychologia 2019; 127:123-130. [PMID: 30817911 DOI: 10.1016/j.neuropsychologia.2019.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 11/22/2022]
Abstract
Autobiographical memory dysfunction is a pervasive feature of neurodegenerative disorders, but less is known about the integrity of autobiographical memory in Huntington's disease (HD). Deficits in anterograde verbal episodic memory on traditional neuropsychological tests have been detected in HD, however, whether personally-relevant autobiographical retrieval is also affected is unknown. We examined autobiographical memory performance in 26 participants genetically confirmed to have HD who were in the peri-manifest stage of the disease (including 12 in the late premanifest stage and 14 who were early diagnosed), and 24 matched controls using the Autobiographical Interview (AI), a semi-structured interview assessing retrieval of autobiographical details from discrete epochs across the lifetime. Relative to controls, people with HD exhibited global episodic autobiographical memory impairments, regardless of recency or remoteness of the memory being retrieved. While specific cues bolstered the retrieval of episodic (internal) details in HD participants, their performance remained significantly below that of controls. Moreover, following probing, people with HD retrieved more extraneous (external) details not directly related to the autobiographical event they originally retrieved, including semantic details, repetitions, and metacognitive statements. Our results reveal marked autobiographical memory dysfunction in HD, not directly attributable to strategic retrieval deficits, and suggest that autobiographical memory impairment may represent an overlooked feature of the cognitive phenotype of HD.
Collapse
|
65
|
Dargaei Z, Liang X, Serranilla M, Santos J, Woodin MA. Alterations in Hippocampal Inhibitory Synaptic Transmission in the R6/2 Mouse Model of Huntington's Disease. Neuroscience 2019; 404:130-140. [PMID: 30797895 DOI: 10.1016/j.neuroscience.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 01/05/2023]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder of the central nervous system characterized by choreatic movements, behavioral and psychiatric disturbances and cognitive impairments. Deficits in learning and memory are often the first signs of disease onset in both HD patients and mouse models of HD and are in part regulated by the hippocampus. In the R6/2 mouse model of HD, GABAergic transmission can be excitatory in the hippocampus and restoring inhibition can rescue the associated memory deficits. In the present study we determine that hippocampal GABAergic neurotransmission in the R6/2 mouse is disrupted as early as 4 weeks of age and is accompanied by alterations in the expression of key inhibitory proteins. Specifically, spontaneous inhibitory postsynaptic currents were initially increased in frequency at 4 postnatal weeks and subsequently decreased after the mice displayed the typical R6/2 behavioral phenotype at 10 weeks of age. Symptomatic mice also exhibited a change in the probability of GABA release and changes in the basic membrane properties including neuronal excitability and input resistance. These electrophysiological changes in presymptomatic and symptomatic R6/2 mice were further accompanied by alterations in the protein expression level of pre- and postsynaptic inhibitory markers. Taken together, the present findings demonstrate profound alterations in the inhibitory neurotransmission in the hippocampus across the lifespan of the disease, including prior to neuronal degeneration, which suggests that the inhibitory hippocampal synapses may prove useful as a target for future therapeutic design.
Collapse
Affiliation(s)
- Zahra Dargaei
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Xinyi Liang
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Melissa Serranilla
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Janeane Santos
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada.
| |
Collapse
|
66
|
Modulation of Phospho-CREB by Systemically Administered Recombinant BDNF in the Hippocampus of the R6/2 Mouse Model of Huntington's Disease. NEUROSCIENCE JOURNAL 2019; 2019:8363274. [PMID: 30881980 PMCID: PMC6381568 DOI: 10.1155/2019/8363274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/02/2018] [Accepted: 12/13/2018] [Indexed: 01/07/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease due to an expansion of a trinucleotide repeats in IT15 gene encoding for the protein huntingtin. Motor dysfunction, cognitive decline, and psychiatric disorder are typical clinical signs of HD. In HD, mutated huntingtin causes a major loss of brain derived neurotrophic factor (BDNF), causing striatal atrophy. Moreover, a key involvement of BDNF was observed in the synaptic plasticity that controls the acquisition and/or consolidation of certain forms of memory. We studied changes in hippocampal BDNF and in CREB in the R6/2 mouse model of HD. Moreover, we investigated if the beneficial effects of systemically administered recombinant BDNF observed in the striatum and cortex had an effect also on the hippocampus. Osmotic minipumps that chronically released recombinant BDNF or saline solution from 4 weeks of age until euthanasia were implanted into R6/2 and wild type mice. Our data show that BDNF is severely decreased in the hippocampus of R6/2 mice, while BDNF treatment restored its physiological levels. Moreover, the chronic administration of recombinant BDNF promoted the increment of phosphorylated CREB protein. Our study demonstrates the involvement of hippocampus in the pathology of R6/2 model of HD and correlates the beneficial effects of BDNF administration with increased hippocampal levels of BDNF and pCREB.
Collapse
|
67
|
Singh-Bains MK, Mehrabi NF, Sehji T, Austria MDR, Tan AYS, Tippett LJ, Dragunow M, Waldvogel HJ, Faull RLM. Cerebellar degeneration correlates with motor symptoms in Huntington disease. Ann Neurol 2019; 85:396-405. [PMID: 30635944 PMCID: PMC6590792 DOI: 10.1002/ana.25413] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Huntington disease (HD) is an autosomal dominant neurodegenerative disorder characterized by variable motor and behavioral symptoms attributed to major neuropathology of mainly the basal ganglia and cerebral cortex. The role of the cerebellum, a brain region involved in the coordination of movements, in HD neuropathology has been controversial. This study utilizes postmortem human brain tissue to investigate whether Purkinje cell degeneration in the neocerebellum is present in HD, and how this relates to disease symptom profiles. METHODS Unbiased stereological counting methods were used to quantify the total number of Purkinje cells in 15 HD cases and 8 neurologically normal control cases. Based on their predominant symptoms, the HD cases were categorized into 2 groups: "motor" or "mood." RESULTS The results demonstrated a significant 43% loss of Purkinje cells in HD cases with predominantly motor symptoms, and no cell loss in cases showing a major mood phenotype. There was no significant correlation between Purkinje cell loss and striatal neuropathological grade, postmortem delay, CAG repeat in the IT15 gene, or age at death. INTERPRETATION This study shows a compelling relationship between Purkinje cell loss in the HD neocerebellum and the HD motor symptom phenotype, which, together with our previous human brain studies on the same HD cases, provides novel perspectives interrelating and correlating the variable cerebellar, basal ganglia, and neocortical neuropathology with the variability of motor/mood symptom profiles in the human HD brain. ANN NEUROL 2019;85:396-405.
Collapse
Affiliation(s)
- Malvindar K Singh-Bains
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Nasim F Mehrabi
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Tvesa Sehji
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Micah D R Austria
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Adelie Y S Tan
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Lynette J Tippett
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Psychology, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|
68
|
Essa MM, Moghadas M, Ba-Omar T, Walid Qoronfleh M, Guillemin GJ, Manivasagam T, Justin-Thenmozhi A, Ray B, Bhat A, Chidambaram SB, Fernandes AJ, Song BJ, Akbar M. Protective Effects of Antioxidants in Huntington’s Disease: an Extensive Review. Neurotox Res 2019; 35:739-774. [DOI: 10.1007/s12640-018-9989-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 01/18/2023]
|
69
|
Anderson DG, Haagensen M, Ferreira-Correia A, Pierson R, Carr J, Krause A, Margolis RL. Emerging differences between Huntington's disease-like 2 and Huntington's disease: A comparison using MRI brain volumetry. Neuroimage Clin 2019; 21:101666. [PMID: 30682531 PMCID: PMC6350216 DOI: 10.1016/j.nicl.2019.101666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 01/18/2023]
Abstract
Huntington's Disease-Like 2 (HDL2), caused by a CTG/CAG expansion in JPH3 on chromosome 16q24, is the most common Huntington's Disease (HD) phenocopy in populations with African ancestry. Qualitatively, brain MRIs of HDL2 patients have been indistinguishable from HD. To determine brain regions most affected in HDL2 a cross-sectional study using MRI brain volumetry was undertaken to compare the brains of nine HDL2, 11 HD and nine age matched control participants. Participants were ascertained from the region in South Africa with the world's highest HDL2 incidence. The HDL2 and HD patient groups showed no significant differences with respect to mean age at MRI, disease duration, abnormal triplet repeat length, or age at disease onset. Overall, intracerebral volumes were smaller in both affected groups compared to the control group. Comparing the HDL2 and HD groups across multiple covariates, cortical and subcortical volumes were similar with the exception that the HDL2 thalamic volumes were smaller. Consistent with other similarities between the two diseases, these results indicate a pattern of neurodegeneration in HDL2 that is remarkably similar to HD. However smaller thalamic volumes in HDL2 raises intriguing questions into the pathogenesis of both disorders, and how these volumetric differences relate to their respective phenotypes.
Collapse
Affiliation(s)
- David G Anderson
- The University of the Witwatersrand Donald Gordon Medical Centre, Neurology, Johannesburg, South Africa; Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, The University of the Witwatersrand, Johannesburg, South Africa.
| | - Mark Haagensen
- The University of the Witwatersrand Donald Gordon Medical Centre, Radiology Department, Johannesburg, South Africa
| | - Aline Ferreira-Correia
- Department of Psychology, School of Human and Community Development, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Jonathan Carr
- Division of Neurology, Department of Medicine, University of Stellenbosch, Cape Town, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, The University of the Witwatersrand, Johannesburg, South Africa
| | - Russell L Margolis
- Departments of Psychiatry and Neurology, Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
70
|
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease that results in motor, cognitive and psychiatric dysfunction. It is caused by a polyglutamine repeat expansion mutation in the widely expressed HTT protein. The clinical manifestations of HD have been largely attributed to the neurodegeneration of specific neuronal cell types in the brain. However, it has become clear that other cell types, including astrocytes, play important roles in the pathogenesis of HD. The mutant HTT (mHTT) protein is present in neuronal and non-neuronal cell types throughout the nervous system. Studies designed to understand the contribution of mHTT expression in non-neuronal cell types to HD pathogenesis has lagged considerably behind those focused on neurons. However, the role of astrocytes in HD has received more attention over the last 5-10 years. In this chapter we present an overview of HD and our current understanding of astrocytic involvement in this disease. We describe the neuropathological features of HD and provide evidence of morphological and molecular changes in mHTT expressing astrocytes. We review data from animal models and HD patients that implicate mHTT expressing astrocytes to the progression of HD.
Collapse
Affiliation(s)
- Michelle Gray
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1720 2nd Ave S, CIRC 425B, Birmingham, AL 35294, USA.
| |
Collapse
|
71
|
Padovan-Neto FE, Jurkowski L, Murray C, Stutzmann GE, Kwan M, Ghavami A, Beaumont V, Park LC, West AR. Age- and sex-related changes in cortical and striatal nitric oxide synthase in the Q175 mouse model of Huntington's disease. Nitric Oxide 2018; 83:40-50. [PMID: 30528913 DOI: 10.1016/j.niox.2018.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
In Huntington's disease (HD), corticostriatal and striatopallidal projection neurons preferentially degenerate as a result of mutant huntingtin expression. Pathological deficits in nitric oxide (NO) signaling have also been reported in corticostriatal circuits in HD, however, the impact of age and sex on nitrergic transmission is not well characterized. Thus, we utilized NADPH-diaphorase (NADPH-d) histochemistry and qPCR assays to assess neuronal NO synthase (nNOS) activity/expression in aged male and female Q175 heterozygous mice. Compared to age-matched controls, male Q175 mice exhibited reductions in NADPH-d staining in the motor cortex at 21, but not, 16 months of age. Comparisons across genotypes showed that striatal NADPH-d staining was significantly decreased at both 16 and 21 months of age. Comparisons within sexes in 21 month old mice revealed a decrease in striatal NADPH-d staining in males, but no changes were detected in females. Significant correlations between cortical and striatal NADPH-d staining deficits were also observed in males and females at both ages. To directly assess the role of constitutively active NOS isoforms in these changes, nNOS and endothelial NOS (eNOS) mRNA expression levels were examined in R6/2 (3 month old) and Q175 (11.5 month old) mice using qPCR assays. nNOS transcript expression was decreased in the cortex (40%) and striatum (54%) in R6/2 mice. nNOS mRNA down-regulation in striatum of Q175 animals was more modest (19%), and no changes were detected in cortex. eNOS expression was not changed in the cortex or striatum of Q175 mice. The current findings point to age-dependent deficits in nNOS activity in the HD cortex and striatum which appear first in the striatum and are more pronounced in males. Together, these observations and previous studies indicate that decreases in nitrergic transmission progress with age and are likely to contribute to corticostriatal circuit pathophysiology particularly in male patients with HD.
Collapse
Affiliation(s)
- Fernando E Padovan-Neto
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | - Lauren Jurkowski
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Conor Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Grace E Stutzmann
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Mei Kwan
- PsychoGenics Inc., Paramus, NJ, USA
| | | | | | - Larry C Park
- CHDI Management/CHDI Foundation, Los Angeles, CA, USA
| | - Anthony R West
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
72
|
Rowley CD, Tabrizi SJ, Scahill RI, Leavitt BR, Roos RAC, Durr A, Bock NA. Altered Intracortical T 1-Weighted/T 2-Weighted Ratio Signal in Huntington's Disease. Front Neurosci 2018; 12:805. [PMID: 30455625 PMCID: PMC6230564 DOI: 10.3389/fnins.2018.00805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/16/2018] [Indexed: 01/04/2023] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder that is characterized by neuronal cell death. Although medium spiny neurons in the striatum are predominantly affected, other brain regions including the cerebral cortex also degenerate. Previous structural imaging studies have reported decreases in cortical thickness in HD. Here we aimed to further investigate changes in cortical tissue composition in vivo in HD using standard clinical T1-weighted (T1W) and T2-weighted (T2W) magnetic resonance images (MRIs). 326 subjects from the TRACK-HD dataset representing healthy controls and four stages of HD progression were analyzed. The intracortical T1W/T2W intensity was sampled in the middle depth of the cortex over 82 regions across the cortex. While these previously collected images were not optimized for intracortical analysis, we found a significant increase in T1W/T2W intensity (p < 0.05 Bonferroni-Holm corrected) beginning with HD diagnosis. Increases in ratio intensity were found in the insula, which then spread to ventrolateral frontal cortex, superior temporal gyrus, medial temporal gyral pole, and cuneus with progression into the most advanced HD group studied. Mirroring past histological reports, this increase in the ratio image intensity may reflect disease-related increases in myelin and/or iron in the cortex. These findings suggest that future imaging studies are warranted with imaging optimized to more sensitively and specifically assess which features of cortical tissue composition are abnormal in HD to better characterize disease progression.
Collapse
Affiliation(s)
- Christopher D. Rowley
- McMaster Integrative Neuroscience Discovery and Study Program, McMaster University, Hamilton, ON, Canada
| | - Sarah J. Tabrizi
- Huntington’s Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Rachael I. Scahill
- Huntington’s Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Blair R. Leavitt
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Raymund A. C. Roos
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Alexandra Durr
- INSERM U1127, CNRS UMR7225, UMR_S1127, UPMC Université Paris VI, Institut du Cerveau et de la Moelle Epinière, Sorbonne University, Paris, France
- APHP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Nicholas A. Bock
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
73
|
Estrada-Sánchez AM, Castro D, Portillo-Ortiz K, Jang K, Nedjat-Haiem M, Levine MS, Cepeda C. Complete but not partial inhibition of glutamate transporters exacerbates cortical excitability in the R6/2 mouse model of Huntington's disease. CNS Neurosci Ther 2018; 25:509-518. [PMID: 30311425 DOI: 10.1111/cns.13070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 01/05/2023] Open
Abstract
AIM Deficient glutamate reuptake occurs in the cerebral cortex of Huntington's disease (HD) patients and murine models. Here, we examine the effects of partial or complete blockade of glutamate transporters on excitatory postsynaptic currents (EPSCs) of cortical pyramidal neurons (CPNs). METHODS Whole-cell patch clamp recordings of CPNs in slices from symptomatic R6/2 mice and wild-type (WT) littermates were used to examine the effects of selective or concurrent inhibition of glutamate reuptake transporters. RESULTS Selective inhibition of the glial glutamate transporter 1 (GLT-1) or the glutamate aspartate transporter (GLAST) produced slight decreases in decay time of evoked EPSCs in CPNs from WT and R6/2 mice with no significant differences between genotypes. In contrast, concurrent inhibition of both transporters with DL-TBOA induced a significant increase in area and decay time and this effect was significantly greater in R6/2 CPNs. Furthermore, full blockade also reduced spontaneous EPSC frequency and exacerbated epileptiform activity in CPNs from symptomatic R6/2 mice. CONCLUSIONS R6/2 CPNs are more sensitive to glutamate accumulation during full inhibition of both glutamate transporters, and these neurons have homeostatic mechanisms to cope with inhibition of GLT-1 or GLAST by a mechanism that involves upregulation of either transporter when the other is deficient.
Collapse
Affiliation(s)
- Ana María Estrada-Sánchez
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California
| | - Daniel Castro
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California
| | - Kenia Portillo-Ortiz
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California
| | - Katrina Jang
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California
| | - Michael Nedjat-Haiem
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
74
|
Structural Magnetic Resonance Imaging in Huntington's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:335-380. [PMID: 30409258 DOI: 10.1016/bs.irn.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, caused by expansion of the CAG repeat in the huntingtin gene. HD is characterized clinically by progressive motor, cognitive and neuropsychiatric symptoms. There are currently no disease modifying treatments available for HD, and there is a great need for biomarkers to monitor disease progression and identify new targets for therapeutic intervention. Neuroimaging techniques provide a powerful tool for assessing disease pathology and progression in premanifest stages, before the onset of overt motor symptoms. Structural magnetic resonance imaging (MRI) is non-invasive imaging techniques which have been employed to study structural and microstructural changes in premanifest and manifest HD gene carriers. This chapter described structural imaging techniques and analysis methods employed across HD MRI studies. Current evidence for structural MRI abnormalities in HD, and associations between atrophy, structural white matter changes, iron deposition and clinical performance are discussed; together with the use of structural MRI measures as a diagnostic tool, to assess longitudinal changes, and as potential biomarkers and endpoints for clinical trials.
Collapse
|
75
|
Morphological features in juvenile Huntington disease associated with cerebellar atrophy - magnetic resonance imaging morphometric analysis. Pediatr Radiol 2018; 48:1463-1471. [PMID: 29926145 DOI: 10.1007/s00247-018-4167-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND The imaging features of Huntington disease are well known in adults, unlike in juvenile-onset Huntington disease. OBJECTIVE To conduct a morphometric magnetic resonance imaging (MRI) analysis in three juvenile Huntington disease patients (ages 2, 4 and 6 years old) to determine whether quantitative cerebral and cerebellar morphological metrics may provide diagnostically interesting patterns of cerebellar and cerebellar atrophy. MATERIALS AND METHODS We report the cases of three siblings with extremely early presentations of juvenile Huntington disease associated with dramatic expansions of the morbid paternal allele from 43 to more than 100 CAG trinucleotide repeats. Automatic segmentation of MRI images of the cerebrum and cerebellum was performed and volumes of cerebral substructures and cerebellar lobules of juvenile Huntington disease patients were compared to those of 30 normal gender- and age-matched controls. Juvenile Huntington disease segmented volumes were compared to those of age-matched controls by using a z-score. RESULTS Three cerebral substructures (caudate nucleus, putamen and globus pallidus) demonstrated a reduction in size of more than three standard deviations from the normal mean although it was not salient in one of them at clinical reading and was not diagnosed. The size of cerebellum lobules, cerebellum grey matter and cerebellum cortex was reduced by more than two standard deviations in the three patients. The cerebellar atrophy was predominant in the posterior lobe. CONCLUSION Our study sheds light on atrophic cerebral and cerebellar structures in juvenile Huntington disease. Automatic segmentations of the cerebellum provide patterns that may be of diagnostic interest in this disease.
Collapse
|
76
|
Early postnatal behavioral, cellular, and molecular changes in models of Huntington disease are reversible by HDAC inhibition. Proc Natl Acad Sci U S A 2018; 115:E8765-E8774. [PMID: 30150378 PMCID: PMC6140493 DOI: 10.1073/pnas.1807962115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In Huntington disease (HD) gene carriers the disease-causing mutant Huntingtin (mHTT) is already present during early developmental stages, but, surprisingly, HD patients develop clinical symptoms only many years later. While a developmental role of Huntingtin has been described, so far new therapeutic approaches targeting those early neurodevelopmental processes are lacking. Here, we show that behavioral, cellular, and molecular changes associated with mHTT in the postnatal period of genetic animal models of HD can be reverted using low-dose treatment with a histone deacetylation inhibitor. Our findings support a neurodevelopmental basis for HD and provide proof of concept that pre-HD symptoms, including aberrant neuronal differentiation, are reversible by early therapeutic intervention in vivo. Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene (HTT). Although mutant HTT is expressed during embryonic development and throughout life, clinical HD usually manifests later in adulthood. A number of studies document neurodevelopmental changes associated with mutant HTT, but whether these are reversible under therapy remains unclear. Here, we identify very early behavioral, molecular, and cellular changes in preweaning transgenic HD rats and mice. Reduced ultrasonic vocalization, loss of prepulse inhibition, and increased risk taking are accompanied by disturbances of dopaminergic regulation in vivo, reduced neuronal differentiation capacity in subventricular zone stem/progenitor cells, and impaired neuronal and oligodendrocyte differentiation of mouse embryo-derived neural stem cells in vitro. Interventional treatment of this early phenotype with the histone deacetylase inhibitor (HDACi) LBH589 led to significant improvement in behavioral changes and markers of dopaminergic neurotransmission and complete reversal of aberrant neuronal differentiation in vitro and in vivo. Our data support the notion that neurodevelopmental changes contribute to the prodromal phase of HD and that early, presymptomatic intervention using HDACi may represent a promising novel treatment approach for HD.
Collapse
|
77
|
Antidepressant Effects of Probucol on Early-Symptomatic YAC128 Transgenic Mice for Huntington's Disease. Neural Plast 2018; 2018:4056383. [PMID: 30186318 PMCID: PMC6112232 DOI: 10.1155/2018/4056383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/28/2018] [Accepted: 07/26/2018] [Indexed: 11/17/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a trinucleotide expansion in the HD gene, resulting in an extended polyglutamine tract in the protein huntingtin. HD is traditionally viewed as a movement disorder, but cognitive and neuropsychiatric symptoms also contribute to the clinical presentation. Depression is one of the most common psychiatric disturbances in HD, present even before manifestation of motor symptoms. Diagnosis and treatment of depression in HD-affected individuals are essential aspects of clinical management in this population, especially owing to the high risk of suicide. This study investigated whether chronic administration of the antioxidant probucol improved motor and affective symptoms as well as hippocampal neurogenic function in the YAC128 transgenic mouse model of HD during the early- to mild-symptomatic stages of disease progression. The motor performance and affective symptoms were monitored using well-validated behavioral tests in YAC128 mice and age-matched wild-type littermates at 2, 4, and 6 months of age, after 1, 3, or 5 months of treatment with probucol (30 mg/kg/day via water supplementation, starting on postnatal day 30). Endogenous markers were used to assess the effect of probucol on cell proliferation (Ki-67 and proliferation cell nuclear antigen (PCNA)) and neuronal differentiation (doublecortin (DCX)) in the hippocampal dentate gyrus (DG). Chronic treatment with probucol reduced the occurrence of depressive-like behaviors in early- and mild-symptomatic YAC128 mice. Functional improvements were not accompanied by increased progenitor cell proliferation and neuronal differentiation. Our findings provide evidence that administration of probucol may be of clinical benefit in the management of early- to mild-symptomatic HD.
Collapse
|
78
|
Reiner A, Deng Y. Disrupted striatal neuron inputs and outputs in Huntington's disease. CNS Neurosci Ther 2018; 24:250-280. [PMID: 29582587 PMCID: PMC5875736 DOI: 10.1111/cns.12844] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a hereditary progressive neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the protein huntingtin, resulting in a pathogenic expansion of the polyglutamine tract in the N-terminus of this protein. The HD pathology resulting from the mutation is most prominent in the striatal part of the basal ganglia, and progressive differential dysfunction and loss of striatal projection neurons and interneurons account for the progression of motor deficits seen in this disease. The present review summarizes current understanding regarding the progression in striatal neuron dysfunction and loss, based on studies both in human HD victims and in genetic mouse models of HD. We review evidence on early loss of inputs to striatum from cortex and thalamus, which may be the basis of the mild premanifest bradykinesia in HD, as well as on the subsequent loss of indirect pathway striatal projection neurons and their outputs to the external pallidal segment, which appears to be the basis of the chorea seen in early symptomatic HD. Later loss of direct pathway striatal projection neurons and their output to the internal pallidal segment account for the severe akinesia seen late in HD. Loss of parvalbuminergic striatal interneurons may contribute to the late dystonia and rigidity.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
- Department of OphthalmologyThe University of Tennessee Health Science CenterMemphisTNUSA
| | - Yun‐Ping Deng
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
79
|
Belletti D, Grabrucker AM, Pederzoli F, Menrath I, Vandelli MA, Tosi G, Duskey TJ, Forni F, Ruozi B. Hybrid nanoparticles as a new technological approach to enhance the delivery of cholesterol into the brain. Int J Pharm 2018; 543:300-310. [PMID: 29608954 DOI: 10.1016/j.ijpharm.2018.03.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/25/2022]
Abstract
Restoration of the Chol homeostasis in the Central Nervous System (CNS) could be beneficial for the treatment of Huntington's Disease (HD), a progressive, fatal, adult-onset, neurodegenerative disorder. Unfortunately, Chol is unable to cross the blood-brain barrier (BBB), thus a novel strategy for a targeted delivery of Chol into the brain is highly desired. This article aims to investigate the production of hybrid nanoparticles composed by Chol and PLGA (MIX-NPs) modified with g7 ligand for BBB crossing. We described the impact of ratio between components (Chol and PLGA) and formulation process (nanoprecipitation or single emulsion process) on physico-chemical and structural characteristics, we tested MIX-NPs in vitro using primary hippocampal cell cultures evaluating possible toxicity, uptake, and the ability to influence excitatory synaptic receptors. Our results elucidated that both formulation processes produce MIX-NPs with a Chol content higher that 40%, meaning that Chol is a structural particle component and active compound at the same time. The formulation strategy impacted the architecture and reorganization of components leading to some differences in Chol availability between the two types of g7 MIX-NPs. Our results identified that both kinds of MIX-NPs are efficiently taken up by neurons, able to escape lysosomes and release Chol into the cells resulting in an efficient modification in expression of synaptic receptors that could be beneficial in HD.
Collapse
Affiliation(s)
- Daniela Belletti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andreas Martin Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Bernal Institute, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - Francesca Pederzoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Isabel Menrath
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Giovanni Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Thomas Jason Duskey
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Flavio Forni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
80
|
López-Hurtado A, Burgos DF, González P, Dopazo XM, González V, Rábano A, Mellström B, Naranjo JR. Inhibition of DREAM-ATF6 interaction delays onset of cognition deficit in a mouse model of Huntington's disease. Mol Brain 2018. [PMID: 29523177 PMCID: PMC5845147 DOI: 10.1186/s13041-018-0359-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) is a multifunctional neuronal calcium sensor (NCS) that controls Ca2+ and protein homeostasis through gene regulation and protein-protein interactions. Downregulation of DREAM is part of an endogenous neuroprotective mechanism that improves ATF6 (activating transcription factor 6) processing, neuronal survival in the striatum, and motor coordination in R6/2 mice, a model of Huntington’s disease (HD). Whether modulation of DREAM activity can also ameliorate cognition deficits in HD mice has not been studied. Moreover, it is not known whether DREAM downregulation in HD is unique, or also occurs for other NCS family members. Using the novel object recognition test, we show that chronic administration of the DREAM-binding molecule repaglinide, or induced DREAM haplodeficiency delays onset of cognitive impairment in R6/1 mice, another HD model. The mechanism involves a notable rise in the levels of transcriptionally active ATF6 protein in the hippocampus after repaglinide administration. In addition, we show that reduction in DREAM protein in the hippocampus of HD patients was not accompanied by downregulation of other NCS family members. Our results indicate that DREAM inhibition markedly improves ATF6 processing in the hippocampus and that it might contribute to a delay in memory decline in HD mice. The mechanism of neuroprotection through DREAM silencing in HD does not apply to other NCS family members.
Collapse
Affiliation(s)
- Alejandro López-Hurtado
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Daniel F Burgos
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Paz González
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Xose M Dopazo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Valentina González
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Rábano
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Britt Mellström
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Jose R Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain. .,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain.
| |
Collapse
|
81
|
Adanyeguh IM, Monin ML, Rinaldi D, Freeman L, Durr A, Lehéricy S, Henry PG, Mochel F. Expanded neurochemical profile in the early stage of Huntington disease using proton magnetic resonance spectroscopy. NMR IN BIOMEDICINE 2018; 31:10.1002/nbm.3880. [PMID: 29315899 PMCID: PMC5841244 DOI: 10.1002/nbm.3880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
The striatum is a well-known region affected in Huntington disease (HD). However, other regions, including the visual cortex, are implicated. We have identified previously an abnormal energy response in the visual cortex of patients at an early stage of HD using 31 P magnetic resonance spectroscopy (31 P MRS). We therefore sought to further characterize these metabolic alterations with 1 H MRS using a well-validated semi-localized by adiabatic selective refocusing (semi-LASER) sequence that allows the measurement of an expanded number of neurometabolites. Ten early affected patients [Unified Huntington Disease Rating Scale (UHDRS), total motor score = 13.6 ± 10.8] and 10 healthy volunteers of similar age and body mass index (BMI) were recruited for the study. We performed 1 H MRS in the striatum - the region that is primarily affected in HD - and the visual cortex. The protocol allowed a reliable quantification of 10 metabolites in the visual cortex and eight in the striatum, compared with three to five metabolites in previous 1 H MRS studies performed in HD. We identified higher total creatine (p < 0.05) in the visual cortex and lower glutamate (p < 0.001) and total creatine (p < 0.05) in the striatum of patients with HD compared with controls. Less abundant neurometabolites [glutamine, γ-aminobutyric acid (GABA), glutathione, aspartate] showed similar concentrations in both groups. The protocol allowed the measurement of several additional metabolites compared with standard vendor protocols. Our study points to early changes in metabolites involved in energy metabolism in the visual cortex and striatum of patients with HD. Decreased striatal glutamate could reflect early neuronal dysfunction or impaired glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Isaac M. Adanyeguh
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Marie-Lorraine Monin
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
- AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France
| | - Daisy Rinaldi
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Léorah Freeman
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, Unites States
| | - Alexandra Durr
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
- AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France
| | - Stéphane Lehéricy
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
- Center for NeuroImaging Research (CENIR), Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Fanny Mochel
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
- AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France
- University Pierre and Marie Curie, Neurometabolic Research Group, Paris, France
| |
Collapse
|
82
|
Galvez V, Ramírez-García G, Hernandez-Castillo CR, Bayliss L, Díaz R, Lopez-Titla MM, Campos-Romo A, Fernandez-Ruiz J. Extrastriatal degeneration correlates with deficits in the motor domain subscales of the UHDRS. J Neurol Sci 2018; 385:22-29. [DOI: 10.1016/j.jns.2017.11.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 06/29/2017] [Accepted: 11/30/2017] [Indexed: 11/26/2022]
|
83
|
Plank AC, Canneva F, Raber KA, Urbach YK, Dobner J, Puchades M, Bjaalie JG, Gillmann C, Bäuerle T, Riess O, Nguyen HHP, von Hörsten S. Early Alterations in Operant Performance and Prominent Huntingtin Aggregation in a Congenic F344 Rat Line of the Classical CAG n51trunc Model of Huntington Disease. Front Neurosci 2018; 12:11. [PMID: 29422836 PMCID: PMC5788972 DOI: 10.3389/fnins.2018.00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/08/2018] [Indexed: 11/17/2022] Open
Abstract
The transgenic rat model of Huntington disease expressing a fragment of mutant HTT (tgHD rat) has been thoroughly characterized and reproduces hallmark symptoms of human adult-onset HD. Pursuing the optimization of this model for evaluation of translational therapeutic approaches, the F344 inbred rat strain was considered as advantageous genetic background for the expression of the HD transgenic construct. In the present study, a novel congenic line of the SPRDtgHD transgenic model of HD, carrying 51 CAG repeats, was generated on the F344 rat genetic background. To assess the behavioral phenotype, classical assays investigating motor function, emotion, and sensorimotor gating were applied, along with automated screening of metabolic and activity parameters as well as operant conditioning tasks. The neuropathological phenotype was analyzed by immunohistochemistry and ex vivo magnetic resonance imaging. F344tgHD rats displayed markedly reduced anxiety-like behavior in the social interaction test and elevated impulsivity traits already at 3 months of age. Neuropathologically, reduced striatal volume and pronounced aggregation of mutant huntingtin in several brain regions were detected at later disease stage. In conclusion, the congenic F344tgHD model reproduces key aspects of the human HD phenotype, substantiating its value for translational therapeutic approaches.
Collapse
Affiliation(s)
- Anne-Christine Plank
- Experimental Therapy, Preclinical Experimental Center, University Clinics Erlangen, Erlangen, Germany
| | - Fabio Canneva
- Experimental Therapy, Preclinical Experimental Center, University Clinics Erlangen, Erlangen, Germany
| | - Kerstin A Raber
- Experimental Therapy, Preclinical Experimental Center, University Clinics Erlangen, Erlangen, Germany
| | - Yvonne K Urbach
- Experimental Therapy, Preclinical Experimental Center, University Clinics Erlangen, Erlangen, Germany
| | - Julia Dobner
- Experimental Therapy, Preclinical Experimental Center, University Clinics Erlangen, Erlangen, Germany
| | - Maja Puchades
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Clarissa Gillmann
- Preclinical Imaging Platform Erlangen, Institute of Radiology, University Clinics Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen, Institute of Radiology, University Clinics Erlangen, Erlangen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University Clinics Tuebingen, Tuebingen, Germany
| | - Hoa H P Nguyen
- Institute of Medical Genetics and Applied Genomics, University Clinics Tuebingen, Tuebingen, Germany
| | - Stephan von Hörsten
- Experimental Therapy, Preclinical Experimental Center, University Clinics Erlangen, Erlangen, Germany
| |
Collapse
|
84
|
Puigdellívol M, Saavedra A, Pérez-Navarro E. Cognitive dysfunction in Huntington's disease: mechanisms and therapeutic strategies beyond BDNF. Brain Pathol 2018; 26:752-771. [PMID: 27529673 DOI: 10.1111/bpa.12432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
One of the main focuses in Huntington's disease (HD) research, as well as in most neurodegenerative diseases, is the development of new therapeutic strategies, as currently there is no treatment to delay or prevent the progression of the disease. Neuronal dysfunction and neuronal death in HD are caused by a combination of interrelated pathogenic processes that lead to motor, cognitive and psychiatric symptoms. Understanding how mutant huntingtin impacts on a plethora of cellular functions could help to identify new molecular targets. Although HD has been classically classified as a neurodegenerative disease affecting voluntary movement, lately cognitive dysfunction is receiving increased attention as it is very invalidating for patients. Thus, an ambitious goal in HD research is to find altered molecular mechanisms that contribute to cognitive decline. In this review, we have focused on those findings related to corticostriatal and hippocampal cognitive dysfunction in HD, as well as on the underlying molecular mechanisms, which constitute potential therapeutic targets. These include alterations in synaptic plasticity, transcriptional machinery and neurotrophic and neurotransmitter signaling.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| |
Collapse
|
85
|
Wu J, Ryskamp D, Birnbaumer L, Bezprozvanny I. Inhibition of TRPC1-Dependent Store-Operated Calcium Entry Improves Synaptic Stability and Motor Performance in a Mouse Model of Huntington's Disease. J Huntingtons Dis 2018; 7:35-50. [PMID: 29480205 PMCID: PMC6309623 DOI: 10.3233/jhd-170266] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. We previously discovered that mutant Huntingtin sensitizes type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1) to InsP3. This causes calcium leakage from the endoplasmic reticulum (ER) and a compensatory increase in neuronal store-operated calcium (nSOC) entry. We previously demonstrated that supranormal nSOC leads to synaptic loss in striatal medium spiny neurons (MSNs) in YAC128 HD mice. OBJECTIVE We sought to identify calcium channels supporting supranormal nSOC in HD MSNs and to validate these channels as potential therapeutic targets for HD. METHODS Cortico-striatal cultures were established from wild type and YAC128 HD mice and the density of MSN spines was quantified. The expression of candidate nSOC components was suppressed by RNAi knockdown and by CRISPR/Cas9 knockout. TRPC1 knockout mice were crossed with YAC128 HD mice for evaluation of motor performance in a beamwalk assay. RESULTS RNAi-mediated knockdown of TRPC1, TRPC6, Orai1, or Orai2, but not other TRPC isoforms or Orai3, rescued the density of YAC128 MSN spines. Knockdown of stromal interaction molecule 1 (STIM1), an ER calcium sensor and nSOC activator, also rescued YAC128 MSN spines. Knockdown of the same targets suppressed supranormal nSOC in YAC128 MSN spines. These channel subunits co-immunoprecipitated with STIM1 and STIM2 in synaptosomal lysates from mouse striata. Crossing YAC128 mice with TRPC1 knockout mice improved motor performance and rescued MSN spines in vitro and in vivo, indicating that inhibition of TRPC1 may serve as a neuroprotective strategy for HD treatment. CONCLUSIONS TRPC1 channels constitute a potential therapeutic target for treatment of HD.
Collapse
Affiliation(s)
- Jun Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel Ryskamp
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lutz Birnbaumer
- Neurobiology Laboratory, NIEHS, Research Triangle Park, NC, USA
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
86
|
Kreilaus F, Spiro AS, Hannan AJ, Garner B, Jenner AM. Therapeutic Effects of Anthocyanins and Environmental Enrichment in R6/1 Huntington's Disease Mice. J Huntingtons Dis 2017; 5:285-296. [PMID: 27567888 DOI: 10.3233/jhd-160204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a progressive neurodegenerative disease with no effective treatment or cure. Environmental enrichment has been used to slow processes leading to ageing and neurodegenerative diseases including HD. Phenolic phytochemicals including anthocyanins have also been shown to improve brain function in ageing and neurodegenerative diseases. OBJECTIVE This study examined the effects of anthocyanin dietary supplementation and environmental enrichment on behavioural phenotypes and brain cholesterol metabolic alterations in the R6/1 mouse model of HD. METHODS R6/1 HD mice and their wild-type littermate controls were randomised into the different experimental conditions, involving either environmentally enriched versus standard housing conditions, or anthocyanin versus control diet. Motor dysfunction was assessed from 6 to 26 weeks using the RotaRod and the hind-paw clasping tests. Gas chromatography - tandem mass spectrometry was used to quantify a broad range of sterols in the striatum and cortex of R6/1 HD mice. RESULTS Anthocyanin dietary supplementation delayed the onset of motor dysfunction in female HD mice. Environmental enrichment improved motor function and the hind paw clasping phenotype in male HD mice only. These mice also had lower levels of cholesterol oxidation products in the cortex compared to standard-housed mice. CONCLUSION Both anthocyanin supplementation and environmental enrichment are able to improve the motor dysfunction phenotype of R6/1 mice, however the effectiveness of these interventions was different between the two sexes. The interventions examined did not alter brain cholesterol metabolic deficits that have been reported previously in this mouse model of HD.
Collapse
Affiliation(s)
- Fabian Kreilaus
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia.,School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Adena S Spiro
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia.,School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia.,School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Andrew M Jenner
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia.,School of Biological Sciences, University of Wollongong, NSW, Australia
| |
Collapse
|
87
|
Staffaroni AM, Elahi FM, McDermott D, Marton K, Karageorgiou E, Sacco S, Paoletti M, Caverzasi E, Hess CP, Rosen HJ, Geschwind MD. Neuroimaging in Dementia. Semin Neurol 2017; 37:510-537. [PMID: 29207412 PMCID: PMC5823524 DOI: 10.1055/s-0037-1608808] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although the diagnosis of dementia still is primarily based on clinical criteria, neuroimaging is playing an increasingly important role. This is in large part due to advances in techniques that can assist with discriminating between different syndromes. Magnetic resonance imaging remains at the core of differential diagnosis, with specific patterns of cortical and subcortical changes having diagnostic significance. Recent developments in molecular PET imaging techniques have opened the door for not only antemortem but early, even preclinical, diagnosis of underlying pathology. This is vital, as treatment trials are underway for pharmacological agents with specific molecular targets, and numerous failed trials suggest that earlier treatment is needed. This article provides an overview of classic neuroimaging findings as well as new and cutting-edge research techniques that assist with clinical diagnosis of a range of dementia syndromes, with an emphasis on studies using pathologically proven cases.
Collapse
Affiliation(s)
- Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Fanny M. Elahi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Dana McDermott
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Kacey Marton
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Elissaios Karageorgiou
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Neurological Institute of Athens, Athens, Greece
| | - Simone Sacco
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Matteo Paoletti
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Eduardo Caverzasi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Christopher P. Hess
- Division of Neuroradiology, Department of Radiology, University of California, San Francisco (UCSF), California
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Michael D. Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| |
Collapse
|
88
|
Wu D, Faria AV, Younes L, Mori S, Brown T, Johnson H, Paulsen JS, Ross CA, Miller MI. Mapping the order and pattern of brain structural MRI changes using change-point analysis in premanifest Huntington's disease. Hum Brain Mapp 2017; 38:5035-5050. [PMID: 28657159 PMCID: PMC5766002 DOI: 10.1002/hbm.23713] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 02/02/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that progressively affects motor, cognitive, and emotional functions. Structural MRI studies have demonstrated brain atrophy beginning many years prior to clinical onset ("premanifest" period), but the order and pattern of brain structural changes have not been fully characterized. In this study, we investigated brain regional volumes and diffusion tensor imaging (DTI) measurements in premanifest HD, and we aim to determine (1) the extent of MRI changes in a large number of structures across the brain by atlas-based analysis, and (2) the initiation points of structural MRI changes in these brain regions. We adopted a novel multivariate linear regression model to detect the inflection points at which the MRI changes begin (namely, "change-points"), with respect to the CAG-age product (CAP, an indicator of extent of exposure to the effects of CAG repeat expansion). We used approximately 300 T1-weighted and DTI data from premanifest HD and control subjects in the PREDICT-HD study, with atlas-based whole brain segmentation and change-point analysis. The results indicated a distinct topology of structural MRI changes: the change-points of the volumetric measurements suggested a central-to-peripheral pattern of atrophy from the striatum to the deep white matter; and the change points of DTI measurements indicated the earliest changes in mean diffusivity in the deep white matter and posterior white matter. While interpretation needs to be cautious given the cross-sectional nature of the data, these findings suggest a spatial and temporal pattern of spread of structural changes within the HD brain. Hum Brain Mapp 38:5035-5050, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dan Wu
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Andreia V. Faria
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Laurent Younes
- Center for Imaging Science, Johns Hopkins UniversityBaltimoreMaryland
- Institute for Computational Medicine, Johns Hopkins UniversityBaltimoreMaryland
- Department of Applied Mathematics and StatisticsJohns Hopkins UniversityBaltimoreMaryland
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimoreMaryland
| | - Timothy Brown
- Center for Imaging Science, Johns Hopkins UniversityBaltimoreMaryland
| | - Hans Johnson
- Department of Electrical and Computer EngineeringUniversity of IowaIowa CityIowa
| | - Jane S. Paulsen
- Departments of Psychiatry, Neurology, Psychology and NeurosciencesUniversity of IowaIowa CityIowa
| | - Christopher A. Ross
- Division of Neurobiology, Departments of Psychiatry, Neurology, Neuroscience and Pharmacology, and Program in Cellular and Molecular MedicineJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Michael I. Miller
- Center for Imaging Science, Johns Hopkins UniversityBaltimoreMaryland
- Institute for Computational Medicine, Johns Hopkins UniversityBaltimoreMaryland
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMaryland
| | | |
Collapse
|
89
|
Lamirault C, Yu-Taeger L, Doyère V, Riess O, Nguyen HP, El Massioui N. Altered reactivity of central amygdala to GABA A R antagonist in the BACHD rat model of Huntington disease. Neuropharmacology 2017; 123:136-147. [DOI: 10.1016/j.neuropharm.2017.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 11/16/2022]
|
90
|
Adjeroud N, Besnard J, Verny C, Prundean A, Scherer C, Gohier B, Bonneau D, Massioui NE, Allain P. Dissociation between decision-making under risk and decision-making under ambiguity in premanifest and manifest Huntington's disease. Neuropsychologia 2017; 103:87-95. [PMID: 28712946 DOI: 10.1016/j.neuropsychologia.2017.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 11/28/2022]
Abstract
We investigated decision-making under ambiguity (DM-UA) and decision making under risk (DM-UR) in individuals with premanifest and manifest Huntington's disease (HD). Twenty individuals with premanifest HD and 23 individuals with manifest HD, on one hand, and 39 healthy individuals divided into two control groups, on the other, undertook a modified version of the Iowa Gambling Task (IGT), an adaptation of a DM-UA task, and a modified version of the Game of Dice Task (GDT), an adaptation of a DM-UR task. Participants also filled in a questionnaire of impulsivity and responded to cognitive tests specifically designed to assess executive functions. Compared to controls, individuals with premanifest HD were unimpaired in performing executive tests as well as in decision-making tasks, except for the Stroop task. In contrast, individuals with manifest HD were impaired in both the IGT and executive tasks, but not in the GDT. No sign of impulsivity was observed in individuals with premanifest or manifest HD. Our results suggest that the progression of HD impairs DM-UA without affecting DM-UR, and indicate that decision-making abilities are preserved during the premanifest stage of HD.
Collapse
Affiliation(s)
- Najia Adjeroud
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, Orsay, France; Centre National de Référence pour les Maladies Neurogénétiques de l'Adulte, Département de Neurologie, Centre Hospitalier Universitaire, Angers, France
| | - Jeremy Besnard
- Laboratoire de Psychologie des Pays de la Loire(EA4638), Université d'Angers, Angers, France
| | - Christophe Verny
- Centre National de Référence pour les Maladies Neurogénétiques de l'Adulte, Département de Neurologie, Centre Hospitalier Universitaire, Angers, France
| | - Adriana Prundean
- Centre National de Référence pour les Maladies Neurogénétiques de l'Adulte, Département de Neurologie, Centre Hospitalier Universitaire, Angers, France
| | - Clarisse Scherer
- Centre National de Référence pour les Maladies Neurogénétiques de l'Adulte, Département de Neurologie, Centre Hospitalier Universitaire, Angers, France
| | - Bénédicte Gohier
- Centre National de Référence pour les Maladies Neurogénétiques de l'Adulte, Département de Neurologie, Centre Hospitalier Universitaire, Angers, France
| | - Dominique Bonneau
- Département de Biochimie et Génétique et UMR CNRS 6015, INSERM 1083n, Centre Hospitalier Universitaire, Angers,France
| | - Nicole El Massioui
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, Orsay, France
| | - Philippe Allain
- Centre National de Référence pour les Maladies Neurogénétiques de l'Adulte, Département de Neurologie, Centre Hospitalier Universitaire, Angers, France; Laboratoire de Psychologie des Pays de la Loire(EA4638), Université d'Angers, Angers, France.
| |
Collapse
|
91
|
Pinar C, Fontaine CJ, Triviño-Paredes J, Lottenberg CP, Gil-Mohapel J, Christie BR. Revisiting the flip side: Long-term depression of synaptic efficacy in the hippocampus. Neurosci Biobehav Rev 2017. [PMID: 28624435 DOI: 10.1016/j.neubiorev.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synaptic plasticity is widely regarded as a putative biological substrate for learning and memory processes. While both decreases and increases in synaptic strength are seen as playing a role in learning and memory, long-term depression (LTD) of synaptic efficacy has received far less attention than its counterpart long-term potentiation (LTP). Never-the-less, LTD at synapses can play an important role in increasing computational flexibility in neural networks. In addition, like learning and memory processes, the magnitude of LTD can be modulated by factors that include stress and sex hormones, neurotrophic support, learning environments, and age. Examining how these factors modulate hippocampal LTD can provide the means to better elucidate the molecular underpinnings of learning and memory processes. This is in turn will enhance our appreciation of how both increases and decreases in synaptic plasticity can play a role in different neurodevelopmental and neurodegenerative conditions.
Collapse
Affiliation(s)
- Cristina Pinar
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Christine J Fontaine
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Juan Triviño-Paredes
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Carina P Lottenberg
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada; Faculty of Medical Sciences of Santa Casa de São Paulo, Sao Paulo, SP, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
92
|
Coffey SR, Bragg RM, Minnig S, Ament SA, Cantle JP, Glickenhaus A, Shelnut D, Carrillo JM, Shuttleworth DD, Rodier JA, Noguchi K, Bennett CF, Price ND, Kordasiewicz HB, Carroll JB. Peripheral huntingtin silencing does not ameliorate central signs of disease in the B6.HttQ111/+ mouse model of Huntington's disease. PLoS One 2017; 12:e0175968. [PMID: 28453524 PMCID: PMC5409169 DOI: 10.1371/journal.pone.0175968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/03/2017] [Indexed: 01/20/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease whose predominant neuropathological signature is the selective loss of medium spiny neurons in the striatum. Despite this selective neuropathology, the mutant protein (huntingtin) is found in virtually every cell so far studied, and, consequently, phenotypes are observed in a wide range of organ systems both inside and outside the central nervous system. We, and others, have suggested that peripheral dysfunction could contribute to the rate of progression of striatal phenotypes of HD. To test this hypothesis, we lowered levels of huntingtin by treating mice with antisense oligonucleotides (ASOs) targeting the murine Huntingtin gene. To study the relationship between peripheral huntingtin levels and striatal HD phenotypes, we utilized a knock-in model of the human HD mutation (the B6.HttQ111/+ mouse). We treated mice with ASOs from 2-10 months of age, a time period over which significant HD-relevant signs progressively develop in the brains of HttQ111/+ mice. Peripheral treatment with ASOs led to persistent reduction of huntingtin protein in peripheral organs, including liver (64% knockdown), brown adipose (66% knockdown), and white adipose tissues (71% knockdown). This reduction was not associated with alterations in the severity of HD-relevant signs in the striatum of HttQ111/+ mice at the end of the study, including transcriptional dysregulation, the accumulation of neuronal intranuclear inclusions, and behavioral changes such as subtle hypoactivity and reduced exploratory drive. These results suggest that the amount of peripheral reduction achieved in the current study does not significantly impact the progression of HD-relevant signs in the central nervous system.
Collapse
Affiliation(s)
- Sydney R. Coffey
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA, United States of America
| | - Robert M. Bragg
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA, United States of America
| | - Shawn Minnig
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA, United States of America
| | - Seth A. Ament
- Institute for Genome Sciences and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Institute for Systems Biology, Seattle, WA, United States of America
| | - Jeffrey P. Cantle
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA, United States of America
| | - Anne Glickenhaus
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA, United States of America
| | - Daniel Shelnut
- Department of Mathematics, Western Washington University, Bellingham, WA, United States of America
| | - José M. Carrillo
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA, United States of America
| | - Dominic D. Shuttleworth
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA, United States of America
| | - Julie-Anne Rodier
- INSERM U1216, Grenoble Institute of Neuroscience, Grenoble, France. Université Grenoble Alpes, Grenoble, France
| | - Kimihiro Noguchi
- Department of Mathematics, Western Washington University, Bellingham, WA, United States of America
| | | | - Nathan D. Price
- Institute for Genome Sciences and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | | | - Jeffrey B. Carroll
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA, United States of America
| |
Collapse
|
93
|
Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Prog Neurobiol 2017; 153:18-45. [PMID: 28377290 DOI: 10.1016/j.pneurobio.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Dementia encapsulates a set of symptoms that include loss of mental abilities such as memory, problem solving or language, and reduces a person's ability to perform daily activities. Alzheimer's disease is the most common form of dementia, however dementia can also occur in other neurological disorders such as Huntington's disease (HD). Many studies have demonstrated that loss of neuronal cell function manifests pre-symptomatically and thus is a relevant therapeutic target to alleviate symptoms. Synaptopathy, the physiological dysfunction of synapses, is now being approached as the target for many neurological and psychiatric disorders, including HD. HD is an autosomal dominant and progressive degenerative disorder, with clinical manifestations that encompass movement, cognition, mood and behaviour. HD is one of the most common tandem repeat disorders and is caused by a trinucleotide (CAG) repeat expansion, encoding an extended polyglutamine tract in the huntingtin protein. Animal models as well as human studies have provided detailed, although not exhaustive, evidence of synaptic dysfunction in HD. In this review, we discuss the neuropathology of HD and how the changes in synaptic signalling in the diseased brain lead to its symptoms, which include dementia. Here, we review and discuss the mechanisms by which the 'molecular orchestras' and their 'synaptic symphonies' are disrupted in neurodegeneration and dementia, focusing on HD as a model disease. We also explore the therapeutic strategies currently in pre-clinical and clinical testing that are targeted towards improving synaptic function in HD.
Collapse
Affiliation(s)
- Shiraz Tyebji
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
94
|
Meng Y, Jiang J, Bachevalier J, Zhang X, Chan AWS. Developmental Whole Brain White Matter Alterations in Transgenic Huntington's Disease Monkey. Sci Rep 2017; 7:379. [PMID: 28336929 PMCID: PMC5428287 DOI: 10.1038/s41598-017-00381-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/23/2017] [Indexed: 11/17/2022] Open
Abstract
Transgenic Huntington’s disease monkey (HD monkey) model provides great opportunity for studying disease progression that could lead to new insight for developing biomarker, early intervention and novel therapeutics. Whole brain white matter integrity of HD-monkeys was examined longitudinally from 6 to 48 months using diffusion tensor imaging (DTI) and tract-based spatial statistics (TBSS). Progressive developmental white matter alterations in HD monkeys were widespread and were observed not only in fiber bundles connecting cortical areas to the striatum (e.g. striatal bundle and external capsule), but also in long association fiber pathways, commissural fibers, and subcortical fiber bundle. In all fiber tracts, the data indicate an arrest in white matter development around 23 months followed by slight decline until adulthood in HD monkeys. The microstructural changes parallel the progressive motor, memory and cognitive decline previously reported as HD monkeys aged. The findings revealed the widespread progressive temporal-spatial microstructural changes in HD monkey brains from infancy to adulthood, suggesting differentiated degenerations across different brain areas during brain development.
Collapse
Affiliation(s)
- Yuguang Meng
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jie Jiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA.,Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jocelyne Bachevalier
- Department of Psychology, Emory University School of Medicine, Atlanta, Georgia, USA. .,Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.
| | - Xiaodong Zhang
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA. .,Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.
| | - Anthony W S Chan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA. .,Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
95
|
Schwab LC, Richetin K, Barker RA, Déglon N. Formation of hippocampal mHTT aggregates leads to impaired spatial memory, hippocampal activation and adult neurogenesis. Neurobiol Dis 2017; 102:105-112. [PMID: 28286179 DOI: 10.1016/j.nbd.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/29/2017] [Accepted: 03/08/2017] [Indexed: 12/18/2022] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder characterized by a triad of motor, psychiatric and cognitive deficits with the latter classically attributed to disruption of fronto-striatal circuits. However, emerging evidence suggests that some of the cognitive deficits in HD may have their origin in other structures including the hippocampus. Hippocampal abnormalities have been reported in HD mouse models particularly in terms of performance on the Morris Water Maze. However, in these animals, it is difficult to be certain whether the spatial memory deficits are due to local pathology within this structure or their poor mobility and motivation. Thus, a better model of hippocampal dysfunction in HD is needed especially given that we have previously shown that patients with HD have hippocampal-related problems from the very earliest stages of disease. In this study, our aim was therefore to understand the cellular and behavioural consequences of local overexpression of mutant huntingtin (mHTT) in the hippocampus of adult mice. We found that a targeted injection of a lentivirus, encoding an N-terminal of mHTT with 82 CAG repeats, into the murine hippocampus led to the focal formation of mHTT aggregates, long-term spatial memory impairments with decreased neurogenesis and expression of the immediate early gene c-fos. This study has therefore shown for the first time that local expression of mHTT in the dentate gyrus has deleterious effects, including its neurogenic capacity, with functional behavioural consequences, which fits well with recent data on hippocampal deficits seen in patients with HD.
Collapse
Affiliation(s)
- L C Schwab
- Wellcome Trust and MRC Cambridge Stem Cell Centre and Department of Clinical Neurosciences, University of Cambridge, Department of Clinical Neuroscience, John van Geest Centre for Brain Repair, Cambridge, United Kingdom.
| | - K Richetin
- Lausanne University Hospital (CHUV), Department of Clinical Neuroscience (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), 1011 - Lausanne, Switzerland.
| | - R A Barker
- Wellcome Trust and MRC Cambridge Stem Cell Centre and Department of Clinical Neurosciences, University of Cambridge, Department of Clinical Neuroscience, John van Geest Centre for Brain Repair, Cambridge, United Kingdom
| | - N Déglon
- Lausanne University Hospital (CHUV), Department of Clinical Neuroscience (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), 1011 - Lausanne, Switzerland
| |
Collapse
|
96
|
Tartaglione AM, Popoli P, Calamandrei G. Regenerative medicine in Huntington's disease: Strengths and weaknesses of preclinical studies. Neurosci Biobehav Rev 2017; 77:32-47. [PMID: 28223129 DOI: 10.1016/j.neubiorev.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/17/2017] [Indexed: 01/22/2023]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder, characterized by impairment in motor, cognitive and psychiatric domains. Currently, there is no specific therapy to act on the onset or progression of HD. The marked neuronal death observed in HD is a main argument in favour of stem cells (SCs) transplantation as a promising therapeutic perspective to replace the population of lost neurons and restore the functionality of the damaged circuitry. The availability of rodent models of HD encourages the investigation of the restorative potential of SCs transplantation longitudinally. However, the results of preclinical studies on SCs therapy in HD are so far largely inconsistent; this hampers the individuation of the more appropriate model and precludes the comparative analysis of transplant efficacy on behavioural end points. Thus, this review will describe the state of the art of in vivo research on SCs therapy in HD, analysing in a translational perspective the strengths and weaknesses of animal studies investigating the therapeutic potential of cell transplantation on HD progression.
Collapse
Affiliation(s)
- A M Tartaglione
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - P Popoli
- National Centre for Medicines Research and Preclinical/Clinical Evaluation, Rome, Italy
| | - G Calamandrei
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
97
|
Datson NA, González-Barriga A, Kourkouta E, Weij R, van de Giessen J, Mulders S, Kontkanen O, Heikkinen T, Lehtimäki K, van Deutekom JCT. The expanded CAG repeat in the huntingtin gene as target for therapeutic RNA modulation throughout the HD mouse brain. PLoS One 2017; 12:e0171127. [PMID: 28182673 PMCID: PMC5300196 DOI: 10.1371/journal.pone.0171127] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/16/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of these studies was to demonstrate the therapeutic capacity of an antisense oligonucleotide with the sequence (CUG)7 targeting the expanded CAG repeat in huntingtin (HTT) mRNA in vivo in the R6/2 N-terminal fragment and Q175 knock-in Huntington’s disease (HD) mouse models. In a first study, R6/2 mice received six weekly intracerebroventricular infusions with a low and high dose of (CUG)7 and were sacrificed 2 weeks later. A 15–60% reduction of both soluble and aggregated mutant HTT protein was observed in striatum, hippocampus and cortex of (CUG)7-treated mice. This correction at the molecular level resulted in an improvement of performance in multiple motor tasks, increased whole brain and cortical volume, reduced levels of the gliosis marker myo-inositol, increased levels of the neuronal integrity marker N-aceyl aspartate and increased mRNA levels of the striatal marker Darpp-32. These neuroanatomical and neurochemical changes, together with the improved motor performance, suggest that treatment with (CUG)7 ameliorates basal ganglia dysfunction. The HTT-lowering was confirmed by an independent study in Q175 mice using a similar (CUG)7 AON dosing regimen, further demonstrating a lasting reduction of mutant HTT protein in striatum, hippocampus and cortex for up to 18 weeks post last infusion along with an increase in motor activity. Based on these encouraging results, (CUG)7 may thus offer an interesting alternative HTT-lowering strategy for HD.
Collapse
Affiliation(s)
| | | | | | - Rudie Weij
- BioMarin Nederland BV, Leiden, The Netherlands
| | | | | | - Outi Kontkanen
- Charles River Discovery Research Services, Kuopio, Finland
| | | | | | | |
Collapse
|
98
|
Bragg RM, Coffey SR, Weston RM, Ament SA, Cantle JP, Minnig S, Funk CC, Shuttleworth DD, Woods EL, Sullivan BR, Jones L, Glickenhaus A, Anderson JS, Anderson MD, Dunnett SB, Wheeler VC, MacDonald ME, Brooks SP, Price ND, Carroll JB. Motivational, proteostatic and transcriptional deficits precede synapse loss, gliosis and neurodegeneration in the B6.Htt Q111/+ model of Huntington's disease. Sci Rep 2017; 7:41570. [PMID: 28176805 PMCID: PMC5296868 DOI: 10.1038/srep41570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/20/2016] [Indexed: 01/02/2023] Open
Abstract
We investigated the appearance and progression of disease-relevant signs in the B6.HttQ111/+ mouse, a genetically precise model of the mutation that causes Huntington’s disease (HD). We find that B6.HttQ111/+ mice are healthy, show no overt signs of central or peripheral inflammation, and no gross motor impairment as late as 12 months of age. Behaviorally, we find that 4–9 month old B6.HttQ111/+ mice have normal activity levels and show no clear signs of anxiety or depression, but do show clear signs of reduced motivation. The neuronal density, neuronal size, synaptic density and number of glia is normal in B6.HttQ111/+ striatum, the most vulnerable brain region in HD, up to 12 months of age. Despite this preservation of the synaptic and cellular composition of the striatum, we observe clear progressive, striatal-specific transcriptional dysregulation and accumulation of neuronal intranuclear inclusions (NIIs). Simulation studies suggest these molecular endpoints are sufficiently robust for future preclinical studies, and that B6.HttQ111/+ mice are a useful tool for modeling disease-modifying or neuroprotective strategies for disease processes before the onset of overt phenotypes.
Collapse
Affiliation(s)
- Robert M Bragg
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Sydney R Coffey
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Rory M Weston
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Seth A Ament
- Institute for Systems Biology, Seattle, WA, USA.,Institute for Genome Sciences and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| | - Jeffrey P Cantle
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Shawn Minnig
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, USA
| | - Dominic D Shuttleworth
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Emily L Woods
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Bonnie R Sullivan
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Lindsey Jones
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Anne Glickenhaus
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - John S Anderson
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Michael D Anderson
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Stephen B Dunnett
- The Brain Repair Group, Cardiff University School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, United Kingdom
| | - Vanessa C Wheeler
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston 02114, MA, USA
| | - Marcy E MacDonald
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston 02114, MA, USA
| | - Simon P Brooks
- The Brain Repair Group, Cardiff University School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, United Kingdom
| | | | - Jeffrey B Carroll
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA.,Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston 02114, MA, USA
| |
Collapse
|
99
|
Beyond emotion recognition deficits: A theory guided analysis of emotion processing in Huntington’s disease. Neurosci Biobehav Rev 2017; 73:276-292. [DOI: 10.1016/j.neubiorev.2016.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 11/22/2022]
|
100
|
The Complexity of Clinical Huntington's Disease: Developments in Molecular Genetics, Neuropathology and Neuroimaging Biomarkers. ADVANCES IN NEUROBIOLOGY 2017; 15:129-161. [PMID: 28674980 DOI: 10.1007/978-3-319-57193-5_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterised by extensive neuronal loss in the striatum and cerebral cortex, and a triad of clinical symptoms affecting motor, cognitive/behavioural and mood functioning. The mutation causing HD is an expansion of a CAG tract in exon 1 of the HTT gene. This chapter provides a multifaceted overview of the clinical complexity of HD. We explore recent directions in molecular genetics including the identification of loci that are genetic modifiers of HD that could potentially reveal therapeutic targets beyond the HTT gene transcript and protein. The variability of clinical symptomatology in HD is considered alongside recent findings of variability in cellular and neurochemical changes in the striatum and cerebral cortex in human brain. We review evidence from structural neuroimaging methods of progressive changes of striatum, cerebral cortex and white matter in pre-symptomatic and symptomatic HD, with a particular focus on the potential identification of neuroimaging biomarkers that could be used to test promising disease-specific and modifying treatments. Finally we provide an overview of completed clinical trials in HD and future therapeutic developments.
Collapse
|